
Silk Test 19.5

Silk Test Classic Classic Agent Help

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 1992-2018. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Silk Test are trademarks or registered trademarks
of Micro Focus IP Development Limited or its subsidiaries or affiliated companies in the
United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2018-10-24

ii

Contents

Licensing Information ..19
Automation Under Special Conditions (Missing Peripherals) 20
Silk Test Product Suite .. 22
Classic Agent ..24

How Silk Test Classic Assigns an Agent to a Window Declaration 24
Agent Options ... 24
Setting the Default Agent .. 44

Setting the Default Agent Using the Runtime Options Dialog Box 45
Setting the Default Agent Using the Toolbar Icons ...45

Connecting to the Default Agent ... 45
Creating a Script that Uses Both Agents ...45
Overview of Record Functionality Available for the Silk Test Agents46
Setting the Window Timeout Value to Prevent Window Not Found Exceptions 47

Manually Setting the Window Timeout Value ... 47
Setting the Window Timeout Value in the Agent Options Dialog Box47

Basic Workflow for the Classic Agent ..49
Creating a New Project ... 49
Enabling Extensions Automatically Using the Basic Workflow ..50
Setting the Recovery System for the Classic Agent ..50
Recording a Test Case With the Classic Agent ...51
Running a Test Case ...52
Viewing Test Results ... 53
Troubleshooting Basic Workflow Issues with the Classic Agent ..53

Migrating from the Classic Agent to the Open Agent54
Differences for Agent Options Between the Silk Test Agents ..54
Differences in Object Recognition Between the Silk Test Agents 55
Differences in the Classes Supported by the Silk Test Agents ... 57
Differences in the Parameters Supported by the Silk Test Agents61
Overview of the Methods Supported by the Silk Test Agents ... 62
SYS Functions Supported by the Open Agent and the Classic Agent62

Silk Test Classic Projects .. 64
Storing Project Information ..64
Accessing Files Within Your Project ..65
Sharing a Project Among a Group .. 66
Project Explorer ...66
Creating a New Project ... 67
Opening an Existing Project ..68
Converting Existing Tests to a Project ...69
Using Option Sets in Your Project ... 69

Editing an Options Set ..69
Silk Test Classic File Types ... 70
Organizing Projects ...71

Adding Existing Files to a Project ...71
Renaming Your Project ...71
Working with Folders in a Project ... 72
Moving Files Between Projects .. 73
Removing Files from a Project ... 74
Turning the Project Explorer View On and Off ..74
Viewing Resources Within a Project .. 74

Packaging a Silk Test Classic Project ... 74

Contents | 3

Emailing a Project .. 76
Exporting a Project ..78
Troubleshooting Projects ...79

Files Not Found When Opening Project ...79
Silk Test Classic Cannot Load My Project File ... 79
Silk Test Classic Cannot Save Files to My Project ... 79
Silk Test Classic Does Not Run ..80
My Files No Longer Display In the Recent Files List ..80
Cannot Find Items In Classic 4Test ..80
Editing the Project Files ..80

Project Description Dialog Box ..81
Enabling Extensions for Applications Under Test .. 82

Extensions that Silk Test Classic can Automatically Configure ...82
Extensions that Must be Set Manually .. 83
Extensions on Host and Target Machines ...83
Enabling Extensions Automatically Using the Basic Workflow ..84
Enabling Extensions on a Host Machine Manually ... 84
Manually Enabling Extensions on a Target Machine ...85
Enabling Extensions for Embedded Browser Applications that Use the Classic Agent 86
Enabling Extensions for HTML Applications (HTAs) ... 87
Adding a Test Application to the Extension Dialog Boxes ... 87
Verifying Extension Settings ..88
Why Applications do not have Standard Names ... 88
Duplicating the Settings of a Test Application in Another Test Application88
Deleting an Application from the Extension Enabler or Extensions Dialog Box 89
Disabling Browser Extensions ...89
Comparison of the Extensions Dialog Box and the Extension Enabler Dialog Box 89
Configuring the Browser ..90

Setting Agent Options for Web Testing ...91
Specifying a Browser for Silk Test Classic to Use in Testing a Web Application 92
Specifying your Default Browser .. 92

Enable Extensions Dialog Box (Classic Agent) ...92
Extension Information Dialog Box ... 93
Extension Settings Dialog Box (.NET) ...93
Extension Settings Dialog Box (Web) ... 94
Extension Settings Dialog Box (Client/Server) ..94
Extension Settings Dialog Box (Java) ... 95

Understanding the Recovery System for the Classic Agent96
Setting the Recovery System for the Classic Agent ..97
Base State ...98
DefaultBaseState Function ... 98
Adding Tests that Use the Classic Agent to the DefaultBaseState 99
DefaultBaseState and wMainWindow ... 99
Flow of Control .. 100

The Non-Web Recovery Systems Flow of Control ... 100
Web Applications and the Recovery System ..100
How the Non-Web Recovery System Closes Windows 101
How the Non-Web Recovery System Starts the Application101

Modifying the Default Recovery System ... 102
Overriding the Default Recovery System ... 102
Handling Login Windows ..103
Handling Browser Pop-up Windows in Tests that Use the Classic Agent105
Specifying Windows to be Left Open for Tests that Use the Classic Agent106
Specifying New Window Closing Procedures ...106
Specifying Buttons, Keys, and Menus that Close Windows 107
Recording a Close Method for Tests that Use the Classic Agent 107

4 | Contents

Set Recovery System Dialog Box ... 108
Test Plans ..109

Structure of a Test Plan ...109
Overview of Test Plan Templates .. 110
Example Outline for Word Search Feature ..110
Converting a Results File to a Test Plan ... 112
Working with Test Plans .. 112

Creating a New Test Plan ...112
Indent and Change Levels in an Outline .. 113
Adding Comments to Test Plan Results ... 113
Documenting Manual Tests in the Test Plan ...114
Describing the State of a Manual Test ..114
Inserting a Template ...114
Changing Colors in a Test Plan .. 115
Linking the Test Plan to Scripts and Test Cases .. 115
Insert Testplan Template Dialog Box .. 116

Working with Large Test Plans ..116
Determining Where Values are Defined in a Large Test Plan 116
Dividing a Test Plan into a Master Plan and Sub-Plans 116
Creating a Sub-Plan ... 117
Copying a Sub-Plan ... 117
Opening a Sub-Plan ... 117
Connecting a Sub-Plan with a Master Plan ..117
Refreshing a Local Copy of a Sub-Plan ... 117
Sharing a Test Plan Initialization File ..118
Saving Changes ... 118
Overview of Locks .. 118
Acquiring and Releasing a Lock ...118
Generating a Test Plan Completion Report ..118
Testplan Completion Report Dialog Box ...119

Adding Data to a Test Plan ..119
Specifying Unique and Shared Data .. 119
Adding Comments in the Test Plan Editor ..120
Testplan Editor Statements .. 120
The # Operator in the Testplan Editor .. 120
Using the Testplan Detail Dialog Box to Enter the testdata Statement120
Entering the testdata Statement Manually ... 121

Linking Test Plans ... 121
Linking a Description to a Script or Test Case using the Testplan Detail Dialog Box

... 121
Linking a Test Plan to a Data-Driven Test Case ... 121
Linking to a Test Plan Manually ..122
Linking a Test Case or Script to a Test Plan using the Testplan Detail Dialog Box

... 122
Linking the Test Plan to Scripts and Test Cases .. 122
Example of Linking a Test Plan to a Test Case .. 123

Categorizing and Marking Test Plans ..123
Marking a Test Plan ..123
How the Marking Commands Interact .. 124
Marking One or More Tests .. 124
Printing Marked Tests ...124
Mark By Query Dialog Box ...124
Mark By Named Query Dialog Box .. 125

Using Symbols .. 126
Overview of Symbols ..126
Symbol Definition Statements in the Test Plan Editor .. 128

Contents | 5

Defining Symbols in the Testplan Detail Dialog box ... 128
Assigning a Value to a Symbol ...129
Specifying Symbols as Arguments when Entering a testcase Statement 129

Attributes and Values .. 129
Predefined Attributes ..130
User Defined Attributes .. 130
Adding or Removing Members of a Set Attribute ... 130
Rules for Using + and - ...131
Defining an Attribute and the Values of the Attribute ..131
Assigning Attributes and Values to a Test Plan .. 131
Assigning an Attribute from the Testplan Detail Dialog Box 132
Modifying the Definition of an Attribute ...132

Queries ..133
Overview of Test Plan Queries ... 133
Overview of Combining Queries to Create a New Query133
Guidelines for Including Symbols in a Query ... 134
The Differences between Query and Named Query Commands134
Creating a New Query ..134
Edit a Query ... 135
Delete a Query ... 135
Combining Queries ...135
Combine Testplan Queries Dialog Box ...136
New/Edit Testplan Query Dialog Box ..136
Create Session Dialog Box ...137

Testplan Detail Dialog Box .. 137
Testplan Detail - Testcase Dialog Box ... 139
Define Attributes Dialog Box ... 139
New Attribute Dialog Box .. 140
Update Manual Tests Dialog Box .. 140
Duplicate Test Descriptions dialog box ... 141

Designing and Recording Test Cases with the Classic Agent142
Creating a New Test Frame for the Classic Agent ...142
Hierarchical Object Recognition ..142
Highlighting Objects During Recording ... 143
Setting Recording Options for the Classic Agent .. 144
Test Cases .. 145

Overview of Test Cases ..145
Anatomy of a Basic Test Case ... 146
Types of Test Cases ... 146
Test Case Design ... 146
Constructing a Test Case ... 147
Data in Test Cases ... 148
Saving Test Cases ..148
Recording Without Window Declarations ... 149
Overview of Application States ...149
Behavior of an Application State Based on NONE ...150
Example: A Feature of a Word Processor .. 150

Recording Test Cases with the Classic Agent ...151
Overview of Recording the Stages of a Test Case ...151
Overview of Recording 4Test Components .. 152
Recording a Test Case With the Classic Agent ..153
Verifying a Test Case ..153
Recording the Cleanup Stage and Pasting the Recording 154
Testing the Ability of the Recovery System to Close the Dialog Boxes of Your Application

... 155
Linking to a Script and Test Case by Recording a Test Case155

6 | Contents

Saving a Script File .. 156
Recording an Application State .. 156
Testing an Application State ... 157
Recording Actions .. 157
Recording the Location of an Object .. 157
Recording Window Identifiers ...158
Recording a Scripted Class ..159
Recording a Windows Accessibility Class ..160
Recording a Defined Window ...160
Recording Window Tags ...160
Record Status on Classic Agent Dialog Box .. 161
Verify Window Dialog Box .. 162
Verify Window Edit Dialog Box ... 163
Record Actions Dialog Box ...163
Record Testcase Dialog Box .. 164
Windows Accessibilitys accex.ini File ...164
Update Files Dialog Box ...165

Verification ...166
Verifying Object Properties ...166
Verifying Object Attributes .. 168
Overview of Verifying Bitmaps ..168
Overview of Verifying an Objects State .. 169
Fuzzy Verification ... 170
Verifying that a Window or Control is No Longer Displayed 172

Data-Driven Test Cases .. 172
Data-Driven Workflow ...173
Working with Data-Driven Test Cases ..173
Code Automatically Generated by Silk Test Classic ...174
Tips And Tricks for Data-Driven Test Cases ... 175
Testing an Application with Invalid Data ... 176
Enabling and Disabling Workflow Bars ...177
Data Source for Data-Driven Test Cases ... 177
Creating the Data-Driven Test Case ...179
Select Data Source Dialog Box .. 186
Setup Data Driven Script DSN Dialog Box ...186
Specify Data Driven Script Dialog Box ... 187
Specify Data Driven Testcase Dialog Box .. 187
Specify Rows Dialog Box ... 188
Go to Testcase Dialog Box ... 190
Select Testcase Dialog Box ..190

Property Sets .. 190
Verifying Properties as Sets ... 190
Creating a New Property Set ..191
Combining Property Sets ... 191
Deleting a Property Set .. 191
Editing an Existing Property Set ...192
Specifying a Class-Property Pair ..192
Predefined Property Sets ... 192

Characters Excluded from Recording and Replaying ... 193
Testing in Your Environment with the Classic Agent194

Distributed Testing with the Classic Agent .. 194
Configuring Your Test Environment (Classic Agent) ...194
Running Test Cases in Parallel ...201
Testing Multiple Machines .. 209
Testing Multiple Applications .. 216
Troubleshooting Distributed Testing ..228

Contents | 7

Testing ActiveX/Visual Basic Controls ...229
Overview of ActiveX/Visual Basic Support ... 229
Enabling ActiveX/Visual Basic Support .. 230
Predefined Classes for ActiveX/Visual Basic Controls ... 230
Predefined Class Definition File for Visual Basic ..230
List of Predefined ActiveX/Visual Basic Controls ... 231
Access to VBOptionButton Control Methods ..232
0-Based Arrays ...233
Dependent Objects and Collection Objects ..233
Working with Dynamically Windowed Controls .. 233
Window Timeout ...234
Conversion of BOOLEAN Values ... 234
Testing Controls: 4Test Versus ActiveX Methods ... 234
Control Access is Similar to Visual Basic ... 234
Prerequisites for Testing ActiveX/Visual Basic Controls235
ActiveX/Visual Basic Exception Values .. 235
Recording New Classes for ActiveX/Visual Basic Controls236
Loading Class Definition Files .. 236
Disabling ActiveX/Visual Basic Support ... 237
Ignoring an ActiveX/Visual Basic Class ..237
Setting ActiveX/Visual Basic Extension Options .. 237
Setup for Testing ActiveX Controls or Java Applets in the Browser238

Client/Server Application Support ... 238
Client/Server Testing Challenges ... 239
Verifying Tables in ClientServer Applications ... 239
Evolving a Testing Strategy .. 240
Incremental Functional Test Design ... 240
Network Testing Types ... 241
How 4Test Handles Script Deadlock .. 242
Troubleshooting Configuration Test Failures ...242

Testing .NET Applications with the Classic Agent ...243
Enabling .NET Support ...243
Tips for Working with .NET ...243
Windows Forms Applications ... 244

Testing Java AWT/Swing Applications with the Classic Agent .. 252
Testing Standard Java Objects and Custom Controls .. 253
Recording and Playing Back JFC Menus ... 253
Recording and Playing Back Java AWT Menus ... 253
Object Recognition for Java AWT/Swing Applications ..254
Supported Controls for Java AWT/Swing Applications ...254
Java AWT Classes for the Classic Agent ... 254
Supported Java Virtual Machines ...254
Supported Browsers for Testing Java Applets ..254
Overview of JavaScript Support ... 255
Support for JavaBeans ... 255
Classes in Object-Oriented Programming Languages ... 255
Configuring Silk Test Classic to Test Java .. 256
Testing Java Applications and Applets ... 260
Frequently Asked Questions About Testing Java Applications290

Testing Java SWT and Eclipse Applications with the Classic Agent 291
Suppressing Controls (Classic Agent) ..292
Java SWT Classes for the Classic Agent ... 292

Testing Web Applications with the Classic Agent ..292
Testing Methodology for Web Applications ...292
Supported Controls for Web Applications .. 293
Sample Web Applications ...293

8 | Contents

API Click Versus Agent Click ..293
Testing Dynamic HTML (DHTML) Popup Menus ... 294
Setting Up a Web Application (Classic Agent) ... 294
Recording the Test Frame for a Web Application (Classic Agent)295
Recording Window Declarations for a Web Application 295
Streamlining HTML Frame Declarations .. 296
Overview of Test Frames ..296
User Options .. 298
Testing Web Applications on Different Browsers ..302
VO Automation ... 303
Testing Objects in a Web Page with the Classic Agent .. 304
General Web Application Classes ..315

Testing Windows API-Based Applications ...315
Overview of Windows API-Based Application Support .. 315
Locator Attributes for Windows API-Based Applications 315
Suppressing Controls (Classic Agent) ..316
Suppressing Controls (Open Agent) .. 316
Configuring Standard Applications ...317
Determining the priorLabel in the Win32 Technology Domain 318
Testing Embedded Chrome Applications ... 318
Microsoft Foundation Class Support .. 319

Testing Applications with the SilkBean ..319
Preparing Test Scripts to Run with SilkBean ..320
Configuring SilkBean Support on the Target (UNIX) Machine 320
Configuring SilkBean Support on the Host Machine when Testing Multiple Applications

... 321
Correcting Problems when Using the SilkBean ..321

Using Advanced Techniques with the Classic Agent 323
Starting from the Command Line .. 323

Starting Silk Test Classic from the Command Line .. 323
Starting the Classic Agent from the Command Line .. 325

Recording a Test Frame .. 326
Overview of Object Files .. 326
Declarations ... 328
Window Declarations ..332
Identifiers and Tags .. 339
Save the Test Frame ...341
Specifying How a Dialog Box is Invoked .. 342
Class Attributes .. 342

Improving Object Recognition with Microsoft Accessibility ... 345
Enabling Accessibility ...346
Adding Accessibility Classes ..346
Improving Object Recognition with Accessibility .. 346
Removing Accessibility Classes ...347

Calling Windows DLLs from 4Test .. 348
Aliasing a DLL Name ..348
Calling a DLL from within a 4Test Script ...348
Passing Arguments to DLL Functions .. 350
Using DLL Support Files Installed with Silk Test Classic351

Extending the Class Hierarchy ..352
Classes ...352
Verifying Attributes and Properties ...357
Defining Methods and Custom Properties ... 358
Examples ..362

Porting Tests to Other GUIs .. 363
Handling Differences Among GUIs ...363

Contents | 9

About GUI Specifiers ..369
Supporting GUI-Specific Objects ... 372

Supporting Custom Controls ...373
Why Silk Test Classic Sees Controls as Custom Controls 374
Reasons Why Silk Test Classic Sees the Control as a Custom Control374
Supporting Graphical Controls ... 374
Custom Controls (Classic Agent) ... 375
Using Clipboard Methods ... 380
Filtering Custom Classes ... 380
OCR Support ..383

Supporting Internationalized Objects .. 387
Overview of Silk Test Classic Support of Unicode Content 387
Using DB Tester with Unicode Content .. 388
Issues Displaying Double-Byte Characters .. 388
Learning More About Internationalization .. 388
Silk Test Classic File Formats .. 389
Working with Bi-Directional Languages ..391
Recording Identifiers for International Applications .. 391
Configuring Your Environment ..392
Troubleshooting Unicode Content .. 395

Using Autocomplete .. 397
Overview of AutoComplete ...397
Customizing your MemberList ..398
Frequently Asked Questions about AutoComplete ...399
Turning AutoComplete Options Off ...400
Using AppStateList ...400
Using DataTypeList .. 400
Using FunctionTip .. 401
Using MemberList .. 401

Overview of the Library Browser ... 402
Library Browser Source File ... 402
Adding Information to the Library Browser ... 403
Add User-Defined Files to the Library Browser with Silk Test Classic403
Viewing Functions in the Library Browser .. 403
Viewing Methods for a Class in the Library Browser .. 404
Examples of Documenting User-Defined Methods .. 404
Web Classes Not Displayed in Library Browser ... 405
Library Browser .. 405

Text Recognition Support .. 406
Running Tests and Interpreting Results .. 408

Running Tests ... 408
Creating a Suite ..408
Passing Arguments to a Script ... 408
Running a Test Case .. 409
Running a Test Plan ... 410
Running the Currently Active Script or Suite .. 411
Stopping a Running Test Case Before it Completes .. 411
Setting a Test Case to Use Animation Mode ..411
Run Application State Dialog Box ...411
Run Testcase Dialog Box ... 411
Runtime Status Dialog Box ...413

Interpreting Results ...413
Overview of the Results File ...413
Viewing Test Results .. 414
Errors And the Results File .. 414
Viewing Differences ..416

10 | Contents

Merging Test Plan Results ..416
Selecting which Results to Display ...417
Export Results Dialog Box ..417
View Options Dialog Box .. 418
Compare Two Results Dialog Box .. 418

Analyzing Results with the Silk TrueLog Explorer ... 418
TrueLog Explorer .. 418
TrueLog Limitations and Prerequisites ... 419
Opening the TrueLog Options Dialog Box .. 419
Setting TrueLog Options ...419
Toggle TrueLog at Runtime Using a Script ... 421
Viewing Results Using the TrueLog Explorer ... 421
Modifying Your Script to Resolve Window Not Found Exceptions When Using TrueLog

... 421
Analyzing Bitmaps ...422

Overview of the Bitmap Tool ...422
When to use the Bitmap Tool ... 423
Capturing Bitmaps with the Bitmap Tool ...423
Comparing Bitmaps ..425
Rules for Using Comparison Commands ... 426
Bitmap Functions ..426
Baseline and Result Bitmaps ... 426
Zooming the Baseline Bitmap, Result Bitmap, and Differences Window 427
Looking at Statistics ... 427
Exiting from Scan Mode ... 427
Starting the Bitmap Tool ... 427
Using Masks ...428
Analyzing Bitmaps for Differences ..431

Working with Result Files ..432
Attaching a Comment to a Result Set .. 432
Comparing Result Files ..432
Customizing results .. 433
Deleting Results ... 433
Change the default number of result sets ...433
Changing the Colors of Elements In the Results File ...433
Fix incorrect values in a script .. 434
Marking Failed Test Cases ... 434
Merging Test Plan Results ..434
Navigating to errors .. 434
Viewing an individual summary .. 435
Storing and Exporting Results ..435
Storing results .. 435
Extracting Results .. 435
Exporting Results ... 436
Displaying a different set of results ...437
Removing the Unused Space from a Result File ... 437
Logging Elapsed Time, Thread, and Machine Information437

Debugging Test Scripts ... 438
Designing and Testing with Debugging in Mind .. 438
Executing a Script in the Debugger ...439
Debugging a Test Script .. 439
Debugger Menus ...440
Stepping Into and Over Functions ...440
Working with Scripts During Debugging ..440
Exiting the Debugger ...440
Breakpoints ... 441

Contents | 11

Setting Breakpoints .. 441
Viewing Breakpoints ...441
Deleting Breakpoints .. 442
Add Breakpoint Dialog Box .. 442
Delete Breakpoint Dialog Box ...442
Breakpoint Dialog Box ..442

Viewing Variables ..442
Changing the Value of a Variable ..443
Globals Dialog Box ..443
Locals Dialog Box ... 443
Expressions ...443

Evaluating Expressions .. 444
Enabling View Trace Listing .. 444
Viewing a List of Modules ... 444
View Module Dialog Box ... 445
Viewing the Debugging Transcripts ...445
Transcript Dialog Box .. 445
Call Stack Dialog Box ..445
Debugging Tips ... 445

Checking the Precedence of Operators ... 445
Checking for Code that Never Executes ...446
Global and Local Variables with the Same Name .. 446
Handling Global Variables with Unexpected Values ...446
Incorrect Usage of Break Statements .. 446
Incorrect Values for Loop Variables ..446
Infinite loops ... 446
Typographical Errors .. 446
Uninitialized Variables .. 447

Setting Silk Test Classic Options ... 448
Setting General Options ..448
Setting the Editor Font .. 450
Setting the Editor Colors ... 450
Runtime Options Dialog Box ... 451

Compiler Constants Dialog Box ..454
Agent Options Dialog Box ... 454

Timing Tab ..455
Verification Tab ... 456
Close Tab ... 457
Bitmap Tab ... 458
Synchronization Tab ... 459
Setting Advanced Options ..460
Other Tab ..461
Compatibility Tab .. 462

Extensions Dialog Box .. 463
Extension Details Dialog Box ... 465

Setting Recording Options for the Open Agent ...465
Setting Recording Options for the Classic Agent .. 468
Setting Replay Options for the Open Agent .. 469
Defining which Custom Locator Attributes to Use for Recognition469
Setting Classes to Ignore .. 470
Custom Controls Dialog Box ... 470
Property Sets Dialog Box ..471

New Property Set Dialog Box ...472
Combine Property Sets Dialog Box ..472

DOM Extensions Dialog Box ...472
Extension Application Dialog Box ... 474

12 | Contents

Extension Options (ActiveX) Dialog Box ... 474
Extension Options Dialog Box (Java) ..475
TrueLog Options - Classic Agent Dialog Box .. 475
Setting TrueLog Options ..478

Troubleshooting the Classic Agent .. 480
ActiveX and Visual Basic Applications .. 480

What Happens When You Enable ActiveX/Visual Basic? 480
Silk Test Classic Does Not Display the Appropriate Visual Basic Properties 480
Silk Test Classic Does Not Recognize ActiveX Controls in a Web Application 480
Silk Test Classic Displays an Error When Playing Back a Click on a Sheridan Command Button

... 480
Silk Test Classic Displays Native Visual Basic Objects as Custom Windows 481
Record Class Finds no Properties or Methods for a Visual Basic Object 481
Inconsistent Recognition of ActiveX Controls ...481
Test Failures During Visual Basic Application Configuration 482

Application Environment ... 482
Dr. Watson when Running from Batch File ...482
Silk Test Classic does not Launch my Java Web Start Application 482
Which JAR File do I Use with JDK/JRE? ... 483
Sample Declarations and Script for Testing JFC Popup Menus 483
Java Extension Loses Injection when Using Virtual Network Computing (VNC) ..485

Troubleshooting Basic Workflow Issues with the Classic Agent485
Browsers ... 486

I Am not Testing Applets but Browser is Launched During Playback 486
Playback is Slow when I Test Applications Launched from a Browser486
Library Browser does Not Display Web Browser Classes486

Error Messages ...487
Agent not responding ... 487
BrowserChild MainWindow Not Found When Using Internet Explorer 7.x487
Cannot find file agent.exe ...488
Control is not responding ... 488
Functionality Not Supported on the Open Agent ..488
Unable to Connect to Agent ... 489
Unable to Delete File ..489
Unable to Start Internet Explorer ..489
Variable Browser not defined ..490
Window Browser does not define a tag ..490
Window is not active ...490
Window is not enabled ... 491
Window is not exposed ...491
Window not found ...492

Functions and Methods ...492
Class not Loaded Error .. 492
Exists Method Returns False when Object Exists ..493
How can I Determine the Exact Class of a java.lang.Object Returned by a Method

... 493
How to Define lwLeaveOpen .. 494
Defining TestCaseEnter and TestCaseExit Methods ..495
How to Write the Invoke Method .. 495
I cannot Verify $Name Property during Playback ...496
Errors when calling nested methods .. 497
Methods Return Incorrect Indexed Values in My Scripts497

Handling Exceptions ... 497
Default Error Handling ..497
Custom Error Handling ...498
Trapping the exception number .. 499

Contents | 13

Defining Your Own Exceptions ... 499
Using do...except Statements to Trap and Handle Exceptions500
Programmatically Logging an Error ..501
Performing More than One Verification in a Test Case ...501
Writing an Error-Handling Function ..503
Exception Values ..504

Troubleshooting Java Applications .. 508
Why Is My Java Application Not Ready To Test? ... 508
Why Can I Not Test a Java Application Which Is Started Through a Command Prompt?

... 508
What Can I Do If My Java Application Not Contain Any Controls Below JavaMainWin?

... 509
How Can I Enable a Java Plug-In? ...509
What Can I Do If the Java Plug-In Check Box Is Not Checked? 509
What Can I Do When I Am Testing an Applet That Does Not Use a Plug-In, But the Browser Has a Plug-In Loaded?

... 509
What Can I Do If the Silk Test Java File Is Not Included in a Plug-In? 510
What Can I Do If Java Controls In an Applet Are Not Recognized?510

Multiple Machines Testing ... 510
Remote Testing and Default Browser ... 510
Setting Up the Recovery System for Multiple Local Applications 510
two_apps.t .. 511
two_apps.inc .. 512

Objects .. 517
Does Silk Test Classic Support Oracle Forms? ..517
Mouse Clicks Fail on Certain JFC and Visual Café Objects518
My Sub-Menus of a Java Menu are being Recorded as JavaDialogBoxes 518

Other Problems ... 518
Adding a Property to the Recorder ...518
Application Hangs When Playing Back a Menu Item Pick519
Cannot Access Some of the Silk Test Classic Menu Commands 519
Cannot Double-Click a Silk Test Classic File and Open Silk Test Classic 520
Cannot Extend AnyWin, Control, or MoveableWin Classes 520
Cannot Find the Quick Start Wizard ...520
Cannot open results file ..521
Cannot Play Back Picks of Cascaded Sub-Menus for an AWT Application 521
Cannot Record Second Window .. 521
Common DLL Problems ... 521
Common Scripting Problems ..522
Conflict with Virus Detectors .. 524
Displaying the Euro Symbol ... 524
Do I Need Administrator Privileges to Run Silk Test Classic?524
General Protection Faults ...525
Running Global Variables from a Test Plan Versus Running Them from a Script

... 525
Ignoring a Java Class ... 526
Include File or Script Compiles but Changes are Not Picked Up 526
Library Browser Not Displaying User-Defined Methods 527
Maximum Size of Silk Test Classic Files .. 527
Playing Back Mouse Actions .. 527
Recorder Does Not Capture All Actions ... 528
Recording two SetText () Statements ... 528
Relationship between Exceptions Defined in 4test.inc and Messages Sent To the Result File

... 529
The 4Test Editor Does Not Display Enough Characters529
Silk Test Classic Support of Delphi Applications .. 529

14 | Contents

Stopping a Test Plan .. 531
A Text Field Is Not Allowing Input ... 531
Using a Property Instead of a Data Member ..532
Using File Functions to Add Information to the Beginning of a File532
Why Does the Str Function Not Round Correctly? ...532

Troubleshooting Projects ...533
Files Not Found When Opening Project ...533
Silk Test Classic Cannot Load My Project File ... 533
Silk Test Classic Cannot Save Files to My Project ... 533
Silk Test Classic Does Not Run ..534
My Files No Longer Display In the Recent Files List ..534
Cannot Find Items In Classic 4Test ..534
Editing the Project Files ..534

Recognition Issues ..535
How Can the Application Developers Make Applications Ready for Automated Testing?

... 535
I Cannot See all Objects in my Application even after Enabling Show All Classes

... 535
java.lang.UnsatisfiedLinkError ..535
JavaMainWin is Not Recognized ..536
None of My Java Controls are Recognized .. 536
Only JavaMainWin is Recognized .. 536
Only Applet Seen ... 537
Silk Test Classic Does not Record Click() Actions Against Custom Controls in Java Applets

... 537
Silk Test Classic Does not Recognize a Popup Dialog Box caused by an AWT Applet in a Browser

... 537
Silk Test Classic is Not Recognizing Updates on Internet Explorer Page Containing JavaScript

... 538
Java Controls are Not Recognized ...538
Verify Properties does not Capture Window Properties 538

Tips ... 538
Owner-Draw List Boxes and Combo Boxes ..538
Options for Legacy Scripts ... 540
Declaring an Object for which the Class can Vary ... 541
Drag and Drop Operations ... 542
Example Test Cases for the Find Dialog Box ... 542
Declaring an Object for which the Class can Vary ... 543
When to use the Bitmap Tool ... 544

Troubleshooting Web Applications .. 544
Why Is My Web Application Not Ready To Test? ... 544
What Can I Do If the Page I Have Selected Is Empty? .. 545
Why Do I Get an Error Message When I Set the Accessibility Extension? 545
HtmlPopupList Causes the Browser to Crash when Using IE DOM Extension545
Silk Test Classic Does Not Recognize Links .. 545
Mouse Coordinate (x, y) is Off the Screen ... 546
Recording a Declaration for a Browser Page Containing Many Child Objects 546
Recording VerifyProperties() Detects BrowserPage Properties and Children546
Silk Test Classic Cannot See Any Children in My Browser Page547
Silk Test Classic Cannot Verify Browser Extension Settings547
Silk Test Classic Cannot Find the Web Page of the Application548
Silk Test Classic Cannot Recognize Web Objects with the Classic Agent 548
Silk Test Classic Recognizes Static HTML Text But Does Not Recognize Text549
A Test Frame Which Contains HTML Frame Declarations Does Not Compile550
Web Property Sets Are Not Displayed During Verification 550
Why Does the Recorder Generate so Many MoveMouse() Calls?550

Contents | 15

Using the Runtime Version of Silk Test Classic .. 552
Installing the Runtime Version ...552
Starting the Runtime Version .. 552
Comparing Silk Test Classic and Silk Test Classic Runtime Menus and Commands 552

Working with Files ..563
Creating a New File ...563
Searching for a String in a File ..563
Replacing a String in a File ... 564
4Test Editor ... 564
Setting Up a Printer ...565
Printing the Contents of the Active Window .. 565
Confirm Test Description Identifier Dialog Box ..566

Contacting Micro Focus .. 567
Information Needed by Micro Focus SupportLine ...567

Glossary ..568
4Test Classes ..568
4Test-Compatible Information or Methods .. 568
Abstract Windowing Toolkit ... 568
accented character ..568
agent ... 568
applet .. 569
application state .. 569
attributes ... 569
Band (.NET) .. 569
base state ..569
bidirectional text .. 569
Bytecode ... 569
call stack ... 570
child object .. 570
class .. 570
class library ... 570
class mapping ... 570
Classic 4Test ... 570
client area ..570
custom object .. 570
data-driven test case ...571
data member ... 571
declarations ...571
DefaultBaseState .. 571
diacritic ..571
Difference Viewer .. 571
double-byte character set (DBCS) .. 571
dynamic instantiation ...571
dynamic link library (DLL) ..572
enabling ...572
exception ...572
frame file ... 572
fully qualified object name ...572
group description ...572
handles ..573
hierarchy of GUI objects ..573
host machine ...573
hotkey ..573
Hungarian notation ..577
identifier ...577

16 | Contents

include file ... 578
internationalization or globalization ...578
Java Database Connectivity (JDBC) ... 578
Java Development Kit (JDK) ... 578
Java Foundation Classes (JFC) .. 578
Java Runtime Environment (JRE) ... 578
Java Virtual Machine (JVM) .. 578
JavaBeans ...578
Latin script ...579
layout ...579
levels of localization .. 579
load testing ..579
localization .. 579
localize an application ... 579
locator ... 579
logical hierarchy .. 580
manual test ..580
mark .. 580
master plan ... 580
message box ...580
method .. 580
minus (-) sign .. 580
modal .. 580
modeless ...581
Multibyte Character Set (MBCS) ...581
Multiple Application Domains (.NET) .. 581
negative testing ... 581
nested declarations ... 581
No-Touch (.NET) ... 581
object ...581
outline ..581
Overloaded method ...582
parent object ... 582
performance testing .. 582
physical hierarchy (.NET) .. 582
plus (+) sign .. 582
polymorphism ..582
project ... 582
properties .. 583
query ... 583
recovery system .. 583
regression testing ..583
results file .. 583
script ..583
script file ..583
side-by-side (.NET) ... 583
Simplified Chinese .. 584
Single-Byte Character Set (SBCS) ... 584
smoke test ...584
Standard Widget Toolkit (SWT) ...584
statement .. 584
status line .. 584
stress testing ... 584
subplan ..585
suite ...585
Swing .. 585

Contents | 17

symbols ... 585
tag ... 585
target machine .. 585
template .. 586
test description ..586
test frame file ...586
test case ..586
test plan ...586
TotalMemory parameter .. 586
Traditional Chinese ..587
variable ..587
verification statement .. 587
Visual 4Test ...587
window declarations ..587
window part ...587
XPath ...587

18 | Contents

Licensing Information
Unless you are using a trial version, Silk Test requires a license.

Note: A Silk Test license is bound to a specific version of Silk Test. For example, Silk Test 19.5
requires a Silk Test 19.5 license.

The licensing model is based on the client that you are using and the applications that you want to be able
to test. The available licensing modes support the following application types:

Licensing Mode Application Type

Mobile Native • Mobile web applications.

• Android
• iOS

• Native mobile applications.

• Android
• iOS

Full • Web applications, including the following:

• Apache Flex
• Java-Applets

• Mobile web applications.

• Android
• iOS

• Apache Flex
• Java AWT/Swing, including Oracle Forms
• Java SWT and Eclipse RCP
• .NET, including Windows Forms and Windows

Presentation Foundation (WPF)
• Rumba
• Windows API-Based

Note: To upgrade your license to a Full license,
visit http://www.microfocus.com.

Premium All application types that are supported with a Full
license, plus SAP applications.

Note: To upgrade your license to a Premium
license, visit http://www.microfocus.com.

Mobile Native Add-On In addition to the technologies supported with a Full or
Premium license, the mobile native add-on license offers
support for testing native mobile applications on Android
and iOS.

Licensing Information | 19

http://www.microfocus.com
http://www.microfocus.com

Automation Under Special Conditions
(Missing Peripherals)

Basic product orientation

Silk Test Classic is a GUI testing product that tries to act like a human user in order to achieve meaningful
test results under automation conditions. A test performed by Silk Test Classic should be as valuable as a
test performed by a human user while executing much faster. This means that Silk Test Classic requires a
testing environment that is as similar as possible to the testing environment that a human user would
require in order to perform the same test.

Physical peripherals

Manually testing the UI of a real application requires physical input and output devices like a keyboard, a
mouse, and a display. Silk Test Classic does not necessarily require physical input devices during test
replay. What Silk Test Classic requires is the ability of the operating system to perform keystrokes and
mouse clicks. The Silk Test Classic replay usually works as expected without any input devices connected.
However, some device drivers might block the Silk Test Classic replay mechanisms if the physical input
device is not available.

The same applies to physical output devices. A physical display does not necessarily need to be
connected, but a working video device driver must be installed and the operating system must be in a
condition to render things to the screen. For example, rendering is not possible in screen saver mode or if a
session is locked. If rendering is not possible, low-level replay will not work and high-level replay might also
not work as expected, depend on the technology that is used in the application under test (AUT).

Virtual machines

Silk Test Classic does not directly support virtualization vendors, but can operate with any type of
virtualization solution as long as the virtual guest machine behaves like a physical machine. Standard
peripherals are usually provided as virtual devices, regardless of which physical devices are used with the
machine that runs the virtual machine.

Cloud instances

From an automation point of view, a cloud instance is not different to a virtual machine. However, a cloud
instance might run some special video rendering optimization, which might lead to situations where screen
rendering is temporarily turned off to save hardware resources. This might happen when the cloud instance
detects that no client is actively viewing the display. In such a case, you could open a VNC window as a
workaround.

Special cases

Application
launched
without any
window
(headless)

Such an application cannot be tested with Silk Test Classic. Silk Test Classic needs to
hook to a target application process in order to interact with it. Hooking is not possible
for processes that do not have a visible window. In such a case you can only run
system commands.

Remote
desktops,
terminal
services, and

If Silk Test Classic resides and operates within a remote desktop session, it will fully
operate as expected.

Note: You require a full user session and the remote viewing window needs to
be maximized. If the remote viewing window is not displayed for some reason,

20 | Automation Under Special Conditions (Missing Peripherals)

remote
applications (all
vendors)

for example network issues, Silk Test Classic will continue to replay but might
produce unexpected results, depending on what remote viewing technology is
used. For example, a lost remote desktop session will negatively impact video
rendering, whereas other remote viewing solutions might show no impact at all
once the viewing window was lost.

If Silk Test Classic is used to interact with the remote desktop, remote view, or remote
app window, only low-level techniques can be used, because Silk Test Classic sees
only a screenshot of the remote machine. For some remote viewing solutions even
low-level operations may not be possible because of security restrictions. For example,
it might not be possible to send keystrokes to a remote application window.

Known
automation
obstacles

Silk Test Classic requires an interactively-logged-on full-user session. Disable anything
that could lock the session, for example screen savers, hibernation, or sleep mode. If
this is not possible because of organizational policies you could workaround such
issues by adding keep alive actions, for example moving the mouse, in regular
intervals or at the end of each test case.

Note: Depending on the configuration of the actual testing environment and the
technologies that are used for the AUT, the virtualization, and the terminal
services, you may face additional challenges and limitations during the test
automation process.

Automation Under Special Conditions (Missing Peripherals) | 21

Silk Test Product Suite
Silk Test is an automated testing tool for fast and reliable functional and regression testing. Silk Test helps
development teams, quality teams, and business analysts to deliver software faster, and with high quality.
With Silk Test you can record and replay tests across multiple platforms and devices to ensure that your
applications work exactly as intended.

The Silk Test product suite includes the following components:

• Silk Test Workbench – Silk Test Workbench is the quality testing environment that offers .NET scripting
for power users and easy to use visual tests to make testing more accessible to a broader audience.

• Silk4NET – The Silk4NET Visual Studio plug-in enables you to create Visual Basic or C# test scripts
directly in Visual Studio.

• Silk4J – The Silk4J Eclipse plug-in enables you to create Java-based test scripts directly in your Eclipse
environment.

• Silk Test Classic – Silk Test Classic is the Silk Test client that enables you to create scripts based on
4Test.

• Silk Test Agents – The Silk Test agent is the software process that translates the commands in your
tests into GUI-specific commands. In other words, the agent drives and monitors the application you are
testing. One agent can run locally on the host machine. In a networked environment, any number of
agents can run on remote machines.

22 | Silk Test Product Suite

The sizes of the individual boxes in the image above differ for visualization purposes and do not reflect the
included functionality.

The product suite that you install determines which components are available. To install all components,
choose the complete install option. To install all components with the exception of Silk Test Classic, choose
the standard install option.

Silk Test Product Suite | 23

Classic Agent
The Silk Test agent is the software process that translates the commands in your test scripts into GUI-
specific commands. In other words, the agent drives and monitors the application you are testing. One
agent can run locally on the host machine. In a networked environment, any number of agents can run on
remote machines.

Silk Test Classic provides two types of agents, the Open Agent and the Classic Agent. The agent that you
assign to your project or script depends on the type of application that you are testing.

When you create a new project, Silk Test Classic automatically uses the agent that supports the type of
application that you are testing. For instance, if you create an Apache Flex or Windows API-based client/
server project, Silk Test Classic uses the Open Agent. When you open a project or script that was
developed with the Classic Agent, Silk Test Classic automatically uses the Classic Agent. For information
about the supported technology domains for each agent, refer to Testing in Your Environment.

The Classic Agent uses hierarchical object recognition to record and replay test cases that use window
declarations to find and identify objects. With the Classic Agent, one Agent process can run locally on the
host machine, but in a networked environment, the host machine can connect to any number of remote
Agents simultaneously or sequentially. You can record and replay tests remotely using the Classic Agent.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

How Silk Test Classic Assigns an Agent to a Window
Declaration

When you record a test with the Open Agent set as the default agent, Silk Test Classic includes a locator to
identify the top-most window of the test application. For instance, this window declaration for a Notepad
application that uses the Open Agent includes the following locator:

window MainWin UntitledNotepad
locator "/MainWin[@caption='Untitled - Notepad']"

Silk Test Classic determines which agent to use by detecting whether a locator or Find or FindAll
command is used. When Silk Test Classic detects a locator on the top-most window or detects a Find or
FindAll command, the Open Agent is automatically used. If no locator or Find or FindAll command is
present, Silk Test Classic uses the Classic Agent.

Note: Any window declaration is only valid for either the Open Agent or the Classic Agent. There is no
way to use the same window declaration with both agents. The only exception to this rule are SYS
functions and DLL calls, which are implemented for both agents.

Agent Options
The following table lists the AgentClass options that can be manipulated with the GetOption method
and SetOption method. Only options that can be manipulated by the user are listed here; other options
are for internal use only.

Agent Option Agent Supported Description

OPT_AGENT_CLICKS_ONLY Classic Agent BOOLEAN

24 | Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

Agent Option Agent Supported Description

FALSE to use the API-based clicks;
TRUE to use agent-based clicks. The
default is FALSE. This option applies
to clicks on specific HTML options
only. For additional information, see
API Click Versus Agent Click.

This option can be set through the
Compatibility tab on the Agent
Options dialog box,
Agent.SetOption, or
BindAgentOption(), and may be
retrieved through
Agent.GetOption().

OPT_ALTERNATE_RECORD_BREAK Classic Agent

Open Agent

BOOLEAN

TRUE pauses recording when Ctrl
+Shift is pressed. Otherwise, Ctrl+Alt
is used. By default, this is FALSE.

OPT_APPREADY_RETRY Classic Agent

Open Agent

NUMBER

The number of seconds that the agent
waits between attempts to verify that
an application is ready. The agent
continues trying to test the application
for readiness if it is not ready until the
time specified with
OPT_APPREADY_TIMEOUT is
reached.

OPT_APPREADY_TIMEOUT Classic Agent

Open Agent

NUMBER

The number of seconds that the agent
waits for an application to become
ready. If the application is not ready
within the specified timeout, Silk Test
Classic raises an exception.

To require the agent to check the
ready state of an application, set
OPT_VERIFY_APPREADY.

This option applies only if the
application or extension knows how to
communicate to the agent that it is
ready. To find out whether the
extension has this capability, see the
documentation that comes with the
extension.

OPT_BITMAP_MATCH_COUNT Classic Agent

Open Agent

INTEGER

The number of consecutive snapshots
that must be the same for the bitmap
to be considered stable. Snapshots
are taken up to the number of

Classic Agent | 25

Agent Option Agent Supported Description

seconds specified by
OPT_BITMAP_MATCH_TIMEOUT,
with a pause specified by
OPT_BITMAP_MATCH_INTERVAL
occurring between each snapshot.

Related methods:

• CaptureBitmap

• GetBitmapCRC

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

OPT_BITMAP_MATCH_INTERVAL Classic Agent

Open Agent

INTEGER

The time interval between snapshots
to use for ensuring the stability of the
bitmap image. The snapshots are
taken up to the time specified by
OPT_BITMAP_MATCH_TIMEOUT.

Related methods:

• CaptureBitmap

• GetBitmapCRC

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

OPT_BITMAP_MATCH_TIMEOUT Classic Agent

Open Agent

NUMBER

The total time allowed for a bitmap
image to become stable.

During the time period, Silk Test
Classic takes multiple snapshots of
the image, waiting the number of
seconds specified with
OPT_BITMAP_MATCH_TIMEOUT
between snapshots. If the value
returned by
OPT_BITMAP_MATCH_TIMEOUT is
reached before the number of
bitmaps specified by
OPT_BITMAP_MATCH_COUNT
match, Silk Test Classic stops taking
snapshots and raises the exception
E_BITMAP_NOT_STABLE.

Related methods:

• CaptureBitmap

• GetBitmapCRC

• VerifyBitmap

26 | Classic Agent

Agent Option Agent Supported Description

• WaitBitmap

OPT_BITMAP_PIXEL_TOLERANCE Classic Agent

Open Agent

INTEGER

The number of pixels of difference
below which two bitmaps are
considered to match. If the number of
pixels that are different is smaller than
the number specified with this option,
the bitmaps are considered identical.
The maximum tolerance is 32767
pixels.

Related methods:

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

OPT_CLASS_MAP Classic Agent

Open Agent

LIST OF STRING

The class mapping table for custom
objects, with each entry in the list in
the form custom_class =
standard_class.

OPT_CLOSE_CONFIRM_BUTTONS Classic Agent

Open Agent

LIST OF STRING

The list of buttons used to close
confirmation dialog boxes, which are
dialog boxes that display when
closing windows with the methods
Close, CloseWindows, and
Exit.

OPT_CLOSE_DIALOG_KEYS Classic Agent

Open Agent

LIST OF STRING

The keystroke sequence used to
close dialog boxes with the methods
Close, CloseWindows, and
Exit.

OPT_CLOSE_MENU_NAME Classic Agent STRING

A list of strings representing the list of
menu items on the system menu used
to close windows with the methods
Close, CloseWindows, and
Exit.

Default is Close.

OPT_CLOSE_WINDOW_BUTTONS Classic Agent

Open Agent

LIST OF STRING

The list of buttons used to close
windows with the methods Close,
CloseWindows, and Exit.

Classic Agent | 27

Agent Option Agent Supported Description

OPT_CLOSE_WINDOW_MENUS Classic Agent

Open Agent

LIST OF STRING

The list of menu items used to close
windows with the methods Close,
CloseWindows, and Exit.

OPT_CLOSE_WINDOW_TIMEOUT Classic Agent

Open Agent

NUMBER

The number of seconds that Silk Test
Classic waits before it tries a different
close strategy for the Close method
when the respective window does not
close. Close strategies include Alt+F4
or sending the keys specified by
OPT_CLOSE_DIALOG_KEYS. By
default, this is 2.

OPT_COMPATIBLE_TAGS Classic Agent BOOLEAN

TRUE to generate and operate on
tags compatible with releases earlier
than Release 2; FALSE to use the
current algorithm.

The current algorithm affects tags that
use index numbers and some tags
that use captions. In general, the
current tags are more portable, while
the earlier algorithm generates more
platform-dependent tags.

OPT_COMPATIBILITY Open Agent STRING

Enables you to use the behavior of
the specified Silk Test Classic version
for specific features, when the
behavior of these features has
changed in a later version.

Example strings:

• 12

• 11.1

• 13.0.1

By default, this option is not set.

OPT_COMPRESS_WHITESPACE Classic Agent BOOLEAN

TRUE to replace all multiple
consecutive white spaces with a
single space for comparison of tags.
FALSE (the default) to avoid replacing
blank characters in this manner.

This is intended to provide a way to
match tags where the only difference
is the number of white spaces
between words.

28 | Classic Agent

Agent Option Agent Supported Description

If at all possible, use "wildcard "
instead of this option.

This option can increase test time
because of the increased time it takes
for compressing of white spaces in
both source and target tags. If Silk
Test Classic processes an object that
has many children, this option may
result in increased testing times.

The tag comparison is performed in
two parts. The first part is a simple
comparison; if there is a match, no
further action is required. The second
part is to compress consecutive white
spaces and retest for a match.

Due to the possible increase in test
time, the most efficient way to use this
option is to enable and disable the
option as required on sections of the
testing that is affected by white space.
Do not enable this option to cover
your entire test.

Tabs in menu items are processed
before the actual tags are compared.
Do not modify the window
declarations of frame files by adding
tabs to any of the tags.

OPT_DROPDOWN_PICK_BEFORE_GET Classic Agent BOOLEAN

TRUE to drop down the combo box
before trying to access the content of
the combo box. This is usually not
needed, but some combo boxes only
get populated after they are dropped
down. If you are having problems
getting the contents of a combo box,
set this option to TRUE.

Default is FALSE.

OPT_ENABLE_ACCESSIBILITY Classic Agent

Open Agent

BOOLEAN

TRUE to enable Accessibility when
you are testing a Win32 application
and Silk Test Classic cannot
recognize objects. Accessibility is
designed to enhance object
recognition at the class level. FALSE
to disable Accessibility.

Note: For Mozilla Firefox and
Google Chrome, Accessibility
is always activated and cannot
be deactivated.

Classic Agent | 29

Agent Option Agent Supported Description

Default is FALSE.

OPT_ENABLE_MOBILE_WEBVIEW_FALLBAC
K_SUPPORT

Open Agent BOOLEAN

Enables mobile native fallback
support for hybrid mobile applications
that are not testable with the default
browser support.

By default, this is FALSE.

OPT_ENABLE_UI_AUTOMATION_SUPPORT Open Agent TRUE to enable Microsoft UI
Automation support instead of the
normal Win32 control recognition.
This option might be useful when you
are testing a Win32 application and
Silk Test Classic cannot recognize
objects. AUTODETECT to
automatically enable Microsoft UI
Automation support for JavaFX.

By default, this is FALSE.

OPT_ENSURE_ACTIVE_WINDOW Open Agent BOOLEAN

TRUE ensures that the main window
of the call is active before a call is
executed. By default, this is FALSE.

OPT_EXTENSIONS Classic Agent LIST OF STRING

The list of loaded extensions. Each
extension is identified by the name of
the .dll or .vxx file associated with the
extension.

Unlike the other options,
OPT_EXTENSIONS is read-only and
works only with GetOption().

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES Classic Agent BOOLEAN

TRUE returns an empty list if no text
is selected. FALSE removes any
blank lines within the selected text.

By default, this is TRUE.

OPT_HANG_APP_TIME_OUT Open Agent NUMBER

Specifies the Unresponsive
application timeout, which is the
timeout for pending playback actions.

The default value is 5 seconds.

OPT_ITEM_RECORD Open Agent BOOLEAN

For SWT applications, TRUE records
methods that invoke tab items directly
rather than recording the tab folder

30 | Classic Agent

Agent Option Agent Supported Description

hierarchy. For example, you might
record
SWTControls.SWTTabControl
1.TabFolder.Select(). If this
option is set to FALSE, SWT tab
folder actions are recorded. For
example, you might record
SWTControls.SWTTabControl
1.Select("TabFolder").

By default, this is TRUE.

OPT_KEYBOARD_DELAY Classic Agent

Open Agent

NUMBER

Default is 0.02 seconds; you can
select a number in increments of .001
from .001 to up to 1000 seconds.

Be aware that the optimal number can
vary, depending on the application
that you are testing. For example, if
you are testing a Web application, a
setting of .001 radically slows down
the browser. However, setting this to 0
(zero) may cause basic application
testing to fail.

OPT_KEYBOARD_LAYOUT Classic Agent STRING

Provides support for international
keyboard layouts in the Windows
environment. Specify an operating-
system specific name for the
keyboard layout. Refer to the
Microsoft Windows documentation to
determine what string your operating
system expects. Alternatively, use the
GetOption method to help you
determine the current keyboard
layout, as in the following example:
Print (Agent.GetOption
(OPT_KEYBOARD_LAYOUT))

OPT_KILL_HANGING_APPS Classic Agent

Open Agent

BOOLEAN

Specifies whether to shutdown the
application if communication between
the Agent and the application fails or
times out. Set this option to TRUE
when testing applications that cannot
run multiple instances. By default, this
is FALSE.

OPT_LOCATOR_ATTRIBUTES_CASE_SENSIT
IVE

Open Agent BOOLEAN

Set to Yes to add case-sensitivity to
locator attribute names, or to No to

Classic Agent | 31

Agent Option Agent Supported Description

match the locator names case
insensitive.

OPT_MATCH_ITEM_CASE Classic Agent

Open Agent

BOOLEAN

Set this option to TRUE to have Silk
Test Classic consider case when
matching items in combo boxes, list
boxes, radio lists, and popup lists, or
set this option to FALSE to ignore
case differences during execution of a
Select method. This option has no
effect on a Verify function or a
VerifyContents method.

OPT_MENU_INVOKE_POPUP Classic Agent STRING

The command, keystrokes or mouse
buttons, used to display pop-up
menus, which are menus that popup
over a particular object. To use mouse
buttons, specify <button1>,
<button2>, or <button3> in the
command sequence.

OPT_MENU_PICK_BEFORE_GET Classic Agent BOOLEAN

TRUE to pick the menu before
checking whether an item on it exists,
is enabled, or is checked, or FALSE to
not pick the menu before checking.
When TRUE, you may see menus
pop up on the screen even though
your script does not explicitly call the
Pick method.

Default is FALSE.

OPT_MOUSE_DELAY Classic Agent

Open Agent

NUMBER

The delay used before each mouse
event in a script. The delay affects
moving the mouse, pressing buttons,
and releasing buttons. By default, this
is 0.02.

OPT_MULTIPLE_TAGS Classic Agent

Open Agent

BOOLEAN

TRUE to use multiple tags when
recording and playing back. FALSE to
use one tag only, as done in previous
releases.

This option cannot be set through the
Agent Options dialog box. Its default
is TRUE and is only set by the INI file,
option file, and through
Agent.SetOption.

32 | Classic Agent

Agent Option Agent Supported Description

This option overrides the Record
multiple tags check box that displays
in both the Recorder Options dialog
box and the Record Window
Declaration Options dialog box.

If the Record multiple tags check
box is grayed out and you want to
change it, check this setting.

OPT_NO_ICONIC_MESSAGE_BOXES Classic Agent BOOLEAN

TRUE to not have minimized windows
automatically recognized as message
boxes.

Default is FALSE.

OPT_PAUSE_TRUELOG Classic Agent BOOLEAN

TRUE to disable TrueLog at runtime
for a specific portion of a script, or
FALSE to enable TrueLog.

This option has no effect if Truelog is
not enabled.

Default is FALSE.

OPT_PLAY_MODE Classic Agent STRING

Used to specify playback mechanism.
For additional information for
Windows applications, see Playing
Back Mouse Actions.

OPT_POST_REPLAY_DELAY Classic Agent

Open Agent

NUMBER

The time in seconds to wait after
invoking a function or writing
properties. Increase this delay if you
experience replay problems due to
the application taking too long to
process mouse and keyboard input.
By default, this is 0.00.

OPT_RADIO_LIST Classic Agent BOOLEAN

TRUE to view option buttons as a
group; FALSE to use the pre-Release
2 method of viewing option buttons as
individual objects.

OPT_RECORD_LISTVIEW_SELECT_BY_TYP
EKEYS

Open Agent BOOLEAN

TRUE records methods with typekeys
statements rather than with keyboard
input for certain selected values. By
default, this is FALSE.

OPT_RECORD_MOUSE_CLICK_RADIUS Open Agent INTEGER

Classic Agent | 33

Agent Option Agent Supported Description

The number of pixels that defines the
radius in which a mouse down and
mouse up event must occur in order
for the Open Agent to recognize it as
a click. If the mouse down and mouse
up event radius is greater than the
defined value, a PressMouse and
ReleaseMouse event are scripted.
By default, this is set to 5 pixels.

OPT_RECORD_MOUSEMOVES Classic Agent

Open Agent

BOOLEAN

TRUE records mouse moves for Web
pages, Win32 applications, and
Windows Forms applications that use
mouse move events. You cannot
record mouse moves for child
domains of the xBrowser technology
domain, for example Apache Flex and
Swing. By default, this is FALSE.

OPT_RECORD_SCROLLBAR_ABSOLUT Open Agent BOOLEAN

TRUE records scroll events with
absolute values instead of relative to
the previous scroll position. By
default, this is FALSE.

OPT_REL1_CLASS_LIBRARY Classic Agent BOOLEAN

TRUE to use pre-Release 2 versions
of GetChildren, GetClass, and
GetParent, or FALSE to use
current versions.

OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT Open Agent BOOLEAN

TRUE to remove the focus from a
window before text is captured. By
default, this is FALSE.

OPT_REPLAY_HIGHLIGHT_TIME Open Agent NUMBER

The number of seconds before each
invoke command that the object is
highlighted.

By default, this is 0, which means that
objects are not highlighted by default.

OPT_REPLAY_MODE Classic Agent

Open Agent

NUMBER

The replay mode defines how replays
on a control are executed: They can
be executed with mouse and
keyboard (low level) or using the API
(high level). Each control defines
which replay mode is the default
mode for the control. When the

34 | Classic Agent

Agent Option Agent Supported Description

default replay mode is enabled, most
controls use a low level replay. The
default mode for each control is the
mode that works most reliably. If a
replay fails, the user can change the
replay mode and try again. Each
control that supports that mode will
execute the replay in the specified
mode. If a control does not support
the mode, it executes the default
mode. For example, if PushButton
supports low level replay but uses
high level replay by default, it will use
low level replay only if the option
specifies it. Otherwise, it will use the
high level implementation.

Possible values include 0, 1, and 2. 0
is default, 1 is high level, 2 is low
level. By default, this is 0.

OPT_REQUIRE_ACTIVE Classic Agent BOOLEAN

Setting this option to FALSE allows
4Test statements to be attempted
against inactive windows.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_RESIZE_APPLICATION_BEFORE_RECO
RDING

Open Agent BOOLEAN

Define whether to resize the
application under test (AUT) when a
recording session starts, to display
the Silk Recorder next to the AUT. If
this option is disabled, the AUT and
the Silk Recorder might overlap. This
option is TRUE by default.

OPT_SCROLL_INTO_VIEW Classic Agent BOOLEAN

TRUE to scroll a control into view
before recording events against it or
capturing its bitmap. This option
applies only when
OPT_SHOW_OUT_OF_VIEW is set
to TRUE. This option is useful for
testing Web applications in which
dialog boxes contain scroll bars. This
option applies only to HTML objects
when you are using the DOM
extension.

OPT_SET_TARGET_MACHINE Classic Agent STRING

Classic Agent | 35

Agent Option Agent Supported Description

The IP address and port number to
use for the target machine in
distributed testing using the
SetOption method. To set the
target machine, type:
Agent.SetOption(OPT_SET_T
ARGET_MACHINE, <
IPAddress >:< PortNumber
>) .

Note: A colon must separate
the IP address and the port
number.

To return the IP address and port
number of the current target machine,
type:
Agent.GetOption(OPT_SET_T
ARGET_MACHINE)

OPT_SHOW_OUT_OF_VIEW Classic Agent BOOLEAN

TRUE to have the agent see a control
not currently scrolled into view;
FALSE to have the Agent consider an
out-of-view window to be invisible.
This option applies only to HTML
objects when you are using the DOM
extension.

OPT_SYNC_TIMEOUT Open Agent NUMBER

Specifies the maximum time in
seconds for an object to be ready.

Note: When you upgrade from a Silk
Test version prior to Silk Test 13.0,
and you had set the
OPT_XBROWSER_SYNC_TIMEOUT
option, the Options dialog box will
display the default value of the
OPT_SYNC_TIMEOUT, although
your timeout is still set to the value
you have defined.

OPT_TEXT_NEW_LINE Classic Agent STRING

The keys to type to enter a new line
using the SetMultiText method
of the TextField class. The default
value is "<Enter>".

OPT_TRANSLATE_TABLE Classic Agent STRING

Specifies the name of the translation
table to use. If a translation DLL is in
use, the QAP_SetTranslateTable

36 | Classic Agent

Agent Option Agent Supported Description

entry point is called with the string
specified in this option.

OPT_TRIM_ITEM_SPACE Classic Agent BOOLEAN

TRUE to trim leading and trailing
spaces from items on windows, or
FALSE to avoid trimming spaces.

OPT_USE_ANSICALL Classic Agent BOOLEAN

If set to TRUE, each following DLL
function is called as ANSI. If set to
FALSE, which is the default value,
UTF-8 DLL calls are used. For single
ANSI DLL calls you can also use the
ansicall keyword.

OPT_USE_SILKBEAN Classic Agent BOOLEAN

TRUE to enable the agent to interact
with the SilkBean running on a UNIX
machine.

Default is FALSE.

OPT_VERIFY_ACTIVE Classic Agent

Open Agent

BOOLEAN

TRUE to verify that windows are
active before interacting with them;
FALSE to not check. See Active and
Enabled Statuses for information
about how this option affects Silk Test
Classic methods.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_APPREADY Classic Agent BOOLEAN

TRUE to synchronize the agent with
the application under test. Calls to the
agent will not proceed unless the
application is ready.

OPT_VERIFY_CLOSED Classic Agent BOOLEAN

TRUE to verify that a window has
closed. When FALSE, Silk Test
Classic closes a window as usual, but
does not verify that the window
actually closed.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_COORD Classic Agent BOOLEAN

Classic Agent | 37

Agent Option Agent Supported Description

TRUE to check that coordinates
passed to a method are inside the
window before the mouse is pressed;
FALSE to not check. Typically, you
use the checking feature unless you
need to be able to pass coordinates
outside of the window, such as
negative coordinates.

If this option is set to TRUE and
coordinates fall outside the window,
Silk Test Classic raises the exception
E_COORD_OUTSIDE_WINDOW.

OPT_VERIFY_CTRLTYPE Classic Agent BOOLEAN

TRUE to check that objects are of the
specified type before interacting with
them; FALSE to not check.

When TRUE, Silk Test Classic
checks, for example, that an object
that claims to be a listbox is actually a
listbox. For custom objects, you must
map them to the standard types to
prevent the checking from signaling
an exception, using the Silk Test
Classic class map facility.

Default is FALSE.

OPT_VERIFY_ENABLED Classic Agent BOOLEAN

TRUE to verify that windows are
enabled before interacting with them;
FALSE to not check. For information
about how this option affects various
Silk Test Classic methods, see Active
and Enabled Statuses.

OPT_VERIFY_EXPOSED Classic Agent BOOLEAN

TRUE to verify that windows are
exposed (that is, not covered,
obscured, or logically hidden by
another window) before interacting
with them; FALSE to not check.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_RESPONDING Classic Agent BOOLEAN

Setting this option to FALSE
suppresses "control not responding"
errors.

OPT_VERIFY_UNIQUE Classic Agent BOOLEAN

38 | Classic Agent

Agent Option Agent Supported Description

Open Agent TRUE to raise the
E_WINDOW_NOT_UNIQUE
exception upon encountering two or
more windows with the same tag;
FALSE to not raise the exception.
When OPT_VERIFY_UNIQUE is
FALSE, Silk Test Classic ignores the
duplication and chooses the first
window with that tag that it
encounters.

You can use a modified tag syntax to
refer to a window with a non-unique
tag, even when
OPT_VERIFY_UNIQUE is TRUE. You
can either include an index number
after the object, as in
myDialog("Cancel[2]"), or you can
specify the window by including the
text of a child that uniquely identifies
the window, such as "myDialog/
uniqueText/...", where the unique text
is the tag of a child of that window.

OPT_WAIT_ACTIVE_WINDOW Open Agent NUMBER

The number of seconds Silk Test
Classic waits for a window to become
active. If a window does not become
active within the specified time, Silk
Test Classic raises an exception.

To require the Open Agent to check
the active state of a window, set
OPT_ENSURE_ACTIVE_WINDOW
to TRUE.

By default,
OPT_WAIT_ACTIVE_WINDOW is set
to 2 seconds.

OPT_WAIT_ACTIVE_WINDOW_RETRY Open Agent NUMBER

The number of seconds Silk Test
Classic waits for a window to become
active before trying to verify again that
the window is active.

To require the Open Agent to retry the
active state of an object, set
OPT_ENSURE_ACTIVE_WINDOW
to TRUE.

By default,
OPT_WAIT_ACTIVE_WINDOW_RET
RY is set to 0.5 seconds.

OPT_WINDOW_MOVE_TOLERANCE Classic Agent INTEGER

Classic Agent | 39

Agent Option Agent Supported Description

The number of pixels allowed for a
tolerance when a moved window does
not end up at the specified position.

For some windows and GUIs, you
cannot always move the window to
the specified pixel. If the ending
position is not exactly what was
specified and the difference between
the expected and actual positions is
greater than the tolerance, Silk Test
Classic raises an exception.

On Windows, the tolerance can be set
through the Control Panel, by setting
the desktop window granularity
option. If the granularity is zero, you
can place a window at any pixel
location. If the granularity is greater
than zero, the desktop is split into a
grid of the specified pixels in width,
determining where a window can be
placed. In general, the tolerance
should be greater than or equal to the
granularity.

OPT_WINDOW_RETRY Classic Agent

Open Agent

NUMBER

The number of seconds Silk Test
Classic waits between attempts to
verify a window, if the window does
not exist or is in the incorrect state.
Silk Test Classic continues trying to
find the window until the time
specified with
OPT_WINDOW_TIMEOUT is
reached.

The correct state of the window
depends on various options. For
example, Silk Test Classic might
check whether a window is enabled,
active, exposed, or unique, depending
on the settings of the following
options:

• OPT_VERIFY_ENABLED

• OPT_VERIFY_ACTIVE

• OPT_VERIFY_EXPOSED

• OPT_VERIFY_UNIQUE

OPT_WINDOW_SIZE_TOLERANCE Classic Agent INTEGER

The number of pixels allowed for a
tolerance when a resized window
does not end at the specified size.

40 | Classic Agent

Agent Option Agent Supported Description

For some windows and GUIs, you
cant always resize the window to the
particular size specified. If the ending
size is not exactly what was specified
and the difference between the
expected and actual sizes is greater
than the tolerance, Silk Test Classic
raises an exception.

On Windows, windows cannot be
sized smaller than will fit comfortably
with the menu bar.

OPT_WINDOW_TIMEOUT Classic Agent

Open Agent

NUMBER

The number of seconds Silk Test
Classic waits for a window to appear
and be in the correct state. If a
window does not appear within the
specified timeout, Silk Test Classic
raise an exception.

The correct state of the window
depends on various options. For
example, Silk Test Classic might
check whether a window is enabled,
active, exposed, or unique, depending
on the settings of the following
options:

• OPT_VERIFY_ENABLED

• OPT_VERIFY_ACTIVE

• OPT_VERIFY_EXPOSED

• OPT_VERIFY_UNIQUE

OPT_WPF_CHECK_DISPATCHER_FOR_IDLE Open Agent BOOLEAN

For some WPF applications the Silk
Test synchronization might not work
due to how certain controls are
implemented, resulting in Silk Test
Classic not recognising when the
WPF application is idle. Setting this
option to FALSE disables the WPF
synchronization and prevents Silk
Test Classic from checking the WPF
dispatcher, which is the thread that
controls the WPF application. Set this
option to FALSE to solve
synchronization issues with certain
WPF applications. By default, this is
TRUE.

OPT_WPF_CUSTOM_CLASSES Open Agent LIST OF STRING

Specify the names of any WPF
classes that you want to expose

Classic Agent | 41

Agent Option Agent Supported Description

during recording and playback. For
example, if a custom class called
MyGrid derives from the WPF Grid
class, the objects of the MyGrid
custom class are not available for
recording and playback. Grid objects
are not available for recording and
playback because the Grid class is
not relevant for functional testing
since it exists only for layout
purposes. As a result, Grid objects
are not exposed by default. In order to
use custom classes that are based on
classes that are not relevant to
functional testing, add the custom
class, in this case MyGrid, to the
OPT_WPF_CUSTOM_CLASSES
option. Then you can record,
playback, find, verify properties, and
perform any other supported actions
for the specified classes.

OPT_WPF_PREFILL_ITEMS Open Agent BOOLEAN

Defines whether items in a
WPFItemsControl, like
WPFComboBox or WPFListBox,
are pre-filled during recording and
playback. WPF itself lazily loads items
for certain controls, so these items
are not available for Silk Test Classic
if they are not scrolled into view. Turn
pre-filling on, which is the default
setting, to additionally access items
that are not accessible without
scrolling them into view. However,
some applications have problems
when the items are pre-filled by Silk
Test Classic in the background, and
these applications can therefore
crash. In this case turn pre-filling off.

OPT_XBROWSER_ENABLE_IFRAME_SUPPO
RT

Open Agent BOOLEAN

Specifies whether to enable iframe
and frame support for browsers. If you
are not interested in the content of the
iframes in a web application, disabling
the iframe support might improve
replay performance. For example,
disabling the iframe support might
significantly improve replay
performance for web pages with many
adds and when testing in a mobile
browser. This option is ignored by

42 | Classic Agent

Agent Option Agent Supported Description

Internet Explorer. This option is
enabled by default.

OPT_XBROWSER_EXCLUDE_IFRAMES Open Agent Every entry in the list defines an
attribute name and the corresponding
value. All iframes and frames that do
not match at least one of the entries
are considered during testing.
Wildcards are allowed, for example
the entry "src:*advertising*" would
exclude <IFRAME src=http://
my.domain/advertising-banner.html>.
This option is ignored by Internet
Explorer. If the list is empty, all
iframes and frames are considered
during testing. Separate multiple
entries with a comma.

OPT_XBROWSER_FIND_HIDDEN_INPUT_FIE
LDS

Open Agent BOOLEAN

Specifies whether to display hidden
input fields, which are HTML fields for
which the tag includes
type="hidden". The default value
is TRUE.

OPT_XBROWSER_INCLUDE_IFRAMES Open Agent Every entry in the list defines an
attribute name and the corresponding
value. All iframes and frames that do
not match at least one of the entries
are excluded. Wildcards are allowed,
for example the entry "name:*form"
would include <IFRAME name="user-
form" src=…>. This option is ignored
by Internet Explorer. If the list is
empty, all iframes and frames are
considered during testing. Separate
multiple entries with a comma.

OPT_XBROWSER_SYNC_MODE Open Agent STRING

Configures the supported
synchronization mode for HTML or
AJAX. Using the HTML mode ensures
that all HTML documents are in an
interactive state. With this mode, you
can test simple Web pages. If more
complex scenarios with Java script
are used, it might be necessary to
manually script synchronization
functions, such as
WaitForObject,
WaitForProperty,
WaitForDisappearance, or
WaitForChildDisappearance
. Using the AJAX mode eliminates the

Classic Agent | 43

Agent Option Agent Supported Description

need to manually script
synchronization functions. By default,
this value is set to AJAX.

OPT_XBROWSER_SYNC_TIMEOUT Open Agent NUMBER

Specifies the maximum time in
seconds for an object to be ready.

Note: Deprecated. Use the
option OPT_SYNC_TIMEOUT
instead.

OPT_XBROWSER_SYNC_EXCLUDE_URLS Open Agent STRING

Specifies the URLs of any services or
web pages that you want to exclude
during page synchronization. Some
AJAX frameworks or browser
applications use special HTTP
requests, which are permanently
open in order to retrieve
asynchronous data from the server.
These requests may let the
synchronization hang until the
specified synchronization timeout
expires. To prevent this situation,
either use the HTML synchronization
mode or specify the URL of the
problematic request in the
Synchronization exclude list setting.

Type the entire URL or a fragment of
the URL, such as http://
test.com/timeService or
timeService. Separate entries by
comma. For example:

Agent.SetOption(OPT_XBROW
SER_SYNC_EXCLUDE_URLS,
{ "fpdownload.macromedia.
com",
"fpdownload.adobe.com",
"download.microsoft.com"
})

Setting the Default Agent
Silk Test Classic automatically assigns a default agent to your project or scripts. When you create a new
project, the agent currently selected in the toolbar is the default agent. Silk Test Classic automatically starts
the default agent when you open a project or create a new project. You can configure Silk Test Classic to
automatically connect to the Open Agent or the Classic Agent by default.

To set the default agent, perform one of the following:

• Click Options > Runtime and set the default agent in the Runtime Options dialog box.

44 | Classic Agent

• Click the appropriate agent icon in the toolbar.

When you enable extensions, set the recovery system, configure the application, or record a test case, Silk
Test Classic uses the default agent. When you run a test, Silk Test Classic automatically connects to the
appropriate agent. Silk Test Classic uses the window declaration, locator, or Find or FindAll command
to determine which agent to use.

Setting the Default Agent Using the Runtime Options
Dialog Box
To set the default agent using the Runtime Options dialog box:

1. In the main menu, click Options > Runtime. The Runtime Options dialog box opens.

2. Select the agent that you want to use as the default from the Default Agent list box.

3. If you use the Classic Agent, select the type of network you want to use in the Network list box. If you
select the Open Agent, TCP/IP is automatically selected.

4. If you use named agents, select the local agent name from the Agent Name list box. For instance, if
your environment uses multiple agents or a port that uses a value other than the default, select the local
agent.

5. Click OK.
When you record a test case, Silk Test Classic automatically uses the default agent.

Setting the Default Agent Using the Toolbar Icons
From the main toolbar, click one of the following icons to set the default agent:

• to use the Classic Agent.
• to use the Open Agent.

Connecting to the Default Agent
Typically, the default agent starts automatically when it is needed by Silk Test Classic. However, you can
connect to the default agent manually if it does not start or to verify that it has started.

To connect to the default Agent, from the main menu, click Tools > Connect to Default Agent.

The command starts the Classic Agent or the Open Agent on the local machine, depending on which agent
is specified as the default in the Runtime Options dialog box. If the Agent does not start within 30
seconds, a message is displayed. If the default Agent is configured to run on a remote machine, you must
connect to it manually.

Creating a Script that Uses Both Agents
You can create a script that uses the Classic Agent and the Open Agent. Recording primarily depends on
the default agent while replaying the script primarily depends on the window declaration of the underlying
control. If you create a script that does not use window declarations, the default agent is used to replay the
script.

1. Set the default agent to the Classic Agent.

2. In the Basic Workflow bar, enable extensions for the application automatically.

3. In the Basic Workflow bar, click Record Testcase and record your test case.

4. When prompted, click Paste to Editor and then click Paste testcase and update window
declaration(s).

Classic Agent | 45

5. Click OK. The frame now contains window declarations from the Classic Agent.

6. Click File > Save to save the test case.

7. Type a name for the file into the File name field and click Save.

8. Set the default agent to the Open Agent.

9. Click Options > Application Configurations. The Edit Application Configurations dialog box opens.

10.Click Add.

The Select Application dialog box opens.

11.Configure a standard or Web site test configuration.

12.Click OK.

13.Click Record Testcase in the Basic Workflow bar and record your test case.

14.When prompted, click Paste to Editor and then click Paste testcase and update window
declaration(s). The frame now contains window declarations from both the Classic Agent and the Open
Agent. Silk Test Classic automatically detects which agent is required for each test based on the
window declaration and changes the agent accordingly.

15.Click File > Save to save the test case.

16.Click Run Testcase in the Basic Workflow bar to replay the test case. Silk Test Classic automatically
recognizes which agent to use based on the underlying window declarations.

You can also use the function Connect([sMachine, sAgentType]) in a script to connect a machine
explicitly with either the Classic Agent or the Open Agent. Using the connect function changes the default
agent temporarily for the current test case, but it does not change the default agent of your project.
However, this does not override the agent that is used for replay, which is defined by the window
declaration.

Overview of Record Functionality Available for the Silk
Test Agents

The Open Agent provides the majority of the same record capabilities as the Classic Agent and the same
replay capabilities.

The following table lists the record functionality available for each Silk Test agent.

Record
Command

Classic Agent Open Agent

Window
Declarations

Supported Supported

Application
State

Supported Supported

Testcase Supported Supported

Actions Supported Supported

Window
Identifiers

Supported Not Supported

Window
Locations

Supported Not Supported

Window
Locators

Not Supported Supported

Class/Scripted Supported Not Supported

46 | Classic Agent

Record
Command

Classic Agent Open Agent

Class/
Accessibility

Supported Not Supported

Method Supported Not Supported

Defined
Window

Supported Not Supported

Note: Silk Test Classic determines which agent to use by detecting whether a locator or Find or
FindAll command is used. If a locator or Find or FindAll command is present, Silk Test Classic
uses the Open Agent. As a result, you do not need to record window declarations for the Open Agent.
For calls that use window declarations, the agent choice is made based on the presence or absence
of the locator keyword and on the presence or absence of TAG_IS_OPEN_AGENT in a tag or multitag.
When a window declaration contains both locators and tags and either could be used for resolving the
window, check or uncheck the Prefer Locator check box in the General Options dialog box to
determine which method is used.

Setting the Window Timeout Value to Prevent Window Not
Found Exceptions

The window timeout value is the number of seconds Silk Test Classic waits for a window to display. If the
window does not display within that period, the Window not found exception is raised. For example, loading
an Apache Flex application and initializing the Apache Flex automation framework may take some time,
depending on the machine on which you are testing and the complexity of your Apache Flex application. In
this case, setting the Window timeout value to a higher value enables your application to fully load.

If you suspect that Silk Test Classic is not waiting long enough for a window to display, you can increase
the window timeout value in the following ways:

• Change the window timeout value on the Timing tab of the Agent Options dialog box.
• Manually add a line to the script.

If the window is on the screen within the amount of time specified in the window timeout, the tag for the
object might be the problem.

Manually Setting the Window Timeout Value
In some cases, you may want to increase the window timeout value for a specific test, rather than for all
tests in general. For example, you may want to increase the timeout for Flex application tests, but not for
browser tests.

1. Open the test script.

2. Add the following to the script: Agent.SetOption (OPT_WINDOW_TIMEOUT, numberOfSeconds).

Setting the Window Timeout Value in the Agent
Options Dialog Box
To change the window timeout value in the Agent Options dialog box:

1. Click Options > Agent.

2. Click the Timing tab.

3. Type the value into the Window timeout text box.

Classic Agent | 47

The value should be based on the speed of the machine, on which you are testing, and the complexity
of the application that you are testing. By default, this value is set to 5 seconds. For example, loading
and initializing complex Flex applications generally requires more than 5 seconds.

4. Click OK.

48 | Classic Agent

Basic Workflow for the Classic Agent
The Basic Workflow bar guides you through the process of creating a test case. To create and execute a
test case, click each icon in the workflow bar to perform the relevant procedures. The procedures and the
appearance of the workflow bar differ depending on whether your test uses the Open Agent or the Classic
Agent.

The Basic Workflow bar is displayed by default. You can display it or hide it by checking and un-checking
the Workflows > Basic check box. If your test uses both the Open Agent and the Classic Agent, the Basic
Workflow bar changes when you switch between the agents.

When you use the Classic Agent, the Basic workflow uses hierarchical object recognition to record and
replay test cases that use window declarations to find and identify objects.

Creating a New Project
You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar. the Create Project dialog box appears.

2. Type a unique name for the project into the Project Name field.

If the project name already exists, you are prompted to specify a different project name or overwrite the
existing project.

Project files with a .vtp (Verify Test Project) extension, projectname.vtp, and a
projectname.ini are created in the directory that you specify in the Save in text box.

3. Optional: Type a description for the project into the Description field.

After you create the project, you can view the project description by right-clicking the projectname
folder on the Files or Global tabs or clicking Project > Project Description.

4. Type the location at which you want to save the project into the Save in field.

You can also click Browse and specify the folder in which you want to save your project. The default
location is C:\Users\<Current user>\Documents\Silk Test Classic Projects.

5. Click OK. Silk Test Classic creates a <Project name> folder within the specified directory, saves the
projectname.vtp and projectname.ini to this location and copies the extension .ini files, which
are appexpex.ini, axext.ini, domex.ini, and javaex.ini, to the extend subdirectory. If you
do not want to save your project in the default location, click Browse and specify the folder in which you
want to save your project. Silk Test Classic then creates your project and displays nodes on the Files
and Global tabs for the files and resources associated with this project.

6. Perform one of the following steps:

• If your test uses the Open Agent, configure the application to set up the test environment.
• If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Basic Workflow for the Classic Agent | 49

Enabling Extensions Automatically Using the Basic
Workflow

An extension is a file that serves to extend the capabilities of, or data available to, a more basic program.
Silk Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

If you are testing a generic project that uses the Classic Agent, perform the following procedure to enable
extensions:

1. Start the application or applet for which you want to enable extensions.

2. Start Silk Test Classic and make sure the basic workflow bar is visible. If it is not, click Workflows >
Basic to enable it.

If you do not see Enable Extensions on the workflow bar, ensure that the default agent is set to the
Classic Agent.

3. If you are using Silk Test Classic projects, click Project and open your project or create a new project.

4. Click Enable Extensions.

You cannot enable extensions for Silk Test Classic (partner.exe), the Classic Agent (agent.exe), or
the Open Agent (openAgent.exe).

5. Select your test application from the list on the Enable Extensions dialog box, and then click Select.

6. If your test application does not display in the list, click Refresh. Or, you may need to add your
application to this list in order to enable its extension.

7. Click OK on the Extension Settings dialog box, and then close and restart your application.

8. If you are testing an applet, the Enable Applet Support check box is checked by default.

9. When the Test Extension Settings dialog box opens, restart your application in the same way in which
you opened it; for example, if you started your application by double-clicking the .exe, then restart it by
double-clicking the .exe.

10.Make sure the application has finished loading, and then click Test. When the test is finished, a dialog
box displays indicating that the extension has been successfully enabled and tested. You are now ready
to begin testing your application or applet. If the test fails, review the troubleshooting topics.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box.

Setting the Recovery System for the Classic Agent
The recovery system ensures that each test case begins and ends with the application in its intended state.
Silk Test Classic refers to this intended application state as the BaseState. The recovery system allows you
to run tests unattended. When your application fails, the recovery system restores the application to the
BaseState, so that the rest of your tests can continue to run unattended.

If you are testing an application that uses both the Classic Agent and the Open Agent, set the Agent that
will start the application as the default Agent and then set the recovery system. If you use the Open Agent
to start the application, set the recovery system for the Open Agent.

1. Make sure the application that you are testing is running.

2. Click Set Recovery System on the Basic Workflow bar. If the workflow bar is not visible, click
Workflows > Basic to enable it.

3. From the Application list, click the name of the application that you are testing.

50 | Basic Workflow for the Classic Agent

All open applications that are not minimized are listed. This list is dynamic and will update if you open a
new application. If you are connected to the Open Agent, only those applications that have extensions
enabled display in the list.

Note: If you selected a non-web application as the application:

• The Command line text box displays the path to the executable (.exe) for the application that
you have selected.

• The Working directory text box displays the path of the application you selected.

If you selected a web application, the Start testing on this page text box displays the URL for the
application you selected. If an application displays in the list, but the URL does not display in this text
box, your extensions may not be enabled correctly. Click Enable Extensions in the Basic Workflow
bar to automatically enable and test extension settings.

4. Optional: In the Frame file name text box, modify the frame file name and click Browse to specify the
location in which you want to save this file.

Frame files must have a .inc extension. By default, this field displays the default name and path of the
frame file you are creating. The default is frame.inc. If frame.inc already exists, Silk Test Classic
appends the next logical number to the new frame file name; for example, frame1.inc.

5. Optional: In the Window name text box, change the window name to use a short name to identify your
application.

6. Click OK.

7. Click OK when the message indicating that the recovery system is configured displays.

8. A new 4Test include file, frame.inc, opens in the Silk Test Editor. Click the plus sign in the file to see
the contents of the frame file.

9. Record a test case.

Recording a Test Case With the Classic Agent
When you record a test case with the Classic Agent, Silk Test Classic uses hierarchical object recognition,
a fast, easy method to create scripts. However, test cases that use dynamic object recognition are more
robust and easy to maintain. You can create tests for both dynamic and hierarchical object recognition in
your test environment. Use the method best suited to meet your test requirements. You can use both
recognition methods within a single test case if necessary.

1. Enable extensions and set up the recovery system.

2. Click Record Test Case on the Basic Workflow bar. If the workflow bar is not visible, click Workflows
> Basic to enable it.

3. Type the name of your test case in the Test case name text box of the Record Test Case dialog box.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

4. Select DefaultBaseState in the Application State field to have the built-in recovery system restore the
default BaseState before the test case begins executing. If you chose DefaultBaseState as the
application state, the test case is recorded in the script file as: testcase testcase_name (). If you
chose another application state, the test case is recorded as: testcase testcase_name ()
appstate appstate_name.

5. If you do not want Silk Test Classic to display the status window it normally shows during playback when
driving the application to the specified base state—perhaps because the status bar obscures a critical
control in the application you are testing—uncheck the Show AppState status window check box.

6. Click Start Recording. Silk Test Classic:

• Closes the Record Test Case dialog box.
• Starts your application, if it was not already running.

Basic Workflow for the Classic Agent | 51

• Removes the editor window from the display.
• Displays the Record Status on Classic Agent window.
• Waits for you to take further action.

7. Interact with your application, driving it to the state that you want to test.

As you interact with your application, Silk Test Classic records your interactions in the Test case code
field of the Record Test Case dialog box, which is not visible.

8. To review what you have recorded, click Done in the Record Status for Classic Agent window. Silk
Test Classic displays the Record Test Case dialog box, which contains the 4Test code that has been
recorded for you.

9. To resume recording your interactions, click Resume Recording in the dialog box. To temporarily
suspend recording, click Pause Recording on the Record Status for Classic Agent window.

10.Verify the test case.

Running a Test Case
When you run a test case, Silk Test Classic interacts with the application by executing all the actions you
specified in the test case and testing whether all the features of the application performed as expected.

Silk Test Classic always saves the suite, script, or test plan before running it if you made any changes to it
since the last time you saved it. By default, Silk Test Classic also saves all other open modified files
whenever you run a script, suite, or test plan. To prevent this automatic saving of other open modified files,
uncheck the Save Files Before Running check box in the General Options dialog box.

1. Make sure that the test case that you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.

If the workflow bar is not visible, choose Workflows > Basic to enable it.

Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select a test case and specify arguments, if necessary, in the Arguments field.

Remember to separate multiple arguments with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. To view results using the TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

For the Classic Agent, multiple tags are supported. If you are running test cases using other agents, you
can run scripts that use declarations with multiple tags. To do this, check the Disable Multiple Tag

52 | Basic Workflow for the Classic Agent

Feature check box in the Agent Options dialog box on the Compatibility tab. When you turn off
multiple-tag support, 4Test discards all segments of a multiple tag except the first one.

7. Optional: If necessary, you can press both Shift keys at the same time to stop the execution of the test.

Viewing Test Results
Whenever you run tests, a results file is generated which indicates how many tests passed and how many
failed, describes why tests failed, and provides summary information.

1. Click Explore Results on the Basic Workflow or the Data Driven Workflow bars.

2. On the Results Files dialog box, navigate to the file name that you want to review and click Open.

By default, the results file has the same name as the executed script, suite, or test plan. To review a file in
the TrueLog Explorer, open a .xlg file. To review a results file, open a .res file.

Troubleshooting Basic Workflow Issues with the Classic
Agent

The following troubleshooting tips might help you with the basic workflow:

I restarted my application, but the Test button is not enabled

In order to enable the Test button on the Test Extensions dialog box, you must restart your application.
Do not restart Silk Test Classic; restart the application that you selected on the Enable Extensions dialog
box.

You must restart the application in the same manner. For example, if you are testing:

• A standalone Java application that you opened through a Command Prompt, make sure that you close
and restart both the Java application and the Command Prompt window .

• A browser application or applet, make sure you return to the page that you selected on the Enable
Extensions dialog box.

• An AOL browser application, make sure that you do not change the state of the application, for example
resizing, or you may have issues with playback.

You can configure only one Visual Basic application at a time.

The test of my enabled Extension failed – what should I do?

If the test of your application fails, see Troubleshooting Configuration Test Failures for general information.

Basic Workflow for the Classic Agent | 53

Migrating from the Classic Agent to the
Open Agent

This section includes several useful topics that explain the differences between the Classic Agent and the
Open Agent. If you plan to migrate from testing using the Classic Agent to the Open Agent, review this
information to learn how to migrate your existing assets including window declarations and scripts.

Differences for Agent Options Between the Silk Test
Agents

Before you migrate existing Classic Agent scripts to the Open Agent, review the Agent Options listed below
to determine if any additional action is required to facilitate the migration.

Classic Agent Option Action for Open Agent

OPT_AGENT_CLICKS_ONLY Option not needed.

Note: Use OPT_REPLAY_MODE for switching
between high-level (API) clicks and low-level clicks.

OPT_CLOSE_MENU_NAME Not supported by Open Agent.

OPT_COMPATIBLE_TAGS Option not needed.

OPT_COMPRESS_WHITESPACE Not supported by Open Agent.

OPT_DROPDOWN_PICK_BEFORE_GET Option not needed. The Open Agent performs this action by
default during replay.

OPT_EXTENSIONS Option not needed.

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES Not supported by Open Agent.

OPT_KEYBOARD_LAYOUT Not supported by Open Agent.

OPT_MENU_INVOKE_POPUP No action. Pop-up menu handling using the Open Agent
does not need such an option.

OPT_MENU_PICK_BEFORE_GET Option not needed.

OPT_NO_ICONIC_MESSAGE_BOXES Option not needed.

OPT_PLAY_MODE Option not needed.

OPT_RADIO_LIST Open Agent always sees RadioList items as individual
objects.

OPT_REL1_CLASS_LIBRARY Obsolete option.

OPT_REQUIRE_ACTIVE Use the option OPT_ENSURE_ACTIVE instead.

OPT_SCROLL_INTO_VIEW Option not needed. Open Agent only requires scrolling into
view for low-level replay. By default, high-level replay is used,
so no scrolling needs to be performed. However,
CaptureBitmap never scrolls an object into view.

OPT_SET_TARGET_MACHINE Option not needed.

54 | Migrating from the Classic Agent to the Open Agent

Classic Agent Option Action for Open Agent

OPT_SHOW_OUT_OF_VIEW Option not needed. Out-of-view objects are always
recognized.

OPT_TEXT_NEW_LINE Option not needed. The Open Agent always uses Enter to
type a new line.

OPT_TRANSLATE_TABLE Not supported by Open Agent.

OPT_TRAP_FAULTS Fault trap is no longer active.

OPT_TRAP_FAULTS_FLAGS Fault trap is no longer active.

OPT_TRIM_ITEM_SPACE Option not needed. If required, use a * wildcard instead.

OPT_USE_ANSICALL Not supported by Open Agent.

OPT_USE_SILKBEAN SilkBean is not supported on the Open Agent.

OPT_VERIFY_APPREADY Option not needed. The Open Agent performs this action by
default.

OPT_VERIFY_CLOSED Option not needed. The Open Agent performs this action by
default.

OPT_VERIFY_COORD Option not needed. The Open Agent does not typically check
for native input in order to allow clicking outside of an object.

OPT_VERIFY_CTRLTYPE Option not needed.

OPT_VERIFY_EXPOSED Option not needed. The Open Agent performs this action
when it sets a window to active.
OPT_ENSURE_ACTIVE_OBJECT_DEF should yield the
same result.

OPT_VERIFY_RESPONDING Option not needed.

OPT_WINDOW_MOVE_TOLERANCE Option not needed.

Differences in Object Recognition Between the Silk Test
Agents

When recording and executing test cases, the Classic Agent uses the keywords tag or multitag in a window
declaration to uniquely identify an object in the test application. The tag is the actual name, as opposed to
the identifier, which is the logical name.

When using the Open Agent, you typically use dynamic object recognition with a Find or FindAll
function and an XPath query to locate objects in your test application. To make calls that use window
declarations using the Open Agent, you must use the keyword locator in your window declarations. Similar
to the tag or multitag keyword, the locator is the actual name, as opposed to the identifier, which is the
logical name. This similarity facilitates a smooth transition of legacy window declarations, which use the
Classic Agent, to dynamic object recognition, which leverages the Open Agent.

The following sections explain how to migrate the different tag types to valid locator strings.

Caption

Classic Agent tag “<caption string>”

Open Agent locator “//<class name>[@caption=’<caption string>’]”

Note: For convenience, you can use shortened forms for the XPath locator strings. Silk Test Classic
automatically expands the syntax to use full XPath strings when you run a script.

Migrating from the Classic Agent to the Open Agent | 55

You can omit:

• The hierarchy separator, “.//”. Silk Test Classic defaults to “//”.
• The class name. Silk Test Classic defaults to the class name of the window that contains the locator.
• The surrounding square brackets of the attributes, “[]”.
• The “@caption=” if the XPath string refers to the caption.

Note: Classic Agent removes ellipses (…) and ampersands (&) from captions. Open Agent removes
ampersands, but not ellipses.

Example

Classic Agent:

CheckBox CaseSensitive
 tag “Case sensitive”

Open Agent:

CheckBox CaseSensitive
 locator “//CheckBox[@caption='Case sensitive']”

Or, if using the shortened form:

CheckBox CaseSensitive
 locator “Case sensitive”

Prior text

Classic Agent tag “^Find What:”

Open Agent locator “//<class name>[@priorlabel=’Find What:’]”

Note: Only available for Windows API-based and Java Swing applications. For other technology
domains, use the Locator Spy to find an alternative locator.

Index

Classic
Agent

tag “#1”

Open Agent Record window locators for the test application. The Classic Agent creates index values
based on the position of controls, while the Open Agent uses the controls in the order
provided by the operating system. As a result, you must record window locators to identify
the current index value for controls in the test application.

Window ID

Classic Agent tag “$1041”

Open Agent locator “//<class name>[@windowid=’1041’]”

Location

Classic Agent tag “@(57,75)”

Open Agent not supported

Note: If you have location tags in your window declarations, use the Locator Spy to find an
alternative locator.

56 | Migrating from the Classic Agent to the Open Agent

Multitag

Classic Agent multitag “Case sensitive” “$1011”

Open Agent locator “//CheckBox[@caption=’Case sensitive’ or @windowid=’1011’]” ‘parent’ statement

No changes needed. Multitag works the same way for the Open Agent.

Differences in the Classes Supported by the Silk Test
Agents

The Classic Agent and the Open Agent differ slightly in the types of classes that they support. These
differences are important if you want to manually script your test cases. Or, if you are testing a single test
environment with both the Classic Agent and the Open Agent. Otherwise, the Open Agent provides the
majority of the same record capabilities as the Classic Agent and the same replay capabilities.

Windows-based applications

Both Agents support testing Windows API-based client/server applications. The Open Agent classes,
functions, and properties differ slightly from those supported on the Classic Agent for Windows API-based
client/server applications.

Classic Agent Open Agent

AnyWin AnyWin

AgentClass (Agent) AgentClass (Agent)

CheckBox CheckBox

ChildWin <no corresponding class>

ClipboardClass (Clipboard) ClipboardClass (Clipboard)

ComboBox ComboBox

Control Control

CursorClass (Cursor) CursorClass (Cursor)

CustomWin CustomWin

DefinedWin <no corresponding class>

DesktopWin (Desktop) DesktopWin (Desktop)

DialogBox DialogBox

DynamicText <no corresponding class>

Header HeaderEx

ListBox ListBox

ListView ListViewEx

MainWin MainWin

Menu Menu

MenuItem MenuItem

MessageBoxClass <no corresponding class>

Migrating from the Classic Agent to the Open Agent | 57

Classic Agent Open Agent

MoveableWin MoveableWin

PageList PageList

PopupList ComboBox

PopupMenu <no corresponding class>

PopupStart <no corresponding class>

PopupSelect <no corresponding class>

PushButton PushButton

RadioButton Note: Items in Radiolists are recognized as RadioButtons on the CA. OA only
identifies all of those buttons as RadioList.

RadioList RadioList

Scale Scale

ScrollBar ScrollBar, VerticalScrollBar, HorizontalScrollBar

StaticText StaticText

StatusBar StatusBar

SysMenu <no corresponding class>

Table TableEx

TaskbarWin (Taskbar) <no corresponding class>

TextField TextField

ToolBar ToolBar

Additionally: PushToolItem, CheckBoxToolItem

TreeView, TreeViewEx TreeView

UpDown UpDownEx

The following core classes are supported on the Open Agent only:

• CheckBoxToolItem
• DropDownToolItem
• Group
• Item
• Link
• MonthCalendar
• Pager
• PushToolItem
• RadioListToolItem
• ToggleButton
• ToolItem

Web-based Applications

Both Agents support testing Web-based applications. The Open Agent classes, functions, and properties
differ slightly from those supported on the Classic Agent for Windows API-based client/server applications.

58 | Migrating from the Classic Agent to the Open Agent

Classic Agent Open Agent

Browser BrowserApplication

BrowserChild BrowserWindow

HtmlCheckBox DomCheckBox

HtmlColumn <no corresponding class>

HtmlComboBox <no corresponding class>

HtmlForm DomForm

HtmlHeading <no corresponding class>

HtmlHidden <no corresponding class>

HtmlImage <no corresponding class>

HtmlLink DomLink

HtmlList <no corresponding class>

HtmlListBox DomListBox

HtmlMarquee <no corresponding class>

HtmlMeta <no corresponding class>

HtmlPopupList DomListBox

HtmlPushButton DomButton

HtmlRadioButton DomRadioButton

HtmlRadioList <no corresponding class>

HtmlTable DomTable

HtmlText <no corresponding class>

HtmlTextField DomTextField

XmlNode <no corresponding class>

Xul* Controls <no corresponding class>

Note: The DomElement class of the Open Agent enables you to access any element on an HTML
page. If the Open Agent has no class associated with a specific class supported on the Classic Agent,
you can use the DomElement class to access the controls in the class.

Java AWT/Swing Applications

Both Agents support testing Java AWT/Swing applications. The Open Agent classes, functions, and
properties differ slightly from those supported on the Classic Agent for Windows API-based client/server
applications.

Classic Agent Open Agent

JavaApplet AppletContainer

JavaDialogBox AWTDialog, JDialog

JavaMainWin AWTFrame, JFrame

JavaAwtCheckBox AWTCheckBox

Migrating from the Classic Agent to the Open Agent | 59

Classic Agent Open Agent

JavaAwtListBox AWTList

JavaAwtPopupList AWTChoice

JavaAwtPopupMenu <no corresponding class>

JavaAwtPushButton AWTPushButton

JavaAwtRadioButton AWTRadioButton

JavaAwtRadioList <no corresponding class>

JavaAwtScrollBar AWTScrollBar

JavaAwtStaticText AWTLabel

JavaAwtTextField AWTTextField, AWTTextArea

JavaJFCCheckBox JCheckBox

JavaJFCCheckBoxMenuItem JCheckBoxMenuItem

JavaJFCChildWin <no corresponding class>

JavaJFCComboBox JComboBox

JavaJFCImage <no corresponding class>

JavaJFCListBox JList

JavaJFCMenu JMenu

JavaJFCMenuItem JMenuItem

JavaJFCPageList JTabbedPane

JavaJFCPopupList JList

JavaJFCPopupMenu JPopupMenu

JavaJFCProgressBar JProgressBar

JavaJFCPushButton JButton

JavaJFCRadioButton JRadioButton

JavaJFCRadioButtonMenuItem JRadioButtonMenuItem

JavaJFCRadioList <no corresponding class>

JavaJFCScale JSlider

JavaJFCScrollBar JScrollBar, JHorizontalScrollBar, JVerticalScrollBar

JavaJFCSeparator JComponent

JavaJFCStaticText JLabel

JavaJFCTable JTable

JavaJFCTextField JTextField, JTextArea

JavaJFCToggleButton JToggleButton

JavaJFCToolBar JToolBar

JavaJFCTreeView JTree

60 | Migrating from the Classic Agent to the Open Agent

Classic Agent Open Agent

JavaJFCUpDown JSpinner

Java SWT/RCP Applications

Only the Open Agent supports testing Java SWT/RCP-based applications. For a list of the classes, see
Supported SWT Widgets for the Open Agent.

Differences in the Parameters Supported by the Silk Test
Agents

The Classic Agent and the Open Agent differ slightly in the function parameters that they support. These
differences are important if you want to manually script your test cases. Or, if you are testing a single test
environment with both the Classic Agent and the Open Agent. Otherwise, the Open Agent provides the
majority of the same record capabilities as the Classic Agent and the same replay capabilities.

For some parameters, the Open Agent uses a hard-coded default value internally. If one of these
parameters is set in a 4Test script, the Open Agent ignores the value and uses the value listed here.

Function Parameter Classic Agent Value Open Agent Value

AnyWin::PressKeys/
ReleaseKeys

nDelay Any number. 0

AnyWin::PressKeys/
ReleaseKeys

sKeys More than one key is
supported.

Only one key is supported.
The first key is used and
the remaining keys are
ignored. For example
MainWin.PressKeys(
"<Shift><Left>") will
only press the Shift key. To
press both keys, specify
MainWin.PressKeys(
"<Shift>")
MainWin.PressKeys(
"<Left >").

AnyWin::TypeKeys sEvents Keystrokes to type or
mouse buttons to press.

The Open Agent supports
keystrokes only.

AnyWin::GetChildren bInvisible TRUE or FALSE. FALSE.

AnyWin::GetChildren bNoTopLevel TRUE or FALSE. FALSE.

TextField::GetFontName iLine The Classic Agent
recognizes this parameter.

The Open Agent ignores
this parameter.

AnyWin::GetCaption bNoStaticText TRUE or FALSE. FALSE.

AnyWin::GetCaption,

Control::GetPriorStatic

bRawMode TRUE or FALSE. FALSE. However, the
returned strings include
trailing and leading spaces,
but ellipses, accelerators,
and hot keys are removed.

PageList::GetContents/

GetPageName

bRawMode TRUE or FALSE. FALSE. However, the
returned strings include
trailing and leading spaces,
ellipses, and hot keys but
accelerators are removed.

Migrating from the Classic Agent to the Open Agent | 61

Function Parameter Classic Agent Value Open Agent Value

AnyWin::Click/

DoubleClick/

MoveMouse/ MultiClick/

PressMouse/

ReleaseMouse,

PushButton::Click

bRawEvent The Classic Agent
recognizes this parameter.

The Open Agent ignores
this value.

Overview of the Methods Supported by the Silk Test
Agents

The winclass.inc file includes information about which methods are supported for each Silk Test
Classic Agent. The following 4Test keywords indicate Agent support:

supported_ca Supported on the Classic Agent only.

supported_oa Supported on the Open Agent only.

Standard 4Test methods, such as AnyWin::GetCaption(), can be marked with one of the preceding
keywords. A method that is marked with the supported_ca or supported_oa keyword can only be executed
successfully on the corresponding Agent. Methods that do not have a keyword applied will run on both
Agents.

To find out which methods are supported on each Agent, open the .inc file, for instance winclass.inc,
and verify whether the supported_ca or supported_oa keyword is applied to it.

Classic Agent

Certain functions and methods run on the Classic Agent only. When these are recorded and replayed, they
default to the Classic Agent automatically. You can use these in an environment that uses the Open Agent.
Silk Test Classic automatically uses the appropriate Agent. The functions and methods include:

• C data types for use in calling functions in DLLs.
• ClipboardClass methods.
• CursorClass methods.
• Certain SYS functions.

SYS Functions Supported by the Open Agent and the
Classic Agent

The Classic Agent supports all SYS functions. The Open Agent supports all SYS functions with the
exception of SYS_GetMemoryInfo. SYS_GetMemoryInfo defaults to the Classic Agent when a script is
executed.

The following SYS functions behave differently depending on the agent that is used:

SYS Function Description

SYS_GetRegistryValue With the Classic Agent, SYS_GetRegistryValue returns an incorrect value
when a binary value is used. Use the Open Agent with
SYS_GetRegistryValue to avoid this issue.

62 | Migrating from the Classic Agent to the Open Agent

SYS Function Description

SYS_FileSetPointer When setting the pointer after the end of the file, the Open Agent does not
throw an exception, while the Classic Agent does throw an exception.

SYS_IniFileGetValue The Open Agent does not allow the] character to be part of a section name,
while the Classic Agent does allow it. Also, with the Open Agent, = must not be
part of a key name. The Classic Agent allows = to be part of a key name, but
produces incorrect results.

Note: Error messages and exceptions might differ between the Open Agent and the Classic Agent.

Migrating from the Classic Agent to the Open Agent | 63

Silk Test Classic Projects
Silk Test Classic projects organize all the resources associated with a test set and present them visually in
the Project Explorer, making it easy for you to see your test environment, and to manage it and work
within it.

Silk Test Classic projects store relevant information about your project, including the following:

• References to all the resources associated with a test set, such as the following:

• Data.
• Frame files.
• Include files.
• .ini files.
• Keyword-driven tests.
• Option sets.
• Results.
• Script files.
• Test plan files.

• Configuration information.
• Editor settings.
• Data files for attributes and queries.

All of this information is stored at the project level, meaning that once you add the appropriate files to your
project and configure it once, you might never need to do it again. Switching among projects is easy - since
you need to configure the project only once, you can simply open the project and run your tests.

When you create a new project, Silk Test Classic automatically uses the agent that is selected in the
toolbar.

Each project is a unique testing environment

By default, new projects do not contain any settings, such as enabled extensions, class mappings, or agent
options. If you want to retain the settings from your current test set, save them as a options set by opening
Silk Test Classic and clicking Options > Save New Options Set. You can include the options set when you
create your project. You can create a project manually or you can let Silk Test Classic automatically
generate a project for you, based on existing files that you specify.

Note: To optimally use the functionality that Silk Test Classic provides, create an individual project for
each application that you want to test, except when testing multiple applications in the same test.

Storing Project Information
Silk Test Classic stores project-related information in the following project files:

projectname.vtp The project file has a Verify Test Project (.vtp) extension and is organized as
an .ini file. It stores the names and locations of files used by the project.

projectname.ini The project initialization file, similar to the partner.ini file, stores
information about options sets, queries, and other resources included in your
project.

64 | Silk Test Classic Projects

SilkTestClassic.ini A user-specific initialization file that stores user-specific information about the
location of the last projects, the size of the project history, and the location of
the current project.

These files are created in the projectname folder. When you create your project, Silk Test Classic
prompts you to store your project in the default location C:\Users\<Current user>\Documents\Silk
Test Classic Projects. Silk Test Classic creates a <Project name> folder within the specified
directory, saves the projectname.vtp and projectname.ini to this location and copies the
extension .ini files, which are appexpex.ini, axext.ini, domex.ini, and javaex.ini, to the
extend subdirectory. If you do not want to save your project in the default location, click Browse and
specify the folder in which you want to save your project.

When you export a project, the default location is the project directory.

Note: The extension .ini files, which are appexpex.ini, axext.ini, domex.ini, and
javaex.ini, located in your <Silk Test Classic installation directory>\extend
folder are copied to the extend directory of your project, regardless of what extension you have
enabled. Do not rename the extend directory; this directory must exist in order for Silk Test Classic
to open your project.

You can have Silk Test Classic automatically enable the appropriate extension using the basic workflow
bar, or you can manually enable extensions. The current project uses the extension options in the
extension .ini file copied to the extend directory of your project. Any modifications you make to the options
for this enabled extension will be saved to the copy stored within the current project in the extend
directory.

The extend directory is used only for local testing on the host machine. If you want to test on remote
agent machines, you must copy the .ini files from the extend directory of your project to the extend
directory on the target machines.

File references

Whether you are emailing, packaging, or adding files to a project, it is important to understand how Silk
Test Classic stores the path of the file. The .vtp files of Silk Test Classic use relative paths for files on the
same root drive and absolute paths for files with different root drives. The use of relative and absolute file
paths is not configurable and cannot be overridden. If you modify the .vtp file to change file references from
relative paths to absolute paths, the next time you open and close the project it will have relative paths and
your changes will be lost.

Accessing Files Within Your Project
Working with Silk Test Classic projects makes it easy to access your files - once you have added a file to
your project, you can open it by double-clicking it in the Project Explorer. The Project Explorer contains
the following two tabs:

Tab Description

Files Lists all of the files included in the project. From the Files tab, you can view, edit, add, and
remove files from the project, as well as right-click to access menu options for each of the file
types. From the Files tab, you can also add, rename, remove and work with folders within each
category.

Global Displays all the resources that are defined at a global level within the project's files. For example
test cases, functions, classes, window declarations, and others. When you double-click an object
on the Global tab, the file in which the object is defined opens and your cursor displays at the
beginning of the line in which the object is defined. You can run and debug test cases and

Silk Test Classic Projects | 65

Tab Description

application states from the Global tab. You can also sort the elements that display within the
folders on the Global tab.

Existing test sets do not display in the Project Explorer by default; you must convert them into projects.

Sharing a Project Among a Group
Apply the following guidelines to share a Silk Test Classic project among a group:

• Create the project in the location from which it will be shared. For example, you can create the project
on a network drive.

• Ensure that testers create the same directory structure on their machines.

Project Explorer
Use the Project Explorer to view and work with all the resources within a Silk Test Classic project. You can
access the Project Explorer by clicking:

• File > Open Project and specifying the project you want to open.
• File > New Project and creating a new project.
• Project > View Explorer, if you currently have a project open and do not have the Project Explorer

view on.
• Project > New Project or Open Project on the Basic Workflow bar.

The resources associated with the project are grouped into categories. You can easily navigate among and
access all of these resources using the Files and Global tabs. When you double-click a file on the Files
tab, or an object on the Global tab, the file opens in the right pane. You can drag the divider to adjust the
size of the Project Explorer windows and click Project > Align to change the orientation of the tabs from
left to right.

Files tab

The Files tab lists all of the files that have been added to the project. The file name displays first, followed
by the path. If files exist on a network drive, they are referenced using Universal Naming Conventions
(UNC). Files are grouped into the following categories:

Category Description

Profile Contains project-specific initialization files, such as the projectname.ini and option
sets files, which means .opt files, that are associated with the project.

Script Contains test scripts, which means .t and .g.t files, that are associated with the project.

Include/Frame Contains include files, which means .inc files, and frame/object files that are associated
with the project.

Plan Contains test plans and suite files, which means .pln and .s files, that are associated with
the project.

Results Contains results, which means .res and .rex files, that are associated with the project.

Data Contains data associated with the project, such as Microsoft Word documents, text files,
bitmaps, and others. Double-click the file to open it in the appropriate application. You
must open files that are not associated with application types in the Windows Registry
using the File/Open dialog box.

From the Files tab, you can view, edit, add, remove and work with files within the project. For example, to
add a file to the project, right-click the category name, for example Script, and then click Add File. After

66 | Silk Test Classic Projects

you have added the file, you can right-click the file name to view options for working with the file, such as
record test case and run test case. Silk Test Classic functionality has not changed - it is now accessible
through a project.

You can work with the folders within the categories on the Files tab, by adding, renaming, moving, and
deleting folders within each category.

Global tab

The Global tab lists resources that are defined at a global level within the entire project. The resource
name displays first, followed by the file in which it is defined. Resources contained within the project's files
are grouped into the following categories:

• Records
• Classes
• Enums
• Window Declarations
• Testcases
• Appstates
• Functions
• Constants

From the Global tab, you can go directly to the location in which a global object or resource is defined.
Double-click any object within the folders to go to the location in which the object is defined. Silk Test
Classic opens the file and positions your cursor at the beginning of the line in which the object is defined.

You can also run and debug test cases and application states by right-clicking a test case or application
state, and then selecting the appropriate option. For example, right-click a test case within the Testcase
folder and then click Run. Silk Test Classic opens the file containing the test case you selected, and
displays the Run Testcase dialog box with the selected test case highlighted. You can input argument
values and run or debug the test case.

On the Global tab, you can sort the resources within each node by resource name, file name, or file date.

Note: Methods and properties are not listed on the Global tab since they are specific to classes or
window declarations. You can access methods and properties by double-clicking the class or window
declaration in which they are defined.

You cannot move files within the Project Explorer. For example, you cannot drag a script file under the
Frame file node. However, you can drag the file to another folder within the same category node.

Note: If you change the location or name of a file included in your project, outside of Silk Test Classic,
you must make sure the projectname.vtp contains the correct reference.

Creating a New Project
You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar. the Create Project dialog box appears.

2. Type a unique name for the project into the Project Name field.

Silk Test Classic Projects | 67

If the project name already exists, you are prompted to specify a different project name or overwrite the
existing project.

Project files with a .vtp (Verify Test Project) extension, projectname.vtp, and a
projectname.ini are created in the directory that you specify in the Save in text box.

3. Optional: Type a description for the project into the Description field.

After you create the project, you can view the project description by right-clicking the projectname
folder on the Files or Global tabs or clicking Project > Project Description.

4. Type the location at which you want to save the project into the Save in field.

You can also click Browse and specify the folder in which you want to save your project. The default
location is C:\Users\<Current user>\Documents\Silk Test Classic Projects.

5. Click OK. Silk Test Classic creates a <Project name> folder within the specified directory, saves the
projectname.vtp and projectname.ini to this location and copies the extension .ini files, which
are appexpex.ini, axext.ini, domex.ini, and javaex.ini, to the extend subdirectory. If you
do not want to save your project in the default location, click Browse and specify the folder in which you
want to save your project. Silk Test Classic then creates your project and displays nodes on the Files
and Global tabs for the files and resources associated with this project.

6. Perform one of the following steps:

• If your test uses the Open Agent, configure the application to set up the test environment.
• If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Opening an Existing Project
You can open a Silk Test Classic project as well as open an archived Silk Test Classic project. You can also
open a Silk Test Classic project or archived project through the command line.

To open an existing project:

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar.

If you already have a project open, a dialog box opens informing you that the open project will be
closed. If you associated Silk Test Classic file types with Silk Test Classic during installation, then you
can open a Silk Test Classic project or package by double-clicking the .vtp or .stp file.

2. If you are opening a packaged Silk Test Classic project, which means an .stp file, you must perform the
following steps:

a) Indicate into what directory you want to unpack the project in the Base path text box. The files are
unpacked to the directory you indicate in the Base path text box.

b) Enter a password into the Password text box if the archived Silk Test Classic project was saved with
a password.

If you open a package by double-clicking the .stp file, the base path is the directory that contains
the .stp file.

When you select a location for unpacking the archive on the Open Project dialog box, Silk Test
Classic uses that directory path, the base path, to substitute for the drive and root directory in the
Use Path and Use Files paths.

The Base path and Password text boxes are enabled only if you are opening an .stp file.

3. On the Open Project dialog box, specify the project that you want to open, and then click Open.

If you open a project file (.vtp) by clicking File > Open command, the projectname.vtp file will open
in the 4Test Editor, but the project and its associated settings will not be loaded. Projects do not display
in the recently opened files list. To close all open files within a project, click Window > Close All.

68 | Silk Test Classic Projects

Converting Existing Tests to a Project
Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by clicking Options > Save New Options Set. You can include the
options set when you create your project.

To convert existing test sets to a project:

1. Create a new project.

2. Manually add the files to the project.

Using Option Sets in Your Project
To use an options set within your project, you must make sure that the options set is loaded into memory.
You can tell if an options set is loaded by looking at the Silk Test Classic title bar. If filename.opt
displays in the title bar, then the options set filename.opt is loaded. If an options set is loaded, it
overrides the settings contained in the projectname.ini file.

Note: When an options set is loaded, the context menu options are available only for the loaded
options set; these menu options are grayed out for .ini and .opt files that are not loaded.

You can load an options set into your project using any of the following methods:

• If the options set is included in your project, within the Profile node on the Files tab, right-click the
options set that you want to load and then click Open Options Set.

• Right-click Save New Options Set to load the options set and add it under the Profile node on the
Files tab.

• Use the Options menu; click Options > Open Options Set, browse to the options set (.opt) that you
want to load, and then click Open.

• Load the options set at runtime using the optionset keyword. This loads the options set at the point in
the plan file in which the options set is called. All test cases that follow use this options set.

If an options set was loaded when you closed Silk Test Classic, Silk Test Classic automatically re-loads this
options set when you re-start Silk Test Classic.

To include an options set in your project, you can add the options set by right-clicking Profile on the Files
tab, clicking Add File, selecting the options set you want to add to the project, and then clicking OK. You
can also click Save New Options Set; this loads the options set and adds it under the Profile node on the
Files tab.

Editing an Options Set
To edit an options set in your project:

1. On the Files tab, expand the Profile node.

2. Right-click the options set that you want to edit and click Open Options Set. The options set is loaded
into memory.

3. Right-click the options set that you want to edit again and select the type of option you want to edit.

For example Runtime, Agent, Extensions, and others.

4. Modify your options and then click OK. Your current settings are changed and saved to the .opt file.

If you want to change settings for future use, double-click the options set that you want to edit on the Files
tab. This opens the options file in the Editor without loading the options file into memory. Changes you

Silk Test Classic Projects | 69

make to the options set in the Editor will be saved, but will not take effect until you load the options set by
selecting Open Options Set from the Options menu or the right-click shortcut.

Silk Test Classic File Types
Silk Test Classic uses the following types of files in the automated testing process, each with a specific
function. The files marked with an * are required by Silk Test Classic to create and run test cases.

File Type Exte
nsio
n

Description

Project .vtp Silk Test Classic projects organize all the resources associated with a test set and present them
visually in the Project Explorer, making it easy to see, manage, and work within your test
environment.

The project file has a Verify Test Project (.vtp) extension and is organized as an .ini file; it
stores the names and locations of files used by the project. Each project file also has an
associated project initialization file: projectname.ini.

Exported
Project

.stp A Silk Test Project (.stp) file is a compressed file that includes all the data that Silk Test Classic
exports for a project. A file of this type is created when you click File > Export Project.
The .stp file includes the configuration files that are necessary for Silk Test Classic to set up
the proper testing environment.

Testplan .pln An automated test plan is an outline that organizes and enhances the testing process,
references test cases, and allows execution of test cases according to the test plan detail. It can
be of type masterplan or of subplan that is referenced by a masterplan.

Test
Frame*

.inc A specific kind of include file that upon creation automatically captures a declaration of the AUT’s
main window including the URL of the Web application or path and executable name for client/
server applications; acts as a central repository of information about the AUT; can also include
declarations for other windows, as well as application states, variables, and constants.

4Test
Script*

.t Contains recorded and hand-written automated test cases, written in the 4Test language, that
verify the behavior of the AUT.

Data-
Driven
Script

.g.t Contains data-driven test cases that pull their data from databases.

4Test
Include File

.inc A file that contains window declarations, constants, variables, classes, and user defined
functions.

Suite .s Allows sequential execution of several test scripts.

Text File .txt An ASCII file that can be used for the following:

• Store data that will be used to drive a data driven test case.
• Print a file in another document (Word) or presentation (PowerPoint).
• Accompany your automation as a readme file.
• Transform a tab-delimited plan into a Silk Test Classic plan.

Results
File

.res Is automatically created to store a history of results for a test plan or script execution.

Results
Export File

.rex A single compressed results file that you can relocate to a different machine. Click Results >
Export to create a .rex file out of the existing results files of a project.

TrueLog
File

.xlg A file that contains the captured bitmaps and the logging information that is captured when
TrueLog is enabled during a test case run.

Keyword-
Driven Test
File

.kdt An executable file which contains keywords. Keyword-driven test files are used when testing with
the keyword-driven testing methodology.

70 | Silk Test Classic Projects

File Type Exte
nsio
n

Description

Keyword
Sequence

.kseq A keyword-sequence file contains a combination of keywords, which are always executed in the
same order. A keyword-sequence file cannot be executed on its own, only when included in a
keyword-driven test. In context of a keyword-driven test, a keyword-sequence can be used as
any other keyword. Keyword sequence files are used when testing with the keyword-driven
testing methodology.

Organizing Projects
This section includes the topics that are available for organizing projects.

Adding Existing Files to a Project
You can add existing files to a project or create new files to add to the project. We recommend adding all
referenced files to your project so that you can easily see and access the files, and the objects contained
within them. Referenced files do not have to be included in the project. Plans and scripts will continue to
run, provided the paths that are referenced are accurate.

When you add a file to a project, project files (.vtp files) use relative paths for files on the same root drive
and absolute paths for files with different root drives. The use of relative and absolute files is not
configurable and cannot be overridden.

To add an existing file to a project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar, select the project to which you want to add a file, and then click Open.

2. On the Project Explorer, select the Files tab, right-click the node associated with the type of file you
want to add, and then click Add File.

For example, to add a script file to the project, right-click Script, and then click Add File.

3. On the Add File to Project dialog box, specify the file you want to add to the open project, and then
click Open.

The file name, followed by the path, displays under the appropriate category on the Files tab sorted
alphabetically by name and is associated with the project through the projectname.vtp file. If files
exist on a network drive, they are referenced using Universal Naming Conventions (UNC).

You can also add existing files to the project by clicking Project > Add File. Silk Test Classic automatically
places the file in the appropriate node, based on the file type; for example if you add a file with a .pln
extension, it will display under the Plan node on the Files tab. We do not recommend adding
application .ini files or Silk Test Classic .ini files, which are qaplans.ini, propset.ini, and the
extension.ini files, to your project. If you add object files, which are .to and .ino files, to your project,
the files will display under the Data node on the Files tab. Objects defined in object files will not display in
the Global tab. You cannot modify object files within the Silk Test Classic editor because object files are
binary. To modify an object file, open the source file, which is a .t or .inc file, edit it, and then recompile.

Renaming Your Project
The projectname.ini and the projectname.vtp refer to each other; make sure the references are
correct in both files when you rename your project.

To rename your project:

1. Make sure the project you want to rename is closed.

Silk Test Classic Projects | 71

2. In Windows Explorer, locate the projectname.vtp and projectname.ini associated with the
project name you want to change.

3. Change the names of projectname.vtp and projectname.ini. Make sure that you use the same
projectname for both files.

4. In a text editor outside of Silk Test Classic, open projectname.vtp, change the reference to the
projectname.ini file to the new name, and then save and close the file. Do not open the project in
Silk Test Classic yet.

5. In a text editor outside of Silk Test Classic, open projectname.ini, change the reference to the
projectname.vtp file to the new name, and then save and close the file.

6. In Silk Test Classic, open the project by clicking File > Open Project or Open ProjectOpen Project on
the basic workflow bar. The new project name displays.

Working with Folders in a Project
In addition to working with files, you can also add your own folders to all nodes listed on the File tab of the
Project Explorer. For example, the Files tab of the Project Explorer can include notes.

You can also right-click a folder and click the following:

• Expand All to display all contents of a folder.
• Collapse All to collapse the contents of the folder.
• Display Full Path to show the full path for the contents.
• Display Date/Time to show creation information for the content file.

Adding a Folder to the Files Tab of the Project Explorer
You may add a folder to any of the categories (nodes) on the Files tab of the Project Explorer. You may
not add a folder to the root project folder, nor change the titles of the root nodes.

To add a folder to a project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, right-click a folder and select Add Folder.

3. On the Add Folder dialog box, enter the name of the new folder, then click OK.

When you are naming a folder, you may use alphanumeric characters, underscore character, character
space, or hyphens. Folder names may be a maximum of 256 characters long. Creating folders with
more than 256 characters is possible, but Silk Test Classic will truncate the name when you save the
project. The concatenated length of the names of all folders within a project may not exceed 256
characters. You may not use periods or parentheses in folder names. Within a node, folder names must
be unique.

Moving Files and Folders
You may move an individual file or files between folders within the same category on the Files tab of the
Project Explorer. You cannot move the predefined Silk Test Classic folders (nodes) such as Profile Script,
Plan, Frame, and Data.

You may also move sub-folders within the same category on the Files tab. You cannot move sub-folders
across categories.

To move a folder or file:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab. Click a file, a folder, or shift-click to select several files or
folders, then drag the items to the new location.

72 | Silk Test Classic Projects

3. Release the mouse to move the items.
There is no undo.

Removing a Folder from the Files tab of the Project Explorer
You may delete folders on the Files tab of the Project Explorer, however, you may not delete any of the
predefined Silk Test Classic categories (nodes) such as Profile Script, Plan, Frame, and Data.

Note: There is no undo.

To remove a folder:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, right-click a folder and select Remove Folder to delete it
from the Project Explorer. If you select a folder with child folders or a folder that contains items, Silk
Test Classic displays a warning before deleting the folder.

Renaming a Folder on the Files Tab of the Project Explorer
You may rename any folder that you have added to a project. You may not rename any of the predefined
Silk Test Classic folders (nodes) such as Profile, Script, Include/Frame, Plan, Results, or Data.

To rename a folder:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, then navigate to the folder you want to rename.

3. Right-click the folder and select Rename Folder.
4. On the Rename Folder dialog box, enter the new name of the folder then click OK.

When naming a folder, you may use alphanumeric characters, underscore character, character space,
or hyphens. Folder names may be a maximum of 64 characters long. You may not use periods or
parentheses in folder names. Within a node, folder names must be unique.

Sorting Resources within the Global Tab of the Project Explorer
On the Global tab of the Project Explorer, you can sort the resources within each category (node) by
resource name, file name, or file date.

To sort resources:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar, select the project whose elements you want to sort, and then click Open.

2. On the Project Explorer, click the Global tab, right-click the node associated with the type of element
you want to sort, and then click Sort by FileName or Sort by FileDate.
The default is sort by element name.

3. Click Ascending or Descending to indicate how you want to organize the sort.
For example, to sort the elements of a script file by file date in reverse chronological order, right-click the
Script node and select Sort by FileDate, then click Descending.
When you release the mouse, the elements are sorted by the parameters you selected.

Moving Files Between Projects
We recommend that you use Export Project to move projects, but if you want to move only a few files
rather than an entire project, you can open the project in Silk Test Classic and remove the files that you
want to move from the project. Move the files to their new location in Windows Explorer, and then add the
files back to the currently open project.

Silk Test Classic Projects | 73

You can also move your project by opening the projectname.vtp and projectname.ini files in a text
editor outside of Silk Test Classic and updating references to the location of source files. However, we
recommend that you have strong knowledge of your files and how the partner and projectname .ini files
work before attempting this. We advise you to use great caution if you decide to edit the projectname .vtp
and projectname .ini files.

Removing Files from a Project
You cannot remove the projectname.ini file.

To remove a file from a project:

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar.

2. Click the plus sign [+] to expand the node associated with the type of file you want to remove, and then
choose one of the following:

• Right-click the file you want to remove, and then click Remove File.
• Select the file in the Project Explorer and press the Delete key.
• Select the file you want to remove on the Files tab, and then click Project > Remove File.

The file is removed from the project and references to the file are deleted from the projectname.vtp.
The file itself is not deleted; it is just removed from the project.

Turning the Project Explorer View On and Off
The Project Explorer view is the default. If you do not want to view the Project Explorer, uncheck Project
> View Explorer. You can continue to work with your files within the project, you just will not see the
Project Explorer.

To turn Project Explorer view on, check Project > View Explorer.

If you do not want to use projects in Silk Test Classic, close the open project, if any, by clicking File > Close
Project, and then use Silk Test Classic as you would have in the past.

Viewing Resources Within a Project
1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar and select

the project that you want to open.

2. Click one of the following:

• The Files tab to view all the files associated with the open project.
• The Global tab to view global objects defined in the files associated with the project.

3. To close all open files within a project, click Window > Close All.

Packaging a Silk Test Classic Project
You can package your Silk Test Classic project into a single compressed file that you can relocate to a
different computer. When you unpack your project you will have a fully functional set of test files. This is
useful if you need to relocate a project, email a project to a co-worker, or send a project to technical
support.

Source files included in the packaged project

When you package a project, Silk Test Classic includes all of the source files, meaning the related files
used by a project, such as:

74 | Silk Test Classic Projects

Description Extension

plan files .pln

script files .t

include files .inc

suite files .s

results files (optional) .res and .rex

data files -

Silk Test Classic takes these files and bundles them up into a new file with an .stp extension. The .stp file
includes the configuration files necessary for Silk Test Classic to set up the proper testing environment
such as project.ini, testplan.ini, optionset .opt files, and any .ini files found in the …\Silk Test
Classic projects\<Project name>\extend directory.

You have the option of including .res and .rex files when you package a Silk Test Classic project because
these files are sometimes quite large and not necessary to run the project.

Relative paths in comparison to absolute paths

When you work with Silk Test Classic projects, the files that make up the project are identified by
pathnames that are either absolute or relative. A relative pathname begins at a current folder or some
number of folders up the hierarchy and specifies the file’s location from there. An absolute pathname
begins at the root of the file system (the topmost folder) and fully specifies the file’s location from there. For
example:

Absolute path C:\Users\<Current user>\Documents\Silk Test Classic Projects
\<Project name>\options.ini

Relative path ..\tesla\Silk Test\options\options.ini or SUSDir\options.inc

When you package a project, Silk Test Classic checks to make sure that the paths used within the project
are properly maintained. If you try to compress a project containing ambiguous paths, Silk Test Classic
displays a warning message. Silk Test Classic tracks the paths in a project in a log file.

Including all files needed to run tests

Files associated with a project, but not necessary to run tests, for example bitmap or document files, which
you have manually added to the project are included when Silk Test Classic packages a project.

If Silk Test Classic finds any include:, script:, or use: statements in the project files that refer to files with
absolute paths, c:\program files\Silk\Silk Test\, Silk Test Classic verifies if you have checked
the Use links for absolute files? check box on the Export Project or on the Email Project dialog boxes.

• If you check the Use links for absolute files? check box, Silk Test Classic treats any file referenced by
an absolute path in an include, script, or use statement as a placeholder and does not include those
files in the package. For example, if there are use files within the Runtime Options dialog box referred
to as "q:\qaplans\SilkTest\frame.inc" or "c", these files are not included in the package. The assumption
is that these files will also be available from wherever you unpack the project.

• If you uncheck the Use links for absolute files? check box, Silk Test Classic includes the files
referenced by absolute paths in the packaged project. For example, if the original file is stored on c:
\temp\myfile.t, when unpacked at the new location, the file is placed on c:\temp\myfile.t.

The following table compares the results of packaging projects based on whether there are any absolute
file references in your source files, and how you respond to the Use links for absolute files? check box on
the Export Project or on the Email Project dialog boxes.

Silk Test Classic Projects | 75

Any absolute references in source
files?

Use links for absolute files? Results

No Checked or unchecked Package unpacks to any location.

Yes Checked Files referenced by absolute paths
are not included in the packaged
project.

Yes Unchecked Files referenced by absolute paths
are put into a ZIP file within the
packaged project.

Note:

• If there are any source files located on a different drive than the .vtp project file, and if there are
files referenced by absolute paths in the source files, Silk Test Classic treats the source files as
referenced by absolute paths. The assumption is that the absolute paths will be available from the
new location. Silk Test Classic therefore puts the files into a zip file within the packaged project for
you to unpack after you unpack the project.

• Files not included in the package - The assumption is that since these files are referenced by
absolute paths, these same files and paths will be available when the files are unpacked. On
unpacking, Silk Test Classic warns you about these files and lists them in a log file (manifest.XXX).

• ip files – Because you elected not to use links for files referenced by absolute paths, these files are
put into a zip file within the packaged project. The zip file is named with the root of the absolute
path. For example, if the files are located on c:/, the zip file is named c.zip.

Tips for successful packaging and unpacking

For best results when packaging and unpacking Silk Test Classic projects:

• Put your .vtp project file and source files on the same drive.
• Use relative paths to reference the following:
• • include statements

• options sets
• use paths set within the Runtime Options dialog box
• use statements in 4Test scripts
• script statements

• Uncheck the default Use links for absolute files? check box if your source files are on a different drive
as the .vtp project file and if there are files referenced by absolute paths in your source files.

Packaging with Silk Test Classic Runtime and the Agent

If you are running Silk Test Classic Runtime, you may not package or email a project.

If you are running the Agent, you may package or email a project.

Emailing a Project
Emailing a project automatically packages a Silk Test Classic project and then emails it to an email
address. In order for this to work, you must have an email client installed on the computer that is running
Silk Test Classic.

You cannot email a project if you are running Silk Test Classic Runtime.

One of the options you can select before emailing is to compile your project. If a compile error occurs, Silk
Test Classic displays a warning message, and you can opt to continue or to cancel the email.

Silk Test Classic supports any MAPI-compliant email clients such as Outlook Express.

76 | Silk Test Classic Projects

The maximum size for the emailed project is determined by your email client. Silk Test Classic does not
place any limits on the size of the project.

To email your project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. Click File > Email Project.

You can only email a project if you have that project open.

3. On the Email Project dialog box, type the email address where you want to send the Silk Test Classic
project.

For example, enter support@acme.com to send a package to Acme Technical Support.

Tip: If you are not sure about the email address, you can just enter some text here. Once you click
OK, this information is passed to your default mail system where you can correct the address.

4. Optional: Check the Create file references for files with absolute paths check box to use links for
any absolute file reference.

By default, this check box is checked.

Note: Using references for absolute paths produces a smaller package that can be opened more
quickly.

5. Optional: Check the Compile before exporting check box to compile the project before emailing it.

By default, this check box is checked.

6. Optional: Check the Include results files of all tests (.res, .rex, and .xlg) check box to
include .res, .rex, and .xlg results files in the emailed project.

Only results files that were added to the Results folder of the project are emailed. By default, this check
box is unchecked.

7. Optional: Check the Include extend.ini file check box to include extensions that you have configured
for target machines in the project that you export.

Typically, when working with a project, extension configurations are stored in the project specific
project.ini file. However, you can also configure extensions for target machines in the extend.ini
file, by using the Extension Enabler, a tool which is available from the Start menu. By default, this
check box is unchecked.

8. Optional: Check the Protect Silk Test Classic package files with password check box to secure the
compressed file with a password.

If you have secured the compressed file with a password, you cannot extract any files from the
compressed package without specifying this password. This option is available only when you have
checked the Export to single Silk Test Classic package check box.

a) Type the password into the Enter password field.

A password may include up to 79 alphanumeric characters.
b) Re-enter the password into the Confirm password field to confirm it.

9. Click OK. If you opted to compile the project before packaging it, Silk Test Classic displays a warning
message if any file failed to compile. Silk Test Classic opens a new email message and attaches the
packaged project to a message. You can edit the recipient, add a subject line, and text, just as you can
for any outgoing message.

10.Click Send to add the project to your outgoing queue. If your email client is already open, your message
is sent automatically. If your email client was not open, the message is placed in your outgoing queue.

Note: If the email process does not finish successfully, Micro Focus recommends deleting any
partially packaged project or draft email message and restarting the email process.

Silk Test Classic Projects | 77

Exporting a Project
Exporting a Silk Test Classic project lets you copy all the files associated with a project to a directory or a
single compressed file in a directory.

You cannot export a project if you are running Silk Test Classic Runtime.

Silk Test Classic will not change the file creation dates when copying the project’s files.

One of the options you can select before exporting is to compile your project. If a compile error occurs, Silk
Test Classic displays a warning message, and you can opt to continue or to cancel the compile.

To export your project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. Click File > Export Project.

You can only export a project if you have the project open.

3. On the Export Project dialog box, enter the directory to which you want to export the project or click

 to locate the export folder.

The default location is the parent directory of the project folder, which means the folder containing the
project file, not the project's current location.

4. Check the Export to single Silk Test Classic package check box if you want to package the Silk Test
Classic project into a single compressed file.

5. Optional: Check the Create file references for files with absolute paths check box to use links for
any absolute file reference.

By default, this check box is checked.

Note: Using references for absolute paths produces a smaller package that can be opened more
quickly.

6. Optional: Check the Compile before exporting check box to compile the project before exporting it.

By default, this check box is checked.

7. Optional: Check the Include results files of all tests check box to include .res and .rex results files
in the exported project or package.

Only results files that were added to the Results folder of the project are exported. By default, this
check box is unchecked.

8. Optional: Check the Include extend.ini file check box to include extensions that you have configured
for target machines in the project that you export.

Typically, when working with a project, extension configurations are stored in the project specific
project.ini file. However, you can also configure extensions for target machines in the extend.ini
file, by using the Extension Enabler, a tool which is available from the Start menu. By default, this
check box is unchecked.

9. Optional: Check the Protect Silk Test Classic package files with password check box to secure the
compressed file with a password.

If you have secured the compressed file with a password, you cannot extract any files from the
compressed package without specifying this password. This option is available only when you have
checked the Export to single Silk Test Classic package check box.

a) Type the password into the Enter password field.

A password may include up to 79 alphanumeric characters.
b) Re-enter the password into the Confirm password field to confirm it.

78 | Silk Test Classic Projects

10.Click OK. Silk Test Classic determines all the files necessary for the project and copies them to the
selected directory or compresses them into a package. Silk Test Classic displays a warning message if
any of the files could not be successfully packaged and gives you the option of continuing.

Tip: If the export process does not finish successfully, Micro Focus recommends deleting any partially
packaged project and restarting the export process.

Troubleshooting Projects
This section provides solutions to common problems that you might encounter when you are working with
projects in Silk Test Classic.

Files Not Found When Opening Project
If, when opening your project, Silk Test Classic cannot find a file in the location referenced in the project
file, which is a .vtp file, an error message displays noting the file that cannot be found.

Silk Test Classic may not be able to find files that have been moved or renamed outside of Silk Test
Classic, for example in Windows Explorer, or files that are located on a shared network folder that is no
longer accessible.

• If Silk Test Classic cannot find a file in your project, we suggest that you note the name of missing file,
and click OK. Silk Test Classic will open the project and remove the file that it cannot find from the
project list. You can then add the missing file to your project.

• If Silk Test Classic cannot open multiple files in your project, we suggest you click Cancel and
determine why the files cannot be found. For example a directory might have been moved. Depending
upon the problem, you can determine how to make the files accessible to the project. You may need to
add the files from their new location.

Silk Test Classic Cannot Load My Project File
If Silk Test Classic cannot load your project file, the contents of your .vtp file might have changed or
your .ini file might have been moved.

If you remove or incorrectly edit the ProjectIni= line in the ProjectProfile section of your
<projectname>.vtp file, or if you have moved your <projectname>.ini file and the ProjectIni=
line no longer points to the correct location of the .ini file, Silk Test Classic is not able to load your
project.

To avoid this, make sure that the ProjectProfile section exists in your .vtp file and that the section
refers to the correct name and location of your .ini file. Additionally, the <projectname>.ini file and
the <projectname>.vtp file refer to each other, so ensure that these references are correct in both files.
Perform these changes in a text editor outside of Silk Test Classic.

Example

The following code sample shows a sample ProjectProfile section in a
<projectname>.vtp file:

[ProjectProfile]
ProjectIni=C:\Program Files\<Silk Test install directory>
\SilkTest\Projects\<projectname>.ini

Silk Test Classic Cannot Save Files to My Project
You cannot add or remove files from a read-only project. If you attempt to make any changes to a read-only
project, a message box displays indicating that your changes will not be saved to the project.

Silk Test Classic Projects | 79

For example, Unable to save changes to the current project. The project file has
read-only attributes.

When you click OK on the error message box, Silk Test Classic adds or removes the file from the project
temporarily for that session, but when you close the project, the message box displays again. When you re-
open the project, you will see your files have not been added or removed.

Additionally, if you are using Microsoft Windows 7 or later, you might need to run Silk Test Classic as an
administrator. To run Silk Test Classic as an administrator, right-click the Silk Test Classic icon in the Start
Menu and click Run as administrator.

Silk Test Classic Does Not Run
The following table describes what you can do if Silk Test Classic does not start.

If Silk Test Classic does not run because it is looking
for the following:

You can do the following:

Project files that are moved or corrupted. Open the SilkTestClassic.ini file in a text editor
and remove the CurrentProject= line from the
ProjectState section. Silk Test Classic should then
start, however your project will not open. You can
examine your <projectname>.ini and
<projectname>.vtp files to determine and correct
the problem.

The following code example shows the ProjectState
section in a sample partner.ini file:

[ProjectState]
CurrentProject=C:\Program Files
\<SilkTest install directory>
 \SilkTest\Examples\ProjectName.vtp

A testplan.ini file that is corrupted. Delete or rename the corrupted testplan.ini file,
and then restart Silk Test Classic.

My Files No Longer Display In the Recent Files List
After you open or create a project, files that you had recently opened outside of the project do no longer
display in the Recent Files list.

Cannot Find Items In Classic 4Test
If you are working with Classic 4Test, objects display in the correct nodes on the Global tab, however when
you double-click an object, the file opens and the cursor displays at the top of the file, instead of in the line
in which the object is defined.

Editing the Project Files
You require good knowledge of your files and how the partner and <projectname>.ini files work before
attempting to edit these files. Be cautious when editing the <projectname>.vtp and
<projectname>.ini files.

To edit the <projectname>.vtp and <projectname>.ini files:

1. Update the references to the source location of your files. If the location of your projectname.vtp
and projectname.ini files has changed, make sure you update that as well. Each file refers to the
other.

80 | Silk Test Classic Projects

The ProjectProfile section in the projectname.vtp file is required. Silk Test Classic will not be able to
load your project if this section does not exist.

1. Ensure that your project is closed and that all the files referenced by the project exist.

2. Open the <projectname>.vtp and <projectname>.ini files in a text editor outside of Silk Test
Classic.

Note: Do not edit the projectname.vtp and projectname.ini files in the 4Test Editor.

3. Update the references to the source location of your files.

4. The <projectname>.vtp and <projectname>.ini files refer to each other. If the relative location
of these files has changed, update the location in the files.

The ProjectProfile section in the <projectname>.vtp file is required. Silk Test Classic is not able to
load your project if this section does not exist.

Project Description Dialog Box
Use the Project Description dialog box to view or edit the description of the current project.

Open a project and click Project > Project Description.

Description Displays the description of this project. The original description is the text that you typed in
the Description field on the Create Project dialog box or the AutoGenerate Project dialog
box when you created the project. You can modify the project description as necessary,
typing up to 1024 characters. The project description is stored in the System Settings
section of the projectname.vtp file.

Silk Test Classic Projects | 81

Enabling Extensions for Applications
Under Test

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This section describes how you can use extensions to extend the capabilities of a program or the data that
is available to the program.

An extension is a file that serves to extend the capabilities of, or the data available to, a basic program. Silk
Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Related Files

If you are using a project, the extension configuration information is stored in the partner.ini file. If you
are not using a project, the extension configuration information is stored in the extend.ini file.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box. Extensions that use
technologies on the Classic Agent are located in the <Silk Test Classic project directory>
\extend\ directory.

Extensions that Silk Test Classic can Automatically
Configure

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Using the Basic Workflow, Silk Test Classic can automatically configure extensions for many development
environments, including:

• Browser applications and applets running in one of the supported browsers.
• .NET standalone Windows Forms applications.
• Standalone Java and Java AWT applications.
• Java Web Start applications and InstallAnywhere applications and applets.
• Java SWT applications.
• Visual Basic applications.
• Client/Server applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

You cannot enable extensions for Silk Test Classic (partner.exe), Classic Agent (agent.exe), or Open
Agent (openAgent.exe).

You can also click Tools > Enable Extensions to have Silk Test Classic automatically set your extension.

If the Basic workflow does not support your configuration, you can enable the extension manually.

If you use the Classic Agent, the Basic Workflow does not automatically configure browser applications
containing ActiveX objects. To configure a browser application with ActiveX objects, check the ActiveX
check box in the row for the extension that you are enabling in the Extensions dialog box. Or use the Open
Agent.

82 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

Extensions that Must be Set Manually
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Using the Basic Workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If the Basic Workflow does not support your configuration or you prefer to
enable extensions manually, enable the extension on your host machine and enable the extension on your
target machine, regardless of whether the application you plan to test will run locally or on remote
machines. Enable extensions manually if you:

• Want to change your currently enabled extension.
• Want to enable additional options for the extension you are using, such as Accessibility, Active X, or

Java.
• Are testing embedded browser applications using the Classic Agent, for example, if DOM controls are

embedded within a Windows Forms application.
• Are testing an application that does not have a standard name.

If you are testing Web applications using the Classic Agent, Silk Test Classic enables the extension
associated with the default browser you specified on the Select Default Browser dialog box during the Silk
Test Classic installation. If you want to use the extension you specified during the Silk Test Classic
installation, you do not need to complete this procedure unless you need additional options, such as
Accessibility, Java, or ActiveX.

If you are not testing Java but do have Java installed, we recommend that you disable the classpath before
using Silk Test Classic.

Silk Test Classic automatically enables Java support in the browser if your web page contains an applet.
The Enable Applet Support check box on the Extension Settings dialog for browser is automatically
selected when the Enable Extensions workflow detects an applet. You can uncheck the check box to
prevent Silk Test Classic from loading the extension. If no applet is detected, the check box is not available.

Extensions on Host and Target Machines
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You must define which extensions Silk Test Classic should load for each application under test, regardless
of whether the application will run locally or on remote machines. You do this by enabling extensions on
your host machine and on each target machine before you record or run tests.

Extensions on the host machine

On the host machine, we recommend that you enable only those extensions required for testing the current
application. Extensions for all other applications should be disabled on the host to conserve memory and
other system resources. By default, the installation program:

• Enables the extension for your default Web browser environment on the host machine.
• Disables extensions on the host machine for all other browser environments.
• Disables extensions for all other development environments.

When you enable an extension on the host machine, Silk Test Classic does the following:

• Adds the include file of the extension to the Use Files text box in the Runtime Options dialog box, so
that the classes of the extension are available to you.

Enabling Extensions for Applications Under Test | 83

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• Makes sure that the classes defined in the extension display in the Library Browser. Silk Test Classic
does this by adding the name of the extension’s help file, which is browser.ht, to the Help Files For
Library Browser text box in General Options dialog box and recompiling the help file used by the
Library Browser.

• Merges the property sets defined for the extension with the default property sets. The web-based
property sets are in the browser.ps file in the Extend directory. The file defines the following property
sets: Color, Font, Values, and Location.

Extensions on the target machine

The Extension Enabler dialog box is the utility that allows you to enable or disable extensions on your
target machines. All information that you enter in the Extension Enabler is stored in the extend.ini file
and allows the Agent to recognize the non-standard controls you want to test on target machines.

Enabling Extensions Automatically Using the Basic
Workflow

An extension is a file that serves to extend the capabilities of, or data available to, a more basic program.
Silk Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

If you are testing a generic project that uses the Classic Agent, perform the following procedure to enable
extensions:

1. Start the application or applet for which you want to enable extensions.

2. Start Silk Test Classic and make sure the basic workflow bar is visible. If it is not, click Workflows >
Basic to enable it.

If you do not see Enable Extensions on the workflow bar, ensure that the default agent is set to the
Classic Agent.

3. If you are using Silk Test Classic projects, click Project and open your project or create a new project.

4. Click Enable Extensions.

You cannot enable extensions for Silk Test Classic (partner.exe), the Classic Agent (agent.exe), or
the Open Agent (openAgent.exe).

5. Select your test application from the list on the Enable Extensions dialog box, and then click Select.
6. If your test application does not display in the list, click Refresh. Or, you may need to add your

application to this list in order to enable its extension.

7. Click OK on the Extension Settings dialog box, and then close and restart your application.

8. If you are testing an applet, the Enable Applet Support check box is checked by default.

9. When the Test Extension Settings dialog box opens, restart your application in the same way in which
you opened it; for example, if you started your application by double-clicking the .exe, then restart it by
double-clicking the .exe.

10.Make sure the application has finished loading, and then click Test. When the test is finished, a dialog
box displays indicating that the extension has been successfully enabled and tested. You are now ready
to begin testing your application or applet. If the test fails, review the troubleshooting topics.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box.

Enabling Extensions on a Host Machine Manually
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

84 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Using the Basic workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If you would rather enable the extension manually, or the basic workflow does
not support your configuration, follow the steps described in this topic.

A host machine is the system that runs the Silk Test Classic software process, in which you develop, edit,
compile, run, and debug 4Test scripts and test plans.

There is overhead to having more than one browser extension enabled, so you should enable only one
browser extension unless you are actually testing more than one browser in an automated session.

1. Start Silk Test Classic and click Options > Extensions.
2. If you are testing a client/server project, rich internet application project, or a generic project that uses

the Classic Agent, perform the following steps:
a) On the Extensions dialog box, click the extension you want to enable. You may need to add your

application to this list in order to enable its extension.
b) Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.
c) Disable other extensions that you will not be using by selecting Disabled in the Primary Extension

field. To disable a Visual Basic extension, uncheck the ActiveX check box for the Visual Basic
application.

d) Click OK.

Manually Enabling Extensions on a Target Machine
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Using the basic workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If you would rather enable the extension manually, or the basic workflow does
not support your configuration, follow the steps described in this topic.

A target machine is a system (or systems) that runs the 4Test Agent, which is the software process that
translates the commands in your scripts into GUI-specific commands, in essence, driving and monitoring
your applications under test. One Agent process can run locally on the host machine, but in a networked
environment, any number of Agents can run on remote machines.

If you are running local tests, that is, your target and host are the same machine, complete this procedure
and enable extensions on a host machine manually.

1. Make sure that your browser is closed.
2. From the Silk Test Classic program group, choose Extension Enabler. To invoke the Extension

Enabler on a remote non-Windows target machine, run extinst.exe, located in the directory on the
target machine in which you installed the Classic Agent.

3. Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate. To get
information about the files used by an extension, select an extension and click Details. You may need to
add your application to this list in order to enable its extension.

4. Click OK to close the Extension Enabler dialog box.

If you enable support for ActiveX in this dialog box, make sure that it is enabled in the Extensions
dialog box as well.

5. Restart your browser, if you enabled extensions for web testing.

Once you have set your extension(s) on your target and host machines, verify the extension settings to
check your work. Be sure to consider how you want to work with borderless tables. If you are testing
non-Web applications, you must disable browser extensions on your host machine. This is because the
recovery system works differently when testing Web applications than when testing non-Web
applications. For more information about the recovery system for testing Web applications, see Web
applications and the recovery system. When you select one or both of the Internet Explorer extensions
on the host machine’s Extension dialog box, Silk Test Classic automatically picks the correct version of

Enabling Extensions for Applications Under Test | 85

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

the host machine’s Internet Explorer application in the Runtime Options dialog box. If the target
machine’s version of Internet Explorer is not the same as the host machine’s, you must remember to
change the target machine’s version.

Enabling Extensions for Embedded Browser Applications
that Use the Classic Agent

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To test an embedded browser application, enable the Web browser as the primary extension for the
application in both the Extension Enabler and in the Silk Test Classic Extensions dialog boxes. For
instance, if you are testing an application with DOM controls that are embedded within a .NET application,
follow the following instructions to enable extensions.

1. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Extension Enabler or
(in Microsoft Windows 10) Start > Silk > Extension Enabler.

2. Browse to the location of the application executable.

3. Select the executable file and then click Open.

4. Click OK.

5. From the Primary Extension list box, select the DOM extension for the application that you added.

6. Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.

For example, to test a .NET application with embedded Web controls, select a browser in the Primary
Extension list box and check the .NET check box for the application within the grid.

7. Click OK.

8. Start Silk Test Classic and then choose Options > Extensions. The Extensions dialog box opens.

9. Click New.

10.Browse to the location of the application executable.

11.Select the executable file and then click Open.

12.Click OK.

13.From the Primary Extension list box, select the DOM extension for the application that you added.

14.Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.

For example, to test a .NET application with embedded Web controls, select a browser in the Primary
Extension list box and check the .NET check box for the application within the grid.

15.Click OK.

16.Restart Silk Test Classic.

Note: The IE DOM extension may not detect changes to a web page that occur when JavaScript
replaces a set of elements with another set of elements without changing the total number of
elements. To force the DOM extension to detect changes in this situation, call the FlushCache()
method on the top-level browserchild for the embedded browser. This problem might occur more often
for embedded browsers than for browser pages, because Silk Test Classic is not notified of as many
browser events for embedded browsers. Also call FlushCache() if you get a Coordinate out of
bounds exception when calling a method, for example Click(), on an object that previously had
been scrolled into view. The BrowserPage window identifier is not valid when using embedded
browsers because the default browser type is '(none)' (NULL).

86 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Enabling Extensions for HTML Applications (HTAs)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You must enable extensions on the host and target machines manually in order to use HTML applications
(HTAs).

Before you begin, create a project that uses the Classic Agent.

1. Click Options > Extensions to open the Extensions dialog box.

2. Click New to open the Extension Application dialog box.

3.
Click to navigate to the location of the .hta file that you want to enable. If the file name contains
spaces, be sure to enclose the name in quotation marks.

4. Select the .hta file and then click Open.

5. Click OK.

6. In the Primary Extension column next to the .hta application that you just enabled, select Internet
Explorer.

7. Click OK.

8. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Extension Enabler or
(in Microsoft Windows 10) Start > Silk > Extension Enabler. (Or use the command line to launch "C:
\Progam Files\Silk\SilkTest\Tools\extinst.exe".)

9. On the Extension Enabler dialog box, click New to open the Extension Application dialog box.

10.
Click to navigate to the location of the .hta file that you want to enable. If the file name contains
spaces, be sure to enclose the name in quotation marks.

11.Select the .hta file and then click Open.

12.Click OK.

13.In the Primary Extension column next to the .hta application that you just enabled, select Internet
Explorer.

14.Click OK.

Adding a Test Application to the Extension Dialog Boxes
This functionality is available only for projects or scripts that use the Classic Agent.

You must manually add the following applications to the Extensions dialog box and the Extension
Enabler dialog box:

• Applications that are embedded in Web pages and use the Classic Agent.
• All test applications that do not have standard names and use the Classic Agent.
• When you add a test application to the Extensions dialog box on the host machine, you should

immediately add it to the Extension Enabler dialog box on each target machine on which you intend to
test the application.

You may also add new applications by duplicating existing applications and then changing the application
name.

To add a test application to the Extension dialog boxes:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test program group.

Enabling Extensions for Applications Under Test | 87

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

2. If you are testing a client/server project, Rich Internet Application project, or a generic project that uses
the Classic Agent, perform the following steps:

a) Click New to open the Extension Application dialog box.
b) Click ... to browse to the application’s executable or DLL file.

Separate multiple application names with commas. If the executable name contains spaces, be sure
to enclose the name in quotation marks.

c) Select the executable file and then click Open.
d) Click OK.

3. Click OK to close the dialog box.

Verifying Extension Settings
This functionality is available only for projects or scripts that use the Classic Agent.

If the extension settings for the host and target machines do not match, neither extension will load properly.

• To see the target machine setting, choose Options > Extensions. Verify that the Primary Extension is
enabled and other extensions are enabled, if appropriate. If you enabled a browser extension, you can
also verify the extension settings on the target machine by starting the browser and Silk Test Classic,
and then right-clicking the task bar Agent icon and selecting Extensions > Detail.

• To verify that the setting on the host machine is correct, choose Options > Runtime. Make sure that
the default browser in the Default Browser field on the Runtime Options dialog box is correct.

Why Applications do not have Standard Names
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

In the following situations applications might not have standard names, in which case you must add them to
the Extension Enabler dialog box and the Extensions dialog box:

• Visual Basic applications can have any name, and therefore the Silk Test Classic installation program
cannot add them to the dialog box automatically.

• You are running an application developed in Java as a stand-alone application, outside of its normal
runtime environment.

• You have explicitly changed the name of a Java application.

Duplicating the Settings of a Test Application in Another
Test Application

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can add new applications to the Extension Enabler dialog box or the Extensions dialog box by
duplicating existing applications and renaming the new application. All the settings of the original
application, that is, primary extension, other extensions, or options set on the Extensions dialog box, are
copied.

You can only duplicate applications that you entered manually and that use the Classic Agent.

To copy a test application’s settings into another application:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test Classic program group.

88 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

2. Select the application that you want to copy.

3. Click Duplicate. The Extension Application dialog box opens.

4. Type the name of the new application you want to copy.

Separate multiple application names with commas.

5. Click OK to close the Extension Application dialog box. The new applications display in the dialog box
you opened.

6. Click OK to close the dialog box.

Deleting an Application from the Extension Enabler or
Extensions Dialog Box

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

After completing your testing of an application or if you make a mistake, you might want to delete the
application from the Extension Enabler dialog box or the Extensions dialog box. You can delete only
applications that you have entered manually. Visual Basic applications fall into this category.

To remove an application from the Extension Enabler or Extensions dialog box:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test Classic program group.

2. Select the application that you want to delete from the dialog box.

3. Click Remove. The application name is removed from the dialog box.

4. Click OK.

Disabling Browser Extensions
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. In Silk Test Classic, choose Options > Extensions.

2. From the Primary Extension list, select Disabled for the extension you want to disable.

3. In the Other extensions field, uncheck any checked check boxes.

4. Click OK.

If you are testing non-Web applications, you must disable browser extensions on your host machine. This is
because the recovery system works differently when testing Web applications than when testing non-Web
applications.

Comparison of the Extensions Dialog Box and the
Extension Enabler Dialog Box

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The Extensions dialog box and the Extension Enabler dialog box look similar; they are both based on a
grid and have identical column headings and have some of the same buttons. However, they configure
different aspects of the product:

Enabling Extensions for Applications Under Test | 89

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Extensions Dialog Box Extension Enabler Dialog Box

Enables AUTs and extensions On host machine On target machines

Provides information for Silk Test Classic Agent

Available from Options menu Silk Test Classic program group

Information stored in partner.ini extend.ini

When to enable/disable AUTs and
extensions

Enable the AUTs and extensions you
want to test now; disable others.

Enable all AUTs and extensions you
ever intend to test. No harm in leaving
them enabled, even if you are not
testing them now.

What you specify on each:

• Primary environment
• Java or ActiveX, if required
• Accessibility

• Yes, according to the type
• Enable and set options
• Enable and set options

• Yes, according to the type
• Enable only
• Enable only

What installation does:

• Default browser (If any)
• Other browsers (if any)
• Java runtime environment
• Oracle Forms runtime

environment
• Visual Basic 5 & 6

• Displayed and enabled
• Displayed but disabled
• Displayed but disabled
• Displayed but disabled
• Not displayed or enabled

• Displayed and enabled
• Displayed and enabled
• Displayed and enabled
• Displayed but disabled
• Not displayed or enabled

Configuring the Browser
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

In order for Silk Test Classic to work properly, make sure that your browser is configured correctly.

If your tests use the recovery system of Silk Test Classic, that is, your tests are based on DefaultBaseState
or on an application state that is ultimately based on DefaultBaseState, Silk Test Classic makes sure that
your browser is configured correctly.

If your tests do not use the recovery system, you must manually configure your browser to make sure that
your browser displays the following items:

• The standard toolbar buttons, for example Home, Back, and Stop, with the button text showing. If you
customize your toolbars, then you must display at least the Stop button.

• The text box where you specify URLs. Address in Internet Explorer.
• Links as underlined text.
• The browser window’s menu bar in your Web application. It is possible through some development tools

to hide the browser window’s menu bar in a Web application. Silk Test Classic will not work properly
unless the menu bar is displayed. The recovery system cannot restore the menu bar, so you must make
sure the menu bar is displayed.

• The status bar at the bottom of the window shows the full URL when your mouse pointer is over a link.

We recommend that you configure your browser to update cached pages on a frequent basis.

Internet Explorer

1. Click Tools > Internet Options, then click the General tab.
2. In the Temporary Internet Files area, click Settings.
3. On the Settings dialog box, select Every visit to the page for the Check for newer versions of

stored pages setting.

90 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Mozilla Firefox

1. Choose Edit > Preferences > Advanced > Cache.
2. Indicate when you want to compare files and update the cache. Select Every time I view the page at

the Compare the page in the cache to the page on the network field.

AOL

Even though AOL's Proxy cache is updated every 24 hours, you can clear the AOL Browser Cache and
force a page to reload. To do this, perform one of the following steps:

• Delete the files in the temporary internet files folder located in the Windows directory.
• Press the CTRL key on your keyboard and click the AOL browser reload icon (Windows PC only).

Friendly URLs

Some browsers allow you to display "friendly URLs," which are relative to the current page. To make sure
you are not displaying these relative URLs, in your browser, display a page of a web site and move your
mouse pointer over a link in the page.

• If the status bar displays the full URL (one that begins with the http:// protocol name and contains the
site location and path), the settings are fine. For example: http://www.mycompany.com/
products.htm

• If the status bar displays only part of the URL (for example, products.htm), turn off "friendly URLs."
(In Internet Explorer, this setting is on the Advanced tab of the Internet Options dialog box.)

Setting Agent Options for Web Testing
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you first install Silk Test Classic, all the options for Web testing are set appropriately. If, for some
reason, for example if you were testing non-Web applications and changed them, you have problems with
testing Web applications, perform the following steps:

1. Click Options > Agent. The Agent Options dialog box opens.

2. Ensure the following settings are correct.

Tab Option Specifies Setting

Timing OPT_APPREADY_TIMEOU
T

The number of seconds that the agent
waits for an application to become
ready. Browser extensions support this
option.

Site-specific; default is 180
seconds.

Timing OPT_APPREADY_RETRY The number of seconds that the agent
waits between attempts to verify that
the application is ready.

Site-specific; default is 0.1
seconds.

Other OPT_SCROLL_INTO_VIE
W

That the agent scrolls a control into
view before recording events against it.

TRUE (checked); default is
TRUE.

Other OPT_SHOW_OUT_OF_VIE
W

Enables Silk Test Classic to see objects
not currently scrolled into view.

TRUE (checked); default is
TRUE.

Verification OPT_VERIFY_APPREADY Whether to verify that an application is
ready. Browser extensions support this
option.

TRUE (checked); default is
TRUE.

3. Click OK. The Agent Options dialog box closes.

Enabling Extensions for Applications Under Test | 91

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Specifying a Browser for Silk Test Classic to Use in
Testing a Web Application
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can specify a browser for Silk Test Classic to use when testing a Web application at runtime or you can
use the browser specified through the Runtime Options dialog box.

To completely automate your testing, consider specifying the browser at runtime. You can do this in one of
the following ways:

• Use the SetBrowserType function in a script. This function takes an argument of type BROWSERTYPE.
• Pass an argument of type BROWSERTYPE to a test case as the first argument.

For an example of passing browser specifiers to a test case, see the second example in BROWSERTYPE. It
shows you how to automate the process of running a test case against multiple browsers.

Specifying a browser through the Runtime Options dialog box

When you run a test and do not explicitly specify a browser, Silk Test Classic uses the browser specified in
Runtime Options dialog box. To change the browser type, you can:

1. Run a series of tests with a specific browser.
2. Specify a different browser in the Runtime Options dialog box.
3. Run the tests again with the new browser.

Most tests will run unchanged between browsers.

Specifying your Default Browser
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Whenever you record and run test cases, you must specify the default browser that Silk Test Classic should
use. If you did not choose a default browser during the installation of Silk Test Classic or if want to change
the default browser, perform the following steps:

1. Click Options > Runtime. The Runtime Options dialog box opens.

2. Select the browser that you want to use from the Default Browser list box.

The list box displays the browsers whose extensions you have enabled.

3. Click OK.

Enable Extensions Dialog Box (Classic Agent)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use to select the application for which you want to enable extensions. The environments listed in the dialog
box are used for running the applications that you want to test. The extensions enable recognition of the
non-standard controls in your environment.

You can automatically configure extensions for many development environments.

The dialog box content changes based on the agent that your project or script uses. Ensure that the agent
that you want to use is selected before you open the dialog box. If necessary, close this dialog box, click
the appropriate Agent icon in the toolbar to change the agent, and re-open the dialog box.

92 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Click Tools > Enable Extensions or click Enable Extensions on the Basic Workflow bar (Workflows >
Basic).

Silk Test Classic does not support 64-bit applications. If you are running a 64-bit application, it will display
in the Enable Extensions dialog box, but an error occurs when you try to enable extensions. Silk Test
Classic does support 32-bit applications that run in 64-bit environments and extensions will enable properly
for these applications.

If you are using a project, the information you specify in the Enable Extensions dialog box is stored in the
partner.ini file. If you are not using a project, the information you specify in the Enable Extensions
dialog box is stored in the extend.ini file.

When you enable extensions, an include file is added based on the technology or browser type that you
enable to the Use files location in the Runtime Options dialog box. For instance, if you enable extensions
for Internet Explorer, Silk Test Classic adds the explorer.inc file to the Runtime Options dialog box.

Application(s) Lists all open applications that are not minimized, including any Web applications (or
Java applets), which are identified by the currently loaded page’s title. Click an
application and then click Select to choose the application for which you want enable
extensions. If you choose an executable name containing spaces, you must enclose the
name in quotation marks.

Applets are automatically detected and can be selected from the Application list.

Select Selects the highlighted application. Information is gathered from the application that you
select and the suggested extension settings are displayed on the Extension Settings
dialog box.

Refresh Click to update the list of applications from which you can select.

Cancel Click to exit the dialog box without selecting an application.

Extension Information Dialog Box
Use the Extension Information dialog box to view information about the enabled extensions for the agent.

Click the Classic Agent icon in the taskbar and then click Extensions > Details. If the agent is not already
running, click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test Classic
Agent or (in Microsoft Windows 10) Start > Silk > Silk Test Classic Agent.

Extension Displays the currently loaded extensions.

Status Displays the status of the currently loaded extensions. The status may be one of the
following:

Loaded The extension is loaded in the application under test.

Enabled The extension is enabled, but not loaded in the application under test.

Error An error message may appear if an error has occurred.

Refresh Click to update the information that appears in the dialog box.

Extension Settings Dialog Box (.NET)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a .NET application on the Enable Extensions dialog box, the Extension Settings dialog
box displays information that is specific to .NET applications.

Enabling Extensions for Applications Under Test | 93

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Enable
Accessibility

Click to better recognize objects such as the Microsoft Office Word menu. If you are
testing an application with Microsoft Accessibility objects, we recommend that you
check this box. If your client/server application does not have these types of objects,
you may leave the check box unchecked.

OK Click to enable the extension automatically. After the extension is enabled, Silk Test
Classic can run a test to verify that the extension is working correctly.

Extension Settings Dialog Box (Web)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a Web application on the Enable Extensions dialog box, the Extension Settings dialog
box displays information that is specific to Web applications. Verify the information displayed on this dialog
box, and then click OK to enable the extension automatically. After the extension is enabled, Silk Test
Classic can run a test to verify that the extension is working correctly.

Primary Extension area

Displays the extension that will be used to test your application. An extension is a file that serves to extend
the capabilities of, or data available to, a more basic program. Extensions are provided for testing
applications that use non-standard controls in specific development and browser environments.

DOM Enables the Document Object Model (DOM) extension which is used to query the browser directly
for information about the objects on a Web page.

Secondary Extension (Select as required) area

Enable Applet
Support

Check if you are testing an application with applets. This check box is automatically
selected when the Enable Extensions workflow detects an applet. You can clear
the check box to prevent loading the extension. If no applet is detected, the check
box is not available.

Enable
Accessibility

Check if you are testing an application with Microsoft Accessibility objects or other
objects that may be unrecognizable. If your application does not have these types of
objects, you may leave the check box unchecked.

Enable ActiveX
Support

Check if you are testing an application with ActiveX objects. If your application does
not have these types of objects, you may leave the check box unchecked.

Extension Settings Dialog Box (Client/Server)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a client/server application on the Enable Extensions dialog box, the Extension Settings
dialog box displays information that is specific to client/server applications.

Enable
Accessibility

Click to better recognize objects such as the Microsoft Office Word menu. If you are
testing an application with Microsoft Accessibility objects, we recommend that you
check this box. If your client/server application does not have these types of objects,
you may leave the check box unchecked.

94 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

OK Click to enable the extension automatically. After the extension is enabled, Silk Test
Classic can run a test to verify that the extension is working correctly.

Extension Settings Dialog Box (Java)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a standalone Java application on the Enable Extensions dialog box, the Extension
Settings dialog box displays the path to the Java Virtual Machine (JVM), which is used by the application
you have selected.

Verify that the JVM information is correct and then click OK to enable the extension automatically. The
SilkTest_JavaX.jar file will be copied to the \lib\ext subdirectory of the JVM that the application is
using. If necessary, the accessibilities.properties file in the \lib directory of this JVM will be
updated or installed.

For JVM versions 1.3+, the Copying Dlls dialog box will display the location of the qapjconn.dll and
qapjarex.dll files. During installation, these files are placed in the Windows\System32 folder (copies
are also placed in the SilkTest\Extend folder). If the default directory for your library files is in a location
other than Windows\System32, you can use the list to select the alternate location. Click OK to save your
changes.

After the extension is enabled, a test is run to verify that the extension is working correctly.

Note:

If you defined your CLASSPATH in multiple set statements, it will be aggregated into a single set
statement with all parameters fully expanded. Every time the CLASSPATH is updated, the current
autoexec.bat is backed up and saved as autoexec.bak.

Enabling Extensions for Applications Under Test | 95

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Understanding the Recovery System for
the Classic Agent

The built-in recovery system is one of the most powerful features of Silk Test Classic because it allows you
to run tests unattended. When your application fails, the recovery system restores the application to a
stable state, known as the BaseState, so that the rest of your tests can continue to run unattended.

The recovery system can restore your application to its BaseState at any point during test case execution:

• Before the first line of your test case begins running, the recovery system restores the application to the
BaseState even if an unexpected event corrupted the application between test cases.

• During a test case, if an application error occurs, the recovery system terminates the execution of the
test case, writes a message in the error log, and restores the application to the BaseState before
running the next test case.

• After the test case completes, if the test case was not able to clean up after itself, for example it could
not close a dialog box it opened, the recovery system restores the application to the BaseState.

• The recovery system cannot recover from an application crash that produces a modal dialog box, such
as a General Protection Fault (GPF).

Silk Test Classic uses the recovery system for all test cases that are based on DefaultBaseState or based
on a chain of application states that ultimately are based on DefaultBaseState.

• If your test case is based on an application state of none or a chain of application states ultimately
based on none, all functions within the recovery system are not called. For example, SetAppState and
SetBaseState are not called, while DefaultTestCaseEnter, DefaultTestCaseExit, and error handling are
called.

Such a test case will be defined in the script file as:

testcase Name () appstate none

Silk Test Classic records test cases based on DefaultBaseState as:

testcase Name ()

How the default recovery system is implemented

The default recovery system is implemented through several functions.

Function Purpose

DefaultBaseState Restores the default BaseState, then call the application’s BaseState function, if defined.

DefaultScriptEnte
r

Executed when a script file is first accessed.

Default action: none.

DefaultScriptExit Executed when a script file is exited.

Default action: Call the ExceptLog function if the script had errors.

DefaultTestCaseEn
ter

Executed when a test case is about to start.

Default action: Set the application state.

DefaultTestCaseEx
it

Executed when a test case has ended.

Default action: Call the ExceptLog function if the script had errors, then set the
BaseState.

96 | Understanding the Recovery System for the Classic Agent

Function Purpose

DefaultTestPlanEn
ter

Executed when a test plan is entered.

Default action: none.

DefaultTestPlanEx
it

Executed when a test plan is exited.

Default action: none.

You can write functions that override some of the default behavior of the recovery system.

Setting the Recovery System for the Classic Agent
The recovery system ensures that each test case begins and ends with the application in its intended state.
Silk Test Classic refers to this intended application state as the BaseState. The recovery system allows you
to run tests unattended. When your application fails, the recovery system restores the application to the
BaseState, so that the rest of your tests can continue to run unattended.

If you are testing an application that uses both the Classic Agent and the Open Agent, set the Agent that
will start the application as the default Agent and then set the recovery system. If you use the Open Agent
to start the application, set the recovery system for the Open Agent.

1. Make sure the application that you are testing is running.

2. Click Set Recovery System on the Basic Workflow bar. If the workflow bar is not visible, click
Workflows > Basic to enable it.

3. From the Application list, click the name of the application that you are testing.

All open applications that are not minimized are listed. This list is dynamic and will update if you open a
new application. If you are connected to the Open Agent, only those applications that have extensions
enabled display in the list.

Note: If you selected a non-web application as the application:

• The Command line text box displays the path to the executable (.exe) for the application that
you have selected.

• The Working directory text box displays the path of the application you selected.

If you selected a web application, the Start testing on this page text box displays the URL for the
application you selected. If an application displays in the list, but the URL does not display in this text
box, your extensions may not be enabled correctly. Click Enable Extensions in the Basic Workflow
bar to automatically enable and test extension settings.

4. Optional: In the Frame file name text box, modify the frame file name and click Browse to specify the
location in which you want to save this file.

Frame files must have a .inc extension. By default, this field displays the default name and path of the
frame file you are creating. The default is frame.inc. If frame.inc already exists, Silk Test Classic
appends the next logical number to the new frame file name; for example, frame1.inc.

5. Optional: In the Window name text box, change the window name to use a short name to identify your
application.

6. Click OK.

7. Click OK when the message indicating that the recovery system is configured displays.

8. A new 4Test include file, frame.inc, opens in the Silk Test Editor. Click the plus sign in the file to see
the contents of the frame file.

9. Record a test case.

Understanding the Recovery System for the Classic Agent | 97

Base State
An application’s base state is the known, stable state that you expect the application to be in before each
test case begins execution, and the state the application can be returned to after each test case has ended
execution. This state may be the state of an application when it is first started.

Base states are important because they ensure the integrity of your tests. By guaranteeing that each test
case can start from a stable base state, you can be assured that an error in one test case does not cause
subsequent test cases to fail.

Silk Test Classic automatically ensures that your application is at its base state during the following stages:

• Before a test case runs.
• During the execution of a test case.
• After a test case completes successfully.

When an error occurs, Silk Test Classic does the following:

• Stops execution of the test case.
• Transfers control to the recovery system, which restores the application to its base state and logs the

error in a results file.
• Resumes script execution by running the next test case after the failed test case.

The recovery system makes sure that the test case was able to "clean up" after itself, so that the next test
case runs under valid conditions.

DefaultBaseState Function
Silk Test Classic provides a DefaultBaseState for applications, which ensures the following conditions
are met before recording and executing a test case:

• The application is running.
• The application is not minimized.
• The application is the active application.
• No windows other than the application’s main window are open. If the UI of the application is localized,

you need to replace the strings, which are used to close a window, with the localized strings. The
preferred way to replace these buttons is with the lsCloseWindowButtons variable in the object’s
declaration. You can also replace the strings in the Close tab of the Agent Options dialog box.

For Web applications that use the Open Agent, the DefaultBaseState also ensures the following for
browsers, in addition to the general conditions listed above:

• The browser is running.
• Only one browser tab is open, if the browser supports tabs and the frame file does not specify

otherwise.
• The active tab is navigated to the URL that is specified in the frame file.

For web applications that use the Classic Agent, the DefaultBaseState also ensures the following for
browsers, in addition to the general conditions listed above:

• The browser is ready.
• Constants are set.
• The browser has toolbars, location and status bar are displayed.
• Only one tab is opened, if the browser supports tabs.

98 | Understanding the Recovery System for the Classic Agent

DefaultBaseState Types

Silk Test Classic includes two slightly different base state types depending on whether you use the Open
Agent and dynamic object recognition or traditional hierarchical object recognition. When you use dynamic
object recognition, Silk Test Classic creates a window object named wDynamicMainWindow in the base
state. When you set the recovery system for a test that uses hierarchical object recognition, Silk Test
Classic creates a window object called wMainWindow in the base state. Silk Test Classic uses the window
object to determine which type of DefaultBaseState to execute.

Adding Tests that Use the Classic Agent to the
DefaultBaseState

If you want the recovery system to perform additional steps after it restores the default base state, record a
new method named BaseState and paste it into the declaration for your application’s main window. Silk
Test Classic provides the Record/Method menu command to record a BaseState method.

1. Open your application and the application’s test frame file.

2. Place the insertion point on the declaration for the application’s main window.

3. Click Record > Method. Silk Test Classic displays the Record Method dialog box, which allows you to
record a method for a class or window declaration.

4. From the Method Name list box, select BaseState.

5. Click Start Recording. Silk Test Classic closes the Record Method dialog box and displays the
Record Status window, which indicates that you can begin recording the BaseState method. The
Status field flashes the word Recording.

6. When you have finished recording the BaseState method, click Done on the Record Status window.
Silk Test Classic redisplays the Record Method dialog box. The Method Code field contains the 4Test
code you recorded.

7. Click OK to close the Record Method dialog box and place the new BaseState method in the
declaration for your main window.

DefaultBaseState and wMainWindow
Silk Test Classic executes the DefaultBaseState for hierarchical object recognition when the global
constant wMainWindow is defined. DefaultBaseState works with the wMainWindow object in the
following ways:

1. If the wMainWindow object does not exist, invoke it, either using the Invoke method defined for the
MainWin class or a user-defined Invoke method built into the object. If wMainWindow is a
BrowserChild object and the browser is not loaded, load the browser before loading the web page
into it.

2. If the wMainWindow object is minimized, restore it. If wMainWindow is a BrowserChild object and
the browser is minimized, restore it.

3. If there are child objects of the wMainWindow open, close them. If wMainWindow is a BrowserChild
object, close any children of the browser.

4. If the wMainWindow object is not active, make it active.

5. If there is a BaseState method defined for the wMainWindow object, execute it.

In a scenario where a dialog box or a different Web page loads on request, the recovery system expects
that web page to be loaded. However, it might not be if a Login page loads first. You can configure Silk Test
Classic to handle login pages.

Understanding the Recovery System for the Classic Agent | 99

Flow of Control
This section describes the flow of control during the execution of each of your test cases.

The Non-Web Recovery Systems Flow of Control
Before you modify the recovery system, you need to understand the flow of control during the execution of
each of your test cases. The recovery system executes the DefaultTestcaseEnter function. This
function, in turn, calls the SetAppState function, which does the following:

1. Executes the test case.

2. Executes the DefaultTestcaseExit function, which calls the SetBaseState function, which calls
the lowest level application state, which is either the DefaultBaseState or any user defined
application state.

Note: If the test case uses AppState none, the SetBaseState function is not called.

DefaultTestCaseEnter() is considered part of the test case, but DefaultTestCaseExit() is not.
Instead, DefaultTestCaseExit() is considered part of the function that runs the test case, which
implicitly is main() if the test case is run standalone. Therefore an unhandled exception that occurs during
DefaultTestCaseEnter() will abort the current test case, but the next test case will run. However, if the
exception occurs during DefaultTestCaseExit(), then it is occurring in the function that is calling the
test case, and the function itself will abort. Since an application state may be called from both
TestCaseEnter() and TestCaseExit(), an unhandled exception within the application state may cause
different behavior depending on whether the exception occurs upon entering or exiting the test case.

Web Applications and the Recovery System
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When the recovery system needs to restore the base state of a Web application that uses the Classic
Agent, it does the following:

1. Invokes the default browser if it is not running.

2. Restores the browser if it is minimized.

3. Closes any open additional browser instances or message boxes.

4. Makes sure the browser is active and is not loading a page.

5. Sets up the browser as required by Silk Test Classic.

The recovery system performs the next four steps only if the wMainWindow constant is set and points
to the home page in your application.

6. If bDefaultFont is defined and set to TRUE for the home page, sets the fonts.

7. If BrowserSize is defined and set for the home page, sets the size of the browser window.

8. If sLocation is defined and set for the home page, loads the page specified by sLocation.

9. If wMainWindow defines a BaseState method, executes it.

10.For additional information, see DefaultBaseState and the wMainWindow Object.

To use the recovery system, you must have specified your default browser in the Runtime Options dialog
box. If the default browser is not set, the recovery system is disabled. There is one exception to this rule:
You can pass a browser specifier as the first argument to a test case. This sets the default browser at
runtime. For more information, see BROWSERTYPE Data Type.

100 | Understanding the Recovery System for the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

The constant wMainWindow must be defined and set to the identifier of the home page in the Web
application for the recovery system to restore the browser to your application’s main page. This window
must be of class BrowserChild. When you record a test frame, the constant is automatically defined and
set appropriately. If you want, you can also define a BaseState method for the window to execute
additional code for the base state, for example if the home page has a form, you might want to reset the
form in the BaseState method, so that it will be empty at your base state.

On Internet Explorer 7.x and 8.x, when recording a new frame file using Set Recovery System, by default
Silk Test Classic does not explicitly state that the parent of the window is a browser. To resolve this issue,
add the "parent Browser" line to the frame file.

How the Non-Web Recovery System Closes Windows
The built-in recovery system restores the base state by making sure that the non-Web application is
running, is not minimized, is active, and has no open windows except for the main window. To ensure that
only the main window is open, the recovery system attempts to close all other open windows, using an
internal procedure that you can customize as you see fit.

To make sure that there are no application windows open except the main window, the recovery system
calls the built-in CloseWindows method. This method starts with the currently active window and attempts
to close it using the sequence of steps below, stopping when the window closes.

1. If a Close method is defined for the window, call it.

2. Click the Close menu item on the system menu, on platforms and windows that have system menus.

3. Click the window’s close box, if one exists.

4. If the window is a dialog box, type each of the keys specified by the OPT_ CLOSE_DIALOG_KEYS
option and wait one second for the dialog box to close. By default, this option specifies the Esc key.

5. If there is a single button in the window, click that button.

6. Click each of the buttons specified by the OPT_CLOSE_WINDOW_ BUTTONS option. By default, this
option specifies the Cancel, Close, Exit, and Done keys.

7. Select each of the menu items specified by the OPT_CLOSE_WINDOW_ MENUS option. By default, this
option specifies the File > Exit and the File > Quit menu items.

8. If the closing of a window causes a confirmation dialog box to open, CloseWindows attempts to close
the dialog box by clicking each of the buttons specified with the OPT_CLOSE_CONFIRM_BUTTONS
option. By default, this option specifies the No button.

When the window, and any resulting confirmation dialog box, closes, CloseWindows repeats the
preceding sequence of steps with the next window, until all windows are closed.

If any of the steps fails, none of the following steps is executed and the recovery system raises an
exception. You may specify new window closing procedures.

In a Web application, you are usually loading new pages into the same browser, not closing a page before
opening a new one.

How the Non-Web Recovery System Starts the
Application
To start a non-Web application, the recovery system executes the Invoke method for the main window of
the application. The Invoke method relies on the sCmdLine constant as recorded for the main window
when you create a test frame.

For example, here is how a declaration for the sCmdLine constant might look for a sample Text Editor
application running under Windows:

const sCmdLine = "c:\ProgramFiles\<SilkTest install directory>\SilkTest
\TextEdit.exe"

Understanding the Recovery System for the Classic Agent | 101

After it starts the application, the recovery system checks whether the main window is minimized, and, if it
is, uses the Restore method to open the icon and restore the application to its proper size.

The limit on the sCmdLine constant is 8191 characters.

Modifying the Default Recovery System
The default recovery system is implemented in defaults.inc, which is located in the directory in which
you installed Silk Test Classic. If you want to modify the default recovery system, instead of overriding
some of its features, as described in Overriding the default recovery system, you can modify
defaults.inc.

We cannot provide support for modifying defaults.inc or the results. We recommend that you do not
modify defaults.inc. This file might change from version to version. As a result, if you manually modify
defaults.inc, you will encounter issues when upgrading to a new version of Silk Test Classic.

If you decide to modify defaults.inc, be sure that you:

• Make a backup copy of the shipped defaults.inc file.
• Tell Technical Support when reporting problems that you have modified the default recovery system.

Overriding the Default Recovery System
The default recovery system specifies what Silk Test Classic does to restore the base state of your
application. It also specifies what Silk Test Classic does whenever:

• A script file is first accessed.
• A script file is exited.
• A test case is about to begin.
• A test case is about to exit.

You can write functions that override some of the default behavior of the recovery system.

To override Define the following

DefaultScriptEnter ScriptEnter

DefaultScriptExit ScriptExit

DefaultTestCaseEnter TestCaseEnter

DefaultTestCaseExit TestCaseExit

DefaultTestPlanEnter TestPlanEnter

DefaultTestPlanExit TestPlanExit

If ScriptEnter, ScriptExit, TestcaseEnter, TestcaseExit, TestPlanEnter, or
TestPlanExit are defined, Silk Test Classic uses them instead of the corresponding default function. For
example, you might want to specify that certain test files are copied from a server in preparation for running
a script. You might specify such processing in a function called ScriptEnter in your test frame.

If you want to modify the default recovery system, instead of overriding some of its features, you can modify
defaults.inc. We do not recommend modifying defaults.inc and cannot provide support for
modifying defaults.inc or the results.

Example

If you are planning on overriding the recovery system, you need to write your own
TestCaseExit(Boolean bException). In the following example, DefaultTestcaseExit() is

102 | Understanding the Recovery System for the Classic Agent

called inside TestCaseExit() to perform standard recovery systems steps and the bException
argument is passed into DefaultTestCaseExit().

if (bException)
 DefaultTestcaseExit(bException)

If you are not planning to call DefaultTestcaseExit() and plan to handle the error logging in your own
way, then you can use the TestcaseExit() signature without any arguments.

Use the following function signature if you plan on calling DefaultTestCaseExit(Boolean
bException) or if your logic depends on whether an exception occurred. Otherwise, you can simply use
the function signature of TestcaseExit() without any arguments. For example, the following is from the
description of the ExceptLog() function.

TestCaseExit (BOOLEAN bException)
if (bException)
 ExceptLog()

Here, DefaultTestcaseExit() is not called, but the value of bException is used to determine if an
error occurred during the test case execution.

Handling Login Windows
Silk Test Classic handles login windows differently, depending on whether you are testing Web or client/
server applications. These topics provide information on how to handle login windows in your application
under test.

Handling Login Windows in Web Applications that Use the Classic
Agent
This procedure describes how to handle web applications with different possible startup pages or dialog
box objects that use the Classic Agent. For example,

• A Web application requires the user to login the first time he or she visits the site in a day (a non-
persistent cookie). If the user has already logged in for this browser session, the user will not be
prompted for user name and password again, as the "cookie" is still available with their authorization.
This could be either a login web page or a dialog box.

• A dialog box that sometimes gives a "tip of the day" or reminds the user to perform some action
because it is a certain date.

• A dialog box might popup asking the user whether it is okay to download a certificate, a Java module, or
some other component.

In cases such as these, you can use the sLocation data-member from the wMainWindow object as a
property. You can create a property and it will look exactly like a data-member and will be called like a data-
member. When trying to retrieve information from a property the Get portion of the property is executed.
And you can add code to deal with login Web pages here.

Here are the steps of what will happen when DefaultBaseState runs:

1. DefaultBaseState will try to retrieve the sLocation data-member and, as such, will execute the Get
function.

2. The Get function that is part of the property will actually load the web page by putting the URL of the
page into the Location comboBox that is part of the browser and pressing Enter. It will then wait for
the browser to report to Silk Test Classic a ready state.

3. If the Login page exists rather than the page we were expecting, the user name and password will be
entered and the HtmlPushButton OK will be clicked. Again, Silk Test Classic will wait for the browser
to return to a ready state.

4. The Get function returns a NULL even though at the definition of the Get function it was specified that a
STRING would be returned. If you were to return the URL, DefaultBaseState would load the page

Understanding the Recovery System for the Classic Agent | 103

again. Of course, since we have already dealt with login, it would work this time, but would add some
more time into the process by loading the page again.

5. Although DefaultBaseState will not try to load the page, it will find it there and continue with the
other steps of closing any open windows and setting the browser and Web page active.

You can also handle unexpected and occasional dialog boxes in this way, by changing the sLocation
data-member to a property and handling different possibilities through a Get function that is part of the
property, or you can re-write the Close method. For expected security or login dialog boxes, you can set
the sUsername and sPassword for the wMainWindow object.

Window BrowserChild RealPage
const PAGE_URL = http://www.somepage.com
property sLocation
STRING Get ()

// actually load the page
Browser.SetActive ()
Browser.Location.SetText (PAGE_URL)
Browser.Location.TypeKeys ("<Enter>")

// wait for the browser to be "ready" Browser.WaitForReady ()
// if the Login page has shown up…
if Login.Exists ()

// deal with it
Login.UserName.SetText (USERNAME)
Login.Password.SetText (PASSWORD)
Login.OK.Click ()

// now wait for the browser to be ready
Browser.WaitForReady ()

//this way DefaultBaseState will not try to load the page again
return NULL

Handling Login Windows in Non-Web Applications that Use the Classic
Agent
Although a non-Web application’s main window is usually displayed first, it is also common for a login or
security window to be displayed before the main window.

Use the wStartup constant and the Invoke method

To handle login windows, record a declaration for the login window, set the value of the wStartup
constant, and write a new Invoke method for the main window that enters the appropriate information into
the login window and dismisses it. This enables the DefaultBaseState routine to perform the actions
necessary to get past the login window.

You do not need to use this procedure for splash screens, which disappear on their own.

1. Open the login window that precedes the application’s main window.

2. Open the test frame.

3. Click Record > Window Declarations to record a declaration for the window.

4. Point to the title bar of the window and then press Ctrl+Alt. The declaration is captured in the Record
Window Declarations dialog box.

5. Click Paste to Editor to paste the declaration into the test frame.

6. In the Record Window Declarations dialog box, click Close.

7. Close your application.

104 | Understanding the Recovery System for the Classic Agent

8. In your test frame file, find the stub of the declaration for the wStartup constant, located at the top of
the declaration for the main window:

// First window to appear when application is invoked
// const wStartup = ?

9. Complete the declaration for the wStartup constant by:

• Removing the comment characters, the two forward slash characters, at the beginning of the
declaration.

• Replacing the question mark with the identifier of the login window, as recorded in the window
declaration for the login window.

10.Click the wStartup constant and then click Record > Method.

11.On the Record Method dialog box, from the Method Name list box, select Invoke.

12.Open your application, but do not dismiss the login window.

13.Click Start Recording. Silk Test Classic is minimized and your application and the Silk Test Record
Status dialog box open.

14.Perform and the record the actions that you require.

15.On the Silk Test Record Status dialog box, click Done. The Record Method dialog box opens with the
actions you recorded translated into 4Test statements.

16.On the Record Method dialog box, click OK to paste the code into your include file.

17.Edit the 4Test statements that were recorded, if necessary.

18.Define an Invoke method in the main window declaration that calls the built-in Invoke method and
additionally performs any actions required by the login window, such as entering a name and password.

After following this procedure, your test frame might look like this:

window MainWin MyApp
 tag "My App"
 const wStartup = Login

 // the declarations for the MainWin should go here
 Invoke ()
 derived::Invoke ()
 Login.Name.SetText ("Your name")
 Login.Password.SetText ("password")
 Login.OK.Click ()

window DialogBox Login
 tag "Login"

 // the declarations for the Login window go here
 PushButton OK
 tag "OK"

About the derived keyword and scope resolution operator

Notice the statement derived::Invoke (). That statement uses the derived keyword followed by
the scope resolution operator (::) to call the built-in Invoke method, before performing the operations
needed to fill in and dismiss the login window.

Handling Browser Pop-up Windows in Tests that Use
the Classic Agent
Browser pop-up windows are recognized as instances of Browser.

Understanding the Recovery System for the Classic Agent | 105

When the popup window is active, it is seen as Browser and the original browser is seen as Browser 2. In
order to make DefaultBaseState() close the pop-up window instead of the original browser, add the
following line to the end of the test case:

Browser2.SetActive()

This is the standard way of ensuring that the pop-up becomes Browser2 and is closed by
DefaultBaseState().

Specifying Windows to be Left Open for Tests that Use
the Classic Agent
By default, the non-web recovery system closes all windows in your test application except the main
window. To specify which windows, if any, need to be left open, such as a child window that is always open,
use the lwLeaveOpen constant.

lwLeaveOpen constant

When you record and paste the declarations for your application’s main window, the stub of a declaration
for the lwLeaveOpen constant is automatically included, as shown in this example:

// The list of windows the recovery system is to leave open
// const lwLeaveOpen = {?}

To complete the declaration for the lwLeaveOpen constant:

1. Replace the question mark in the comment with the 4Test identifiers of the windows you want to be left
open. Separate each identifier with a comma.

2. Remove the comment characters (the two forward slash characters) at the beginning of the declaration.

Example

he following 4Test code shows how to set the lwLeaveOpen constant so that the
recovery system leaves open the window with the 4Test identifier DocumentWindow
when it restores the base state.

const lwLeaveOpen = {DocumentWindow}

Specifying New Window Closing Procedures
When the recovery system cannot close a window using its normal procedure, you can reconfigure it in one
of two ways:

• If the window can be closed by a button press, key press, or menu selection, specify the appropriate
option either statically in the Close tab of the Agent Options dialog box or dynamically at runtime.

• Otherwise, record a Close method for the window.

This is only for classes derived from the MoveableWin class: DialogBox, ChildWin, and MessageBox.
Specifying window closing procedures is not necessary for web pages, so this does not apply to
BrowserChild objects/classes.

106 | Understanding the Recovery System for the Classic Agent

Specifying Buttons, Keys, and Menus that Close
Windows

Specify statically

To specify statically the keys, menu items, and buttons that the non-Web recovery system should use to
close all windows, choose Options > Agent and then click the Close tab.

The Close tab of the Agent Options dialog box contains a number of options, each of which takes a
comma-delimited list of character string values.

Specify dynamically

As you set close options in the Agent Options dialog box, the informational text at the bottom of the dialog
box shows the 4Test command you can use to specify the same option from within a script; add this 4Test
command to a script if you need to change the option dynamically as a script is running.

Specify for individual objects

If you want to specify the keys, menu items, and buttons that the non-web recovery system should use to
close an individual dialog box, define the appropriate variable in the window declaration for the dialog box:

• lsCloseWindowButtons

• lsCloseConfirmButtons

• lsCloseDialogKeys

• lsCloseWindowMenus

This is only for classes derived from the MoveableWin class: DialogBox, ChildWin, and MessageBox.
Specifying window closing procedures is not necessary for web pages, so this does not apply to
BrowserChild objects/classes.

Recording a Close Method for Tests that Use the
Classic Agent
To specify the keys, menu items, and buttons that the non-Web recovery system uses to close an individual
dialog box, record a Close method to define the appropriate variable in the window declaration for the
dialog box.

1. Open your application.

2. Open the application’s test frame file.

3. Place the insertion point on the window declaration for the dialog box.

4. Choose Record > Method .

5. From the Method Name list, select Close .

6. Click Start Recording. Silk Test Classic displays the Record Status dialog box, which indicates that
you can begin recording the Close method. The Status field flashes the word Recording.

7. When you have finished recording the Close method, click Done on the Record Status dialog box. Silk
Test Classic opens the Record Method dialog box. The Method Code field contains the 4Test code
that you have recorded.

8. Click OK to close the Record Method dialog box and paste the new Close method in the declaration
for the dialog box.

You can also specify buttons, keys, and menus that close windows. This is only for classes derived from
the MoveableWin class: DialogBox, ChildWin, and MessageBox. Specifying window closing
procedures is not necessary for web pages, so this does not apply to BrowserChild objects/classes.

Understanding the Recovery System for the Classic Agent | 107

Set Recovery System Dialog Box
Use the Set Recovery System dialog box to identify the starting point of the application you are testing,
the BaseState. The recovery system will return your application to this BaseState:

• Before running a test case.
• During a test case.
• If an error occurs.
• After a test case completes.

If you are using the Basic workflow bar, click Set Recovery System .

If you are recording a test case, click Set Recovery System on the Record Application State dialog box
or the Record Testcase dialog box.

Frame filename Displays the default name and path of the frame file you are creating. This field appears
only if you access this dialog box from the Basic workflow bar. The default is
frame.inc. If frame.inc already exists, Silk Test appends the next logical number to
the new frame file name. For example, frame1.inc.

Modify the frame file name and click Browse to specify the location in which you want
to save this file. Frame files must have a .inc extension.

Application Lists all open applications that are not minimized, including any Web applications,
which are identified by the title of the currently loaded page. Click to select an
application. This list is dynamic and will update if you open a new application.

If you are connected to the Open Agent, only those applications that have extensions
enabled display in the list.

Command line Displays the path to the executable (.exe) for the application that you selected. This field
does not display if you have selected a Web application.

Start testing on
this page

Displays the URL for the application you selected. This field displays only if you have
selected a Web application. If an application displays in the list, but the URL does not
display in this field, your extensions may not be enabled correctly. Click the Enable
Extensions button in the Basic workflow bar to automatically enable and test
extension settings.

Working
directory

Displays the path of the application you selected. This field does not display if you have
selected a Web application.

Window name Displays the window name, a suggested identifier that you can use in your test cases to
identify your application. You can change the window name. We recommend using a
short name to identify your application.

108 | Understanding the Recovery System for the Classic Agent

Test Plans
A test plan usually is a hierarchically-structured document that describes the test requirements and
contains the statements, 4Test scripts, and test cases that implement the test requirements. A test plan is
displayed in an easy-to-read outline format, which lists the test requirements in high-level prose
descriptions. The structure can be flat or many levels deep.

Indentation and color indicate the level of detail and various test plan elements. Large test plans can be
divided into a master plan and one or more sub-plans. A test plan file has a .pln extension, such as
find.pln.

Structuring your test plan as an hierarchical outline provides the following advantages:

• Assists the test plan author in developing thoughts about the test problem by promoting and supporting
a top-down approach to test planning.

• Yields a comprehensive inventory of test requirements, from the most general, through finer and finer
levels of detail, to the most specific.

• Allows the statements that actually implement the tests to be shared by group descriptions or used by
just a single test description.

• Provides reviewers with a framework for evaluating the thoroughness of the plan and for following the
logic of the test plan author.

• If you are using the test plan editor, the first step in creating automated tests is to create a test plan. If
you are not using the test plan editor, the first step is creating a test frame.

Structure of a Test Plan
A test plan is made up of the following elements, each of which is identified by color and indentation on the
test plan.

Element Description Color

Comment Provide documentation throughout the test plan;
preceded by //.

Green

Group Description High level line in the test requirements outline that
describes a group of tests.

Black

Test Description Lowest level line describing a single test case; is a
statement of the functionality to be tested by the
associated test case.

Blue

Test Plan Statement Used to provide script name, test case name, test data,
or include statement.

Red when a sub plan is not
expanded.

Magenta statement when sub-plan is
expanded

A statement placed at the group description level applies to all the test descriptions contained by the group.
Conversely, a statement placed at the test description level applies only to that test description. Levels in
the test plan are represented by indentation.

Because there are many ways to organize information, you can structure a test plan using as few or as
many levels of detail as you feel are necessary. For example, you can use a list structure, which is a list of
test descriptions with no group description, or a hierarchical structure, which is a group description and test
description. The goal when writing test plans is to create a top-down outline that describes all of the test
requirements, from the most general to the most specific.

Test Plans | 109

Overview of Test Plan Templates
Because a test plan is initially empty, you may want to insert a template, which is a hierarchical outline you
can use as a guide when you create a new test plan.

The template contains placeholders for each GUI object in your application. Although you may not want to
structure the test plan in a way which mirrors the hierarchy of your application’s GUI, this can be a good
starting point if you are new to creating test plans.

In order to be able to insert a template, you must first record a test frame, which contains declarations for
each of the GUI objects in your application.

Example Outline for Word Search Feature
Because a test plan is made up of a large amount of information, a structured, hierarchical outline provides
an ideal model for organizing and developing the details of the plan. You can structure an outline using as
few or as many levels of detail as you feel necessary.

The following is a series of sample outlines, ranging from a simple list structure to a more specific
hierarchical structure. For completeness, each of the plans also shows the script and test case statements
that link the descriptions to the 4Test scripts and test cases that implement the test requirements.

For example, consider the Find dialog box from the Text Editor application, which allows a user to search in
a document. A user enters the characters to search for in the Find What text box, checks the Case
sensitive check box to consider case, and clicks either the Up or Down radio button to indicate the
direction of the search.

List Structure

At its simplest, an outline is a hierarchy with just a single level of detail. In other words, it is a list of test
descriptions, with no group descriptions.

Using the list structure, each test is fully described by a single line, which is followed by the script and test
case that implement the test. You may find this style of plan useful in the beginning stages of test plan
design, when you are brainstorming the list of test requirements, without regard for the way in which the
test requirements are related. It is also useful if you are creating an ad hoc test plan that runs a set of
unrelated 4Test scripts and test cases.

Example for List Structure

For example:

110 | Test Plans

Hierarchical Structure

The following test plan has a single level of group description, preceding the level that contains each of the
test descriptions. The group description indicates that all the tests are for the Find dialog box.

As the figure shows, the test plan editor indicates levels in the outline with indentation. Each successive
level is indented one level to the right. The minus icons indicate that each of the levels is fully expanded. By
clicking on the minus icon at any level, you collapse the branch below that level. When working with large
test plans, collapsing and expanding test plan detail makes it easy to see as much or as little of the test
plan as you need. You could continue this test plan by adding a second level of group description,
indicating whether or not the tests in the group are case sensitive, and even more detail by adding a third
level of group descriptions which indicate whether the tests in the group search in the forward or backward
direction.

Test Plans | 111

Converting a Results File to a Test Plan
You can use the Convert Results to Plan dialog box to transform a results file to a test plan.

1. Open a results file that was generated by running a script file.

2. Click Results > Convert to Plan. The Convert Results to Plan dialog box appears.

3. Select the results file that you want to convert.

4. Click OK.

When creating a test plan from a results file generated for a script, the test plan editor uses the # symbol
so that when this test plan is run, the testdata statement doubles as description. Since the results file
was for a script, not a test plan, it does not contain any group or test case descriptions. The # symbol can
be used with any test plan editor statement so that the statement will double as description.

Working with Test Plans
This section describes how you can work with test plans.

Creating a New Test Plan
1. Click File > New.

2. Click Test plan and click OK. An empty test plan window opens.

112 | Test Plans

3. Create your test plan and then click File > Save.

4. Specify the name and location in which to save the file, and then click OK.

5. If you are working within a project, Silk Test Classic prompts you to add the file to the project. Click Yes
if you want to add the file to the open project, or No if you do not want to add this file to the project.

Before you can begin testing, you must enable extensions for applications you plan to test on both the
target machine and the host machine.

Indent and Change Levels in an Outline
You can use menu, keyboard, or toolbar commands to enter or change group and test descriptions as you
are typing them. The following table summarizes the commands:

Action Menu Item Key

Indent one level Outline/Move Right ALT + forward arrow

Outdent one level Outline/Move Left ALT + back arrow

Swap with line above Outline/Transpose Up ALT + up arrow

Swap with line below Outline/Transpose Down ALT + down arrow

Each command acts on the current line or currently selected lines.

Silk Test Classic ignores comments when compiling, with the exception of functions and test cases.
Comments within functions and test cases must be within the scope of the function/test case. If a comment
is outdented beyond the scope of the function/test case, the compiler assumes that the function/test case
has ended. As long as comments do not violate the function/test case scope, they can be placed anywhere
on a line.

Note: Comments beyond the scope can also impact expand/collapse functionality and may prevent a
function/test case from being fully expanded/collapsed. We recommend that you keep comments
within scope.

Adding Comments to Test Plan Results
You can add comments to your test plans which will display in the results when you run your tests. You can
annotate your tests with such comments to ease the interpretation of the test results.

To add a comment to a test plan, include the following statement in the test plan:

comment: Your comment text

For example, running the following piece of a test plan:

Find dialog
 Get the default button
 comment: This test should return Find.FindNext
 script: find.t
 testcase: GetButton

produces the following in the results file:

Find dialog
 Get the default button
 Find.FindNext
 comment: This test should return Find.FindNext

Note: You can also preface lines in all 4Test files with // to indicate a single-line comment. Such
comments do not display in test plan results.

Test Plans | 113

Documenting Manual Tests in the Test Plan
Your QA department might do some of its testing manually. You can document the manual testing in the
test plan. In this way, the planning, organization, and reporting of all your testing can be centralized in one
place. You can describe the state of each of your manual tests. This information is used in reports.

To indicate that a test description in the test plan is implemented with a manual test, use the value manual
in the testcase statement, as in:

testcase: manual

By default, whenever you generate a report, it includes information on the tests run for that results file, plus
the current results of any manual tests specified in the test plan. If the manual test results are subsequently
updated, the next time you generate the report, it incorporates the latest manual results. However, this
might not be what you want. If you want the report to use a snapshot of manual results, not the most recent
manual results, merge the results of manual tests into the results file.

Describing the State of a Manual Test
1. Open a test plan containing manual tests.

2. Click Testplan > Run Manual Tests.

3. Select a manual test from the Update Manual Tests dialog box and document it. The Update Manual
Tests dialog box lists all manual tests in the current test plan.

Mark the test
complete

Click the Complete option button.

Complete means that a test has been defined. A manual test marked here as
Complete will be tabulated as complete in Completion reports.

Indicate whether the
test passed or failed

1. Click the Has been run option button.
2. Select Passed or Failed.
3. Specify when the test was run and optionally, specify the machine.

To specify when the test was run, use the following syntax:

YYYY-MM-DD HH:MM:SS

Hours, minutes, and seconds are optional. For example, enter 2006-01-10 to
indicate that the test was run Jan 10, 2006.

A test marked Has been run is also considered complete in Completion
reports.

Add any comments
you want about the
test

Fill in the Comments text box.

Inserting a Template
1. Click Testplan > Insert Template. The Insert Testplan Template dialog box, which lists all the GUI

objects declared in your test frame, opens.

2. Select each of the GUI objects that are related to the application features you want to test.

Because this is a multi-select list box, the objects do not have to be contiguous.

For each selected object, Silk Test Classic inserts two lines of descriptive text into the test plan.

114 | Test Plans

For example, the test plan editor would create the following template for the Find dialog box of the Text
Editor application:

Tests for DialogBox Find
Tests for StaticText FindWhatText
(Insert tests here)
Tests for TextField FindWhat
(Insert tests here)
Tests for CheckBox CaseSensitive
(Insert tests here)
Tests for StaticText DirectionText
(Insert tests here)
Tests for PushButton FindNext
(Insert tests here)
Tests for PushButton Cancel
(Insert tests here)
Tests for RadioList Direction
(Insert tests here)

Changing Colors in a Test Plan
You can customize your test plan so that different test plan components display in unique colors.

To change the default colors:

1. Click Options > Editor Colors.
2. On the Editor Colors dialog box, select the outline editor item you want to change in the Editor Item

list box at the left of the dialog box.
3. Apply a color to the item by selecting a pushbutton from the list of predefined colors or create a new

color to apply by selecting the red, green, and blue values that compose the color.

Default
color

Component Description

Blue Test description Lowest level of the hierarchical test plan outline that describes a single test
case.

Red Test plan statement Link scripts, test cases, test data, closed sub-plans, or an include file, such
as a test frame, to the test plan.

Magenta Include statement
when sub-plan is open

Sub-plans to be included in a master plan.

Green Comment Additional user information that is incidental to the outline; preceded by
double slashes (//); provides documentation throughout the test plan.

Black Other line (group
description)

Higher level lines of the hierarchical test plan outline that describe a group of
tests; may be several levels in depth.

Linking the Test Plan to Scripts and Test Cases
After you create your test plan, you can associate the appropriate 4Test scripts and test cases that
implement your test plan. You create this association by inserting script and testcase statements in
the appropriate locations in the test plan.

There are three ways to link a script or test case to a test plan:
• Linking a description to a script or test case using the Testplan Detail dialog box if you want to

automate the process of linking scripts and test cases to the test plan.
• Linking to a test plan manually.
• Linking scripts and test cases to a test plan: the test plan editor automatically inserts the script and

testcase statements into the plan once the recording is finished, linking the plan to the 4Test code.

You can insert a script and testcase statement for each test description, although placing a statement
at the group level when possible eliminates redundancy in the test plan. For example, since it is usually

Test Plans | 115

good practice to place all the test cases for a given application feature into a single script file, you can
reduce the redundancy in the test plan by specifying the script statement at the group level that
describes that feature.

You can also insert a testcase statement at the group level, although doing so is only appropriate when
the test case is data driven, meaning that it receives test data from the plan. Otherwise the same test case
would be called several times with no difference in outcome.

Insert Testplan Template Dialog Box
Use the Insert Testplan Template dialog box to insert a hierarchical outline (template) of objects into your
testplan. This dialog is only available when a testplan is open and the Testplan dialog is active. In order to
be able to insert a template, you must first record a test frame, which contains declarations for each of the
objects in your application.

Click Testplan > Insert Template.

Windows to
create a template
for

Displays a list of all the objects declared in your test frame. Select objects related to
the application features you want to test in your testplan. (Press Ctrl-Click to
select multiple objects.) For each selected object, two lines of descriptive text are
inserted into the testplan.

Working with Large Test Plans
For large or complicated applications, the test plan can become quite large. This raises the following
issues:

Issue Solution

How to keep track of where you are in the test plan and
what is in scope at that level.

Use the Testplan Detail dialog box.

How to determine which portions of the test plan have
been implemented.

Produce a Completion report.

How to allow several staff members to work on the test
plan at the same time.

Structure your test plan as a master plan with one or
more sub-plans.

This section describes how you can divide your test plan into a master plan with one or more sub-plans to
allow several staff members to work on the test plan at the same time.

Determining Where Values are Defined in a Large Test
Plan
1. Place the insertion point at the relevant point in the test plan and click Testplan > Detail. The Testplan

Detail dialog box opens.

2. Click the level in the list box at the top of the Testplan Detail dialog box, to see just the set of symbols,
attributes, and statements that are defined on a particular level.

3. Once you find the level at which a symbol, attribute, or statement was defined, you can change the
value at that level, causing the inherited value at the lower levels to change also.

Dividing a Test Plan into a Master Plan and Sub-Plans
If several engineers in your QA department will be working on a test plan, it makes sense to break up the
plan into a master plan and sub-plans. This approach allows multi-user access, while at the same time
maintaining a single point of control for the entire project.

116 | Test Plans

The master plan contains only the top few levels of group descriptions, and the sub-plans contain the
remaining levels of group descriptions and test descriptions. Statements, attributes, symbols, and test data
defined in the master plan are accessible within each of the sub-plans.

Sub-plans are specified with an include statement. To expand the sub-plan files so that they are visible
within the master plan, double-click in the left margin next to the include statement. Once a sub-plan is
expanded inline, the sub-plan statement changes from red (the default color for statements) to magenta,
indicating that the line is now read-only and that the sub-plan is expanded inline. At the end of the
expanded sub-plan is the <eof> marker, which indicates the end of the sub-plan file.

Creating a Sub-Plan
You create a sub-plan in the same way you create any test plan: by opening a new test plan file and
entering the group descriptions, test descriptions, and the test plan editor statements that comprise the
sub-plan, either manually or using the Testplan Detail dialog.

Copying a Sub-Plan
When you copy and paste the include statement and the contents of an open include file, note that only the
include statement will be pasted.

To view the contents of the sub-plan, open the pasted include file by clicking Include > Open or double-
click the margin to the left of the include statement.

Opening a Sub-Plan
Open the sub-plan from within the master plan. To do this, you can either:

• double-click the margin to the left of the include statement or
• highlight the include statement and choose Include > Open. (Compiling a script also automatically

opens all sub-plans.)

If a sub-plan does not inherit anything (that is, statements, attributes, symbols, or data) from the master
plan, you can open the sub-plan directly from the File > Open dialog box.

Connecting a Sub-Plan with a Master Plan
To connect the master plan to a sub-plan file, you enter an include statement in the master plan at the
point where the sub-plan logically fits. The include statement cannot be entered through the Testplan
Detail dialog box; you must enter it manually.

The include statement uses this syntax:

include: myinclude.pln

where myinclude is the name of the test plan file that contains the sub-plan.

If you enter the include statement correctly, it displays in red, the default color used for the test plan
editor statements. Otherwise, the statement displays in blue or black, indicating a syntax error (the compiler
is interpreting the line as a description, not a statement).

Refreshing a Local Copy of a Sub-Plan
When another user modifies a sub-plan, those changes are not automatically reflected in your read-only
copy of the sub-plan. Once the other user has released the lock on the sub-plan, there are two ways to
refresh your copy:

1. Close and then reopen the sub-plan.

Test Plans | 117

2. Acquire a lock for the sub-plan.

Sharing a Test Plan Initialization File
All QA engineers working on a test plan that is broken up into a master plan and sub-plans must use the
same test plan initialization file.

To share a test plan initialization file:

1. Click Options > General.

2. On the General Options dialog box, specify the same file name in the Data File for Attributes and
Queries text box.

Saving Changes
When you finish editing, choose Include > Save to save the changes to the sub-plan.

Include > Save saves changes to the current sub-plan while File > Save saves all open master plans and
sub-plans.

Overview of Locks
When first opened, a master plan and its related sub-plans are read-only. This allows many users to open,
read, run, and generate reports on the plan. When you need to edit the master plan or a sub-plan, you
must first acquire a lock, which prevents others from making changes that conflict with your changes.

Acquiring and Releasing a Lock
Acquire a lock Place the cursor in or highlight one or more sub-plans and then choose Include >

Acquire Lock.

The bar in the left margin of the test plan changes from gray to yellow.

Release a lock Select Include > Release Lock.

The margin bar changes from yellow to gray.

Generating a Test Plan Completion Report
To measure your QA department’s progress in implementing a large test plan, you can generate a
completion report. The completion report considers a test complete if the test description is linked to a test
case with two exceptions:

• If the test case statement invokes a data-driven test case and a symbol being passed to the data-driven
test case is assigned the value ? (undefined), the test is considered incomplete.

• If the test case is manual and marked as Incomplete in the Update Manual Tests dialog box, the test is
considered incomplete. A manual test case is indicated with the testcase:manual syntax.

To generate a test plan completion report:

1. Open the test plan on which you want to report.

2. Click Testplan > Completion Report to display the Testplan Completion Report dialog box.

3. In the Report Scope group box, indicate whether the report is for the entire plan or only for those tests
that are marked.

4. To subtotal the report by a given attribute, select an attribute from the Subtotal by Attribute text box.

5. Click Generate.

118 | Test Plans

The test plan editor generates the report and displays it in the lower half of the dialog box. If the test
plan is structured as a master plan with associated sub-plans, the test plan editor opens any closed
sub-plans before generating the report.

You can:

• Print the report.
• Export the report to a comma-delimited ASCII file. You can then bring the report into a spreadsheet

application that accepts comma-delimited data.

Testplan Completion Report Dialog Box
Use the Testplan Completion Report dialog box to generate a report on the number of completed tests.
This dialog is only available when a test plan is open and the Testplan dialog box is active.

To open the Testplan Completion Report dialog box, click Testplan > Completion Report.

The Testplan Completion Report considers a test complete if the test description is linked to a test case,
with two exceptions:

• If the testcase statement invokes a data-driven test case and a symbol being passed to the data-driven
test case has the value ? (undefined) assigned, the test is considered incomplete.

• If the test case is manual and has not been marked as complete with the Finish Test Run button on the
Execute Manual Test dialog box, the test is considered incomplete.

Test plan items that are marked with attributes of type set are not categorized in a Testplan Completion
Report.

Marked tests Select to generate a report only for those tests that are marked within the test plan.

All tests Select to generate a report for all tests within the test plan.

Subtotal by
attribute

If you want to subtotal the report by a specific attribute, select an attribute from the
list. Default attributes are Category, Component, and Developer.

Report tab Displays the completion report for the selected test plan.

Print Click to print the selected test plan completion report.

Export Click to export the report as an ANSI, Unicode, or UTF-8 file.

Generate Click to generate a Testplan Completion Report, based on the options you
specified, for the selected test plan.

Adding Data to a Test Plan
This section describes how you can add data to a test plan.

Specifying Unique and Shared Data
If a data value is
unique to a single test
description

You should place it in the plan at the same level as the test description, using
the testdata statement. You can add the testdata statement using the
Testplan Detail dialog box or type the testdata statement directly into the
test plan.

If data is common to
several tests

You can factor out the data that is common to a group of tests and define it at a
level in the test plan where it can be shared by the group. To do this, you define

Test Plans | 119

symbols and assign them values. Using symbols results in less redundant data,
and therefore, less maintenance.

Adding Comments in the Test Plan Editor
Use two forward slash characters to indicate that a line in a test plan is a comment. For example:

// This is a comment

Comments preceded by // do not display in the results file. You can also specify comments using the
comment statement; these comments will display in the results files.

Testplan Editor Statements
You use the test plan editor keywords to construct statements, using this syntax:

keyword : value

keyword: One of the test plan editor keywords.

value: A comment, script, test case, include file, attribute name, or data value.

For example, this statement associates the script myscript.t with the plan:

script : myscript.t

Spaces before and after the colon are optional.

The # Operator in the Testplan Editor
When a # character precedes a statement, the statement will double as a test description in the test plan.
This helps eliminate possible redundancies in the test plan. For example, the following test description and
script statement:

Script is test.t
 script:test.t

can be reduced to one line in the test plan:

#script: test.t

The test plan editor considers this line an executable statement as well as a description. Any statements
that follow this "description" in the test plan and that trigger test execution must be indented.

Using the Testplan Detail Dialog Box to Enter the
testdata Statement
1. Place the insertion point at the end of the test description. If a testdata statement is not associated

with a test description, the compiler generates an error.
2. Click Testplan > Detail. To provide context, the multi-line list box at the top of the Testplan Detail

dialog box displays the line in the test plan that the cursor was on when the dialog box was invoked,
indicated by the black arrow icon. If the test case and script associated with the current test description
are inherited from a higher level in the test plan, they are shown in blue; otherwise, they are shown in
black.

3. Enter the data in the Test Data text box, separating each data element with a comma.
Remember, if the test case expects a record, you need to enclose the list of data with the list
constructor operator (the curly braces); otherwise, Silk Test Classic interprets the data as individual
variables, not a record, and will generate a data type mismatch compiler error.

4. Click OK. Silk Test Classic closes the Testplan Detail dialog box and enters the testdata statement and
data values in the plan.

120 | Test Plans

Entering the testdata Statement Manually
1. Open up a new line after the test description and indent the line one level.

2. Enter the testdata statement as follows.

• If the test case expects one or more variables, use this syntax: testdata: data [,data], where
data is any valid 4Test expression.

• A record, use the same syntax as above, but open and close the list of record fields with curly
braces: testdata: {data [,data]}, where data is any valid 4Test expression.

Be sure to follow the testdata keyword with a colon. If you enter the keyword correctly, the statement
displays in dark red, the default color. Otherwise, the statement displays in either blue or black,
indicating the compiler is interpreting the line as a description.

Linking Test Plans
This section describes how Silk Test Classic handles linking from a test plan to a script or test case.

Linking a Description to a Script or Test Case using the
Testplan Detail Dialog Box
1. Place the insertion cursor on either a test description or a group description.

2. Click Testplan > Detail. The test plan editor invokes the Testplan Detail dialog box, with the Test
Execution tab showing. The multi-line list box at the top of the dialog box displays the line in the test
plan that the cursor was on when the dialog box was invoked, as well as its ancestor lines. The black
arrow icon indicates the current line. The current line appears in black and white, and the preceding
lines display in blue.

3. If you:

• know the names of the script and test case, enter them in the Script and Testcase fields,
respectively.

• are unsure of the script name, click the Scripts button to the right of the Script field to browse for
the script file.

4. On the Testplan Detail - Script dialog box, navigate to the appropriate directory and select a script
name by double-clicking or by selecting and then clicking OK. Silk Test Classic closes the Testplan
Detail - Script dialog box and enters the script name in the Script field.

5. Click the Testcases button to the right of the Testcase field, to browse for the test case name.

The Testplan Detail – Testcase dialog box shows the names of the test cases that are contained in the
selected script. Test cases are listed alphabetically, not in the order in which they occur in the script.

6. Select a test case from the list and click OK.

7. Click OK. The script and test case statements are entered in the plan.

If you feel comfortable with the syntax of the test plan editor statements and know the locations of the
appropriate script and test case, you can enter the script and test case statements manually.

Linking a Test Plan to a Data-Driven Test Case
To link a group of test descriptions in the plan with a data-driven test case, add the test case declaration to
the group description level. There are three ways to do this:

• Linking a test case or script to a test plan using the Testplan Detail dialog box to automate the process.

Test Plans | 121

• Link to a test plan manually.
• Record the test case from within the test plan.

Linking to a Test Plan Manually
If you feel comfortable with the syntax of the test plan editor statements and know the locations of the
appropriate script and test case, you can enter the script and testcase statements manually.

1. Place the insertion cursor at the end of a test or group description and press Enter to create a new line.

2. Indent the new line one level.

3. Enter the script and/or test case statements using the following syntax:

script:
scriptfilename.t testcase:
testcasename

Where script and testcase are keywords followed by a colon, scriptfilename.t is the name of the
script file, and testcasename is the name of the test case.

If you enter a statement correctly, it displays in dark red, the default color used for statements. If not, it
will either display in blue, indicating the line is being interpreted as a test description, or black, indicating
it is being interpreted as a group description.

Linking a Test Case or Script to a Test Plan using the
Testplan Detail Dialog Box
The Testplan Detail dialog box automates the process of linking to scripts and test cases. It lets you
browse directories and select script and test case names, and it enters the correct the test plan editor
syntax into the plan for you.

Linking the Test Plan to Scripts and Test Cases
After you create your test plan, you can associate the appropriate 4Test scripts and test cases that
implement your test plan. You create this association by inserting script and testcase statements in
the appropriate locations in the test plan.

There are three ways to link a script or test case to a test plan:

• Linking a description to a script or test case using the Testplan Detail dialog box if you want to
automate the process of linking scripts and test cases to the test plan.

• Linking to a test plan manually.
• Linking scripts and test cases to a test plan: the test plan editor automatically inserts the script and

testcase statements into the plan once the recording is finished, linking the plan to the 4Test code.

You can insert a script and testcase statement for each test description, although placing a statement
at the group level when possible eliminates redundancy in the test plan. For example, since it is usually
good practice to place all the test cases for a given application feature into a single script file, you can
reduce the redundancy in the test plan by specifying the script statement at the group level that
describes that feature.

You can also insert a testcase statement at the group level, although doing so is only appropriate when
the test case is data driven, meaning that it receives test data from the plan. Otherwise the same test case
would be called several times with no difference in outcome.

122 | Test Plans

Example of Linking a Test Plan to a Test Case
For example, consider the data-driven test case FindTest, which takes a record of type SEARCHINFO as a
parameter:

type SEARCHINFO is record
 STRING sText // Text to type in document window
 STRING sPos // Starting position of search
 STRING sPattern // String to look for
 BOOLEAN bCase // Case-sensitive or not
 STRING sDirection // Direction of search
 STRING sExpected // The expected match

testcase FindTest (SEARCHINFO Data)
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()
 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()
 Find.Cancel.Click ()
 DocumentWindow.Document.VerifySelText ({Data.sExpected})
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

The following test plan is associated with the FindTest test case. The testcase statement occurs at the
Find dialog group description level, so that each of the test descriptions in the group can call the test case
and pass a unique set of data to the test case:

Testplan FindTest.pln

Find dialog
script: findtest.t
testcase: FindTest
. . . .

Categorizing and Marking Test Plans
This section describes how you can work with selected tests in a test plan.

Marking a Test Plan
Marks are temporary denotations that allow you to work with selected tests in a test plan. For example, you
might want to run only those tests that exercise a particular area of the application or to report on only the
tests that were assigned to a particular QA engineer. To work with selected tests rather than the entire test
plan, you denote or mark those tests in the test plan.

Marks can be removed at any time, and last only as long as the current work session. You can recognize a
marked test case by the black stripe in the margin.

You can mark test cases by:

Choice Select the individual test description, group description, or entire plan that you want to mark,
and then choosing the appropriate marking command on the Testplan menu.

Query You can also mark a test plan according to a certain set of characteristics it possesses. This is
called marking by query. You build a query based on one or more specific test characteristics;
its script file, data, symbols, or attributes, and then mark those tests that match the criteria set

Test Plans | 123

up in the query. For example, you might want to mark all tests that live in the find.t script
and that were created by the developer named Peter. If you name and save the query, you can
reapply it in subsequent work sessions without having to rebuild the query or manually remark
the tests that you’re interested in working with.

Test
failure

After running a test plan, the generated results file might indicate test failures. You can mark
these failures in the plan by selecting Results > Mark Failures in Plan. You then might fix the
errors and re-run the failed tests.

How the Marking Commands Interact
When you apply a mark using the Mark command, the new mark is added to existing marks.

When you mark tests through the query marking commands, the test plan editor by default clears all
existing marks before running the query. Mark by Named Query supports sophisticated query
combinations, and it would not make sense to retain previous marks. However, Mark by Query, which
allows one-time-only queries, lets you override the default behavior and retain existing marks.

To retain existing marks, uncheck the Unmark All Before Query check box in the Mark by Query dialog
box.

Marking One or More Tests
To mark:

A single test Place the cursor on the test description and click Testplan > Mark.

A group of related tests Place the cursor on the group description and click Testplan > Mark. The
test plan editor marks the group description, its associated statements, and
all test descriptions and statements subordinate to the group description.

Two or more adjacent
tests and their
subordinate tests

Select the test description of the adjacent tests and click Testplan > Mark.
The test plan editor marks the test descriptions and statements of each
selected test and any subordinate tests.

Printing Marked Tests
1. Click File > Print.

2. In the Print dialog box, make sure the Print Marked Only check box is checked, as well as any other
options you want.

3. Click OK.

Mark By Query Dialog Box
You can use the Mark By Query dialog box to mark a set of tests in a test plan based on a query which is
constructed out of a combination of attributes, symbols, the script, the test case, and the test data. This
dialog box is only available when a test plan window is active.

To open the Mark By Query dialog box click Testplan > Mark by Query.

The dialog box includes the following controls:

Control Description

Query name Optional: The name of the query. Named queries are stored by default in the
testplan.ini file. The .ini file is specified in the Data File for Attributes and
Queries field in the General Options dialog box.

124 | Test Plans

Control Description

Unmark all
before query

Check to clear all marks before running the query. Uncheck to retain existing marks. By
default this check box is checked and all marks are cleared.

Mark Click to close the dialog, run the query against the test plan, and mark all tests in the
test plan that are returned by the query.

Test Execution tab

Use the Test Execution tab to select the script, test case, and test data in the test plan for which the query
should search.

Control Description

Script Specify the full path of the script for which the query should search. To browse for the correct
script, click Scripts.

Testcase Specify the name of the test case for which the query should search. To browse for the correct
test case, click Testcases. To query for test cases in a specific script you must specify the
script before you can specify the test case. To build a query that marks only manual tests, type
the keyword manual into the Testcase field.

Test data Specifies the data values for which the query should search. Separate each value with a
comma.

Test Attributes tab

Use the Test Attributes tab to add attribute values in the test plan to the query.

Control Description

Category Select a Category value to add the tests which belong to this category to the query.

Component Select a Component value to add the tests which have this component to the query.

Developer Select a Developer value to add the tests which are developed by this developer to the
query.

Symbols tab

Use the Symbols tab to add symbols in the test plan to the query.

Note: Do not type the dollar sign ($) prefix before the symbol name. The wildcard characters *
(asterisk) and ? (question mark) are supported for partial matches: * is a placeholder for 0 or more
characters, and ? is a placeholder for 1 character.

Control Description

Edit Select a symbol from the list and then click Edit to modify the symbol in the text box below the
list. Click Replace after you have made your modifications.

Remove Select a symbol from the list and then click Remove to remove the symbol from the query.

Add Type the symbol definition in the box below the list of symbols, and then click Add. The newly-
defined symbol appears in the list and is added to the query.

Mark By Named Query Dialog Box
Use the Mark By Named Query dialog box to create, combine, edit, or delete named queries. To use
named queries, you must have defined attributes.

Click Testplan > Mark by Named Query.

Test Plans | 125

Named queries are stored by default in testplan.ini. The testplan.ini file is specified in the Data
File for Attributes and Queries field in the General Options dialog box.

The Mark By Named Query dialog is only available when a test plan is open and the test plan window is
active.

Testplan
Queries

Displays a list of existing test plan queries.

Mark Click to mark the selected query within the test plan.

New Click to access the New/Edit Testplan Query dialog box where you can create a new
test plan query.

Combine Click to access the Combine Testplan Queries dialog where you can select a query to
combine with the currently selected test plan query.

Edit Click to access the New/Edit Testplan Query dialog box where you can modify the
currently selected test plan. The Edit button is not available until you select an existing
query.

Remove Click to delete the selected test plan query. The Remove button is not available until
you select an existing query.

Using Symbols
This section describes symbols, which represent pieces of data in a data driven test case.

Overview of Symbols
A symbol represents a piece of data in a data driven test case. It is like a 4Test identifier, except that its
name begins with the $ character. The value of a symbol can be assigned locally or inherited. Locally
assigned symbols display in black and symbols that inherit their value display in blue in the Testplan Detail
dialog box.

For example, consider the following test plan:

126 | Test Plans

The test plan in the figure uses six symbols:

• $Text is the text to enter in the document window.
• $Position is the position of the insertion point in the document window.
• $Pattern is the pattern to search for in the document window.
• $Case is the state of the Case Sensitive check box.
• $Direction is the direction of the search.
• $Expected is the expected match.

The symbols are named in the parameter list to the FindTest testcase, within the parentheses after
the test case name.

testcase: FindTest ({ $Text, $Position, $Pattern, $Case, $Direction,
$Expected })

• The symbols are only named in the parameter list; they are not assigned values. The values are
assigned at either the group or test description level, depending on whether the values are shared by
several tests or are unique to a single test. If a symbol is defined at a level in the plan where it can be
shared by a group of tests, each test can assign its own local value to the symbol, overriding whatever
value it had at the higher level. You can tell whether a symbol is locally assigned by using the Testplan
Detail dialog box: Locally assigned symbols display in black. Symbols that inherit their values display in
blue.

Test Plans | 127

For example, in the preceding figure, each test description assigns its own unique values to the $Pattern
and the $Expected symbols. The remaining four symbols are assigned values at a group description level:

• The $Text symbol is assigned its value at the Find dialog group description level, because all eight
tests of the Find dialog enter the text Silk Test Classic into the document window of the Text Editor
application.

• The $Case symbol is assigned the value TRUE at the Case sensitive group description level and the
value FALSE at the Case insensitive group description level.

• The $Direction symbol is assigned the value Down at the Forward group description level, and the
value Up at the Backward group description level.

• The $Position symbol is assigned the value <HOME> at the Forward group description level, and the
value <END> at the Backward group description level.

Because the data that is common is factored out and defined at a higher level, it is easy to see exactly what
is unique to each test.

Symbol Definition Statements in the Test Plan Editor
Use symbols to define data that is shared by a group of tests in the plan. Symbol definitions follow these
syntax conventions:

• The symbol name can be any valid 4Test identifier name, but must begin with the $ character.
• The symbol value can be any text. When the test plan editor encounters the symbol, it expands it (in the

same sense that another language expands macros). For example, the following test plan editor
statement defines a symbol named Color and assigns it the STRING value "Red":

$Color = "Red"

• To use a $ in a symbol value, precede it with another $. Otherwise, the compiler will interpret everything
after the $ as another symbol. For example, this statement defines a symbol with the value Some
$String: $MySymbol = "Some$$String "

• To assign a null value to a symbol, do not specify a value after the equals sign. For example:
$MyNullSymbol =

• To indicate that a test is incomplete when generating a test plan completion report, assign the symbol
the ? character. For example: $MySymbol = ?

If a symbol is listed in the argument list of a test case, but is not assigned a value before the test case is
actually called, the test plan editor generates a runtime error that indicates that the symbol is undefined. To
avoid this error, assign the symbol a value or a ? if the data is not yet finalized.

Defining Symbols in the Testplan Detail Dialog box
Place the insertion cursor in the plan where you need to assign a value to a symbol.

1. Click Testplan > Detail.

2. Select the Symbols tab on the Testplan Detail dialog box, and enter the symbol definition in the text
box to the left of the Add button.

You do not need to enter the $ character; the test plan editor takes care of this for you when it inserts
the definitions into the test plan.

3. Click Add. Silk Test Classic adds the symbol to the list box above the Add text text box.

4. Define additional symbols in the same manner, and then click OK when finished.

Silk Test Classic closes the Testplan Detail dialog box and enters the symbol definitions, including the
$ character, into the plan. If a symbol is defined at a level in the plan where it can be shared by a group
of tests, each test can assign its own local value to the symbol, overriding whatever value it had at the
higher level. You can tell whether a symbol is locally assigned by using the Testplan Detail dialog box:
Locally assigned symbols display in black. Symbols that inherit their values display in blue.

128 | Test Plans

Assigning a Value to a Symbol
You can define symbols and assign values to them by typing them into the test plan, using this syntax:

$symbolname = symbolvalue

where symbolname is any valid 4Test identifier name, prefixed with the $ character and symbolvalue is
any string, list, array, or the ? character (which indicates an undefined value).

For example, the following statement defines a symbol named Color and assigns it the STRING value
"Red":

$Color = "Red"

If a symbol is defined at a level in the plan where it can be shared by a group of tests, each test can assign
its own local value to the symbol, overriding whatever value it had at the higher level.

Specifying Symbols as Arguments when Entering a
testcase Statement
1. Place the insertion cursor in the test plan at the location where the testcase statement is to be

inserted. Placing a symbol name in the argument list of a testcase statement only specifies the name
of the symbol; you also need to define the symbol and assign it a value at either the group or test case
description level, as appropriate.

If you do not know the value when you are initially writing the test plan, assign a question mark (?) to
avoid getting a compiler error when you compile the test plan; doing so will also cause the tests to be
counted as incomplete when a Completion report is generated.

2. Click Testplan > Detail.
3. Enter the name of a data driven test case on the Testplan Detail dialog box, followed by the argument

list enclosed in parenthesis. If the test case expects a record, and not individual values, you must use
the list constructor operator (curly braces).

4. Click OK. Silk Test Classic dismisses the Testplan Detail dialog box and inserts the testcase
statement into the test plan.

Attributes and Values
Attributes are site-specific characteristics that you can define for your test plan and assign to test
descriptions and group descriptions. Attributes are used to categorize tests, so that you can reference them
as a group. Attributes can also be incorporated into queries, which allow you to mark tests that match the
query’s criteria. Marked tests can be run as a group.

By assigning attributes to parts of the test plan, you can:

• Group tests in the plan to distinguish them from the whole test plan.
• Report on the test plan based on a given attribute value.
• Run parts of the test plan that have a given attribute value.

For example, you might define an attribute called Engineer that represents the set of QA engineers that are
testing an application through a given test plan. You might then define values for Engineer like David,
Jesse, Craig, and Zoe, the individual engineers who are testing this plan. You can then assign the values of
Engineer to the tests in the test plan. Certain tests are assigned the value of David, others the value of
Craig, and so on. You can then run a query to mark the tests that have a given value for the Engineer
attribute. Finally, you can run just these marked tests.

Attributes are also used to generate reports. You do not need to mark the tests or build a query in this
case.

Test Plans | 129

Attributes and values, as well as queries, are stored by default in testplan.ini which is located in the
Silk Test Classic installation directory. The initialization file is specified in the Data File for Attributes and
Queries field in the General Options dialog box.

Silk Test Classic ships with predefined attributes. You can also create up to 254 user-defined attributes.

Make sure that all the QA engineers in your group use the same initialization body file. You can modify the
definition of an attribute.

Modifying attributes and values through the Define Attributes dialog box has no effect on existing
attributes and values already assigned to the test plan. You must make the changes in the test plan
yourself.

Predefined Attributes
The test plan editor has three predefined attributes:

Developer Specifies the group of QA engineers who developed the test cases called by the test plan.

Component Specifies the application modules to be tested in this test plan.

Category Specifies the kinds of tests used in your QA Department, for example, Smoke Test.

User Defined Attributes
You can define up to 254 attributes. You can also rename the predefined attributes.

The rules for naming attributes include:

• Attribute names can be up to 11 characters long.
• Attribute and value names are not case sensitive.

Adding or Removing Members of a Set Attribute
You can assign multiple values to test attributes of the type Set.

For example, you might have a Set attribute called RunWhen with the following three values:

• UI

• regression

• smoke

You can assign any combination of these three values to a test or a group of tests. Separate each value
with a semicolon.

You can use the + operator to add members to a Set attribute and the – operator to remove members from
a Set attribute.

Example 1: Using + to add values

RunWhen: UI; regression Test 1 testcase: t1 RunWhen: + smoke
Test 2 testcase: t2

In this example, Test 1 has the values UI and regression.

The statement RunWhen: + smoke adds the value smoke to the previously assigned
values, so Test 2 has the values UI, regression, and smoke.

Example 2: Using - to remove values

RunWhen: UI; regression Test 1 testcase: t1 RunWhen: -
regression Test 2 testcase: t2

130 | Test Plans

In this example, Test 1 has the values UI and regression.

The statement RunWhen: - regression removes the value regression from the
previously assigned values, so Test 2 has the value UI.

Rules for Using + and -
• You must follow the + or – with a space.
• You can add or remove any number of elements with one statement. Separate each element with a

semicolon.
• You can specify + elements even if no assignments had previously been made. The result is that the

elements are now assigned.
• You can specify – elements even if no assignments had previously been made. The result is that the

set’s complement is assigned. Using the previous example, specifying:

RunWhen: - regression

when no RunWhen assignment had previously been made results in the values UI and smoke being
assigned.

Defining an Attribute and the Values of the Attribute
1. Click Testplan > Define Attributes, and then click New.

2. Type a name for the new attribute into the Name field.

3. Select one of the following types, and then click OK.

Normal You specify values when you define the attribute. Users of the attribute in a test plan pick one
value from the list.

Edit You don't specify values when you define the attribute. Users type their own values when they
use the attribute in a test plan.

Set Like normal, except that users can pick more than one value.

4. On the Define Attributes dialog box, if you:

• have defined an Edit type attribute, you are done. Click OK to close the dialog box.
• are defining a Normal or Set type attribute, type a value into the Values field and click Add.

Once attributes have been defined, you can modify them.

Assigning Attributes and Values to a Test Plan
Attributes and values have no connection to a test plan until you assign them to one or more tests using an
assignment statement. To add an assignment statement, you can do one of the following:

• Type the assignment statement yourself directly in the test plan.
• Use the Testplan Detail dialog box.

Format

An assignment statement consists of the attribute name, a colon, and a valid attribute value, in this format:

attribute-name: attribute value

For example, the assignment statement that associates the Searching value of the Module attribute to a
given test would look like:

Module: Searching

Test Plans | 131

Attributes of type Set are represented in this format:

attribute-name: attribute value; attribute
value; attribute value; ...

Placement

Whether you type an assignment statement yourself or have the Testplan Detail dialog box enter it for you,
the position of the statement in the plan is important.

To have an assignment statement apply to Place it directly after the

An individual test test description

A group of tests group description

Assigning an Attribute from the Testplan Detail Dialog
Box
1. Place the cursor in the test plan where you would like the assignment statement to display, either after

the test description or the group description.

2. Click Testplan > Detail, and then click the Test Attributes tab on the Testplan Detail dialog box. The
arrow in the list box at the top of the dialog box identifies the test description at the cursor position in the
test plan. The attribute will be added to this test description. The Test Attributes tab lists all your
current attributes at this level of the test plan.

3. Do one of the following:

• If the attribute is of type Normal, select a value from the list.
• If the attribute is of type Set, select on or more values from the list.
• If the attribute is of type Edit, type a value.

4. Click OK. Silk Test Classic closes the dialog box and places the assignment statements in the test plan.

Modifying the Definition of an Attribute
Be aware that modifying attributes and values through the Define Attributes dialog box has no effect on
existing attributes and values already assigned to the test plan. You must make the changes in the test plan
yourself.

1. Click Testplan > Define Attributes.

2. On the Define Attributes dialog box, select the attribute you want to modify, then:

Rename an attribute Edit the name in the Name text box.

Assign a new value
to the attribute

Type the value in the text box at the bottom right of the dialog box, and click
Add. The value is added to the list of values.

Modify a value Select the value from the Values list box, and click Edit. The value displays in
the text box at the bottom right of the dialog box and the Add button is
renamed to Replace. Modify the value and click Replace.

Delete a value Select the value from the Values list box and click Remove. The text box is
cleared and the value is removed from the Values list box.

Delete an attribute Click Delete.

3. Click OK. The attributes and values are saved in the initialization file specified in the General Options
dialog box.

132 | Test Plans

Queries
This section describes how you can use a test plan query to mark all tests that match a user-selected set
of criteria, or test characteristics.

Overview of Test Plan Queries
You can use a test plan query to mark all tests that match a user-selected set of criteria, or test
characteristics. A query comprises one or more of the following criteria:

• Test plan execution: script file, test case name, or test data
• Test attributes and values
• Symbols and values

Test attributes and symbols must have been previously defined to be used in a query.

Named queries are stored by default in testplan.ini. The initialization file is specified in the Data File
for Attributes and Queries text box in the General Options dialog box. The testplan.ini file is in the
Silk Test Classic installation directory. Make sure that all the QA engineers in your group use the same
initialization file.

Overview of Combining Queries to Create a New Query
You can combine two or more existing queries into a new query using the Mark by Named Query dialog
box. The new query can represent the union of the constituent queries (logical OR) or the intersection of
the constituent queries (logical AND).

Combining by union

Combining two or more queries by union creates a new named query that marks all tests that would have
been marked by running each query one after the other while retaining existing marks. Since Mark by
Named Query clears existing marks before running a query, the only way to achieve this result is to create
a new query that combines the constituent queries by union.

Example

Suppose you have two queries, Query1 and Query2, that you want to combine by union.

Query1 Query2

Developer: David Developer: Jesse

Component: Searching TestLevel: 2

The new query created from the union of Query1 and Query2 will first mark those tests
that match all the criteria in Query1 (Developer is David and Component is Searching)
and then mark those tests that match all the criteria in Query2 (Developer is Jesse and
TestLevel is 2).

Combining by intersection

Combining two or more queries by intersection creates a new named query that marks every test that has
the criteria specified in all constituent queries.

Example

For example, combining Query1 and Query2 by intersection would create a new query
that comprised these criteria: Developer is David and Jesse, Component is Searching,

Test Plans | 133

and TestLevel is 2. In this case, the new query would not mark any tests, since it is
impossible for a test to have two different values for the attribute Developer (unless
Developer were defined as type Set under Windows). Use care when combining queries
by intersection.

Guidelines for Including Symbols in a Query
• Use ? (question mark) to indicate an unset value. For example, Mysymbol = ? in a query would mark

those tests where Mysymbol is unset. Space around the equals sign (=) is insignificant.
• If you need to modify the symbol in the query, select it from the list box and click Edit. The test plan

editor places it in the text box and changes the Add button to Replace. Edit the symbol or value and
click Replace.

• To exclude the symbol from the query, select it from the list box and click Remove. The test plan editor
deletes it from the list box.

The Differences between Query and Named Query
Commands
Testplan > Mark by Query or Testplan > Mark by Named Query both create queries, however, Mark by
Named Query provides extra features, like the ability to combine queries or to create a query without
running it immediately. If the query-creation function and the query-running function are distinct in your
company, then use Mark by Named Query. If you intend to run a query only once, or run a query while
keeping existing marks, then use Mark by Query.

The following table highlights the differences between the two commands.

Mary by Query Mark by Named Query

Builds a query based on criteria you select and runs
query immediately.

Builds a new query based on criteria you select. Can run
query at any time.

Name is optional, but note that only named queries are
saved and can be rerun at any time in the Mark by
Named Query dialog box.

Name is required. Query is saved.

Cannot edit or delete a query. Can edit or delete a query.

Cannot combine queries. Can combine queries into a new query.

Lets you decide whether or not to clear existing marks
before running new query. Unmarks by default.

Clears existing marks before running new query.

Unnamed queries can be run only once. If you name the query, you can have the test plan editor run it in
the same or subsequent work sessions without having to rebuild the query or manually remark the tests
that you’re interested in rerunning or reporting on.

Creating a New Query
You can create a new query for a test plan through either Testplan > Mark by Query or Testplan > Mark
by Named Query. You can also create a new query by combining existing queries.

1. Open the test plan and any associated sub-plans.

2. Click Testplan > Mark by Query or Testplan > Mark by Named Query.

3. Identify the criteria you want to include in the query.

• To include a script, a test case, or test data, use the Test Execution tab. Click Script to select a
script and click Testcase to select a test case, or type the full specification yourself. To build a query
that marks only manual tests, type the keyword into the Testccase field.

134 | Test Plans

• To include existing attributes and values in the query, use the Test Attributes tab.
• To include one or more existing symbols and values, use the Symbols tab. Type the information into

the Add field and click Add. The symbol and value are added to the list box.

Do not type the dollar sign ($) prefix before the symbol name. The wildcard characters * (asterisk) and ?
(question mark) are supported for partial matches: * is a placeholder for 0 or more characters, and ? is
a placeholder for 1 character.

Example 1

If you type find_5 (* in the Testcase field, the query searches all the testcase statements in the
plan and marks those test descriptions that match, as well as all subordinate descriptions to which the
matching testcase statement applies, which are the test cases where the find_5 test case passed in
data.

Example 2

If you type find.t in the Script field, the query searches all script statements in the plan and marks
those test descriptions that match exactly, as well as all subordinate descriptions to which the matching
script statement applies, which are the test cases in which you had specified find.t exactly. It
would not match any script statements in which you had specified a full path.

4. Take one of the following actions, depending on the command you chose to create the query:

Mark by
Query

Click Mark to run the query against the test plan. The test plan editor closes the dialog
box and marks the test plan, retaining the existing marks if requested.

Mark by
Named
Query

Click OK to create the query. The New Testplan Query dialog box closes, and the
Mark by Named Query dialog box is once again visible. The new query displays in the
Testplan Queries list box.

If you want to:

• Run the query, select it from the list box and click Mark.
• Close the dialog box without running the query, click Close.

Edit a Query
1. Click Testplan > Mark by Named Query to display the Mark by Named Query dialog box.

2. Select a query from the Testplan Queries list box and click Edit.

3. On the Edit Testplan Query dialog box, edit the information as appropriate, and then click OK .

4. To run the query you just edited, select the query and click Mark . To close the dialog box without
running the edited query, click Close .

Delete a Query
1. Click Testplan > Mark by Named Query to open the Mark by Named Query dialog box.

2. Select a query from the Testplan Queries box and click Remove.

3. Click Yes to delete the query, and then click Close to close the dialog box.

Combining Queries
1. Click Testplan > Mark by Named Query to display the Mark by Named Query dialog box.

2. Click Combine. The Combine Testplan Queries dialog box lists all existing named queries in the
Queries to Combine list box.

3. Specify a name for the new query in the Query Name text box.

Test Plans | 135

4. Select two or more queries to combine from the Queries to Combine list box.

5. Click the option button that represents the combination method to use: either Union of Queries or
Intersection of Queries.

6. Click OK to save the new query. The Mark by Named Query dialog box displays with the new query in
the Testplan Queries list box.

7. To run the query, select the query and click Mark or click Close to close the dialog box without running
the query.

Combine Testplan Queries Dialog Box
Use to create a new query by combining existing queries.

Click Testplan > Mark by Named Query and then click Combine.

Query name Type the name of the new query that you want to create by combining existing
queries.

Queries to
combine

Displays a list of named queries. Select two or more queries from the list to combine.

Union of queries Click to combine two or more queries by union. This option creates a new named
query that marks all tests that would have been marked by running each query, one
after the other, while retaining existing marks. Since Mark by Named Query clears
existing marks before running a query, the only way to achieve this result is to create
a new query that combines the queries by union.

Intersection of
queries

Click to combine two or more queries by intersection. This option creates a new
named query that marks every test that has the criteria specified in all constituent
queries. Use care when combining queries by intersection.

New/Edit Testplan Query Dialog Box
Use to construct a query from attributes, symbols, the script, the test case, and test data. This dialog is
only available when a test plan is open and the test plan window is active.

Click Testplan > Mark by Named Query and then click New or Edit. To access the Edit Testplan Query
dialog box, you must select an existing test plan query.

Query
name

Type the name of the query. This is optional. Named queries are stored by default in
testplan.ini. The initialization file is specified in the Data File for Attributes and
Queries field in the General Options dialog box.

Test Execution tab

Script Specifies the full path of the script that you want to display on the current line of the test plan.
To browse for the correct script, click Scripts to display the Testplan Detail Scripts dialog
box. Once you select a script, the Testplan Editor writes the selected script into the test plan,
beginning the line with the reserved word script, followed by a colon.

Test case Specifies the name of the test case that you want to display on the current line of the test
plan. To browse for the correct test case, click Test Cases to view the test cases contained in
the script that you have specified in the Script field. Once you select a test plan from the
Testplan Detail Testcase dialog box, the Testplan Editor writes the selected test case into
the test plan, beginning the line with the reserved word testcase, ddatestcase for a data-
driven test case, followed by a colon. To build a query that marks only manual tests, type the
keyword manual into the Test case field.

136 | Test Plans

Test data Specifies the data values that you want to pass to the test case. Separate each value with a
comma. The Testplan Editor writes the data you specify here to the current line of the test
plan, beginning the line with the reserved word testdata, ddatestdata for a data-driven
test case, followed by a colon.

Scripts Click to select a script to include in the query or type the script name into the Script field.

Test
Cases

Click to select a test case to include in the query or type the test case name into the Test
case field.

Test Attributes tab

Use the Test Attributes tab to assign existing attribute values to your test plan. For information about
adding new attributes and values, see Defining an Attribute and the Values of the Attribute.

Category Lists the available categories. Click the arrow to select a category from the list.

Component Lists the available components. Click the arrow to select a component from the list.

Developer Displays the available developers. Click the arrow to select a developer from the list.

Symbols tab

Note: Do not type the dollar sign ($) prefix before the symbol name. The wildcard characters *
(asterisk) and ? (question mark) are supported for partial matches: * is a placeholder for 0 or more
characters, and ? is a placeholder for 1 character.

Symbols will be ignored for a data-driven test case.

Edit Select a symbol from the list and then click Edit to modify the symbol in the field below the
symbols list. Click Replace after you have made your modifications.

Remove Select a symbol from the list and then click Remove to remove the symbol from the test plan.

Add Type the symbol definition in the field below the symbols list, and then click Add. The newly-
defined symbol displays in the list. You do not need to enter the $ character because the
Testplan Editor takes care of this when it inserts the definitions into the test plan.

Create Session Dialog Box
You can use the Create Session dialog box to create a new manual test session. Select a product, then
use the list boxes to enter test data such as component, platform, version, and build. You can use the
Named Query box to select tests that have been marked by a Named Query.

When you are using the Create Session dialog box for a new manual session, inactive and active products
are displayed.

In order for reports to properly reflect your manual session, it is important to completely assign test data.
For example, if you do not assign a build to this session, this session is not reflected on any reports that
are based on builds.

Testplan Detail Dialog Box
Use the Testplan Detail dialog box to:

• Specify valid script, test case, and test data statements.
• Assign attribute values to your test plan.

Test Plans | 137

• Add, edit, or delete a symbol associated with the test plan.

This dialog box is only available when a test plan is open and the Testplan dialog box is active.

Click Testplan > Testplan Detail. You can also place your cursor in a test case, click the right mouse
button, and then select Test Details.

The box at the top of the dialog displays your cursor position in the test plan when you opened the dialog
box. The black arrow in the left margin identifies the test at which your cursor is positioned in the test plan.
This is the test description to which you are adding details. Any details will apply to this test and any tests
that inherit details from this test. If the test case and script associated with the current test description are
inherited from a higher level in the test plan, they are shown in blue; otherwise, they are shown in black.

Test Execution tab

Script Specifies the full path of the script that you want to appear on the current line of the test plan. To
browse for the correct script, click Scripts to display the Testplan Detail - Script dialog. Once
you select a script, the Testplan Editor writes the selected script into the test plan, beginning
the line with the reserved word script, followed by a colon.

Test
case

Specifies the name of the test case that you want to display on the current line of the test plan.
To browse for the correct test case, click Test Cases to view the test cases contained in the
script you have specified in the Script field. Once you select a test plan from the Testplan
Detail - Testcase dialog box, the Testplan Editor writes the selected test case into the test
plan, beginning the line with the reserved word testcase, or ddatestcase for a data-driven
test case, followed by a colon. Selecting the test case ensures that the proper keywords are
inserted into the test plan.

Test
data

Specifies the data values that you want to pass to the test case. Separate each value with a
comma. The Testplan Editor writes the data you specify here to the current line of the test
plan, beginning the line with the reserved word testdata , or ddatestcase for a data-driven
test case, followed by a colon. To select certain rows to use to run the data-driven test case,
click Specify Rows to view the Specify Rows dialog box.

Test Attributes tab

Use the Test Attributes tab to assign existing attribute values to your test plan.

Category Displays the categories available. Click the arrow to select from the list of available
categories.

Component Displays the components available. Click the arrow to select from the list of available
components.

Developer Displays the available developers. Click the arrow to select from the list of available
developers.

Symbols tab

Use the Symbols tab to add, edit, or delete a symbol associated with the test. If a symbol is defined at a
level in the test plan where it can be shared by a group of tests, each test can assign its own local value to
the symbol, overriding whatever value the symbol had at the higher level. Locally assigned symbols display
in black. Symbols that inherit their values display in blue.

Note: Do not type the dollar sign ($) prefix before the symbol name. The wildcard characters *
(asterisk) and ? (question mark) are supported for partial matches: * is a placeholder for 0 or more
characters, and ? is a placeholder for 1 character. Symbols are ignored for a data-driven test case.

138 | Test Plans

Edit Select a symbol from the list and then click Edit to modify the symbol in the text box below the
list. Click Replace after you have made your modifications.

Remove Select a symbol from the list and then click Remove to remove the symbol from the test plan.

Add Type the symbol definition in the box below the list of symbols and then click Add. The newly-
defined symbol displays in the list. You do not need to enter the $ character because the
Testplan Editor takes care of this for you when it inserts the definitions into the test plan.

Testplan Detail - Testcase Dialog Box
Use the Testplan Detail - Testcase dialog box to select a test case to add to the currently selected test
plan.

Click Testplan > Detail, click the Test Execution tab, specify a script in the Script field, and then click
Testcases.

Testcase Lists the test cases available in the currently selected script. Select the test case that you want
to enter into the test plan from the list. Silk Test Classic enters the correct Testplan Editor
syntax into the test plan.

Define Attributes Dialog Box
Use to define or rename the Testplan Editor attributes, as well as add, rename, or remove attribute
values. This dialog box is only available when a test plan is open and the test plan window is active.
Attribute values are stored in the testplan.ini file.

To open the Define Attributes dialog box, click Testplan > Define Attributes in the Silk Test Classic
menu.

Attributes Displays the list of attributes defined in the Testplan Editor. An attribute is a site-specific
characteristic that you define for your test plan and associate with tests. Attributes allow you
to query or execute sections of the test plan or report on various characteristics. The
Testplan Editor has three predefined attributes:

Category Specifies the type of test case or the type of the group of test cases used in
your QA Department, for example Smoke Test.

Component Specifies the pages or application modules of the application under test
which should be tested in this test plan.

Developer Specifies the group of QA engineers which are assigned to develop the test
case or group of test cases in the test plan.

New Displays the New Attribute dialog box, which you can use to define a new attribute. You can
then use the Define Attributes dialog box to assign values to the new attribute.

Delete Deletes the selected attribute. When you delete an attribute, you also delete the values of the
attribute.

Name Displays the name of the attribute that you have selected in the Attributes list. You can edit
the attribute name by modifying the text in the Name field.

Test Plans | 139

Type Displays the type that is associated with the currently selected attribute in the Attributes list.
An attribute may be one of the following types:

• Normal
• Edit
• Set

This field is display-only.

Values Displays the values that are associated with the selected attribute type.

Edit Click to modify the selected attribute name and value. You must select an attribute from the
Attributes list and a value from the Values list before the Edit button is available. To modify
the attribute name, edit the text in the Name field. To modify the value, edit the text in the field
next to the Replace button, and then click Replace.

Remove Removes the selected value from the list. You must select an attribute from the Attributes list
and a value from the Values list before the Remove button is available. To remove an
attribute, you must select the attribute from the Attributes list, and then click Delete.

Add Allows you to add a new value that should be associated with the selected attribute type. You
must select an attribute from the Attributes list and type a value in the text field before the
Add button is available. You cannot assign values for attributes of type Edit. Attribute values
are stored in the testplan.ini file.

New Attribute Dialog Box
Use to define new attributes. You can define up to 254 attributes or rename the predefined attributes,
Developer, Component, and Category. This dialog is only available from the Define Attributes dialog.

Click Testplan > Define Attributes and then click New.

Name Name of the attribute you are defining, using up to 11 characters. Attribute names cannot have
spaces and are not case sensitive.

Type Click to specify a Type for the new attribute you are defining. Specifying a Type is optional. You
can select from the following types:

Normal Values are assigned when defining the attribute. You can pick a value from the list
when associating attributes with the testplan statement.

Edit Values are not assigned when defining the attribute. You must type your own values
when you use the attribute in a testplan.

Set Values are assigned when defining the attribute. The Set type is similar to the Normal
type, except that you can pick multiple values from the list when associating attributes
with the testplan statement.

Update Manual Tests Dialog Box
Use the Update Manual Tests dialog box to describe the state of manual tests included in the test plan.
This dialog is only available when a test plan that contains manual tests is active.

To open the Update Manual Tests dialog box, click Testplan > Run Manual Tests .

140 | Test Plans

Plan file Displays the path and name of the currently selected test plan.

Manual tests Lists all manual tests contained within the currently selected test plan. Select the
manual test that you want to update from this list.

Incomplete Click to mark the currently selected manual test case incomplete.

Complete Click to mark the currently selected manual test case complete. This means that a test
has been defined. A manual test marked as Complete is tabulated as complete in the
Testplan Completion reports.

Has been run Click to mark the currently selected test case as having been run. The current date and
time display in the Run at box. You can then indicate if the test case passed or failed
by clicking the appropriate button. A test marked Has been run is considered
complete in Testplan Completion reports.

Failed Click to indicate that the currently selected manual test failed. This button is available
only when you select Has been run in the Completion area.

Passed Click to indicate that the currently selected manual test passed. This button is available
only when you select Has been run in the Completion area.

Comments for
<currently
selected
manual
testcase>

Type any comments you want to associate with the currently selected manual test.

Print Click to print status information for the manual tests included in the currently selected
test plan. This includes the test case name, status, and run information, if applicable.

Run at Specify when the test was run using this syntax: year-month-day
hours:minutes:seconds YYYY-MM-DD HH:MM:SS Hours, minutes, and seconds
are optional. For example, enter 2011-10-01 to indicate the test was run Oct 1, 2011.

Machine Optional: Specify the name of the machine on which the test was run.

Duplicate Test Descriptions dialog box
This dialog box is displayed when a managed test plan is saved and duplicate test descriptions are found.
These duplicates are usually a result of the editing process.

You can select a test description that will retain the original test ID, or you can use Reset All IDs to
generate new identifiers for all test descriptions. Reset All IDs has database ramifications and affects any
existing Silk Central and Issue Manager references to the test description ID. This means that an existing
reference will no longer be valid.

Test Plans | 141

Designing and Recording Test Cases with
the Classic Agent

This section describes how you can design and record test cases with the Classic Agent.

Creating a New Test Frame for the Classic Agent
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Create a new test frame (.inc) file to specify the executable of the application that you want to test, for
example if you want to test multiple applications in a single test.

1. Click File > New. The New File dialog box appears.
2. Select Test frame.
3. Type a name for the new frame file into the Frame file name field.

Note: Retain the .inc extension.

4. Select the application that you want to test from the Application list. This list includes all open
applications that are not minimized. Web applications are identified by the title of the currently loaded
page.

5. Optional: Change the path to the selected application in the Working directory field.
6. Optional: Change the path to the .exe of the application that you want to test into the Command line

field.
7. Optional: For a web application, change the path to the URL of the application into the Start testing on

this page field.
This field is only displayed if you select a web application in a browser that is supported by the Classic
Agent.
If the URL does not appear, even though the web application appears in the Application list, your
extensions are not enabled. For additional information, see Extensions dialog box.

8. Optional: Change the suggested identifier for the application in the Window name field.
You can use this identifier in all your test cases to identify your application.

Tip: Keep this identifier as short as possible.

Hierarchical Object Recognition
When you record window declarations with the Classic Agent, Silk Test Classic records descriptions based
on hierarchical object recognition of the GUI objects in your application. Silk Test Classic stores the
declarations in an include file (*.inc). When you record or replay a test case with the Classic Agent, Silk
Test Classic references the declarations in the include file to identify the objects named in your test scripts.

The object recognition system of the Classic Agent uses a window declaration identifier as the logical
name of an object and a tag or multitag as the attribution to uniquely identify an object. To permit robust
operation across browsers, Silk Test Classic uses a complicated system of rules to construct the identifiers
and associated attributes.

The window declaration identifiers and tags or multitags are constructed hierarchically from information
such as HTML object attributes and closest static text. The class dependent caption and windowID

142 | Designing and Recording Test Cases with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

construction rules form the basis for the window declaration identifier, single tag, and multitag construction
rules. The Index construction rules are class independent.

Using hierarchical object recognition compared to using dynamic object recognition

Use hierarchical object recognition to test applications that require the Classic Agent. Dynamic object
recognition requires the Open Agent.

Alternatively, you can combine the advantages of INC files with the advantages of dynamic object
recognition by including locator keywords in INC files. Enhancing INC files with locators facilitates a smooth
transition from using hierarchical object recognition to new scripts that use dynamic object recognition.
With locators, you use dynamic object recognition but your scripts look and feel like traditional, Silk Test
Classic tag-based scripts that use hierarchical object recognition.

You can create tests for both dynamic and hierarchical object recognition in your test environment. You can
use both recognition methods within a single test case if necessary. Use the method best suited to meet
your test requirements.

Open Agent Example

For example, if you record a test to open the New Window dialog box by clicking File >
New > Window in the SWT sample application, Silk Test Classic performs the following
tasks:

• Records the following test:

testcase Test1 ()
 recording
 SwtTestApplication.WindowMenuItem.Pick()

• Creates window declarations in the include file for Window menu item. For example:

window Shell SwtTestApplication
 locator "/Shell[@caption='Swt Test Application']"
 MenuItem WindowMenuItem
 locator "//MenuItem[@caption='Window']"

Classic Agent Example

For example, if you record a test to open the New Window dialog box by clicking File >
New > Window in a sample application, Silk Test Classic performs the following tasks:

• Records the following test:

testcase Test1 ()
 recording
 SwtTestApplication.File.New.xWindow.Pick()

• Creates window declarations in the include file for File menu, New menu item, and
xWindow menu item. For example:

Menu File
 tag "File"
 MenuItem New
 tag "New.."
 MenuItem xWindow
 tag "Window"

Highlighting Objects During Recording
During recording, the active object in the AUT is highlighted by a green rectangle. As soon as a new object
becomes active this new object is highlighted. If the same object remains active for more than 0.5 seconds
a tool-tip will be displayed that displays the class name of the active object and also the current position of

Designing and Recording Test Cases with the Classic Agent | 143

the mouse relative to the active object. This tool-tip will no longer be displayed when a new object becomes
active, the user presses the mouse, or automatically after 2 seconds.

Setting Recording Options for the Classic Agent
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can set the recording options to optimize recording with the Classic Agent in the following two ways:

• In the Recorder Options dialog box.
• Within a script, by using the SetOption method.

Using SetOption overrides the value specified for the option in the Recorder Options dialog box. If you
do not set an option with SetOption, the value specified in the Recorder Options dialog box is the
default.

To set the recording options in the Recorder Options dialog box, perform the following actions:

1. Click Options > Recorder. The Recorder Options dialog box opens.

2. To set Ctrl+Shift as the shortcut key combination to use to pause recording, check the Change hotkey
to Ctrl+Shift check box.

By default, Ctrl+Alt is the shortcut key combination.

3. To record the tags that are specified in the Record Window Declarations Options dialog box, check
the Record multiple tags check box.

If checked, Silk Test Classic records multiple tags whenever recording. If this check box is disabled, see
the description of the multiple tags agent option.

Note: If you change the setting for Record Multiple Tags here, the check box on the Record
Window Declarations Options dialog box is automatically updated.

4. To add new declarations to the INC file during recording, check the Auto Declaration check box.

5. To verify the test application using properties instead of attributes, check the Verify using properties
check box.

This option is checked automatically if you have enabled enhanced support for Visual Basic. This
feature requires properties for verification. You cannot uncheck the Verify using properties check box
without disabling enhanced support for Visual Basic.

6. Specify the file that contains the definitions for the used property sets in the Data file for property sets
field.

7. To record events at a lower level for selected controls, check the corresponding check boxes in the
Recorded Events list.

For example, you might want to record a click in a check box, instead of recording an actual selection. If
you specify that you want to record only low-level events in check boxes, Silk Test Classic records
something like the following when you select a check box: Find.CaseSensitive.Click (1, 41,
10). If you are using a high-level event, Silk Test Classic records something like the following:
Find.CaseSensitive.Check ().

8. Uncheck the Ignore mouse move events check box to record mouse movements.

If this check box is unchecked, Silk Test Classic records mouse movements that cannot be built into
higher-level actions and that occur while a mouse button is pressed. Leave this check box checked
unless you are testing an application, such as a drawing application, where mouse movements
themselves are significant.

9. To record mouse movements that cannot be built into higher-level actions and that occur while a mouse
button is pressed when you select the Record Testcase and Record Actions commands, uncheck the
Ignore mouse move events check box.

144 | Designing and Recording Test Cases with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Leave the check box checked unless you are testing an application where mouse movements
themselves are significant.

10.Uncheck the Don't record BeginDrag/EndDrag check box to record BeginDrag and EndDrag
methods when you press a mouse button on an object and do a drag operation on a listview, treeview,
or list box.

11.Click OK.

Test Cases
This section describes how you can use automated tests to address single objectives of a test plan.

Overview of Test Cases
A test case is an automated test that addresses one objective of a test plan. A test case:

• Drives the application from the initial state to the state you want to test.
• Verifies that the actual state matches the expected (correct) state. Your QA department might use the

term baseline to refer to this expected state. This stage is the heart of the test case.
• Cleans up the application, in preparation for the next test case, by undoing the steps performed in the

first stage.

In order for a test case to function properly, the application must be in a stable state when the test case
begins to execute. This stable state is called the base state. The recovery system is responsible for
maintaining the base state in the event the application fails or crashes, either during the execution of a test
cases or between test cases.

Each test case is independent and should perform its own setup, driving the application to the state that
you want to test, executing the test case, and then returning the application to the base state. The test case
should not rely on the successful or unsuccessful completion of another test case, and the order in which
the test case is executed should have no bearing on its outcome. If a test case relies on a prior test case to
perform some setup actions, and an error causes the setup to fail or, worse yet, the application to crash, all
subsequent test cases will fail because they cannot achieve the state where the test is designed to begin.

A test case has a single purpose: a single test case should verify a single aspect of the application. When
a test case designed in this manner passes or fails, it is easy to determine specifically what aspect of the
target application is either working or not working.

If a test case contains more than one objective, many outcomes are possible. Therefore, an exception may
not point specifically to a single failure in the software under test but rather to several related function
points. This makes debugging more difficult and time-consuming and leads to confusion in interpreting and
quantifying results. The result is an overall lack of confidence in any statistics that might be generated. But
there are techniques you can use to perform more than one verification in a test case.

Types of test cases

Silk Test Classic supports two types of test cases, depending on the type of application that you are
testing. You can create test cases that use:

Hierarchical object
recognition

This is a fast, easy method for creating scripts. This type of testing is supported
for all application types.

Dynamic object
recognition

This is a more robust and easy to maintain method for creating scripts. However,
dynamic object recognition is only supported for applications that use the Open
Agent.

If you are using the Open Agent, you can create tests for both dynamic and hierarchical object recognition
in your test environment. Use the method best suited to meet your test requirements. You can use both
recognition methods within a single test case if necessary.

Designing and Recording Test Cases with the Classic Agent | 145

Anatomy of a Basic Test Case
A test case is comprised of testcase keywords and object-oriented commands. You place a group of test
cases for an application into a file called a script.

Each automated test for an application begins with the testcase keyword, followed by the name of the test
case. The test case name should indicate the type of testing being performed.

The core of the test case is object-oriented 4Test commands that drive, verify, and clean up your
application. For example, consider this command:

TextEditor.File.New.Pick

The first part of the command, TextEditor.File.New, is the name of a GUI object. The last part of the
command, Pick, is the operation to perform on the GUI object. The dot operator (.) delimits each piece of
the command. When this command is executed at runtime, it picks the New menu item from the File menu
of the Text Editor application.

Types of Test Cases
There are two basic types of test cases:

• Level 1 tests, often called smoke tests or object tests, verify that an application’s GUI objects function
properly. For example, they verify that text boxes can accept keystrokes and check boxes can display a
check mark.

• Level 2 tests verify an application feature. For example, they verify that an application’s searching
capability can correctly find different types of search patterns.

You typically run Level 1 tests when you receive a new build of your application, and do not run Level 2
tests until your Level 1 tests achieve a specific pass/fail ratio. The reason for this is that unless your
application’s graphical user interface works, you cannot actually test the application itself.

Test Case Design
When defining test requirements, the goal is to vigorously test each application feature. To do so, you need
to decide which set of inputs to a feature will provide the most meaningful test results.

As you design your test cases, you may want to associate data with individual objects, which can then be
referenced inside test cases. You may find this preferable to declaring global variables or passing
parameters to your test cases.

The type of data you decide to define within a window declaration will vary, depending on the type of
testing you are doing. Some examples include:

• The default value that you expect the object to have when it displays.
• The tab sequence for each of a dialog box’s child objects.

The following declaration for the Find dialog contains a list that specifies the tab sequence of the dialog
box children.

window DialogBox Find
 tag "Find"
 parent TextEditor
 LIST OF WINDOW lwTabOrder = {...}
 FindWhat
 CaseSensitive
 Direction
 Cancel

For more information about the syntax to use for lists, see LIST data type.

146 | Designing and Recording Test Cases with the Classic Agent

Before you begin to design and record test cases, make sure that the built-in recovery system can close
representative dialogs from your application window.

Constructing a Test Case
This section explains the methodology you use when you design and record a test case.

A test case has three stages

Each test case that you record should have the following stages:

Stage 1 The test case drives the application from the initial state to the state you want to test.

Stage 2 The test case verifies that the actual state matches the expected (correct) state. Your QA
department might use the term baseline to refer to this expected state. This stage is the heart of
the test case.

Stage 3 The test case cleans up the application, in preparation for the next test case, by undoing the
steps performed in stage 1.

Each test case is independent

Each test case you record should perform its own setup in stage 1, and should undo this setup in stage 3,
so that the test case can be executed independently of every other test case. In other words, the test case
should not rely on the successful or unsuccessful completion of another test case, and the order in which it
is executed should have no bearing on its outcome.

If a test case relies on a prior test case to perform some setup actions, and an error causes the setup to fail
or, worse yet, the application to crash, all subsequent test cases will fail because they cannot achieve the
state where the test is designed to begin.

A test case has a single purpose

Each test case you record should verify a single aspect of the application in stage 2. When a test case
designed in this manner passes or fails, it’s easy to determine specifically what aspect of the target
application is either working or not working.

If a test case contains more than one objective, many outcomes are possible. Therefore, an exception may
not point specifically to a single failure in the software under test but rather to several related function
points. This makes debugging more difficult and time-consuming and leads to confusion in interpreting and
quantifying results. The net result is an overall lack of confidence in any statistics that might be generated.

There are techniques you can use to do more than one verification in a test case.

A test case starts from a base state

In order for a test case to be able to function properly, the application must be in a stable state when the
test case begins to execute. This stable state is called the base state. The recovery system is responsible
for maintaining the base state in the event the application fails or crashes, either during a test case’s
execution or between test cases.

DefaultBaseState

To restore the application to the base state, the recovery system contains a routine called
DefaultBaseState that makes sure that:

• The application is running and is not minimized.
• All other windows, for example dialog boxes, are closed.
• The main window of the application is active.

If these conditions are not sufficient for your application, you can customize the recovery system.

Designing and Recording Test Cases with the Classic Agent | 147

Defining test requirements

When defining test requirements, the goal is to rigorously test each application feature. To do so, you need
to decide which set of inputs to a feature will provide the most meaningful test results.

Data in Test Cases

What data does the feature expect

A user can enter three pieces of information in the Find dialog box:

• The search can be case sensitive or insensitive, depending on whether the Case Sensitive check box
is checked or unchecked.

• The search can be forward or backward, depending on whether the Down or Up option button is
selected.

• The search can be for any combination of characters, depending on the value entered in the Find What
text box.

Create meaningful data combinations

To organize this information, it is helpful to construct a table that lists the possible combinations of inputs.
From this list, you can then decide which combinations are meaningful and should be tested. A partial table
for the Find dialog box is shown below:

Case
Sensitive

Direction Search String

Yes Down Character

Yes Down Partial word (start)

Yes Down Partial word (end)

Yes Down Word

Yes Down Group of words

Yes Up Character

Yes Up Partial word (start)

Yes Up Partial word (end)

Yes Up Word

Yes Up Group of words

Saving Test Cases
When saving a test case, Silk Test Classic does the following:

• Saves a source file, giving it the .t extension; the source file is an ASCII text file, which you can edit.
• Saves an object file, giving it the .to extension; the object file is a binary file that is executable, but not

readable by you.

For example, if you name a test case (script file) mytests and save it, you will end up with two files: the
source file mytests.t, in the location you specify, and the object file mytests.to.

To save a new version of a script’s object file when the script file is in view-only mode, click File > Save
Object File.

148 | Designing and Recording Test Cases with the Classic Agent

Recording Without Window Declarations
If you record a test case against a GUI object for which there is no declaration or if you want to write a test
case from scratch against such an object, Silk Test Classic requires a special syntax to uniquely identify
the GUI object because there is no identifier.

This special syntax is called a dynamic instantiation and is composed of the class and tag of the object.
The general syntax of this kind of identifier is:

class("tag").class("tag"). ...

Example

If there is not a declaration for the Find dialog box of the Notepad application, the
syntax required to identify the object with the Classic Agent looks like the following:

MainWin("Untitled - Notepad|$C:\Windows
\SysWOW64\notepad.exe").DialogBox("Find")

To create the dynamic tag, the recorder uses the multiple-tag settings that are stored in
the Record Window Declarations dialog box. In the example shown above, the tag for
the Notepad contains its caption as well as its window ID.

For the Open Agent, the syntax for the same example looks like the following:

FindMainWin("/MainWin[@caption='Untitled -
Notepad']").FindDialogBox("Find")

Overview of Application States
When testing an application, typically, you have a number of test cases that have identical setup steps.
Rather than record the same steps over and over again, you can record the steps as an application state
and then associate the application state with the relevant test cases.

An application state is the state you want your application to be in after the base state is restored but
before you run one or more test cases. By creating an application state, you are creating reusable code
that saves space and time. Furthermore, if you need to modify the Setup stage, you can change it once, in
the application state routine.

At most, a test case can have one application state associated with it. However, that application state may
itself be based on another previously defined application state. For example, assume that:

• The test case Find is associated with the application state Setup.
• The application state Setup is based on the application state OpenFile.
• The application state OpenFile is based on the built-in application state, DefaultBaseState.
• Silk Test Classic would execute the programs in this order:

1. DefaultBaseState application state.
2. OpenFile application state.
3. Setup application state.
4. Find test case.

If a test case is based on a single application state, that application state must itself be based on
DefaultBaseState in order for the test case to use the recovery system. Similarly, if a test case is based on
a chain of application states, the final link in the chain must be DefaultBaseState. In this way, the built-in
recovery system of Silk Test Classic is still able to restore the application to its base state when necessary.

Designing and Recording Test Cases with the Classic Agent | 149

Behavior of an Application State Based on NONE
If an application state is based on the keyword NONE, Silk Test Classic executes the application state
twice: when the test case with which it is associated is entered and when the test case is exited.

On the other hand, if an application state is based on DefaultBaseState, Silk Test Classic executes the
application state only when the associated test case is entered.

The following example code defines the application state InvokeFind as based on the NONE keyword and
associates that application state with the test case TestFind.

Appstate InvokeFind () basedon none
 xFind.Invoke ()
 print ("hello")

testcase TestFind () appstate InvokeFind
 print ("In TestFind")
 xFind.Exit.Click ()

When you run the test case in Silk Test Classic, in addition to opening the Find dialog box, closing it, and
reopening it, the test case also prints:

hello
In TestFind
hello

The test case prints hello twice because Silk Test Classic executes the application state both as the test
case is entered and as it is exited.

Example: A Feature of a Word Processor
For purposes of illustration, this topic develops test requirements for the searching feature of the sample
Text Editor application using the Find dialog box. This topic contains the following:

• Determining what data the feature expects.
• Creating meaningful data combinations.
• Overview of recording the stages of a test case.

When a user enters the criteria for the search and clicks Find Next, the search feature attempts to locate
the string. If the string is found, it is selected (highlighted). Otherwise, an informational message is
displayed.

Determining what data the feature expects

A user can enter three pieces of information in the Find dialog box:

• The search can be case sensitive or insensitive, depending on whether the Case Sensitive check box
is checked or unchecked.

• The search can be forward or backward, depending on whether the Down or Up option button is
clicked.

• The search can be for any combination of characters, depending on the value entered in the Find What
text box.

Creating meaningful data combinations

To organize this information, it is helpful to construct a table that lists the possible combinations of inputs.
From this list, you can then decide which combinations are meaningful and should be tested. A partial table
for the Find dialog box is shown below:

150 | Designing and Recording Test Cases with the Classic Agent

Case Sensitive Direction Search String

Yes Down Character

Yes Down Partial word (start)

Yes Down Partial word (end)

Yes Down Word

Yes Down Group of words

Yes Up Character

Yes Up Partial word (start)

Yes Up Partial word (end)

Yes Up Word

Yes Up Group of words

Overview of recording the stages of a test case

A test case performs the included actions in three stages. The following table illustrates these stages,
describing in high-level terms the steps for each stage of a sample test case that tests whether the Find
facility is working.

Setup 1. Open a new document.
2. Type text into the document.
3. Position the text cursor either before or after the text, depending on the direction of the

search.
4. Select Find from the Search menu.
5. In the Find dialog box:

• Enter the text to search for in the Find What text box.
• Select a direction for the search.
• Make the search case sensitive or not.
• Click Find Next to do the search.

6. Click Cancel to close the Find dialog box.

Verify Record a 4Test verification statement that checks that the actual search string found, if any, is
the expected search string.

Cleanup 1. Close the document.
2. Click No when prompted to save the file.

After learning the basics of recording, you can record from within a test plan, which makes recording easier
by automatically generating the links that connect the test plan to the test case.

Recording Test Cases with the Classic Agent
This section describes how you can record test cases with the Classic Agent.

Overview of Recording the Stages of a Test Case
A test case includes several stages. The following table illustrates these stages, describing in high-level
terms the steps for each stage of a sample test case that tests whether the Find facility is working.

Designing and Recording Test Cases with the Classic Agent | 151

After learning the basics of recording, you can record from within the test plan file, which makes recording
easier by automatically generating the links that connect the test plan to the test case.

Setup and Record

1. Open a new document.
2. Type text into the document.
3. Position the text cursor either before or after the text, depending on the direction of the search.
4. Click Find in the Search menu.
5. In the Find dialog box:

a. Type the text to search for in the Find What text box.
b. Select a direction for the search.
c. Make the search case sensitive or not.
d. Click Find Next to perform the search.

6. Click Cancel to close the Find dialog box.

Verify

Record a 4Test verification statement that checks that the actual search string found, if any, is the expected
search string.

Cleanup

1. Close the document.
2. Click No when prompted to save the file.

Overview of Recording 4Test Components
This functionality is available only for projects or scripts that use the Classic Agent.

If you want to manually write some or most of your 4Test code, or if you want to add individual lines to an
existing test case, you can use the following recording tools:

Record/Actions

For example, when you are working with a script, you might want to leave the Record Actions dialog box
open. Any time you want to verify a GUI object, you can point to the object in your application and verify it.

You can also use the dialog box to write a syntactically correct 4Test statement based on your manual
interaction with your application. This eliminates the need to search through the documentation for the
correct method and its arguments. Once the statement is recorded, the Paste to Editor button inserts the
statement to your script.

Record/Window Identifiers

Similar to the Actions command, Record/Window Identifiers records the fully qualified name of the GUI
object you are pointing at, which you can then insert into your script. This eliminates the need to bring up
your test frame file to find the correct identifier for the object.

Record/Window Locations

It can be useful to know the position of certain objects, for example objects that are drawn (like tools on a
toolbar) or drawing regions (in a CAD/CAM package, for example). To record the location of an object, use
the Record Window Locations dialog box. You can also add a window location to an existing window
declaration.

152 | Designing and Recording Test Cases with the Classic Agent

Record/Class

If you are using ActiveX, Visual Basic, or Java classes (controls) that are not predefined, you can record
the classes for use in your tests.

Recording a Test Case With the Classic Agent
When you record a test case with the Classic Agent, Silk Test Classic uses hierarchical object recognition,
a fast, easy method to create scripts. However, test cases that use dynamic object recognition are more
robust and easy to maintain. You can create tests for both dynamic and hierarchical object recognition in
your test environment. Use the method best suited to meet your test requirements. You can use both
recognition methods within a single test case if necessary.

1. Enable extensions and set up the recovery system.

2. Click Record Test Case on the Basic Workflow bar. If the workflow bar is not visible, click Workflows
> Basic to enable it.

3. Type the name of your test case in the Test case name text box of the Record Test Case dialog box.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

4. Select DefaultBaseState in the Application State field to have the built-in recovery system restore the
default BaseState before the test case begins executing. If you chose DefaultBaseState as the
application state, the test case is recorded in the script file as: testcase testcase_name (). If you
chose another application state, the test case is recorded as: testcase testcase_name ()
appstate appstate_name.

5. If you do not want Silk Test Classic to display the status window it normally shows during playback when
driving the application to the specified base state—perhaps because the status bar obscures a critical
control in the application you are testing—uncheck the Show AppState status window check box.

6. Click Start Recording. Silk Test Classic:

• Closes the Record Test Case dialog box.
• Starts your application, if it was not already running.
• Removes the editor window from the display.
• Displays the Record Status on Classic Agent window.
• Waits for you to take further action.

7. Interact with your application, driving it to the state that you want to test.

As you interact with your application, Silk Test Classic records your interactions in the Test case code
field of the Record Test Case dialog box, which is not visible.

8. To review what you have recorded, click Done in the Record Status for Classic Agent window. Silk
Test Classic displays the Record Test Case dialog box, which contains the 4Test code that has been
recorded for you.

9. To resume recording your interactions, click Resume Recording in the dialog box. To temporarily
suspend recording, click Pause Recording on the Record Status for Classic Agent window.

10.Verify the test case.

Verifying a Test Case
This functionality is available only for projects or scripts that use the Classic Agent.

The cornerstone of an automated test is the verification stage, in which the test verifies that the state of the
application matches the expected (baseline) state. Using the recorder, you can record object-appropriate
verification of your application’s state, data, or appearance.

To record the verification stage:

Designing and Recording Test Cases with the Classic Agent | 153

1. Continue with these steps after you record a test case. Or, if you have previously recorded a verification
statement in an existing test case, choose Record > Actions to modify it.

2. Drive your application to the state that you want to verify and position the mouse cursor over the object.

3. Look at the Record Status window and make sure it is listing the object you want to verify. If so, press
Ctrl+Alt.

The Verify Window dialog box opens over your application window. The Window field, in the top-left
corner of the dialog box, displays the name of the object you were pointing at when you pressed Ctrl
+Alt. If the name in the Window field is incorrect, click Cancel to close the dialog box and return to the
application. Point to the object you want to verify and press Ctrl+Alt again.

4. If a script file is not the active window, Silk Test Classic prompts you for a file name. If prompted, specify
the name of either a new or an existing script file and click OK.

5. Choose to verify any of the following:

• Properties of an object.
• Appearance using a bitmap.
• An object's state using built-in verification methods or other methods in combination with the built-in

Verify function.

6. If you are writing a complete test case, record the cleanup stage and paste the test case into the script.
If you have added a verification statement to an existing test case, paste it into your script and close the
Record Actions dialog box.

Recording the Cleanup Stage and Pasting the
Recording
After performing the verification, continue to interact with your application. This is the cleanup stage. For
example, in the sample test case, cleanup means closing the document window without saving it.

1. When you have finished recording your test case or just want to see what you have recorded, click
Done on the Record Status on Classic Agent window. Silk Test Classic displays the Record Test
Case window again. The Test case code field contains your interactions written as 4Test code.

2. Review the code and take the following actions:

• All the information in the window is complete and what you want, then click Paste to Editor. Silk Test
Classic closes the Record Test Case dialog box and places the new test case in your script file.

• If the test case name is not what you want, then edit the name in the Test case name field.
• If the application state is not the one you want, then delete the code in the Test case code field,

select a new application state from the list box and click Resume Recording to re-record the test
case.

• If the test case is not finished, then click Resume Recording. The Record Status on Classic
Agent window is reopened. You can continue to record your interactions.

Note: When you paste a recorded test case, or other recorded actions, such as when you use
Record Actions, into a script, Silk Test Classic indents the code under a recording statement to
facilitate playback. For more information, see Recording Statement.

3. Click Paste to Editor.

If you have interacted with objects in your application that have not been identified in your include files,
the Update Files dialog box opens. Choosing Paste test case only, does not update any .inc files
while it pastes to the script with dynamically instantiated new objects. Update window declarations
and test case will create window declarations for new objects and use the new identifiers in the
resulting test case.

Note: If you edit the contents of the Recorder window, then you must allow Silk Test Classic to
update the window declarations. The Paste test case only option will be disabled.

154 | Designing and Recording Test Cases with the Classic Agent

4. Click File > Save to save the script file.

Testing the Ability of the Recovery System to Close the
Dialog Boxes of Your Application
Before you begin to design and record test cases, make sure that the built-in recovery system can close
representative dialog boxes of your application. Although the recovery system is robust enough to be able
to close almost any application window, some applications may have windows that close in an
unconventional fashion.

Here are the three types of dialog boxes you should test:

• A modal dialog box, which is a dialog box that locks you out of the rest of your application until you
dismiss it.

• A non-modal dialog box.
• A non-modal dialog box that causes the display of a confirmation dialog box.

To test the ability of the recovery system to close your the dialog boxes of your application:

1. Start Silk Test Classic.

2. If you have not already done so, record a test frame for your application.

3. Choose Options > Runtime to ensure that your application’s test frame file is listed in the Use Files
field in the Runtime Options dialog box.

4. Start your application and invoke a representative dialog box.

5. In Silk Test Classic, click Run > Application State.

6. On the Run Application State dialog box, select the DefaultBaseState application state and click
Run.

7. Silk Test Classic executes the DefaultBaseState routine, which should close the dialog box and any
open windows, then display a results file.

If the built-in recovery system cannot close one of the three representative dialog boxes, you need to
modify the recovery system so that it understands how to close the dialog box.

Linking to a Script and Test Case by Recording a Test
Case
1. Place the cursor at the end of a test description or a group description.

2. Choose Record > Testcase. Silk Test Classic prompts you to name a script file to contain the test case.
Silk Test Classic does not prompt you for a script file if there is a script defined at a higher level and
inherited by the test case you are recording. If that script exists, Silk Test Classic puts the test case in
that script.

3. If prompted, select an existing script from the list or enter the name of a new script in the File Name text
box, then click OK.

4. On the Record Testcase dialog box, type the name for the test case and optionally select an
application state to be run before the recording starts.

5. Click Start Recording. Silk Test Classic displays the Recording Status dialog box. The dialog box
flashes the word Recording for the duration of the session.

6. When you are finished recording the actions that comprise the test case, click Done in the Recording
Status dialog box.

7. On the Record Testcase dialog box, click Paste to Editor. Silk Test Classic closes the Record
Testcase dialog box and inserts the test case into the script file. It also adds the script and test case
statements to the test plan on a new line and indents them appropriately.

If the script file is inherited by the test case you are recording, only the testcase statement is pasted.

Designing and Recording Test Cases with the Classic Agent | 155

Saving a Script File
To save a script file, click File > Save. If it is a new file, Silk Test Classic prompts you for the file name and
location.

If you are working within a project, Silk Test Classic prompts you to add the file to the project. Click Yes if
you want to add the file to the open project, or No if you do not want to add this file to the project.

To save a new version of a script’s object file when the script file is in view-only mode, choose File > Save
Object File.

If you are working within a project, you can add the file to your project. If you add object files (.to, .ino)
to your project, the files will display under the Data node on the Files tab. You cannot modify object files
within the Silk Test Classic editor because object files are binary. To modify an object file, open the source
file (.t or .inc), edit it, and then recompile.

Recording an Application State
You can define an application state routine that Silk Test Classic runs before it executes your test case. You
have to create the application state before recording the test cases that are associated with the application
state. You can manually write an application state routine or you can use the Record Application State
dialog box to record an application state.

To record an application state:

1. Open the file in which you want to place the application state.

This can either be the test frame file for the application or the script file where the associated test cases
are defined.

If you put the application state in the test frame file, it will be available to all test cases. If you put it in the
script file, it will be available only to test cases in that script file.

2. Open the application that you want to test.

3. Click Record > Application State. If the current window is not a script or an include file, Silk Test
Classic prompts you to create a new include file.

4. Type the name of your new application state in the Application State Name text box.

The application state name must be less than 64 characters.

5. Select an application state from the Based On list box.

This specifies an existing application state on which the new application state is based. By default, the
last application state that you have specified in this field is selected.

6. If you are using the Classic Agent, you can check the Show AppState status window check box to
display a status window while Silk Test Classic is driving the application to the specified base state. If
the status window obscures critical controls in your application, you can suppress it by un-checking this
check box. By default, this check box is not checked.

7. Click Start Recording. Silk Test Classic closes the Record Application State dialog box and displays
one of the following:

• The Record Status for the Classic Agent window, if you are using the Classic Agent.
• The Recorder window, if you are using the Open Agent.

The Status field flashes Recording.

8. Drive your application to the state you want to record. At any point, you can record a verification by
pressing Ctrl+Alt.

9. When you have finished recording an application state, click Done on the Record Status window.

Silk Test Classic redisplays the Record Application State dialog box. The Application State Code
field contains the 4Test code that you have recorded. You can take the following actions:

156 | Designing and Recording Test Cases with the Classic Agent

All the information in the window is
complete and what you expect.

Click Paste to Editor to paste the recorded 4Test code to the
editor. Silk Test Classic closes the Record Application State
dialog box and places the new application state in your file.

You want to alter the code. Edit the Application State Code field.

The application state name is not
what you want.

Edit the name in the Application State Name field.

The application state on which this
application state is based is not the
one you want.

Delete the code in the Application State Code field, select a
new application state from the list, and click Resume
Recording to re-record the application state.

The application state routine is not
finished.

Click Resume Recording. Silk Test Classic opens the
Record Status window.

10.Click Set Recovery System to specify the base state for the application under test.

This button is only available when wMainWindow has not been set, for example if you have referenced
an include file that does not contain constwMainWindow = MyWin.

Testing an Application State
Before you run a test case that is associated with an application state, make sure the application state
compiles and runs without error.

1. Make the window active that contains the application state and choose Run > Application State.

2. On the Run Application State dialog box, select the application state you want to run and click Run.

If there are compilation errors, Silk Test Classic displays an error window. Fix the errors and rerun the
application state.

Recording Actions
Use the Record Actions dialog box to record the actions you perform to test an application. For example,
you can also use the dialog box to write a syntactically correct 4Test statement based on your manual
interaction with your application. This eliminates the need to search through the documentation for the
correct method and its arguments. Once the statement is recorded, click Paste to Editor to insert the
statement to your script.

This functionality is available only for projects or scripts that use the Classic Agent.

1. Click Record > Actions to open the Record Actions dialog box.

2. Perform the action that you want to record.

The dialog box displays the GUI object name when you point to an object. You can click Pause
Recording to review the object properties that you have recorded. When you click Resume Recording,
the status bar returns.

3. Press Ctrl+Alt to verify the action.

4. Click Paste to Editor and then click Close.

Recording the Location of an Object
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Record Window Locations dialog box to record the location of a graphical control, such as a
toolbar, in relation to the screen, the frame, and the client window.

Designing and Recording Test Cases with the Classic Agent | 157

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Pause/Resume
Tracking

Click Resume Tracking after pasting to the editor, when you are ready to
continue recording.

You can record the x, y locations of a graphical control, such as a toolbar. It can be useful to know the
position of certain objects, for example objects that are drawn, like tools on a toolbar, or drawing regions,
for example in a CAD/CAM package. A location is recorded relative to the screen, frame, and client
window.

To record the location of an object:

1. Click Record > Window Locations. The Record Window Locations dialog box appears.

2. Optional: Check the Keep on top check box to keep the Record Window Locations dialog box in the
foreground while you are moving the mouse cursor over the application under test.

This check box is checked by default.

3. Position the mouse cursor over the object, the location of which you want to record. The Record
Window Locations dialog box displays the name of the object and the following x,y coordinates:

• The Screen field displays the coordinates of the object in relation to the screen.
• The Frame field displays the coordinates of the object in relation to the frame, which is the main

window of the application under test, including the window decoration.
• The Client field displays the coordinates of the object in relation to the client, which is the main

window minus, excluding the window decoration.

For example, if the application under test covers the full screen, and the main window of the application
has no window decorations, the three coordinates are equal.

4. Press Ctrl+Alt to pause the recording.

5. Click the option button that corresponds to the coordinates that you want to record.

For example, to add the location of the object to an existing window declaration, click the Client option.

6. Click Paste to Editor to insert the relative location of your choice into the active Silk Test Classic editing
window. The location is inserted at the cursor position.

7. Click Copy to Clipboard to copy the location of the object named in the Location box to the clipboard.

You can click Edit > Paste in the Silk Test Classic menu to insert the code into the location of your
choice in the current editor window or even into a different window.

8. Optional: Click Resume Tracking to record another location.

9. Click Close.

Recording Window Identifiers
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Record Window Identifiers dialog box to record the fully qualified name of a GUI object in your
test application. You can then use this name as the identifier for the object in your scripts.

If you are recording a test that uses hierarchical object recognition You do not have to bring up your test
frame file to find the correct identifier for the object.

1. Click Record > Window Identifiers. The Record Window Identifiers dialog box appears.

2. Optional: Check the Keep on top check box to keep the Record Window Identifiers dialog box in the
foreground while you are moving the mouse cursor over the application under test.

By default, this is checked.

3. Position the cursor over the GUI object that you want to record.

The Window identifier field displays the name of the GUI object on which the mouse cursor is currently
located.

158 | Designing and Recording Test Cases with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

4. Press Ctrl+Alt to record the identifier of the object on which the mouse cursor is currently located.

Note: For any application that uses Ctrl+Shift as the shortcut key combination, press Ctrl
+Shift.

The recording pauses and the identifier displays in the Window identifier field.

5. Optional: Edit the window identifier.

For example, remove unnecessary attributes from the identifier.

6. Choose one of the following:

• Click Paste to Editor to paste the window identifier into the open file.
• Click Copy to Clipboard to copy the window identifier to the clipboard. You can click Edit > Paste in

the Silk Test Classic menu to paste the code into the location of your choice in the current window, or
even into a different window.

7. Optional: Click Resume Tracking to continue recording.

8. Click Close.

Recording a Scripted Class
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Record Class Scripted dialog box to record a new class declaration for an application that is
based on one of the following technology domains:

• Windows Forms
• Visual Basic
• Active X
• Java

Paste to Editor Click to paste the new class to the open include file.

1. Click Record > Class > Scripted. The Record Class Scripted dialog box appears. The Window field
displays the object declaration for the control on which the mouse cursor is currently positioned.

2. Move the mouse cursor over the object in your application under test for which you want to record a
class.

3. Press Ctrl+Alt to pause tracking. The methods and properties for the class are displayed in the
corresponding fields.

4. Type a name for the class into the Class name field. This is the new class for the object that is
displayed in the Window field.

5. Type a tag for the class into the Tag field. The new class is identified by this tag in any XPath locators.

6. Select a class from the Derived from list. The new class is derived from this class, for example
AnyWin.

7. Optional: Check the Show all classes check box to expose any ignored classes.

Note: Checking this check box might decrease performance. Keep this check box unchecked
unless it is explicitly needed.

8. Optional: Check the Show all methods check box to display all native methods with return or
parameter types that do not match 4Test methods in the Methods field.

These methods are shown with comments (//) in the method list. By default, this check box is
unchecked.

9. Optional: Check the Keep on top check box to keep the Record Class Scripted dialog box in the
foreground even when you are moving the mouse cursor over your application.

By default, this check box is checked.

Designing and Recording Test Cases with the Classic Agent | 159

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

10.Click Pause Tracking to pause tracking.

For example, pause tracking to paste the recorded class to the editor.

11.Click Resume Tracking to continue recording.

12.Click Copy to Clipboard to copy the new class to the clipboard. The Record Class dialog box is
cleared. When you have closed the Record Class Scripted dialog box, you can click Edit > Paste to
insert the code from the Clipboard into the location of your choice in the current window, or even into
another editor window.

13.Click Paste to Editor to paste the new class to the open include file.

Recording a Windows Accessibility Class
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Windows Accessibility dialog box to record classes for Microsoft applications that have the built-
in accessibility features enabled.

1. Click Record > Class > Accessibility. The Windows Accessibility dialog box appears. The name and
class of the Accessibility object are displayed in the corresponding fields.

2. Click on the Finder Tool icon and drag the mouse cursor over the object that you want to identify.

3. Optional: Type a new name for the Accessibility object into the Name field.

4. Optional: Type a new class for the Accessibility object into the Class field.

5. Click Add to add the class to the Accessibility classes that Silk Test Classic can identify. The new class
is saved in the accex.inc file and the Accessibility classes list displays the new class.

6. Click Remove to remove the selected class from the Accessibility classes list.

7. Click OK.

Recording a Defined Window
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can use the Record Defined Window dialog box to help Silk Test Classic recognize a window while
you are recording a test case.

1. Click Record > Defined Window. The Record Defined Window dialog box appears, unless there is an
error in the .inc file of your application under test.

2. Type a name for the window that you want to define into the Window Name field.

3. Click Draw Rectangle.

4. Click on a corner of the window that you want to record.

5. Drag the mouse cursor to the opposite corner of the window. Silk Test Classic draws a rectangle over
the window and displays the coordinates of the window in the Window Rectangle field. The
coordinates are displayed in relation to the main window of the application under test.

6. Click Accept.
7. Click OK to verify that the new window is saved to the correct file. The newly defined window is saved at

the end of the frame.inc file of the current project.

Recording Window Tags
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When Silk Test Classic cannot identify some objects in the application under test, you can use the Record
Window Tags dialog box to capture window tags for these objects.

160 | Designing and Recording Test Cases with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

1. In the Silk Test Classic menu, click Options > Agent > Compatibility.

2. Verify that the Add ‘Window Tags’ to the Record menu check box is checked.

3. Click OK.

4. Click Record > Window Tags. The Record Window Tags dialog box appears.

5. Optional: Check the Keep on top check box to keep the Record Window Tags dialog box in the
foreground even when you are moving the mouse cursor over the application under test.

This check box is checked by default.

6. Move the mouse cursor over the object for which you want to record the tag. The tag of the object, along
with the tags of any parent objects, displays in the Current tag field.

7. Click Ctrl+Alt.

8. Optional: Edit the Current tag in the field.

9. Optional: Click Show Detail to specify what information should be captured in the tag.

a) Specify the format for the tag.
b) Specifies what information should be included in the tag.

Parent and Class are included by default.

10.Perform one of the following tasks:

• Click Paste to Editor to paste the contents of the Current tag field to the current cursor position in
the active Silk Test Classic file.

• Click Copy to Clipboard to paste the contents of the Current tag field to the Clipboard. You can
then click Edit > Paste in the Silk Test Classic menu to insert the tag information into the location of
your choice in the current window, or even into a different editing window.

11.Optional: Click Resume Tracking to record another tag.

12.Click Close.

Record Status on Classic Agent Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The Record Status on Classic Agent dialog box indicates that you can begin recording an application
state, test case, or method, when the Status field flashes the word Recording.

 or Indicates the agent that your application state, test case, or method uses. Ensure that the
agent that you want to use is selected before you open the dialog box. If necessary, close
this dialog box, click the appropriate agent icon in the toolbar to change the agent, and
re-open the dialog box.

X name Displays the name of the application state, test case, or method that is being recorded.

Status Indicates that actions are being recorded.

Press Ctrl+Alt
to verify
window

Position the mouse over the GUI object you want to verify and press Ctrl+Alt to add a
verification statement. This will open the Verify Window dialog.

Pause/
Resume

Toggle to temporarily pause the recording of your interactions with your application, for
example, to leave your desk or begin another task, and then resume recording. Typically,
you use Pause to halt recording while you bring your application to the correct state
before beginning recording again. Typically, you use Resume after pasting your
recording into the editor.

Done Click to end recording when you have finished recording an application state/test case or
just want to see what you have recorded. When this button is clicked, Silk Test Classic

Designing and Recording Test Cases with the Classic Agent | 161

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

redisplays the Record Application State/Testcase dialog box. The Application State/
Testcase Code field contains all the 4Test code you have just recorded.

Verify Window Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use to verify that the state of a GUI object is the same as the baseline state that you expect. Access this
dialog box from the Record Status dialog box by pressing Ctrl+Alt.

Window Displays the name of the object you were pointing to when you pressed Ctrl+Alt.

OK Click to close the Verify Window dialog box and add a VerifyProperties method statement
to your script.

Cancel Click to close the Verify Window dialog box without adding a method statement to your script.

Property tab

Use the Property tab to record verification statements to verify one or more characteristics, or properties,
of an object.

Time to wait
for properties
(optional)

Enter the timeout in seconds. This value is the number of seconds to wait for the
expected value of the selected property to be achieved. If this value exists, it is passed to
the AnyWin.VerifyProperties() method as nTimeout.

Windows to
verify

Displays a list of the classes and identifiers for all the objects, which are also called
Windows, that were captured when you pressed Ctrl+Alt. A checked check box (left
margin) means that the object will be verified. By default, all objects are checked and the
first object is selected.

Property
value

Displays the value for the property that is selected in the Properties to verify box. The
value specified in this field is the value that you expect at runtime, that is the baseline
value. Depending on the property that is currently selected, you may be able to edit the
value directly in this field or click Edit, when available, to open the Verify Window Edit
dialog box.

Properties to
verify

Displays each property and its current value for the object selected in the Windows to
verify box. A checked check box means that the property will be verified. By default, the
properties of the selected property set, shown in the Property sets list box, are checked.

Edit Click to open the Verify Window Edit dialog box, where you can edit the value of the
property currently selected in the Properties to verify box. Not available for all
properties.

Check All Click to select all objects displayed in the Windows to verify box.

Uncheck All Click to clear all objects selected in the Windows to verify box.

Property sets Displays the predefined property sets and any property sets that you have defined.
Default is Values. When you select a property set, all properties in that property set are
selected in the Properties to verify box and all properties NOT in that set are cleared.
You can select only one property set at a time.

Define Click to open the Property Sets dialog box. Use this dialog box to define custom
verification property sets.

Bitmap tab

Use the Bitmap tab to compare the actual appearance of an image against a baseline image. Also use to
verify fonts, color charts, or custom objects. When comparing bitmaps keep the following in mind:

162 | Designing and Recording Test Cases with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• A bitmap comparison will fail if the image being verified does not have the same screen resolution,
color, window frame width, and window position as the baseline image.

• Capture the smallest possible region of the image so that your test is comparing only what is relevant.

Bitmap file
name

Displays the path of the bitmap file to be created. The default path is based on the
current directory and the default file name for the first bitmap is bitmap.bmp.

Browse Click to open the Verify Bitmap File Name dialog box. Use if you need help choosing a
new path or name.

Bitmap region
to verify

Allows you to select what region of the file you want to verify.

Note: If you select Entire window or Client area of window, the bitmap is
captured and you return to your application when you click OK. If you select
Portion of window, you will need to capture the bitmap.

Method tab

Use the Method tab to verify the state of a n object using built-in verification methods or other methods in
combination with the built-in Verify function.

Methods for x Lists the methods available for the selected class.

Include inherited If checked, all methods that the class inherits are displayed. By default, this is
unchecked.

Arguments area If the method, selected in the Methods for … box, takes arguments, boxes in which to
type the arguments to pass will be displayed to the right of the Methods list.

Verify Window Edit Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Verify Window Edit dialog box to edit the value of a property expected at runtime. This is not
available for all properties.

When verifying a control, click Edit on the Verify Window dialog box.

Record Actions Dialog Box
Use the Record Actions dialog box to record additional actions against the application under test into an
existing test.

Click Record > Actions.

Recorded
actions

Displays the 4Test code of the actions you have recorded. The code can be modified
after it is recorded.

Paste to Editor Click to close the Record Actions dialog box and to place the 4Test code, if any, in
the associated file.

Copy to
Clipboard

Click to copy the 4Test code from the Recorded actions box to the clipboard. The
Recorded actions box is cleared. Use Edit > Paste to insert the code into a different
editing window or to insert into the current window at the location of your choice.

If you edit the contents of the recorder window, then you must allow window
declarations to be updated. The Paste testcase only and Paste to Editor options will
be disabled.

Clear All Click to clear the contents of the Recorded actions box.

Designing and Recording Test Cases with the Classic Agent | 163

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Press Ctrl+Alt to
verify window

Press Ctrl+Alt to add a verification statement. Position the mouse over the GUI
object you want to verify and press these hotkeys to capture the objects properties
and open the Verify Window dialog box.

Keep on top When checked, the Record Actions dialog box is kept in the foreground even when
you are tracking the cursor over your application. By default, this check box is
checked.

Pause/Resume
Recording
toggle

Click to temporarily pause the recording of your interactions with your application.
Typically, you click Pause Recording to halt recording while you bring your application
to the correct state before beginning recording again. Typically, you click Resume
Tracking after pasting the actions into the editor. When you are ready to continue
recording, click Resume Tracking.

Close Click to close the Record Actions dialog box and bring the application into focus. If
you have not saved the recorded actions, you will be prompted to do so before the
dialog box is closed.

Record Testcase Dialog Box
Use the Record Testcase dialog box to record an entire test case, specifying the application state of your
choice and including verification statements.

To open the dialog box, click Record > Testcase in the Silk Test Classic menu.

Silk Test Classic will compile the currently active script file or test plan, if not already compiled, before
opening the Record Testcase dialog box. If the current window is not a script file or test plan, Silk Test
Classic prompts you to open a script file or create a new script file before opening the dialog box.

Testcase name Specifies the name of the test case you are going to record. Type the name of the test
case or accept the default. The test case name must be less than 128 characters.

Application
state

Specifies an application state on which this test case is based. Select an application
state from the list. The default is the last application state you specified in this field.

Testcase code Once you have completed recording the test case, this area displays the 4Test code
captured during recording.

Start Recording Click to close the dialog box. Silk Test Classic displays a message box indicating that
the base state is being set and displays one of the following:

• If you are using the Classic Agent, Silk Test Classic displays the Record Status for
the Classic Agent window.

• If you are using the Open Agent, Silk Test Classic displays the Recorder window.

Paste to Editor Click to close the dialog box and place the 4Test code, if any, in the associated file.

Set Recovery
System

Displays the Set Recovery System dialog box. This button is only available when
wMainWindow has not been set. For instance, if you have an include file referenced
that does not contain constwMainWindow = MyWin, then the button is available.
Once Silk Test Classic sees that wMainWin = Something, the button is disabled.

Windows Accessibilitys accex.ini File
The accex.ini file stores information about supported Microsoft Accessibility objects. You edit the
classes listed in the accex.ini file through the Windows Accessibility dialog box; do not edit this file
using any other mechanism. Any classes you add or remove from the Windows Accessibility dialog box
get added or removed from the [HookClass] section of the accex.ini file.

164 | Designing and Recording Test Cases with the Classic Agent

The default accex.ini file is installed by default in the <Silk Test installation directory>/
Extend/ directory. This file comes with several classes already loaded in the [HookClass] section:

• Microsoft Office 2003 dialog boxes (bosa_sdm_Microsoft Office Word 11.0)
• tabs in Internet Explorer 7.0 (DirectUIHWND)
• Microsoft Office menu bar (MsoCommandBar)
• Microsoft Office command bar pop-up dialogs (MsoCommandBarPopup)

The default accex.ini file is shown below. If your accex.ini file somehow gets corrupted or deleted,
copy the text below into a new file. Save the file as accex.ini and copy it to the <Silk Test
installation directory>/Extend/ directory.

Although the accex.ini file only mentions Accessibility 1.0, this file applies to Accessibility 1.0 and 2.0.

;***
;
; accex.ini
; Accessibility Extension
;
; <Copyright information>
;
;***

Extension Info]
Version = 1.0
Description = Accessibility 1.0 Testing Support
Help = accex.ht
PropSet = accex.ps
Modules = accex.dll
Inject = true

;***

[Debug]
LogToFile=false

[Options]

[HookClass]
bosa_sdm_Microsoft Office Word 11.0=true
DirectUIHWND=true
MsoCommandBar=true
MsoCommandBarPopup=true

[Recording]

Update Files Dialog Box
Use to indicate whether you want to update window declarations on the fly after you have finished
recording.

Click Paste to Editor on the Record dialog boxes if the recorder discovers new windows or child objects.
This dialog box gives you the option of using the generated identifiers or the dynamically instantiated
variables.

Paste testcase/appstate
only

Select this option to paste the dynamically instantiated variables to the test
case or appstate. If you select this option, the Update Window Declaration
Detail area is unavailable. If you have clicked the Set Recovery System
button on the Record Testcase dialog box or the Record Application State
dialog box, this button is disabled. If you have configured your basestate, Silk

Designing and Recording Test Cases with the Classic Agent | 165

Test Classic creates a main window declaration and saves it to a .inc file.
That means that this option is not available to you.

Paste testcase/appstate
and update window
declaration(s)

Select this option paste the variables to the test case or appstate AND to add
the generated identifiers to a new file or an opened file. If you select this
option, the Update Window Declaration Detail area is available.

Update Window
Declaration Detail area

This area may contain one or both of the following messages.

Input the file name to
store new window
objects

Indicate the name of the new file or the name of the referenced file (that is, a
file loaded into memory) to contain the window declarations. The file you
specify here is listed in the Use Files field on the Runtime Options dialog
box.

The window
declarations in the
following files will be
updated

If the recorder finds new child objects, Silk Test Classic lists the files that have
changed and updates them after you click OK.

Verification
This section describes how you can verify one or more characteristics, or properties, of an object.

Verifying Object Properties
You will perform most of your verifications using properties. When you verify the properties of an object, a
VerifyProperties method statement is added to your script. The VerifyProperties method verifies
the selected properties of an object and its children.

Each object has many characteristics, or properties. For example, dialog boxes can have the following
verification properties:

• Caption

• Children

• DefaultButton

• Enabled

• Focus

• Rect

• State

Caption is the text that displays in the title bar of the dialog box. Children is a list of all the objects
contained in the dialog box, DefaultButton is the button that is invoked when you press Enter, and so
on. In your test cases, you can verify the state of any of these properties.

You can also, in the same test case, verify properties of children of the selected object. For example, the
child objects in the Find dialog box, such as the text box FindWhat and the check box CaseSensitive,will
also be selected for verification.

By recording verification statements for the values of one or more of an object’s properties, you can
determine whether the state of the application is correct or in error when you run your test cases.

Verifying Object Properties (Classic Agent)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Record verification statements to verify the properties of an object.

166 | Designing and Recording Test Cases with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

1. Complete the steps in Verifying a Test Case.

2. Click the Properties tab and then choose the objects to verify. To verify all or most objects, click Check
All and then uncheck individual check boxes.

3. Choose the properties to verify in one of the following ways:

4. Click OK to close the Verify Window dialog box.

5. If you are writing a complete test case, record the cleanup stage and paste the test case into the script.
If you have added a verification statement to an existing test case, paste it into your script and close the
Record Actions dialog box.

Here are some points to note about the Property tab:

• The Windows to Verify list box (left) displays the class and the identifier of all the objects whose
properties have been captured. Indentation denotes the hierarchy. A checked check box (left margin)
means that the object will be verified. By default, all objects are checked and the first object is
selected.

• The Properties to Verify list box (right) displays each property of the selected object and its current
value. A checked check box (left margin) means that the property will be verified. By default, the
properties of the selected property set (shown in the Property Set list box) are checked.

• The Property Value field displays the value of the selected property. You can edit the value in this
field if it is not what you want to verify against. The value specified in this field is the value you expect
at runtime, that is, the baseline value.

Verifying an Object Using the Verify Function
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use this procedure to verify an object’s state using built-in verification methods or other methods in
combination with the built-in Verify function.

1. Complete the steps in Verifying a Test Case.

2. On the Verify Window dialog box, click the Method tab. Silk Test Classic lists the methods for the
selected class on the left.

3. Check the Include Inherited check box to see methods that the class inherits.

4. Select the method that will return the expected value and provide any needed arguments.

You can specify a built-in method or a user-defined method (as long as it returns a value).

5. Click OK.

6. Silk Test Classic returns you to the test application.

7. If you are writing a complete test case, record the cleanup stage and paste the test case into the script.
If you have added a verification statement to an existing test case, paste it into your script and close the
Record Actions dialog box.

8. In the editor, wrap the Verify function around the method that returns the expected value as follows:
Make the method call the first argument, specify the expected value as the second argument, and
provide an error message string optionally as the third argument.

For example, here is a test case that verifies that the text in the TextField Replace.FindWhat is
myText. It uses the built-in verification method VerifyValue.

testcase VerifyMethodTest ()
TextEditor.Search.Replace.Pick ()
Replace.FindWhat.VerifyValue
("myText")
Replace.Cancel.Click ()

Designing and Recording Test Cases with the Classic Agent | 167

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Verifying Object Attributes
This functionality is available only for projects or scripts that use the Classic Agent.

Each kind of GUI object in an application has a variety of characteristics, called attributes. For example, a
text box has the following attributes:

• Caret position, which is the current position of the text insertion cursor, in (line, column) format. For
example, a value of {1,1} means that the text insertion cursor is positioned on line 1, column 1.

• Enabled, which is the current enabled status of the text box, either true or false.
• Selected range, which is the beginning and ending position of the text string currently selected in

the field, in (line, column) format. For example a value of {1,12,1,16} means that the selected text begins
on line 1, column 12 and ends on line 1, column 16.

• Selected Text, which is the string that is currently selected, if any, in the text box.
• Text, which is the entire contents of the text box.

By recording verification statements for the values of one or more of an object’s attributes, you can
determine whether the state of the application is correct or in error when you run your test cases. That is:
did the feature you are testing have the expected result?

By selecting the Verify All Attributes check box, you can record a test that verifies the state, contents, and
value of a GUI object and any objects it contains. This is commonly called a smoke test or a Level 1 test. A
smoke test uses the VerifyEverything method to verify every aspect of a particular GUI object.

If you need to, you can define and add your own attributes to the built-in hierarchy of GUI classes.

Attributes have been essentially rendered obsolete and have been replaced by properties.

Verifying Attributes of an Object
This functionality is available only for projects or scripts that use the Classic Agent.

1. Click Options > Recorder. Uncheck the Verify Using Properties check box if necessary.
You will not be able to uncheck this check box if you have enabled enhanced support for Visual Basic; it
requires properties for verification.

2. Drive your application to the test state and press Ctrl+Alt. Silk Test Classic displays the Attribute tab
of the Verify Window dialog box. The list box on the left shows the attributes for the current object.

3. Select an attribute from the list box or check the Verify All Attributes check box. In the Attribute value
field Silk Test Classic displays the current value of the attribute (that is, the value that exists when you
are recording).
When verifying attributes during recording, the value size limit of the attribute is 256 characters. The
name size limit is 32 characters. The total attribute value/name pair limit size is 4K. If the length
exceeds 4K, the message Unable to Get Windows Properties is displayed.

4. If the current value of the attribute is not the value you want to test for at runtime, edit the Attribute
value field.
The value specified in this field is the value you expect at runtime, that is, the baseline value.

5. Click OK to accept the attribute and its value.

Silk Test Classic closes the Verify Window dialog box and displays the Record Status window. The
test case will verify that the object has the attribute value selected. If not, Silk Test Classic writes an
error to the results file. With the Verify Using Properties check box unchecked, the next time you go to
verify an object, the Verify Window dialog box will have an Attribute tab, instead of a Property tab.

Overview of Verifying Bitmaps
A bitmap is a picture of some portion of your application. Verifying a bitmap is usually only useful when the
actual appearance of an object needs to be verified to validate application correctness. For example, if you

168 | Designing and Recording Test Cases with the Classic Agent

are testing a drawing or CAD/CAM package, a test case might produce an illustration in a drawing region
that you want to compare to a baseline. Other possibilities include the verification of fonts, color charts, and
certain custom objects.

When comparing bitmaps, keep the following in mind:

• Bitmaps are not portable between GUIs. The format of a bitmap on a PC platform is .bmp.
• A bitmap comparison will fail if the image being verified does not have the same screen resolution,

color, window frame width, and window position when the test case is run on a different machine than
the one on which the baseline image was captured.

• Make sure that your test case sets the size of the application window to the same size it was when the
baseline bitmap was captured.

• Capture the smallest possible region of the image so that your test is comparing only what is relevant.
• If practical, do not include the window’s frame (border), since this may have different colors and/or fonts

in different environments.

Verifying Appearance Using a Bitmap
When you are using the Classic Agent, use this procedure to compare the actual appearance of an image
against a baseline image. Or, use it to verify fonts, color charts, or custom objects.

Note: To verify a bitmap when you are using the Open Agent, you can add the VerifyBitmap
method to your script. The VerifyBitmap method is supported for both agents.

1. Complete the steps in Verifying a Test Case.

2. On the Verify Window dialog box, click the Bitmap tab and then select the region to update: Entire
Window, Client Area of Window (that is, without scroll bar or title bar), or Portion of Window.

3. In the Bitmap File Name text box, type the full path of the bitmap file that will be created.

The default path is based on the current directory. The default file name for the first bitmap is
bitmap.bmp. Click Browse if you need help choosing a new path or name.

4. Click OK. If you selected Entire Window or Client Area of Window, Silk Test Classic captures the
bitmap and returns you to your test application. If you selected Portion of Window, position the cursor
at the desired location to begin capturing a bitmap. While you press and hold the mouse button, drag
the mouse to the screen location where you want to end the capture. Release the mouse button.

A bitmap comparison will fail if the image being verified does not have the same screen resolution,
color, window frame width, and window position as the baseline image.

Capture the smallest possible region of the image so that your test is comparing only what is relevant.

5. If you are writing a complete test case, record the cleanup stage and paste the test case into the script.
If you have added a verification statement to an existing test case, paste it into your script and close the
Record Actions dialog box.

Overview of Verifying an Objects State
Each class has a set of methods associated with it, including built-in verification methods. You can verify an
object’s state using one of these built-in verification methods or by using other methods in combination with
the built-in Verify function.

A class’s verification methods always begin with Verify. For example, a TextField has the following
verification methods; VerifyPosition, VerifySelRange, VerifySelText, and VerifyValue.

You can use the built-in Verify function to verify that two values are equal and generate an exception if
they are not. Typically, you use the Verify function to test something that does not map directly to a built-
in property or method. Verify has the following syntax:

Verify (aActual, aExpected [, sDesc])

Designing and Recording Test Cases with the Classic Agent | 169

aActual The value to verify. ANYTYPE.

aExpected The expected value. ANYTYPE.

sDesc Optional: A message describing the comparison. STRING.

Usually, the value to verify is obtained by calling a method for the object being verified; you can use any
method that returns a value.

Example: Verify an object

This example describes how you can verify the number of option buttons in the
Direction RadioList in the Replace dialog box of the Text Editor. There is no property
or method you can directly use to verify this. But there is a method for RadioList,
GetItemCount, which returns the number of option buttons. You can use the method
to provide the actual value, then specify the expected value in the script.

When doing the verification, position the mouse pointer over the RadioList and press
Ctrl+Alt. Click the Method tab in the Verify Window dialog box, and select the
GetItemCount method.

Click OK to close the Verify Window dialog box, and complete your test case. Paste it
into a script. You now have the following script:

testcase VerifyFuncTest ()
TextEditor.Search.Replace.Pick ()
Replace.Direction.GetItemCount ()
Replace.Cancel.Click ()

Now use the Verify function to complete the verification statement. Change the line:

Replace.Direction.GetItemCount ()

to

Verify (Replace.Direction.GetItemCount (), 2)

That is, the call to GetItemCount (which returns the number of option buttons)
becomes the first argument to Verify. The expected value, in this case, 2, becomes
the second argument.

Your completed script is:

testcase VerifyFuncTest ()
TextEditor.Search.Replace.Pick ()
Verify (Replace.Direction.GetItemCount (), 2)
Replace.Cancel.Click ()

Fuzzy Verification
There are situations when Silk Test Classic cannot see the full contents of a control, such as a text box,
because of the way that the application paints the control on the screen. For example, consider a text box
whose contents are wider than the display area. In some situations the application clips the text to fit the
display area before drawing it, meaning that Silk Test Classic only sees the contents that are visible; not the
entire contents.

Consequently, when you later do a VerifyProperties against this text box, it may fail inappropriately.
For example, the true contents of the text box might be 29 Pagoda Street, but only 29 Pagoda
displays. Depending on how exactly the test is created and run, the expected value might be 29 Pagoda
whereas the value seen at runtime might be 29 Pagoda Street, or vice versa. So the test would fail,
even though it should pass.

170 | Designing and Recording Test Cases with the Classic Agent

To work around this problem, you can use fuzzy verification, where the rules for when two strings match
are loosened. Using fuzzy verification, the expected and actual values do not have to exactly match. The
two values are considered to match when one of them is the same as the first or last part of the other one.
Specifically, VerifyProperties with fuzzy verification will pass whenever any of the following functions
would return TRUE, where actual is the actual value and expected is the expected value:

• MatchStr (actual + "*", expected)

• MatchStr ("*" + actual, expected)

• MatchStr (actual, expected + "*")

• MatchStr (actual, "*" + expected)

In string comparisons, * stands for any zero or more characters.

For example, all the following would pass if fuzzy verification is enabled:

Actual Value Expected Value

29 Pagoda 29 Pagoda Street

oda Street 29 Pagoda Street

29 Pagoda
Street

29 Pagoda

29 Pagoda
Street

oda Street

Enabling fuzzy verification

You enable fuzzy verification by using an optional second argument to VerifyProperties, which has
this prototype:

VerifyProperties (WINPROPTREE WinPropTree [,FUZZYVERIFY FuzzyVerifyWhich])

where the FUZZYVERIFY data type is defined as:

type FUZZYVERIFY is BOOLEAN, DATACLASS, LIST OF DATACLASS

So, for the optional FuzzyVerifyWhich argument you can either specify TRUE or FALSE, one class
name, or a list of class names.

FuzzyVerifyWhich value

FALSE
(default)

Fuzzy verification is disabled.

One class Fuzzy verification is enabled for all objects of that class.

Example window.VerifyProperties ({…},Table) enables fuzzy verification for all
tables in window (but no other object).

List of
classes

Fuzzy verification is enabled for all objects of each listed class.

Example window.VerifyProperties ({…}, {Table, TextField}) enables fuzzy
verification for all tables and text boxes in window (but no other object).

TRUE Fuzzy verification is enabled only for those objects whose FuzzyVerifyProperties
member is TRUE.

To set the FuzzyVerifyProperties member for an object, add the following line within
the object's declaration:

FUZZYVERIFY FuzzyVerifyProperties = TRUE

Designing and Recording Test Cases with the Classic Agent | 171

Example: If in the application's include file, the DeptDetails table has its
FuzzyVerifyProperties member set to TRUE:

window ChildWin EmpData
. . .
 Table DeptDetails
 FUZZYVERIFY FuzzyVerifyProperties = TRUE

And the test has this line:

EmpData.VerifyProperties ({...}, TRUE)

Then fuzzy verification is enabled for the DeptDetails table (and other objects in
EmpData that have FuzzyVerifyProperties set to TRUE), but no other object.

Fuzzy verification takes more time than standard verification, so only use it when necessary.

For more information, see the VerifyProperties method.

Defining your own verification properties

You can also define your own verification properties.

Verifying that a Window or Control is No Longer
Displayed
1. Click Record > Testcase to begin recording a test case and drive your application to the state you want

to verify. To record a verification statement in an existing test case, click Record > Actions.

2. When you are ready to record a verification statement, position the mouse cursor over the object you
want to verify, and press Ctrl+Alt. Silk Test Classic displays the Verify Window dialog box over your
application window.

3. Click the Property tab. Silk Test Classic lists the properties for the selected window or control on the
right.

4. Make sure that only the Exists property is selected for the window or control.

If additional properties are selected, the verification will fail because the actual list of properties will
differ from the expected list.

5. Change the value in the Property Value field from TRUE to FALSE.

6. Click OK to accept the Exists property for the selected window or control. Silk Test Classic closes the
Verify Window dialog box and displays the Record Status window. The test case will verify that the
window or control has the property value of FALSE, verifying that the object is no longer displayed. If
not, Silk Test Classic writes an error to the results file.

Data-Driven Test Cases
Data-driven test cases enable you to invoke the same test case multiple times, once for each data
combination stored in a data source. The data is passed to the test case as a parameter. You can think of a
data-driven test case as a template for a class of test cases. Data-driven test cases offer the following
benefits:

• They reduce redundancy in a test plan.
• Writing a single test case for a group of similar test cases makes it easier to maintain scripts.
• They are reusable; adding new tests only requires adding new data.

Regardless of the technique you use, the basic process for creating a data-driven test case is:

172 | Designing and Recording Test Cases with the Classic Agent

1. Create a standard test case. It will be very helpful to have a good idea of what you are going to test and
how to perform the verification.

2. Identify the data in the test case and the 4Test data types needed to store this data.
3. Modify the test case to use variables instead of hard data.
4. Modify the test case to specify input arguments to be used to pass in the data. Replace the hard coded

data in the test case with variables.
5. Call the test case and pass in the data, using one of four different techniques:

• Use a database and the Data Driven Workflow to run the test case. Micro Focus recommends
using this method for data-driven testing.

• Click Run > Testcase and type the data into the Run Testcase dialog box.
• In a QA Organizer test plan, insert the data as an attribute to a test description.
• If the data exists in an external file, write a function to read the file and use a main() function to run

the test case.

Data-Driven Workflow
You can use the Data Driven Workflow to create data-driven test cases that use data stored in databases.
The Data Driven Workflow generates much of the necessary code and guides you through the process of
creating a data-driven test case.

Before you can create and run data-driven test cases, you need to perform the following actions:

1. Record a standard test case.
2. Set up or identify the existing data source with the information you want to use to run the test.
3. Configure your Data Source Name (DSN), if you are not using the default, which is Silk DDA Excel.

Note: When you use the Data Driven Workflow, Silk Test Classic uses a well-defined record format.
To run data-driven test cases that were not created through the Data Driven Workflow, you need to
convert your recordings to the new record format. To run data-driven test cases that do not follow the
record format, run the tests outside of the Data Driven Workflow.

To enable or disable the Data Driven Workflow, click Workflows > Data Driven.

To create and execute a data-driven test case, sequentially click each icon in the workflow bar to perform
the corresponding procedure.

Action Description

Data Drive
Testcase

Select a test case to data drive. Silk Test Classic copies the selected test case and creates a
new data-driven test case by adding a "DD_" prefix to the original name of the test case. Silk
Test Classic also writes other data-driven information to the new or existing data driven script file
(.g.t file).

Find/Replace
Values

Find and replace values in the new test case with links to the data source.

Run Testcase Run the data-driven test case, optionally selecting the rows and tables in the data source that
you want to use.

Explore Results View test results.

Working with Data-Driven Test Cases
Consider the following when you are working with data-driven test cases:

Designing and Recording Test Cases with the Classic Agent | 173

• The 4Test Editor contains additional menu selections and toolbars for you to use.
• Silk Test Classic can data drive only one test case at a time.
• You cannot duplicate test case names. Data-driven test cases in the same script must have unique

names.
• The Classic 4Test editor is not available with data-driven test cases in .g.t files.
• You cannot create data-driven test cases from test cases in .inc files; you can only create data-driven

test cases from test cases in .t or .g.t files. However, you can open a project, add the *.inc, select
the test case from the test case folder of the project, and then select data drive.

• When you data drive a [use '<script>.t'] is added to the data-driven test case. This is the link to
the .t file where the test case originated. If you add a test case from another script file then another
use line pointing to that file is added. If the script file is in the same directory as the <script.g.t>,
then no path is given, otherwise, the absolute path is added to the use line. If this path changes, it is up
to you to correct the path; Silk Test Classic will not automatically update the path.

• When you open a .g.t file using File > Open, Silk Test Classic automatically loads the data source
information for that file. If you are in a .g.t file and that file’s data source is edited, click Edit > Data
Driven > Reload Database to refresh the information from the data source.

• If you add a new data-driven test case to an existing .g.t file that is fully collapsed, Silk Test Classic
expands the previous test case, but does not edit it.

Code Automatically Generated by Silk Test Classic
When you create a data-driven test case, Silk Test Classic verifies that the DSN configuration is correct by
connecting to the database, generates the 4Test code describing the DSN, and writes that information into
the data-driven script.

Do not delete or change the information created by Silk Test Classic. If you do, you may not be able to run
your data-driven test case.

When you click OK on the Specify Data Driven Testcase dialog box, Silk Test Classic automatically writes
the following information to the top of your data driven script file.

The information is delivered "rolled up" (collapsed); in order to see the details you need to click on the plus
sign to expand the code:

[+] // *** DATA DRIVEN ASSISTANT Section (!! DO NOT REMOVE !!) ***

The .inc files used by the original test cases, and the .t file indicating where the test case just came from, in
this case from Usability.t:

[] use "datadrivetc.inc"
[] use "Usability.t"

A reference to the DSN, specifying the connect string, including username and password, for example:

[] // *** DSN ***
[] STRING gsDSNConnect = "DSN=SILK DDA Excel;DBQ=C:\ddatesting
\TestExcel.xls;UID=;PWD=;"

Each data-driven test case takes as a single argument a record consisting of a record for each table that is
used in the test case. The record definition is automatically generated as shown here:

[+] // testcase VerifyProductDetails (REC_DATALIST_VerifyProductDetails rdVpd)
[] // Name: REC_<Testcase name>. Fields Types: Table record types. Field
Names: Table record
type with 'REC_' replaced by 'rec'
[-] type REC_DATALIST_VerifyProductDetails is record
 [] REC_Products recProducts
 [] REC_Customers recCustomers
 [] REC_CreditCards recCreditCards

174 | Designing and Recording Test Cases with the Classic Agent

Each table record contains the column names in the same order as in the database. Spaces in table and
column names are removed. Special characters such as $ are replaced by underscores.

[] // *** Global record for each Table ***
[]
[-] type REC_Products_ is record
 [] STRING Item //Item,
 [] REAL Index //Index,
 [] STRING Name //Name,
 [] REAL ItemNum //ItemNum,
 [] STRING Price //Price,
 [] STRING Desc //Desc,
 [] STRING Blurb //Blurb,
 [] REAL NumInStock //NumInStock,
 [] INTEGER QtyToOrder //QtyToOrder,
 [] INTEGER OnSale //OnSale,

Silk Test Classic writes a sample record for each table. This is the data used if you opt to use sample data
on the Run Testcase dialog box. A value from the original test case is inserted into the sample record,
even if there are syntax errors when that column is first used to replace a value.

[] // *** Global record containing sample data for each table ***
[] // *** Used when running a testcase with 'Use Sample Data from Script'
checked ***
[]
[-] REC_Products_ grTest_Products_ = {...}
 [] NULL // Item
 [] NULL // Index
 [] NULL // Name
 [] NULL // ItemNum
 [] NULL // Price
 [] NULL // Desc
 [] NULL // Blurb
 [] NULL // NumInStock
 [] 2 // QtyToOrder
 [] NULL // OnSale
[]
[] // *** End of DATA DRIVEN ASSISTANT Section ***

Tips And Tricks for Data-Driven Test Cases
There are several things to know about working with data sources while you are creating data-driven test
cases.

• You must have an existing data source with tables and columns defined before you data drive a test
case. However, the data source does not need to contain rows of data. You cannot use the Data Driven
Workflow to create data sources or databases.

• If you have a table in your data source that has a long name (greater than 25 characters), all of the
name may not be visible in the Find and Replace menu bar in the 4Test Editor. You may find it helpful
to change the size of the menu bar to display more of your table name.

• You cannot change to a different data source once you have started to find and replace values in a
script. If you do, you will have problems with prior replacements. If you want to change your data source,
you should create a new data-driven script file.

• If you are working with a data source that requires a user name and password, you can add the
username and password to the connect string in the .g.t file. The first example below shows how SQL
Server requires a userid and password. [] STRING gsDSNConnect =
"DSN=USER.SQL.DSN;UID=SA;PWD=sesame;" where UID=<your user ID> ("SA" in the example
above) and where PWD=<your password> ("sesame" in the example above). On the other hand, the
example below shows how the Connect string for a MS Excel DSN does not require user IDs or
passwords: [] STRING gsDSNConnect = "DSN=Silk DDA Excel;DBQ=C:
\TestExcel.xls;UID=;PWD="

Designing and Recording Test Cases with the Classic Agent | 175

• You can choose to run with a sample record if the table is empty; however, this record is not inserted
into the database. The sample record is created by Silk Test Classic when it replaces values from the
test case by the table and columns in your database.

• Real numbers should be stored as valid 4Test Real numbers with format: [-]ddd.ddd[e[-]ddd],
even though databases such as MS Excel allow a wider range of formats – for example, currencies and
fractions.

• There are no restrictions on how you name your tables and columns within your data source. Silk Test
Classic automatically removes spaces, and converts dollar signs and other special characters to
underscores when it creates the sample record and writes other code to your data-driven test case. Silk
Test Classic handles MS Excel and MS Access table names without putting quotation marks around
them. This means that your table and column names will look familiar when you go to find and replace
values.

• If you encounter the error "ODBC Excel Driver numeric field overflow" while running a test case, check
the Excel workbook that you are using as your data source. You may have some columns that are
defined as STRING columns but contain numeric values in some of the rows. If you have a column that
you want to treat as numeric strings rather than as numbers, either format the column as 'Text' or begin
the number strings with a single-quote character. For example: '1003 instead of: 1003

• If modifying data sources in an existing Excel data sheet, use the remove column option to delete any
data to be removed, as simply deleting from the cell, using clear contents, or copy/pasting content will
not register correctly with the DDS file in Silk Test Classic and may lead to a data source mismatch
error: *** Error: Incompatible types -- Number of list elements exceeds number
of fields.

Formatting MS Excel worksheets for use as a data source

Use the 'General' format for the columns of your worksheets. Here are specific suggestions for column
formats based on the intended data type of the column:

Intended Data
Type of
Column

Excel Column Format

STRING If the column contains only text, no numbers, dates or booleans, then apply the 'General' format. If
the column contains text and numbers, then you can still apply the 'General' format if you begin the
number strings with a single-quote character. For example: '1003 instead of: 1003. Otherwise,
apply the 'Text' format.

INTEGER or
REAL

‘General' or 'Number' format.

BOOLEAN ‘General' format. Use only the values TRUE and FALSE.

DATETIME ‘Custom' format: yyyy-mm-dd hh:mm:ss. That agrees with the ISO format used by Silk Test Classic
DATETIME values.

Testing an Application with Invalid Data
This topic assumes that you are familiar with data driving test cases.

To thoroughly test an application feature, you need to test the feature with invalid as well as valid data.

For example, the sample Text Editor application displays a message box if a user specifies a search string
in the Find dialog box that doesn’t exist in the document. To account for this, you can create a data-driven
test case, like the following, that verifies that the message box displays and has the correct message:

type SEARCHINFO is record
 STRING sText // Text to type in document window
 STRING sPos // Starting position of search
 STRING sPattern // String to look for
 BOOLEAN bCase // Case-sensitive or not
 STRING sDirection // Direction of search

176 | Designing and Recording Test Cases with the Classic Agent

 STRING sExpected // The expected match
 STRING sMessage // The expected message in message box

testcase FindInvalidData (SEARCHINFO Data)
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()
 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()

 MessageBox.Message.VerifyValue (Data.sMessage)
 MessageBox.OK.Click ()

 Find.Cancel.Click ()
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

The VerifyValue method call in this test case verifies that the message box contains the correct string.
For example, the message should be Cannot find Ca if the user enters Ca into the Find dialog box and
the document editing area does not contain this string.

Enabling and Disabling Workflow Bars
Only one workflow bar can be enabled at a time.

To enable or disable a workflow bar, click Workflows and then select the workflow bar that you want to turn
on or off. For example, click Workflows > Basic.

You can select one of the following workflows:

Workflow Description

Basic workflow Guides you through the process of creating a test case.

Data Driven workflow Guides you through the process of creating a data-driven test case.

Data Source for Data-Driven Test Cases
When you install Silk Test Classic, the SILK DDA EXCEL DSN is copied to your installation computer. This
is the default DSN that Silk Test Classic uses. This DSN uses a MS Excel 8.0 driver and does not have a
particular workbook (.xls file) associated with it.

The Select Data Source dialog box allows you to choose the data source:

• For new data-driven test cases, choose Silk DDA Excel.
• For backward compatibility, choose Segue DDA Excel. This allows existing .g.t files that reference

Segue DDA Excel to continue to run.

You do not have to use the default DSN. For additional information when using a different DSN, see
Configuring Your DSN.

You may use any of the following types of data sources:

• Text files and comma separated value files (*.txt and *.csv files)
• Microsoft Excel
• Microsoft SQL Server
• Microsoft Access
• Oracle
• Sybase SQL Anywhere

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Designing and Recording Test Cases with the Classic Agent | 177

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

Configuring Your DSN
The default DSN for data-driven test cases, Silk DDA Excel, is created during the installation of Silk Test
Classic. To use the default DSN you do not need to configure your DSN.

The Select Data Source dialog box allows you to choose the data source:
• For new data-driven test cases, choose Silk DDA Excel.
• For backward compatibility, choose Segue DDA Excel. This allows existing .g.t files that reference

Segue DDA Excel to continue to run.
The following instructions show how to configure a machine to use a different DSN than the Silk DDA Excel
default.
1. Click Start > Control Panel > System and Security > Administrative Tools > Data Sources (ODBC).
2. On the ODBC Data Source Administrator, click either the System DSN tab or the User DSN tab,

depending on whether you want to configure this DSN for one user or for every user on this machine.
3. Click Add.
4. On the Create New Data Source dialog box, select the driver for the data source and click Finish.

To restore the default DSN for Silk Test Classic, select the driver for Microsoft Excel Driver (*.xls).
5. On the setup dialog box of the data source, enter a name for the data source.

To restore the default for Silk Test Classic, enter Silk DDA Excel. For additional information about
the dialog box, refer to the database documentation or contact your database administrator.

6. Click OK.

Setting Up a Data Source
Before you can run a data-driven test case you must set up a file that contains the tables, which are called
worksheets in Microsoft Excel (Excel), and the columns that you want to use. The tables do not have to be
populated with data, but it might help to have at least one complete record filled out.
1. Open one of the data sources for data-driven test cases, for example Excel.
2. Name at least one table, or worksheet if you are using Excel, and create column names for the table.
3. Save the data source.

Example

The Excel file TestExcel.xls can be used as a data source for a data-driven test
case and includes the three worksheets Products, Customers, and CreditCards. The
Customers worksheet includes the columns Customer, Name, Address, and so on.

178 | Designing and Recording Test Cases with the Classic Agent

Using an Oracle DSN to Data Drive a Test Case
To use an Oracle DSN to data drive a test case, select the test case to data drive, let Silk Test Classic
generate code into the new test case file, and then make the following manual modifications to the DSN:

1. Find out which columns are included in the table of your schema.

Different schemas may contain tables with the same name. The table lists for the Find/Replace Values
dialog box, the re-sizable menu bar, and the Specify Rows dialog box will list the same table name
once for each schema without indicating the schema. For each of those list items the column list will
contain the names of the columns in all of the tables with that name.

2. After finding and replacing values, split each table record into separate records according to the
schema. Do that for the sample record as well.

The record names should have the form: <Record prefix><schema>_<table>. For example, if the
schema is STUser and the table is Customers, the name of the table record type will be
REC_STUser_Customers and the declaration for the field in the test case record for the table will be
REC_STUser_Customers recSTUser_Customers // Customers.

3. Run the test case from a test plan, unless you are running all rows for all tables. Use the Specify Rows
dialog box to build the ddatestdata value, then modify that value to include the schema name in the
query.

Note: Specify a query for every table, even if you want to run all rows for a table. To run all rows,
leave the where clause blank.

Creating the Data-Driven Test Case
This section describes how you can create a data-driven test case.

Selecting a Test Case to Data Drive
For information on the steps that you need to complete before you can select a test case to data drive, see
Data-Driven Workflow.

While you are in a script, choose one of the following to select a test case for data driving:

• Click Tools > Data Drive Testcase.
• Right-click into the script and select Data Drive Testcase.

When you select a test case, Silk Test Classic copies the selected test case and creates a new data-driven
test case by adding a DD_ prefix to the original name of the test case. Silk Test Classic also writes other
data-driven information to the new or existing data-driven script file script.g.t.

Finding and Replacing Values
For information on the steps that you need to complete before you can find and replace values in a test
case, see Data-Driven Workflow.

You can use the Find/Replace Values dialog box to find and replace values in a data-driven test case with
links to values in tables and columns. Values are text strings, numbers, and booleans that exist in your
original test cases. One of the steps in creating a data-driven test case is to find these values and replace
them with references to columns in your data source.

Silk Test Classic checks to make sure that each value you select is appropriate for replacement by the
column in your test case. You can turn off this validation by clicking Edit > Data Driven > Validate
Replacements while you are in a .g.t file. This means that the Find aspect of Find and Replace works
as usual, but that the values that you replace are not validated. By turning off this checking, you suppress
the error messages that Silk Test Classic would have otherwise displayed. Any 4Test identifier or fragment
of a string is considered an invalid value for replacement unless Validate Replacements is turned off. If
you are new to creating data-driven test cases, we recommend that you keep this validation turned on.

Designing and Recording Test Cases with the Classic Agent | 179

Note: You can also use the Find and Replace menu bar in the 4Test Editor to find and replace
values in a data-driven test case.

When you are using Find and Replace, sometimes a method requires a data type that does not match the
column that you want to replace. For example, SetText requires a string, but you may want to set a
number instead, or perhaps the database does not store data in the 4Test type that you would like to use.
Silk Test Classic can handle these kinds of conversions, with a few exceptions.

1. Open the Find/Replace Values dialog box.

• Right-click into a test case in a .t file and select Data Driven Testcase. Specify the data source,
the data-driven script, and the data-driven test case. When you complete the Specify Data Driven
Testcase dialog box and the data-driven script opens in the 4Test Editor, the Find/Replace Values
dialog box opens automatically.

• Highlight a value in a .g.t file and choose Edit > Data Driven > Find/Replace Values.
• Right-click a value in a .g.t file and select Find > Replace Values.

2. Check the Text, Number, and True/False check boxes to specify what type of values you want to find
or replace.

By default all check boxes are checked, indicating that Silk Test Classic will look for text (string),
number, and true/false (boolean) values in the test case.

3. Select Up or Down to define the direction in which Silk Test Classic searches in the file for the value.
The default is Down.

4. Select the name of the table that contains the values that you want to link to from the Table list.

5. Select the name of the column that contains the values that you want to link to from the Column list.

6. Click Find Next to start searching for the values within the test case. Silk Test Classic finds and
highlights various values.

7. Click Replace to replace the found value with a link to the values in the data source.

8. When you have finished replacing values, click Cancel.

Check the Don't show me this again check box if you want to use the re-sizable menu bars instead of the
Find/Replace Values dialog box to find and replace values. You can re-display the dialog box by clicking
Edit > Data Driven > Find/Replace Values or by right-clicking into a data-driven test case and un-
checking Validate Replacements.

Rules and Tips for Finding and Replacing Values in the Data-Driven
Workflow

Rules for finding and replacing

The following table shows how Silk Test Classic works when it finds and replaces values in your scripts.

Value Found in Script Database Column Type Replaced by Tip

STRING STRING Column

INTEGER Str(Column) 5

REAL Str(Column,NULL,2) 1, 3, 4, 5

BOOLEAN Str(Column) 8

DATETIME [STRING]Column 7

INTEGER STRING Val(Column)

INTEGER Column

REAL Column 1, 6

180 | Designing and Recording Test Cases with the Classic Agent

Value Found in Script Database Column Type Replaced by Tip

BOOLEAN (not allowed)

DATETIME (not allowed)

REAL STRING Val(Column)

INTEGER Column 6

REAL Column

BOOLEAN (not allowed)

DATETIME (not allowed)

BOOLEAN STRING (not allowed)

INTEGER Column 2, 6

REAL (not allowed)

BOOLEAN Column

DATETIME (not allowed)

DATETIME 7

Tips for finding and replacing values

When you are creating a data-driven test case, there are several points to note about the find and replace
process. These notes are referenced by the Rules for finding and replacing table, shown above.

• MS Excel stores integers as REALs. This means that you may see a 1 in an MS Excel cell, but the
number that is stored is actually 1.000. Whenever you replace an integer in a test case with a column
designated as REAL, Silk Test Classic displays a question similar to the following: To ensure that Silk
Test Classic handles your data properly, additional information is needed: Will column QtyToOrder
contain only INTEGER (no decimal point) values? Click Yes to treat that column's values as INTEGER;
click No to continue to treat that column's values as REAL.

• Some databases (such as MS Excel) store booleans as INTEGERs. This means that you may see a
TRUE in an Excel cell, but the value that is stored is actually 1. Whenever you replace a boolean in a
test case with a column designated as INTEGER , Silk Test Classic displays a question similar to the
following: To ensure that Silk Test Classic handles your data properly, additional information is needed:
Will column OnSale contain only BOOLEAN (TRUE/FALSE) values? Click Yes to treat that column's
values as BOOLEAN; click No to continue to treat that column's values as INTEGER.

• If you have a currency string, we recommend that you split it into two strings separated by a plus sign.
The first string should contain just the financial symbol (for example, the dollar sign or USD acronym)
and the second string should contain just the number value. When you do a find and replace, this lets
you replace only the number value, not the financial symbol or acronym. For example, do not use
$123.45, instead use $ + 123.45

• When a STRING literal is replaced by a column containing REAL values, the real number is rounded to
two decimal places. To change the number of decimal places that are displayed, change the value of
iDecimal in Str (table.column, NULL, iDecimal). For example, to display 7.1234 instead of 7.12, change:

Str (table.column, NULL, 2)

to:

Str (table.column, NULL,4)

• You can replace any STRING value with a REAL or INTEGER column. However, in order to have a
working sample record, the value that is first replaced by that column should be a STRING
representation of a REAL or INTEGER constant.

Designing and Recording Test Cases with the Classic Agent | 181

• In certain cases, 4Test implicitly converts one data type to another. In that case, Silk Test Classic does
not insert a conversion expression when replacing the value by the DB column reference..

• To represent a DATETIME value, in other words a 4Test DATETIME constant, you must create a
STRING that specifies the date and time in the standard 4Test DATETIME (ISO) format - YYYY-MM-DD
HH:MM:SS.MSMSMS. You can truncate the string at any point, as long as the last field is complete. If
you use a different format, you will cause a runtime error. Because DATETIME values found in a script
are actually STRING values, the replacement rules are the rules for STRING values.

• The conversion from STRING to BOOLEAN will cause a runtime error. The expression must be
changed manually from 'Str(Column)' to: [STRING]Column.

• A fraction is considered an INTEGER division expression, so the value inserted into the sample record
is truncated to the next lowest integer.

• If Silk Test Classic does not insert any of the expected conversion expressions, then the Validate
Replacements setting is probably unchecked. Click Edit > Data Driven > Validate Replacements to
see how Validate Replacements is set.

• When you do a Find/Replace, Silk Test Classic skips values contained in variable definitions. To find
those values, click Edit > Data Driven > Validate Replacements to turn off Validate Replacements.
We recommend that you initialize variables after you define them; be sure to separate the variable
definition and assignment on two different lines.

Running a Data-Driven Test Case
Once you have selected a test case to data drive, and found and replaced values, choose one of the
following ways to run the test case:

• Click Run > Run while in a .g.t file. This command runs main(), or if there is no main(), the
command runs all test cases. For each test case, this command runs all rows for all tables used by the
test case.

• Click Run > Testcase and select the data-driven test case from the list of test cases on the Run
Testcase dialog box, for all tables used by the test case.

• Click Run > Testcase > Run to run the test case for all rows for all tables used by the test case.

Running a Test Case Using a Sample Record for Each Table Used by
the Data-Driven Test Case
This is useful if you want to do a quick test or are not connected to your data source. The sample record is
created as you replace values in the test case. When you first use a column to replace a test case value,
that value is inserted into the table record in the field for that column.

1. On the Run Testcase dialog box, click Use Sample Data from Script.

By default, Silk Test Classic runs every combination of rows in your tables. The number of test cases
that runs is:

of rows selected for Table 1 X the # of rows selected for
Table 2 X the number of rows for Table 3
... and so on

For example, if your test case uses 3 tables with 5 rows each, Silk Test Classic will run 125 test cases.

2. To select the rows you want to run on a table-by-table basis, click Specify Rows on the Run Testcase
dialog box to use the Specify Rows dialog box to create a query.

3. Specify arguments, if necessary, in the Arguments text box. Remember to separate multiple arguments
with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

182 | Designing and Recording Test Cases with the Classic Agent

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. To view results using the Silk TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

Passing Data to a Test Case
Once you have defined your data-driven test case, you pass data to it, as follows:

• If you are not using the test plan editor, you pass data from a script's main function.
• If you are using the test plan editor, you embed the data in the test plan and the test plan editor passes

the data when you run the test plan.

Example Setup for Forward Case-Sensitive Search
Here is a sample application state that performs the setup for all forward case-sensitive searches in the
Find dialog box:

appstate Setup () basedon DefaultBaseState
TextEditor.File.New.Pick ()
DocumentWindow.Document.TypeKeys ("Test Case<Home>")
TextEditor.Search.Find.Pick ()
Find.CaseSensitive.Check ()
Find.Direction.Select ("Down")

Building Queries
Before you define a query to access certain data in a data-driven test case, there are several steps you
need to complete. for additional information, see Using the Data Driven Workflow for more information.

Respond to the prompts on the Specify Rows dialog box to create a query for a table. The following are
examples of simple queries:

• To find and run the records of customers whose customer ID number is 1001: (CUSTID = 1001)
• To find and run the records of customers whose names begin with the letters "F" or "G": (CUST_NAME

LIKE ‘F%’) OR (CUSTNAME LIKE ‘G%’).

See the description of the enter values area in the Specify Rows dialog box to see examples of more
complex queries.

Adding a Data-Driven Test Case to a Test Plan
You can run a data-driven test case from a test plan as either a data-driven test case or as a regular test
case. To distinguish between the two cases, there are two keywords for you to use:

• ddatestcase specifies the name of a test case that runs as a data-driven test case.
• ddatestdata specifies the list of rows that will be run with the data-driven test case.

If the test case is specified with the keyword ddatestcase, it is run as a data-driven test case. Use this
keyword only with data-driven test cases.

Designing and Recording Test Cases with the Classic Agent | 183

To specify a data-driven test case in a test plan

• Add keyword ddatestcase in front of the test case name.
• Add the keyword ddatestdata as a list of queries that specify the particular rows you want the test case

to run with. The list of queries is represented as a single LIST OF STRING parameter.

Rules for using data-driven keywords

• The ddatestdata keyword requires simple select queries. To specify the row you want to run a test case
with, use the ddatestdata keyword with the format: select * from <table> where

• The keyword ddatestcase cannot be a level above the script file and still work. The script file has to be
at the same level or above it.

• A test plan needs to specify a test case using either the keyword testcase or the keyword ddatestcase.
Using both causes a compiler error.

• If the ddatestdata keyword is present, then the ddatestcase is run using the ddatestdata value as the
rows to run.

• The default is to run all rows for all tables. The value for ddatestdata for this is
ALL_ROWS_FOR_ALL_TABLES.

• Using the keyword testdata in a test item with keyword ddatestcase will cause a compiler error.
• If the test case is specified with the keyword testcase, then the test case is run as a regular test case

and the testdata keyword or symbols must be present to specify the value that will be passed as the
regular argument. This value must be a record of the type defined for the ddatestcase, in other words of
type REC_DATALIST_<Testcase name>.

You can add a data-driven test case to a test plan by using the Testplan Detail dialog box or by editing the
test plan directly. However, if you edit the test plan directly, then the keywords are not automatically
validated and it is your responsibility to make sure that the keywords, which are testcase versus
ddatestcase and testdata versus ddatestdata, are appropriate for the intended execution of the test case.

Whenever you use the Test Detail dialog box, be sure to click the Testcases button and select the test
case from the list. That will ensure that the proper keywords are inserted into the test plan.

Using sample records data within test plans

To run a test case with the sample record within a test plan, you must manually input the test data, in the
format ddatestdata: {"USE_SAMPLE_RECORD_<tablename>"}

For example:

script: example.t
ddatestcase: sampletc
ddatestdata: {"USE_SAMPLE_RECORD_SpaceTable$"}

You must put the USE_SAMPLE_RECORD_ prefix in front of each table name that you want to run against. If
you are using two tables, you need to input the prefix twice, as shown below with two tables named
"Table1" and "Table2":

ddatestdata: {"USE_SAMPLE_RECORD_Table1","USE_SAMPLE_RECORD_Table2"}

Using a main Function in the Script
Although most of the script files you create contain only test cases, in some instances you need to add a
function named main to your script. You can use the main function to pass data to test cases as well as
control the order in which the test cases in the script are executed.

When you run a script file by clicking Run > Run:

• If the script file contains a main function, the main function is executed, then execution stops. Only test
cases and functions called by main will be executed, in the order in which they are specified in main.

• If the script does not contain a main function, the test cases are executed from top to bottom.

184 | Designing and Recording Test Cases with the Classic Agent

Example

The following template shows the structure of a script that contains a main function that passes data to a
data-driven test case:

main ()
// 1. Declare a variable to hold current record
// 2. Store all data for test case in a list of records
// 3. Call the test case once for each record in the list

Using this structure, the following example shows how to create a script that defines data records and then
calls the sample test case once for each record in the list:

type SEARCHINFO is record
 STRING sText // Text to type in document window
 STRING sPos // Starting position of search
 STRING sPattern // String to look for
 BOOLEAN bCase // Case-sensitive or not
 STRING sDirection // Direction of search
 STRING sExpected // The expected match

main ()
 SEARCHINFO Data
 list of SEARCHINFO lsData = {...}
 {"Test Case", "<END>", "C", TRUE, "Up", "C"}
 {"Test Case", "<END>", "Ca", TRUE, "Up", "Ca"}
 // additional data records can be added here
 for each Data in lsData
 FindTest (Data)

testcase FindTest (SEARCHINFO Data)
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()
 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()
 Find.Cancel.Click ()
 DocumentWindow.Document.VerifySelText ({Data.sExpected})
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

When you click Run > Run, the main function is called and the FindTest test case will be executed once
for every instance of Data in lsData (the list of SEARCHINFO records). In the script shown above, the test
case will be run twice. Here is the results file that is produced:

Script findtest.t - Passed
Passed: 2 tests (100%)
Failed: 0 tests (0%)
Totals: 2 tests, 0 errors, 0 warnings

Testcase FindTest ({"Test Case", "<END>", "C", TRUE, "Up", "C"}) - Passed
Testcase FindTest ({"Test Case", "<END>", "Ca", TRUE, "Up", "Ca"}) - Passed

Note: With data-driven test cases, Silk Test Classic records the parameters that are passed in, in the
results file.

In this sample data-driven test case, the test case data is stored in a list within the script itself. It is also
possible to store the data externally and read records into a list using the FileReadValue function.

Using do...except to Handle an Exception
The VerifyValue method, like all 4Test verification methods, raises an exception if the actual value does
not match the expected (baseline) value. When this happens, Silk Test Classic halts the execution of the

Designing and Recording Test Cases with the Classic Agent | 185

test case and transfers control to the recovery system. The recovery system then returns the application to
the base state.

However, suppose you don’t want Silk Test Classic to transfer control to the recovery system, but instead
want to trap the exception and handle it yourself. For example, you might want to log the error and continue
executing the test case. To do this, you can use the 4Test do...except statement and related
statements, which allow you to handle the exception yourself.

Select Data Source Dialog Box
The Select Data Source dialog box displays when you are creating a new data-driven file, which is a .g.t
file, or opening an existing data-driven file that does not contain a data source connection string. This
dialog box identifies the data source you will use to replace values in the data-driven test case. After you fill
out this dialog box, Silk Test Classic loads the table and column information from your data source so it is
available for you to use when you find and replace values in a test case. A data-driven script can use only
one data source.

Select Data
Source

Defaults to the previously specified DSN or to Silk DDA Excel. Select another data
source by clicking the down arrow.

The Select Data Source dialog box allows you to choose either the Silk DDA Excel or
the Segue DDA Excel data source. For new data-driven test cases, choose the Silk
DDA Excel data source. Choose the Segue DDA Excel data source for backward
compatibility. This allows existing g.t files that reference Segue DDA Excel to continue
to run.

Select
Workbook/
Connection
String area

Select Workbook displays when you have selected the default data source, Segue
DDA Excel. Connection String displays when you choose a data source other than the
default. If you are working with Silk DDA Excel you must select a workbook. Click
Browse to navigate to the workbook you will use.

OK Saves the connection string so that it can be inserted into the data-driven script. The
connection string is also saved to partner.ini so that this data source will be the
new default selection for the list. If you are using the Silk DDA Excel data source, this
button is only available after you select a workbook.

Customize Displays when you select a data source other than the default. Click to display the
Setup Data Driven Script DSN dialog box.

Setup Data Driven Script DSN Dialog Box
Use to create or modify the connection string for the DSN you select. Once you fill out this dialog, Silk Test
Classic verifies that the DSN configuration is correct by connecting to the database, generating the 4Test
code describing the DSN, and writing information into the data driven script.

Click Customize on the Select Data Source dialog box.

Source
Provider

Select Microsoft OLE DB Provider for ODBC, since Silk Test Classic uses ODBC to
connect to data sources.

Microsoft OLE
DB Provider
for ODBC

Select Connect Using Data Source Name (DSN).

Connection
Information

DSN Select the data source that you selected on the Select
Data Source dialog box.

The rest of the connection information displays
information that the DSN requires before it can

186 | Designing and Recording Test Cases with the Classic Agent

successfully make a connection. This information varies
depending on the DSN you select. For more information
about how to respond to the fields on this dialog, consult
your database documentation or contact your database
administrator.

More> Click to display the connection string.

If you choose an MS Excel DSN and use the Database field to specify a workbook, then the Connection
String will incorrectly contain Database=<.xls file>. To correct this problem, cut the .xls file path out
of the Database field and paste it into the Additional Connection String Parameters field, preceded by
DBQ=. For example, DBQ=C:\TestExcel.xls.

Specify Data Driven Script Dialog Box
You can use the Specify Data Driven Script dialog box to perform one ore more of the following actions:

• To create a new data-driven script.
• To overwrite an existing data-driven script.
• To open an existing data-driven script and to append a test case to the script.

To open the Specify Data Driven Script dialog box, click Tools > Data Drive Testcase in the Silk Test
Classic menu, and select a test case from the Select Testcase dialog box.

Note: The dialog box is available only when a script is open in the editor.

The dialog box includes the following elements:

Create a new file/
Overwrite an
existing file

Click to create a new file or to overwrite the existing file that is specified in the
Filename field. Silk Test Classic automatically adds the .g.t extension to the file
name. You cannot overwrite existing files which are open in the editor.

Open an existing file Click to open the existing file that is specified in the Filename field.

Filename Type the name of the new file you want to create or the existing file you want to
open or overwrite.

Browse Click to navigate to the existing file you want to open or overwrite.

Save as format You can select one of the following file formats:

• ANSI
• Unicode
• UTF-8

Specify Data Driven Testcase Dialog Box
Use this dialog box to add a new data-driven test case or to overwrite existing test case(s).

Specify a data driven script file and, if prompted, a data source.

Add new Data
Driven testcase

Click to create a new data driven test case. This new test case is appended to the end
of the file and given the "DD_" prefix.

Overwrite
existing Data
Driven testcase

Click to overwrite an existing data driven test case.

Designing and Recording Test Cases with the Classic Agent | 187

Name Defaults to DD_<name of original testcase> when you are adding a new data
driven test case. If you opt to overwrite an existing data-driven test case, this field
turns into a list of data-driven test cases that already exist in the active file.

Test case names can have a maximum of 127 characters. When you create a data-
driven test case, Silk Test Classic truncates any test case name that is greater than
124 characters.

Specify Rows Dialog Box
Use to select rows to run the test case against. You use this dialog box to build queries that run against
your data-driven test case.

Click Specify Rows on the Run Testcase dialog box or the Testplan Detail dialog box.

You cannot run using the sample record for individual tables. In order to run using the sample records for
each table used by the test case, for example to do a quick test or if you are not connected to the database,
click Use Sample Data from Script on the Run Testcase dialog box.

Table-by-table basis

When you select rows on a table-by-table basis, you use 'AND' and 'OR' actions. These may be used only
to specify multiple conditions for a single table. You cannot include more than one table in a single 'where'
clause. Conditions on separate tables must be specified independently, by selecting each table in the
'Table' list separately. The number of test cases that runs is:

of rows selected for Table 1 X the # of rows selected for Table 2 X the # of
rows for Table 3

Table Lists the tables used by the test case to be run. For tables that are Microsoft Office Excel
worksheets, the record names end in a dollar sign. Select a table in order to specify its where
clause.

Run Runs the selected test case using the queries you have specified.

Debug Opens the file in which the test case resides, enters debugging mode and places a breakpoint at
the first line of the test case. Debugging mode makes available all the debugging commands on
the Breakpoint, Debug and View menus.

Query
for this
table
area

Guides you to enter the where clause for the selected table. If you leave this area blank and
simply click Run, the default query selects all rows for the table.

The where clause of a query has the form:

(<Column> <relational
 operator> <value>) [and|or] (<Column> <relational
 operator> <value>)...

select * from <tablename> where the first list contains a list of columns from the table
selected above.

188 | Designing and Recording Test Cases with the Classic Agent

where (the second list) lists the following relational operators that apply to all column types:

To indicate Select

Equals =

Not equal to <>

Greater than >

Greater than or equal to >=

Less than <

Less than or equal to <=

Like (typically used with STRING
columns)

like

There are three additional relational operators that you can type into the Editable query area –
but they do not appear in the where dropdown.

To Indicate Type

Between two values (value1 <= value <=
value2)

between <value1> and <value2>

In a set of discrete values in (<value>, <value>, <value>)

Not in a set of discrete values not in (<value>, <value>, <value>)

Enter
values
area

All string values must be enclosed in single quotation marks, for example, 'value'. For string
columns, you can match a pattern by using like ‘pattern’. The pattern can contain the single
character (_) wildcard or the 0 or more characters (%) wildcard.

If a column allows NULL values, then you can use the following query to return only those rows
for which the column contains a value:

select * from table_name where column_name <> NULL

Similarly, the following query would return only those rows for which the column is empty:

select * from table_name where column_name = NULL

Action Select Done to indicate you have finished entering where clauses or select AND or
OR to indicate the relationship to another where clause. After you selected the
appropriate action, the where clause that you have created appears in the bottom
box on this dialog. You can add additional where clauses or click Done.

Editable query
area

The where clauses that you create appear here after you click DONE, AND, or OR.
You can add additional where clauses in this area by clicking and typing them in.

Sample queries

The following table shows several sample queries and their corresponding "where" clause.

To find Use this WHERE clause

adults whose first names begin
with 'B'

(FirstName like 'B%') and (Age >= 18)

bananas, cherries, apples, or
any type of berry

(Fruit in ('banana', 'cherry', 'apple')) or (Fruit
like '%berry')

Designing and Recording Test Cases with the Classic Agent | 189

To find Use this WHERE clause

people born in the 1960's with
3-letter last names

(YearOfBirth between 1960 and 1969) and (LastName like
'___')

Go to Testcase Dialog Box
When a data-driven test script file, which is a file with the ending .g.t, is open in the editor, the Go to
Testcase dialog box lists all the test cases that are available in the active script. Any listed data-driven test
cases are prefixed with DD_.

To open the dialog box, click with the right mouse button into a .g.t file and select Go to Testcase.

Select the test case and then click OK to display the 4Test Editor with the cursor at the beginning of the
test case that you have selected.

Select Testcase Dialog Box
When creating a data-driven test case out of an existing test case, the Select Testcase dialog box lists the
non-data-driven test cases in the active script.

To open the dialog box, click Tools > Data Driven Testcase. You can also right click in a .t file and then
click Data Driven Testcase.

Select the test case that you want to data-drive and then click OK to display the Specify Data Driven
Script File dialog box.

Property Sets
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This section describes how properties are organized into sets to make your testing easier.

Verifying Properties as Sets
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To make your testing easier, properties are organized into sets. A property set consists of a list of
properties and the class associated with each property. A number of property sets is predefined for your
convenience.

Properties and attributes in this context are similar—they both are used to verify a characteristic of an
object. However, properties are more encompassing, more flexible, and easier to use. For example, using
attributes you can only verify one attribute at a time or verify every attribute for an object and all its children;
using properties you can verify selected properties of an object and any or all of its children at the same
time.

All property sets reside in the file named in the Data file for property sets text box in the Recorder
Options dialog box. The default file location is your Silk Test Classic installation directory. To make sure
that all testers in your group have access to the same property sets file, place the file on a shared drive and
specify the full path in the Data file for property sets text box.

If you selected enhanced support for Visual Basic, your property set file is vbprpset.ini. If you did not
select enhanced support for Visual Basic, then your property set file is propset.ini.

190 | Designing and Recording Test Cases with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

You can configure property sets to suit your needs, even combining frequently used property sets into a
new larger property set.

Creating a New Property Set
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. Click Options > Property Sets. Silk Test Classic displays the Property Sets dialog box, which lists all
existing property sets. You can also click Define on the Verify Window dialog box.

2. On the Property Sets dialog box, click New.

3. Specify a name for the new property set in the Name text box.

Property set names are not case sensitive. They can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

4. Specify a class in the Class text box and then a property of that class in the Property text box.

5. Click Add. Silk Test Classic adds the class-property pair to the list box. The class or property name is
not validated here, so type carefully. Invalid names are ignored at runtime. If you make a mistake, select
the class-property pair and click Edit.

6. Repeat steps 4 and 5 for as many class-property pairs as you want to add. Delete any class-property
pairs you don’t want to include by selecting them and clicking Remove.

7. Once the list of classes and properties is correct, click OK. Silk Test Classic closes the New Property
Set dialog box and displays the new property set in the Property Sets list box.

8. Click Close.

Combining Property Sets
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. Click Options > Property Sets to display the Property Sets dialog box.

You can also click Define on the Verify Window dialog box.

2. Click Combine.

3. On the Combine Property Sets dialog box, specify a name for the new property set in the Name text
box.

4. Select at least two property sets from the Property sets to combine list box and click OK. Silk Test
Classic closes the Combine Property Sets dialog box and displays the new property in the Property
Sets list box, along with the constituent sets.

If you modify any of the constituent sets, the combined set will be modified as well.

Deleting a Property Set
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. Click Options > Property Sets.

You can also click Define on the Verify Window dialog box.

2. Select the name of the property set you want to delete from the Property Sets list box and then click
Remove.

3. Silk Test Classic prompts you are to confirm the deletion. Click Yes to delete the property set.

4. Click Close.

Designing and Recording Test Cases with the Classic Agent | 191

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Editing an Existing Property Set
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. Click Options > Property Sets to display the Property Sets dialog box.

You can also click Define on the Verify Window dialog box.

2. On the Property Sets dialog box, select a property set from the Property Sets list box and click Edit.

3. Take any of the following actions:

Edit the property set
name

Edit the name in the Name text box.

Add a class-property
pair

1. Specify a class in the Class text box.
2. Specify a property for the class in the Property text box.
3. Click Add.

Delete a class-
property pair

Select a class-property pair and click Remove. The pair is deleted from the list
box.

Edit a class-property
pair

1. Select a class-property pair and click Edit. The class and property display
in the text boxes at the bottom of the dialog box and the Add pushbutton
becomes Replace.

2. Modify the class, property, or both, and click Replace. Silk Test Classic
displays the class-property pair in the list box.

4. When you finish editing, click OK.

5. Click OK to close the Property Set dialog box.

Specifying a Class-Property Pair
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can specify class-property pairs in the following ways:

• You can specify them as a full class name and a full property name. For example, to specify the State
property for the CheckBox class, enter CheckBox in the Class text box and State in the Property text
box.

• You can use the * wildcard character for partial matches. The asterisk matches zero or more characters.
For example, specifying * as a class name matches all classes. Specifying Text* as a class name
matches all classes that begin with the string "Text".

• You can apply the rule of inheritance to property sets; that is, the properties of a class are inherited by
its child classes. For example, specifying the Enabled property and the Control class as a pair means
that the Enabled properties of all classes, which are descended from Control, are also implicitly
included in the property set.

Predefined Property Sets
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The predefined built-in property sets include:

192 | Designing and Recording Test Cases with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

This property set Includes properties that describe

Children Objects within the selected object, such as pushbuttons
in a dialog box.

Control State The state of controls, for example, whether a control is
enabled.

Menu State The state of a menu, for example, whether it's enabled or
checked.

Moveable Window State The state of a moveable window, for example, whether it's
enabled or the control that has focus.

Selection The currently selected row or current selection in an
editable field.

Style Style variations for controls and objects.

Value Range Information that governs the range of possible values for
controls and objects.

Values (default) The current value of a control or object, for example, the
text in a text box.

Window Location and Size The position and size of objects on the screen.

If you have enabled an extension to provide enhanced support for testing an application built with a
particular development environment, there might be additional property sets. For additional information,
refer to the online Help for the extension.

If you are testing a Web application, there are additional property sets.

Characters Excluded from Recording and Replaying
The following characters are ignored by Silk Test during recording and replay:

Characters Control

... MenuItem

tab MenuItem

& All controls. The ampersand (&) is used as an accelerator
and therefore not recorded.

Designing and Recording Test Cases with the Classic Agent | 193

Testing in Your Environment with the
Classic Agent

This section describes how you can test applications in your environment with the Classic Agent.

Distributed Testing with the Classic Agent
This section describes how you can run tests on multiple machines.

Configuring Your Test Environment (Classic Agent)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This topic contains information about configuration tasks that you can perform on your test environment to
test on multiple machines with the Classic Agent.

When you are
working with ...

Configure the following ...

PC-Class
Platforms

Explicitly assign a unique network name to remote agents so that Silk Test Classic can
identify the agent when your test case connects to that machine.

TCP/IP On PCs. Windows machines generally come with TCP/IP. Silk Test Classic on Microsoft
Windows can use any TCP/IP software package that supports the Windows Sockets
Interface Standard, Version 1.1, (WINSOCK), and supplies WINSOCK.DLL.

LAN Manager
or Windows for
Workgroups

• Increase the SESSIONS value, the default is 6, to a higher value. This variable is
defined in the protocol.ini file, which is typically located in your Windows
directory.

• Increase the NCBS value in protocol.ini to twice the SESSIONS value.
• The LAN Manager network environment and Windows for Workgroups have the

ability to use more than one protocol driver at a time. NetBEUI is the protocol driver
frequently used by LAN Manager. In order for Silk Test Classic and the agent to run,
the NetBEUI protocol must be the first protocol loaded. The LANABASE option
under the [NETBEUI_XIF] section of protocol.ini must be set to 0 (zero). If
additional protocols are loaded, they must have a sequentially higher LANABASE
setting. For example, if you are running both NetBEUI and TCP/IP, the LANABASE
setting for NetBEUI is (as always) 0 (zero), and the value for TCP/IP is1 (one).

NetBIOS on
PCs

• Under Windows, install NetBEUI with NetBIOS.
• In the Network control panel, set NetBEUI as the default protocol.
• On Windows, NetBIOS is started automatically.
• Explicitly assign a unique network name to remote agents so that Silk Test Classic

can identify the agent when your test case issues a Connect function for that
machine. This step is not necessary for agents using TCP/IP because Silk Test
Classic automatically uses the workstation’s TCP/IP name. The name must be from
1 to 16 alphanumeric characters long and must not be the standard name you use
for your machine itself or the name of any other distributed agent. On some
systems, using the same name can cause a system crash. A safe alternative is to

194 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

When you are
working with ...

Configure the following ...

derive the agent name from the machine name. For example, if a machine is called
Rome, call the Agent Rome_QAP.

• Your NetBIOS adapter may be configured as any host adapter number, including
adapter 0. Check with your network administrator if you are not sure how to do this
or need to change your configuration.

Client/Server Testing Configurations
The processes that participate in a client/server testing scenario are logically associated with three
different computers:

1. System A runs Silk Test Classic, which processes test scripts and sends application commands to the
agent.

2. System B runs the client application and the agent, which submits the application commands to the
client application.

3. System C runs the server software, which reacts to requests submitted by the client application.

The following sections describe different hardware/software configurations that can support Silk Test
Classic testing.

Configuration 1

Machine 1 shows the software configuration you would have when testing a stand-alone application.
Machine 2 shows Silk Test Classic and a client/server application with all of your software running on one
machine. This configuration allows you to do all types of functional testing other than testing the behavior of
the connection between a client and a remote server.

During your initial test development phase, you can reduce your hardware needs by making two (and
possibly all) of these systems the same. If you write tests for an application running on the same system as

Testing in Your Environment with the Classic Agent | 195

Silk Test Classic, you can implement the tests without consideration of any of the issues of remote testing.
You can then expand your testing program incrementally to take your testing into each new phase.

Configuration 2

A testing configuration in which the client application runs on the same machine as Silk Test Classic and
the server application runs on a separate machine.

Note: In this configuration, as with Machine 2 in Configuration 1, there is no communication between
Silk Test Classic and the server. This means that you must manage the work of starting and initializing
the server database manually. For some kinds of testing this is appropriate.

This configuration lets you test the remote client-to-server connection and is appropriate for many stress
tests. It allows you to do volume load testing from the point of view of the client application, but not the
server.

Configuration 3

Multiple copies of the client application running on separate machines, with Silk Test Classic driving the
client application by means of the agent process on each client machine, and the client application driving
the server application. This is just the multi-client version of the previous configuration. You could run a
fourth instance of the client application on the Silk Test Classic machine. The actual number of client
machines used is your choice.

196 | Testing in Your Environment with the Classic Agent

This configuration is appropriate for load testing and configuration testing if you have no need to
automatically manipulate the server. You must have at least two clients to test concurrency and mutual-
exclusion functionality.

Configuration 4

Once you are running Silk Test Classic, it makes sense to have your script initialize your server
automatically. Configuration 4 uses the same hardware configuration as Configuration 3, but Silk Test
Classic is also driving the server directly. This figure shows Silk Test Classic using an agent on the server
machine to drive the server’s GUI (the lower connecting arrow); this approach can be used to start the
server’s database and sometimes can be used to initialize it to a base state. The upper arrow shows Silk
Test Classic using SQL commands to directly manipulate the server database; use this approach when
using the agent is not sufficient. After starting the database with the agent, use SQL commands to initialize
it to a base state. The SQL commands are submitted by means of Silk Test Classic’s database functions,
which do not require the services of the agent.

Testing in Your Environment with the Classic Agent | 197

Configuration 4 is the most complete testing configuration. It requires the database tester. You can use it
for all types of Silk Test Classic testing, including volume load testing of the server, peak load testing, and
performance testing.

The special features that allow Silk Test Classic to provide rigorous testing for client/ server applications
are the following:

• Automatic control of multiple applications.
• Multithreading for automatic control of concurrent applications.
• Reporting results by thread ID.
• Testing across networks using a variety of protocols.

The added value that the database tester provides for the client/server environment is direct database
access from the test script.

Networking Protocols Used by the Classic Agent
The Classic Agent uses only three different protocols, although Silk Test Classic runs on many platforms.
This means that a Silk Test Classic script on one platform can drive the agent on a target platform, as long
as both the host and the agent platforms are running the same appropriate protocol for the platform,
regardless of the protocols used by the applications under test. The following table lists the protocols
available for each platform:

Platform TCP/IP NetBIOS NetBEUI

Windows • • •

AIX •

IRIX •

There is no limit on the protocol or API that an application under test may use. Just make sure that the
protocol required by Silk Test Classic and the protocol required by your application are running at the same
time.

198 | Testing in Your Environment with the Classic Agent

Example

Suppose you are running Silk Test Classic under Windows and you are testing an
application that requires TCP/IP communications in order to communicate with a server
on a Sun Sparc station. The Windows machine on which Silk Test Classic is running
can run NetBIOS for the host and the Windows machine with the application under test
must then run NetBIOS for the agent and TCP/IP for the application under test. Running
NetBIOS has no impact on your TCP/ IP connections but allows Silk Test Classic to
communicate with the agent. Alternatively, since the application is already running
TCP/IP, you can choose to use TCP/IP for Silk Test Classic and the Silk Test Classic
agents as well.

Single Local Applications
In a single-application test environment, if the application is local, you do not have to determine an agent
name or issue a connection command. When you start an agent on the local machine, Silk Test Classic
automatically connects to it and directs all agent commands to it.

Remote Applications
When you have one or more remote agents in your testing network, you enable networking by specifying
the network type.

For projects or scripts that use the Classic Agent, if you are not using TCP/IP, you have to assign to each
agent the unique name that your scripts use to direct test operations to the associated application. For
additional information, see Enabling Networking and Assigning the Classic Agent Name and Port.

You can use Silk Test Classic to test two applications on the same target from one host machine.

Single Remote Applications

In a single-application test environment, if the application is remote, specify the agent name in the
Runtime Options dialog box. This causes Silk Test Classic to automatically connect to that machine and
to direct all agent commands to that machine. This contrasts with the multi-application case, in which you
explicitly connect to the target machines and explicitly specify which machines are to receive which
sections of code.

Multiple Remote Applications

When you enable networking by selecting the networking type in the Runtime Options dialog box on the
host, do not set the Agent Name text box to an agent name if you have multiple remote agents. This field
only accepts a single agent name and using it prevents you from handling all your client machines the
same way.

If you specify one agent name from your set of agents, then you cannot issue a Connect call to that agent
and thus do not receive the machine handle that the Connect function returns. Since you have to issue
some Connect calls, be consistent and avoid writing exception code to handle a machine that is
automatically connected.

For projects or scripts that use the Classic Agent, you can specify multiple agents from within your script
file by adding the following command line to the agent:

agent –p portNumber

Configuring a Network of Computers
To configure a network of computers so that they can run Silk Test Classic and the Silk Test Classic agents,
perform the following steps:

Testing in Your Environment with the Classic Agent | 199

1. Install, or have already running, networking protocols supported by Silk Test Classic.

2. Install Silk Test Classic on the host machine and the agent software on all target machines.

3. Establish connectability between host and agents.

This may be automatic or may require some setup, depending on the circumstances.

4. Enable networking on any target machines.

Use the Agent window, as described in Enabling Networking and Assigning the Classic Agent Name
and Port.

5. Enable networking on the host machine.

Use the Runtime Options dialog box. Details may vary, depending on your configuration.

6. Gather the information that your test scripts need when making explicit connections.

For example, you can edit the agent names into a list definition and have your test plan pass the list
variable name as an argument for test cases controlled by that plan. The test cases then pass each
agent name to a Connect or SetUpMachine function and that function makes the explicit host-to-
agent connection.

Configuration details are specific to the different protocols and operating systems you are using. In general,
set up your Agents and make all adjustments to the partner.ini file or environment variables before
enabling networking on the host machine.

Enabling Network Access to the Classic Agent
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

For distributed testing, you can install the Classic Agent on a remote Windows machine and access it from
a machine on which Silk Test Classic is installed. To enable the remote access to the Classic Agent,
perform the following actions:

1. Start the Classic Agent on the remote Windows machine.

For example, click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test
Classic Agent or (in Microsoft Windows 10) Start > Silk > Silk Test Classic Agent.

2. Right-click on the title bar of the Agent dialog box and choose Network. The Agent Network dialog
box displays.

3. Optional: Type a name for the remote agent into the Agent name field.

4. From the Network list box, select TCP/IP. The default port number displays in the Port number text
box.

5. Set the port.

Typically, you can accept the default port.

6. Click OK.

Enabling Networking on NetBIOS Host
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Once the protocol has been selected for all the Agents and they are named, you can enable networking on
the host. Do this by choosing Options > Runtime and selecting the NetBIOS network type. Then fill in the
Agent name if you have a single-remote-application configuration.

Your NetBIOS adapter may be configured as any host adapter number. In the past, Silk Test Classic could
only be configured as adapter 0, but this is no longer the case. Check with your network administrator if
you are not sure how to do this or need to change your configuration.

200 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Enabling Networking on an Agent
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You assign the selected name to the agent when you enable networking for each agent PC.

For each agent, the agent name that you specify in the Connect function is the name of that agent host,
stored in the network host database. You can find the host name in the name given to the agent icon. The
name takes the form Agent [TCP/IP <Host Name> <Port Number>].

For Windows, move the mouse pointer over the agent icon and wait two seconds; the icon name displays.

You must enable networking for each agent PC by selecting the protocol type to be used in the agent
window. When you select TCP/IP as the protocol, the port number field is displayed with the default TCP/
IP port number. When you click OK, the selection is accepted if the default port is available.

Enabling Networking on a Remote Host
Once the protocol has been picked for any PC agents and the port settings are consistent, you can enable
networking on the host.

Do this by choosing Options > Runtime and setting the port number and/or agent name. You can skip this
step if you do not have to change the default port number and you are not specifying an agent name for a
single-remote-application configuration.

Running Test Cases in Parallel
A concurrent, or multithreaded, script is one in which multiple statements can execute in parallel.
Concurrency allows you to more effectively test distributed systems, by permitting multiple client
applications to submit requests to a server simultaneously.

The 4Test language fully supports the development of concurrent scripts which enables a script to:

• Create and coordinate multiple concurrent threads.
• Protect access to variables, which are global to all threads.
• Synchronize threads with semaphores.
• Protect critical sections of code for atomic operations.
• Recover from errors in the event of script deadlock.

Concurrency
For Silk Test Classic, concurrent processing means that agents on a specified set of machines drive the
associated applications simultaneously. To accomplish this, the host machine interleaves execution of the
sets of code assigned to each machine. This means that when you are executing identical tests on several
machines, each machine can be in the process of executing the same operation. For example, select the
Edit.FindChange menu item.

At the end of a set of concurrent operations, you will frequently want to synchronize the machines so that
you know that all are ready and waiting before you submit the next operation. You can do this easily with
4Test.

There are several reasons for executing test cases concurrently:

• You want to save testing time by running your functional tests for all the different platforms at the same
time and by logging the results centrally, on the host machine.

• You are testing cross-network operations.
• You need to place a multi-user load on the server.
• You are testing the application’s handling of concurrent access to the same database record on the

server.

Testing in Your Environment with the Classic Agent | 201

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

To accomplish testing concurrent database accesses, you simply set all the machines to be ready to make
the access and then you synchronize. When all the machines are ready, you execute the operation that
commits the access operation—for example, clicking OK. Consider the following example:

// [A] Execute 6 operations on all machines concurrently
for each sMachine in lsMachine
 spawn
 SixOpsFunction (sMachine)
rendezvous // Synchronize

// [B] Do one operation on each machine
for each sMachine in lsMachine
 spawn
 [sMachine]MessageBox.OK.Click () // One operation
rendezvous // Synchronize

In code fragment [A], the six operations defined by the function SixOpsFunction are executed
simultaneously on all machines in a previously defined list of agent names. After the parallel operation, the
script waits for all the machines to complete; on completion, they will present a message box, unless the
application fails. In code fragment [B], the message box is dismissed. By putting the message dismissal
operation into its own parallel statement block instead of adding it to the SixOpsFunction, you are able
to synchronize and all machines click at almost the same instant.

In order to specify that a set of machines should execute concurrently, you use a 4Test command that
starts concurrent threads. In the fragments above, the spawn statement starts a thread for each machine.

Global Variables
Suppose the code for each machine is counting instances of some event. You want a single count for the
whole test and so each machine adds its count to a global variable. When you are executing the code for
all your machines in parallel, two instances of the statement iGlobal = iGlobal + iCount could be executing
in parallel. Since the instructions that implement this statement would then be interleaved, you could get
erroneous results. To prevent this problem, you can declare a variable shareable. When you do so, you can
use the access statement to gain exclusive access to the shared variable for the duration of the block of
code following the access statement. Make variables shareable whenever the potential for conflict exists.

Recovering Multiple Tests
There are three major categories of operations that an Agent executes on a target machine:
• Setup operations that bring the application to the state from which the next test will start.
• Testing operations that exercise a portion of the application and verify that it executed correctly.
• Cleanup operations that handle the normal completion of a test plus the case where the test failed and

the application is left in an indeterminate state. In either case, the cleanup operations return the
application to a known base state.

When there are multiple machines being tested and more than one application, the Agent on each machine
must execute the correct operations to establish the appropriate state, regardless of the current state of the
application.

Remote Recording
Once you establish a connection to a target machine, any action you initiate on the host machine, which is
the machine running Silk Test Classic, is executed on the target machine.

With the Classic Agent, one Agent process can run locally on the host machine, but in a networked
environment, the host machine can connect to any number of remote Agents simultaneously or
sequentially. You can record and replay tests remotely using the Classic Agent. If you initiate a Record/
Testcase command on the host machine, you record the interactions of the user manipulating the
application under test on the target machine. In order to use the Record menu’s remote recording
operations, you must place the target machine’s name into the Runtime Options dialog box. Choose
Options > Runtime.

202 | Testing in Your Environment with the Classic Agent

With the Open Agent, one Agent process can run locally on the host machine. In a networked environment,
any number of Agents can replay tests on remote machines. However, you can record only on a local
machine.

Threads and Concurrent Programming
Silk Test Classic can run test cases in parallel on more than one machine. To run test cases in parallel, you
can use parallel threads within main() or in a function called by main(). If you attempt to run test cases in
parallel on the same machine, you will generate a runtime error.

A more elegant alternative to parallel threads is to use a multitestcase function, which provides a robust
multi-machine recovery system. For additional information on multitestcase code templates, see Using the
Client/Server Template and Using the Parallel Template.

In the 4Test environment, a thread is a mechanism for interleaving the execution of blocks of client code
assigned to different Agents so that one script can drive multiple client applications simultaneously. A
thread is part of the script that starts it, not a separate script. Each thread has its own call stack and data
stack. However, all the threads that a script spawns share access to the same global variables, function
arguments, and data types. A file that one thread opens is accessible to any thread in that script.

While the creation of a thread carries no requirement that you use it to submit operations to a client
application, the typical reason for creating a multithread script is so that each thread can drive test
functions for one client, which allows multiple client application operations to execute in parallel.

When a script connects to a machine, any thread in that script is also connected to the machine. Therefore,
you must direct the testing operations in a thread to a particular Agent machine. Threads interleave at the
machine instruction level; therefore, no single 4Test statement is atomic with respect to a statement in
another thread.

Driving Multiple Machines
When you want to run tests on multiple machines simultaneously, you connect to all the machines and then
you direct specific test operations to particular machines. This enables you to drive different applications
concurrently. For example, you can test the intercommunication capabilities of two different applications or
you can drive both a client application and its server.

To do this, at the beginning of a test script you issue for each machine an explicit connection command.
This can be either Connect(agent_name) or SetMachine(agent_name). This connection lasts for the
duration of the script unless you issue a Disconnect(agent_name) command. In the body of the script
you can specify that a particular portion of code is to be executed on a particular machine. The
SetMachine(agent_name) command specifies that the following statements are directed to that Agent.
You can specify that just one statement is directed to a particular Agent by using the bracket form of the
machine handle operator. For example ["Client_A"]SYS_SetDir ("c:\mydir").

Since 4Test allows you to pass variables to these functions, you can write a block of code that sends the
same operations to a particular set of target machines and you can pass the SetMachine function in that
block of code a variable initialized from a list that specifies the machines in that set. Thus, specifying which
machines receive which operations is very simple.

Protecting Access to Global Variables
When a new thread is spawned, 4Test creates a new copy of all local variables and function arguments for
it to use. However, all threads have equal access to global variables. To avoid a situation in which multiple
threads modify a variable simultaneously, you must declare the variable as shareable. A shareable variable
is available to only one thread at a time.

Instances where threads modify variables simultaneously generate unpredictable results. Errors of this kind
are difficult to detect. Make variables shareable wherever the potential for conflict exists.

Testing in Your Environment with the Classic Agent | 203

A declaration for a shareable variable has the following form:

[scope] share data-type name [= expr] {, name [= expr]}

• scope can be either public or private. If omitted, the default is public.
• data-type is a standard or user-defined data type.
• name is the identifier that refers to the shareable variable.
• expr is an expression that evaluates to the initial value you want to give the variable. The value must

have the same type you gave the variable. If you try to use a variable before its value is set, 4Test raises
an exception.

At any point in the execution of a script, a shared variable can only be accessed from within the block of
code that has explicitly been granted access to it. You request access to shareable variables by using the
access statement.

An access statement has the following form:

access name1, name2, ...
 statement

where name1, name2, ... is a list of identifiers of optional length, each of which refers to a shareable
variable and statement is the statement to be executed when access to the variables can be granted.

If no other thread currently has access to any of the shareable variables listed, 4Test executes the specified
statement. Otherwise, 4Test blocks the thread where the access statement occurs until access can be
granted to all the shareable variables listed. At that point, 4Test blocks competing threads and executes the
blocked thread.

Example

share INTEGER iTestNum = 0
public share STRING asWeekDay [7]
share ANYTYPE aWhoKnows

void IncrementTestNum ()
 access iTestNum
 iTestNum = iTestNum + 1

Synchronizing Threads with Semaphores
Use semaphores to mutually exclude competing threads or control access to a resource. A semaphore is a
built-in 4Test data type that can only be assigned a value once. The value must be an integer greater than
zero. Once it is set, your code can get the semaphore's value, but cannot set it.

Example

The following code example shows legal and illegal manipulations of a variable of type
SEMAPHORE:

SEMAPHORE semA = 10 // Legal
semA = 20 // Illegal -
existing semaphore
 // cannot be
reinitialized
if (semA == [SEMAPHORE]2)... // Legal - note the
typecast
Print ("SemA has {semA} resources left.") // Legal
SEMAPHORE semB = 0 // Illegal - must be
greater than 0

To compare an integer to a semaphore variable, you must typecast from integer to semaphore using
[SEMAPHORE].

204 | Testing in Your Environment with the Classic Agent

Note: You cannot cast a semaphore to an integer.

To use a semaphore, you first declare and initialize a variable of type SEMAPHORE. Thereafter, 4Test
controls the value of the semaphore variable. You can acquire the semaphore if it has a value greater than
zero. When you have completed your semaphore-protected work, you release the semaphore. The
Acquire function decrements the value of the semaphore by one and the Release function increments it
by one. Thus, if you initialize the semaphore to 5, five threads can simultaneously execute semaphore-
protected operations while a sixth thread has to wait until one of the five invokes the Release function for
that semaphore.

The Acquire function either blocks the calling thread because the specified semaphore is zero, or
"acquires" the semaphore by decrementing its value by one. Release checks for any threads blocked by
the specified semaphore and unblocks the first blocked thread in the list. If no thread is blocked, Release
"releases" the semaphore by incrementing its value by one so that the next invocation of Acquire
succeeds, which means it does not block.

A call to Acquire has the following form:

void Acquire(SEMAPHORE semA)

Where semA s the semaphore variable to acquire.

A call to Release has the following form:

void Release(SEMAPHORE semA)

Where semA s the semaphore variable to release.

If more than one thread was suspended by a call to Acquire, the threads are released in the order in
which they were suspended.

A semaphore that is assigned an initial value of 1 is called a binary semaphore, because it can only take
on the values 0 or 1. A semaphore that is assigned an initial value of greater than one is called a counting
semaphore because it is used to count a number of protected resources.

Example: Application only supports three simultaneous users

Suppose you are running a distributed test on eight machines using eight 4Test threads.
Assume that the application you are testing accesses a database, but can support only
three simultaneous users. The following code uses a semaphore to handle this
situation:

SEMAPHORE DBUsers = 3
...
Acquire (DBUsers)
 access database
Release (DBUsers)

The declaration of the semaphore is global; each thread contains the code to acquire
and release the semaphore. The initial value of three ensures that no more than three
threads will ever be executing the database access code simultaneously.

Testing In Parallel but Not Synchronously
This topic illustrates a method for running test functions in parallel on multiple clients, but with different
tests running on each client. This provides a realistic multi-user load as opposed to a load in which all
clients perform the same operations at roughly the same time.

Example

This example suggests a method by which each client, operating in a separate thread,
executes a test that is assigned by a random number. The RandSeed function is called

Testing in Your Environment with the Classic Agent | 205

first so that the random number sequence is the same for each iteration of this multi-
user test scenario. This enables you to subsequently repeat the test with the same
conditions.

The example reads a list of client machines from a file, clients.txt, and receives the
test count as in input argument. These external variables make the example scalable as
to the number of machines being tested and the number of tests to be run on each. The
number of different testcases is twelve in this example, but could be changed by
modifying the SelectTest function and adding further test functions. For each
machine in the client machine list, the example spawns a thread in which the specified
client executes a randomly selected test, repeating for the specified number of tests.

Note: You can execute this test as it is written because it sets
its own application states. However, when you use multi-
application support, this is automatic. And if you want to use
this approach to drive different applications or to initialize a
server before starting the testing, you must add multi-
application support.

testcase ParallelRandomLoadTest (INTEGER iTestCount)
 LIST OF STRING lsClients
 RandSeed (3)

 // list of client names
 ListRead (lsClients, "clients.txt")

 STRING sClientName

 for each sClientName in lsClients
 spawn
 // Connect to client, which becomes current machine
 Connect (sClientName)
 SetAppState ("MyAppState") // Initialize
application
 TestClient (iTestCount)
 Disconnect (sClientName)
 rendezvous

 TestClient (INTEGER iTestCount)
 for i = 1 to iTestCount
 SelectTest ()

 SelectTest ()
 INTEGER i = RandInt (1, 12)

 // This syntax invokes Test1 to Test12, based on i
 @("Test{i}") ()

 // Define the actual test functions
 Test1 ()
 // Do the test . . .

 Test2 ()
 // Do the test . . .
 . . .
 Test12 ()
 // Do the test . . .

Statement Types
This section describes the statement types that are available for managing distributed tests.

206 | Testing in Your Environment with the Classic Agent

Parallel Processing Statements

You create and manage multiple threads using combinations of the 4Test statements parallel, spawn,
rendezvous, and critical.

In 4Test, all running threads, which are those not blocked, have the same priority with respect to one
another. 4Test executes one instruction for a thread, then passes control to the next thread. The first thread
called is the first run, and so on.

All threads run to completion unless they are deadlocked. 4Test detects script deadlock and raises an
exception.

Note: The 4Test exit statement terminates all threads immediately when it is executed by one thread.

Using Parallel Statements

A parallel statement spawns a statement for each machine specified and blocks the calling thread until the
threads it spawns have all completed. It condenses the actions of spawn and rendezvous and can make
code more readable.

The parallel statement executes a single statement for each thread. Thus if you want to run complete tests
in parallel threads, use the invocation of a test function, which may execute many statements, with the
parallel statement, or use a block of statements with spawn and rendezvous.

To use the parallel statement, you must specify the machines for which threads are to be started. You can
follow the parallel keyword with a list of statements, each of which specifies a different Agent name. For
example:

parallel
 DoSomething ("Client1")
 DoSomething ("Client2")

The DoSomething function then typically issues a SetMachine(sMachine) call to direct its machine
operations to the proper Agent.

Using a Spawn Statement

A spawn statement begins execution of the specified statement or block of statements in a new thread.
Since the purpose of spawn is to initiate concurrent test operations on multiple machines, the structure of a
block of spawned code is typically:

• A SetMachine command, which directs subsequent machine operations to the specified agent.
• A set of machine operations to drive the application.
• A verification of the results of the machine operations.

You can use spawn to start a single thread for one machine, and then use successive spawn statements to
start threads for other machines being tested. Silk Test Classic scans for all spawn statements preceding a
rendezvous statement and starts all the threads at the same time. However, the typical use of spawn is in a
loop, like the following:

for each sMachine in lsMachine
 spawn // start thread for each sMachine
 SetMachine (sMachine)
 DoSomething ()
 rendezvous

The preceding example achieves the same result when written as follows:

for each sMachine in lsMachine
 spawn
 [sMachine]DoSomething ()
 rendezvous

Testing in Your Environment with the Classic Agent | 207

To use a spawn statement in tests that use TrueLog, use the OPT_PAUSE_TRUELOG option to disable
TrueLog. Otherwise, issuing a spawn statement when TrueLog is enabled causes Silk Test Classic to hang
or crash.

Using Templates
This section describes how you can use templates for distributed testing.

Using the Parallel Template

This template is stored as parallel.t in the Examples subdirectory of the Silk Test Classic installation
directory. The code tests a single application that runs on an externally defined set of machines.

This multi-test-case template accepts a list of machine names. The application whose main window is
MyMainWin is invoked on each machine. The same operations are then performed on each machine in
parallel. If any test case fails, the multi-test-case will be marked as having failed; however, a failed test case
within a thread does not abort the thread.

You can use this template by doing three edits:

• Include the file that contains your window declarations.
• Substitute the MainWin name of your application, which is defined in your MainWin window declaration,

with the Mainwin name of the template, MyMainWin.
• Insert the calls to one or more tests, or to the main function, where indicated.

Use myframe.inc.

use "myframe.inc"
multitestcase MyParallelTest (LIST of STRING lsMachines)

 STRING sMachine

 // Connect to all machines in parallel:
 for each sMachine in lsMachines
 spawn
 SetUpMachine (sMachine, MyMainWin)
 rendezvous

 // Set app state of each machine, invoking if necessary:
 SetMultiAppStates()

 // Run testcases in parallel
 for each sMachine in lsMachines
 spawn
 SetMachine (sMachine)
 // Call testcase(s) or call main()
 rendezvous

Client/Server Template

This template is stored as multi_cs.t in the Examples subdirectory of the Silk Test Classic installation
directory. This test case invokes the server application and any number of client applications, based on the
list of machines passed to it, and runs the same function on all clients concurrently, after which the server
will perform end-of-session processing.

You can use this template by doing the following edits:

• Include the files that contain your window declarations for both the client application and the server
application.

• Substitute the MainWin name of your server application, which is defined in your MainWin window
declaration, with the MainWin name of the template, MyServerApp.

• Substitute the MainWin name of your client application, which is defined in your MainWin window
declaration, with the Mainwin name of the template, MyClientApp.

208 | Testing in Your Environment with the Classic Agent

• Replace the call to PerformClientActivity with a function that you have written to perform client
operations and tests.

• Replace the call to DoServerAdministration with a function that you have written to perform server
administrative processing and/or cleanup.

use "myframe.inc"
multitestcase MyClientServerTest (STRING sServer, LIST of STRING lsClients)
 STRING sClient

 // Connect to server machine:
 SetUpMachine (sServer, MyServerApp)

 // Connect to all client machines in parallel:
 for each sClient in lsClients
 spawn
 SetUpMachine (sClient, MyClientApp)
 rendezvous

 // Set app state of each machine, invoking if necessary:
 SetMultiAppStates()

 // Run functions in parallel on each client:
 for each sClient in lsClients
 spawn
 // Make client do some work:
 [sClient] PerformClientActivity()
 rendezvous

 // Perform end-of-session processing on server application:
 [sServer] DoServerAdministration()

Testing Multiple Machines
This section describes strategies for testing multiple machines.

Running Tests on One Remote Target
Use one of the following methods to specify that you want a script, suite, or test plan to run on a remote
target instead of the host:

• Enter the name of the target Agent in the Runtime Options dialog box of the host. You also need to
select a network protocol in the dialog box. If you have been testing a script by running Silk Test Classic
and the Agent on the same system, you can then test the script on a remote system without editing your
script by using this method.

• Specify the target Agent’s name by enclosing it within brackets before the script or suite name. For
example [Ohio]myscript.t.

• You can select (none) in the Runtime Options dialog box of the host and then specify the name of the
target Agent in a call to the Connect function in your script. For example, to connect to a machine
named Ontario:

testcase MyTestcase ()
 Connect ("Ontario")
 // Call first testcase
 DoTest1 ()
 // Call second testcase
 DoTest2 ()
 Disconnect ("Ontario"

When you are driving only one remote target, there is no need to specify the current machine; all test case
code is automatically directed to the only connected machine.

Testing in Your Environment with the Classic Agent | 209

When you use the multi-application support functions, you do not have to make explicit calls to Connect;
the support functions issue these calls for you.

Running Tests Serially on Multiple Targets
To run your scripts or suites serially on multiple target machines, specify the name of the target Agent
within the suite file. For example, the following code runs a suite of three scripts serially on two target
machines named Ohio and Montana:

[Ohio] script1.t
[Ohio] script2.t
[Ohio] script3.t
[Montana] script1.t
[Montana] script2.t
[Montana] script3.t

Any spaces between the name of the target Agent and the script name are not significant.

Alternatively, to run test cases serially on multiple target machines, switch among the target machines from
within the script, by using the Connect and Disconnect functions of 4Test. For example, the following
script contains a function named DoSomeTesting that is called once for each machine in a list of target
machines, with the name of the target Agent as an argument:

testcase TestSerially ()
 STRING sMachine
 // Define list of agent names
 LIST OF STRING lsMachines = {...}
 "Ohio"
 "Montana"

 // Invoke test function for each name in list
 for each sMachine in lsMachines
 DoSomeTesting (sMachine)

 // Define the test function
 DoSomeTesting (STRING sMachine)
 Connect (sMachine)
 Print ("Target machine: {sMachine}")
 // do some testing...
 Disconnect (sMachine)

You will rarely need to run one test serially on multiple machines. Consider this example a step on the way
to understanding parallel testing.

Specifying the Target Machine Driven By a Thread
While the typical purpose for a thread is to direct test operations to a particular test machine, you have total
flexibility as to which machine is being driven by a particular thread at any point in time. For example, in the
code below, the spawn statement starts a thread for each machine in a predefined list of test machines.
The SetMachine command directs the code in that thread to the Agent on the specified machine. But the
["server"] machine handle operator directs the code in the doThis function to the machine named
server. The code following the doThis invocation continues to be sent to the sMachine specified in the
SetMachine command.

for each smachine in lsMachine
 spawn // start thread for each sMachine
 SetMachine (sMachine)
 // ... code executed on sMachine
 ["server"]doThis() // code executed on "server"
 // ...continue with code for sMachine
rendezvous

210 | Testing in Your Environment with the Classic Agent

While the machine handle operator takes only a machine handle, 4Test implicitly casts the string form of
the Agent machine’s name as a machine handle and so in the preceding example the machine name is
effectively the same as a machine handle.

Specifying the Target Machine For a Single Command
To specify the target machine for a single command, use the machine handle operator on the command.
For example, to execute the SYS_SetDir function on the target machine specified by the sMachine1
variable, type sMachine1->SYS_SetDir (sDir).

To allow you to conveniently perform system related functions (SYS_) on the host, you can preface the
function call with the machine handle operator, specifying the globally defined constant hHost as the
argument to the operator. For example, to set the working directory on the host machine to c:\mydir,
type hHost->SYS_SetDir ("c:\mydir").

You can use this syntax with a method call, for example sMachine->
TextEditor.Search.Find.Pick, but when invoking a method, this form of the machine handle must
be the first token in the statement.

If you need to use this kind of statement, use the alternative form of the machine handle operator
described below.

You can use the SetMachine function to change target machines for an entire block of code.

The hHost constant cannot be used in simple handle compares like hMyMachineHandle== hHost. This will
never be TRUE. A better method is to use GetMachineName(hHost) and compare names. If hHost is used
as an argument, it will refer to the "(local)" host not the target host.

Example

The following example shows valid and invalid syntax:

// Valid machine handle operator use
for each sMachine in lsMachine
 sMachine-> TextEditor.Search.Find.Pick

// Invalid machine handle operator use with method
if (sMachine->ProjX.DuplicateAlert.Exists())
 Print ("Duplicate warning on {sMachine} recipient.")

If you need to use this kind of statement, use the alternative form of the machine handle operator
described below.

You can use the SetMachine function to change target machines for an entire block of code.

The hHost constant cannot be used in simple handle compares, like hMyMachineHandle== hHost. This
will never be TRUE. A better method is to use GetMachineName(hHost) and compare names. If hHost is
used as an argument, it will refer to the local host, not the target host.

Reporting Distributed Results
You can view test results in each of several formats, depending on the kind of information you need from
the report. Each format sorts the results data differently, as follows:

Elapsed
time

Sorts results for all threads and all machines in event order. This enables you to see the
complete set of results for a time period and may give you a sense of the load on the
server during that time period or may indicate a performance problem.

Machine Sorts results for all threads running on one machine and presents the results in time-sorted
order for that machine before reporting on the next machine.

Testing in Your Environment with the Classic Agent | 211

Thread Sorts results for all tests run under one thread and presents the results in time-sorted order
for that thread before reporting on the next thread.

Alternative Machine Handle Operator
An alternative syntax for the machine handle operator is the bracket form, like the following example shows.

[hMachine] Any4TestFunctionCall ()

Example

To execute the SYS_SetDir function on the target machine specified by the string
sMachineA, you do this:

[sMachineA] SYS_SetDir (sDir)

The correct form of the invalid syntax shown above is:

// Invalid machine handle operator use
if ([sMachine]ProjX.DuplicateAlert.Exists())
 Print ("Duplicate warning on {sMachine} recipient.")

To execute the SYS_SetDir function on the host machine, you can do the following:

[hHost] SYS_SetDir (sDir)

You can also use this form of the machine handle operator with a function that is not being used to return a
value or with a method.

Example
for each sMachine in lsMachine
 [sMachine] FormatTest7 ()

Example
for each sMachine in lsMachine
 [sMachine] TextEditor.Search.Find.Pick

Testing Clients Concurrently
In concurrent testing, Silk Test Classic executes one function on two or more clients at the same time. This
topic demonstrates one way to perform the same tests concurrently on multiple clients.

For example, suppose you want to initiate two concurrent database transactions on the same record, and
then test how well the server performs. To accomplish this, you need to change the script presented in
Testing Clients Plus Server Serially to look like this:

testcase TestConcurrently ()
 Connect ("server")
 Connect ("client1")
 Connect ("client2")
 DoSomeSetup ("server") // initialize server first
 Disconnect ("server") // testcase is thru with server

 spawn // start thread for client1
 UpdateDatabase ("client1")
 spawn // start thread for client2
 UpdateDatabase ("client2")

 rendezvous // synchronize
 Disconnect ("client1")
 Disconnect ("client2")

212 | Testing in Your Environment with the Classic Agent

 DoSomeSetup (STRING sMachine) // define server setup
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to do server setup goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

 UpdateDatabase (STRING sMachine) // define update test
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to update database goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

An alternative but equivalent approach is to use the parallel statement in place of the spawn and
rendezvous:

testcase TestConcurrently2 ()
 Connect ("server")
 Connect ("client1")
 Connect ("client2")

 DoSomeSetup ("server")
 Disconnect ("server")

 parallel // automatic synchronization
 UpdateDatabase ("client1") // thread for client1
 UpdateDatabase ("client2") // thread for client2

 Disconnect ("client1")
 Disconnect ("client2")

 DoSomeSetup (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to do server setup goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

 UpdateDatabase (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to update database goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

If you use variables to specify different database records for each client’s database transactions, you can
use the above techniques to guarantee parallel execution without concurrent database accesses.

Testing in Your Environment with the Classic Agent | 213

Testing Clients Plus Server Serially
In a client/server application, the server and its clients typically run on different target machines. This topic
explains how to build tests that test the server and its clients in a serial fashion. In this scenario, the
SetMachine function switches among the target machines on which the server and its clients are running.
The following script fragment tests a client/server database application in the following steps:

1. Connect to three target machines, which are server, client1, and client2.

2. Call the DoSomeSetup function, which calls SetMachine to make "server" the current target machine,
and then perform some setup.

3. Call the UpdateDatabase function once for each client machine. The function sets the target machine
to the specified client, then does a database update. It creates a timer to time the operation on this
client.

4. Disconnect from all target machines.

Example

This example shows how you direct sets of test case statements to particular machines.
If you were doing functional testing of one application, you might want to drive the
server first and then the application. However, this example is not realistic because it
does not show the support necessary to bring the different machines to their different
application states and to recover from a failure on any machine.

testcase TestClient_Server ()
 Connect ("server")
 Connect ("client1")
 Connect ("client2")
 DoSomeSetup ("server")
 UpdateDatabase ("client1")
 UpdateDatabase ("client2")
 DisconnectAll ()

DoSomeSetup (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to do server setup goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

UpdateDatabase (STRING sMachine)
 HTIMER hTimer
 hTimer = TimerCreate ()
 TimerStart (hTimer)
 SetMachine (sMachine)
 // code to update database goes here
 TimerStop (hTimer)
 Print ("Time on {sMachine} is: {TimerStr (hTimer)}")
 TimerDestroy (hTimer)

Testing Databases
You may be testing a distributed application that accesses a database or you may be directly testing
database software. In either of these cases, you might want to manipulate the database directly from Silk
Test Classic for several purposes:

214 | Testing in Your Environment with the Classic Agent

• To exercise certain database functions that are present in a GUI that runs directly on the server
machine and is not a client application. For example, administrative functions used for setting up the
database.

• To set the server database to a known state.
• To verify an application’s database results without using the application.
• To read information from the database to use as input to a test case.

Silk Test Classic can drive a server application’s GUI by means of the Silk Test Classic Agent exactly as it
drives a client application. In addition, the database tester provides direct access, using SQL, from a test
script to any database supported by ODBC drivers. These database functions enable you to read and write
database records without using the client application. Thus, you can verify client test results without
assuming the ability of the client to do that verification.

In addition to using the SQL functions in your tests, you can also use these functions to help manage your
testing process as follows:

• Maintain a bug database, updating it with the results of your testing.
• Manage your test data in a database instead of in a text file.

The database functions, among other things, allow you to connect to a database, submit an SQL
statement, read data from the selected record(s) if the SQL statement was SELECT, and subsequently
disconnect from the database. About a dozen of these functions allow you to access your database’s
catalog tables.

The functions that support these operations begin with the letters "DB_".

Multi-Machine Testing in a Terminal Server Environment
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Note: This functionality is tested only for C++ applications. Whether any other extension will work is
unconfirmed. If a non-C++ environment does not work, then it is still considered a non-supported
environment and is not something that will be addressed by technical support.

Terminal Server

Terminal Server is an optional setup of Windows where the server is used in a similar fashion as a Unix
server. In a network of this type you have a server with a lot of memory to serve many workstations. Each
workstation has its own operating system and is connected through TCP/IP to the server machine. Each
client is required to have only one program installed; the terminal client.

The terminal client is a program that displays a complete Windows desktop, including a taskbar, just like
the one you see when you run Windows. Using the mouse and keyboard you are able to use this Desktop
to start and use Windows Applications like Word, PowerPoint and Silk Test Classic. When these
applications are running, they are not using the CPU or memory of the client machines, but are running on
the server machines. The display of the desktop however is being set to the terminal client programs. They
do this by sending many compressed images in cartoon fashion through TCP/IP from the server to the
terminal emulators, which in turn display the images and make it appear as though the Desktop and the
applications are running on the client machine.

Each terminal emulator has its own virtual mouse and keyboard port. You can have several different
Terminal Clients running on the same machine and each window will have its own mouse pointer. When
you use the physical mouse on the terminal client, the virtual mouse reacts to the commands.

Installing Silk Test Classic on the Controller Machine

In a Terminal Server environment the copy of Silk Test Classic is only installed on the server machine. Only
one copy is needed. When installing the product, you must follow the Terminal Server instructions for
installing the application in 'multi user' mode. This is done from the Add/Remove Programs feature found in

Testing in Your Environment with the Classic Agent | 215

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

the Control Panel. When this is complete, you can start Silk Test Classic from a terminal client and create
and run tests as you do when Silk Test Classic is installed on one machine.

Setting Up the Terminal Server Clients

In order to have multiple terminal clients running Silk Test Classic or other Agents, some configuration must
take place. If you want to be able to run test scenarios in different terminal client windows from a single
point of control, each client needs to start its own Agent process. Each Agent must be configured for
network use. You can either use the NetBios protocol and give each Agent instance a separate name, or
use the TCP/IP protocol and assign each Agent instance a different port.

Silk Test Classic does not support multiple-user sessions for a single target system. Using standalone Silk
Test Classic you can only service one Agent on a particular machine. However, using Silk Performer as
controller for Silk Test Classic scripts, you can also service multiple user/Agent sessions on a single
system (Silk Performer Gui level testing).

Starting Agents

Silk Test Classic has a -p option for Agent.exe that lets you specify a port number for the Agent.
Therefore, it is recommended that you use TCP/IP protocol and start Agents using agent -p <unique
port number>.

Testing Multiple Applications
This section describes testing multiple applications.

Overview of Multi-Application Testing
Silk Test Classic can easily drive multiple different applications simultaneously. Thus you can bring a
server’s database to a known state at the same time you are bringing multiple instances of the client
application to their base state window. Likewise, you can drive a server database with several different
client applications at the same time.

The essential difference between single-application and multi-application testing is clearly the difference
between "one" and "many." When the following entities in a test case are greater than one, they need
special consideration and support functions found in Silk Test Classic:

• Agent names.
• Application main window names.
• Sets of application states associated with each main window name.

Multi-machine testing requires that you map both the name of an application and all application states for
that application to the machine on which it will be tested. This makes it possible for you to direct test
operations to the right machines, and it enables Silk Test Classic to automatically set the machines to the
proper application state before a test is run, and to clean up after a test has failed.

Test Case Structure in a Multi-Application Environment
This topic describes Silk Test Classic components that enable concurrent testing of more than one
application. For example, there are functions that make it possible to drive both the client application and
the client’s server from Silk Test Classic, to set each to its base state, and to recover each if it fails.
Compare with the test case structure of a single-application environment.

The multi-application environment uses the same defaults.inc file as does the single-application
environment. However, when you define a function as a multitestcase, 4Test uses functions defined in the
cs.inc file to invoke functions in defaults.inc. Thus, it can pass the appropriate application states or
base states to these functions, depending on the requirements of a particular test machine.

Instead of preceding the test case function declaration with the keyword testcase, you must use the
keyword multitestcase to give your test case the multi-application recovery system.

216 | Testing in Your Environment with the Classic Agent

cs.inc is an automatically included file that contains functions used only in the multi-application
environment. For additional information about this file and the functions that it contains, see cs.inc. You
may need to include other files also.

Invoking a Test Case in a Multi-Application Environment
The keyword for a test case declaration is different when you are performing distributed testing. In the
single-application environment, you invoke a test case with no arguments or you may specify an application
state function. However, in a multi-application environment, instead of preceding the test case function
declaration with the keyword testcase, you must use the keyword multitestcase to give your test case the
multi-application recovery system.

Declaring a function as a multitestcase gives that function the ability to invoke functions declared with the
keyword testcase. A multitestcase thus can be viewed as a wrapper for stand-alone test cases; it provides
a means of assigning tests to particular machines and lets you invoke previously written test cases from
the multi-test case file by simply adding a use statement to the file to include the test case definitions.

When you are using multi-application environment support, you can pass the test case the names of the
machines to be tested during that execution of the test case, but not the application state function. In a
multi-application environment, one test case can use multiple application states; you specify these in the
required code at the beginning of the test case.

Test Case Structure in a Single-Application Environment
The code that implements a test case for a single application is similar to that of a test case for applications
on multiple separate machines in a client/server environment.

This topic summarizes the structure of the single-application version and some Silk Test Classic
components used to implement it. You can compare the structure with the support code needed for running
multiple applications.

The include file defaults.inc implements the recovery system for a single application test. For
information about the DefaulBaseState function and the functions that are contained within
defaults.inc, see defaults.inc.

Your test case needs certain definitions that other test cases in your testing program will also need. These
include:

• Window declarations
• Application states
• Utility functions

Placing these general purpose definitions in an include file, or several smaller files, saves repetitive coding.
When you use Silk Test Classic to record window declarations and application states, Silk Test Classic
names the generated file frame.inc.

Window Declarations for Multi-Application Testing
In the client/server environment, unlike the stand-alone environment, you can test two or more different
applications at the same time. For example, you could run the functional tests for application "A" on
multiple machines at the same time that you are running the functional tests for application "B" on the same
machines. The include files that you must generate may therefore have to take into consideration different
platforms and/or different applications.

When you are driving two or more applications from Silk Test Classic, you need separate window
declarations for each different application. You must be certain that your main window declaration for each
separate application is unique. If the same application is running on different platforms concurrently, you
may need to use GUI specifiers to specialize the window declarations. 4Test will identify a window
declaration statement, that is preceded by a GUI specifier, as being true only on the specified GUI.

Testing in Your Environment with the Classic Agent | 217

In addition, you may find that the operations needed to establish a particular application state are slightly
different between platforms. In this case, you just record application states for each platform and give them
names that identify the state and the GUI for your convenience.

Recording window declarations on a client machine that is not the host machine, requires that you operate
both Silk Test Classic on the host machine and the application on its machine at the same time. You record
window declarations and application states in much the same way for a remote machine as for an
application running in the Silk Test Classic host machine. The primary difference is that you start the
recording operation by selecting Test Frame in Silk Test Classic on the host system and you do the actual
recording of application operations on the remote system.

If you have two or more applications being tested in parallel, you need to have two or more sets of window
declarations. You must have window declarations, and application states, if needed, for each different
application. When recording window declarations and application states on a remote machine, you will find
it convenient to have the machine physically near to your host system.

Remote Recording

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Concurrency Test Example Code
The concurrency test example is designed to allow any number of test machines to attempt to access a
server database at the same time. This tests for problems with concurrency, such as deadlock or out-of-
sequence writes.

This example uses only one application. However, it is coded in the style required by the multi-application
environment because you will probably want to use an Agent to start and initialize the server during this
type of test. There is no requirement in the client/server environment that you use the single-application
style of test case just because you are driving only one application. For consistency of coding style, you will
probably find it convenient to always use the multi-application files and functions.

For detailed information on the code example, see Concurrency Test Explained.

const ACCEPT_TIMEOUT = 15
multitestcase MyTest (LIST OF STRING lsMachine)
 STRING sMachine
 INTEGER iSucceed
 STRING sError

 for each sMachine in lsMachine
 SetUpMachine (sMachine, Personnel)
 SetMultiAppStates ()

 /*** HAVE EACH MACHINE EDIT THE SAME EMPLOYEE ***/
 for each sMachine in lsMachine
 spawn

 /*** SET THE CURRENT MACHINE FOR THIS THREAD ***/
 SetMachine (sMachine)

 /*** EDIT THE EMPLOYEE RECORD "John Doe" ***/
 Personnel.EmployeeList.Select ("John Doe")
 Personnel.Employee.Edit.Pick ()

 /*** CHANGE THE SALARY TO A RANDOM NUMBER BETWEEN
 50000 AND 70000 ***/
 Employee.Salary.SetText ([STRING] RandInt (50000, 70000))
 rendezvous

 /*** ATTEMPT TO HAVE EACH MACHINE SAVE THE EMPLOYEE RECORD ***/
 for each sMachine in lsMachine
 spawn

218 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

 /*** SET THE CURRENT MACHINE FOR THIS THREAD ***/
 SetMachine (sMachine)

 /*** SELECT THE OK BUTTON ***/
 Employee.OK.Click ()

 /*** CHECK IF THERE IS A MESSAGE BOX ***/
 if (MessageBox.Exists (ACCEPT_TIMEOUT))
 SetMachineData (NULL, "sMessage",
 MessageBox.Message.GetText ())
 MessageBox.OK.Click ()
 Employee.Cancel.Click ()
 else if (Employee.Exists ())
 AppError ("Employee dialog not
 dismissed after {ACCEPT_TIMEOUT} seconds")
 rendezvous

 /*** VERIFY THE OF NUMBER OF MACHINES WHICH SUCCEEDED ***/
 iSucceed = 0
 for each sMachine in lsMachine
 sError = GetMachineData (sMachine, "sMessage")
 if (sMessage == NULL)
 iSucceed += 1
 else
 Print ("Machine {sMachine} got message '{sMessage}'")

 Verify (iSucceed, 1, "number of machines that succeeded")

Concurrency Test Explained
Before you record and/or code your concurrency test, you record window declarations that describe the
elements of the application’s GUI. These are placed in a file named frame.inc, which is automatically
included with your test case when you compile. Use Silk Test Classic to generate this file because Silk Test
Classic does most of the work.

The following code sample gives just those window declarations that are used in the Concurrency Test
Example:

window MainWin Personnel
 tag "Personnel"
 PopupList EmployeeList
 Menu Employee
 tag "Employee"
 MenuItem Edit
 tag "Edit"
 // ...

window DialogBox Employee
 tag "Employee"
 parent Personnel
 TextField Salary
 tag "Salary"
 PushButton OK
 tag "OK"
 // ...

The following explanation of the Concurrency Test Example gives the testing paradigm for a simple
concurrency test and provides explanations of many of the code constructs. This should enable you to read
the example without referring to the Help. There you will find more detailed explanations of these language
constructs, plus explanations of the constructs not explained here. The explanation of each piece of code
follows that code.

const ACCEPT_TIMEOUT = 15

Testing in Your Environment with the Classic Agent | 219

The first line of the testcase file defines the timeout value (in seconds) to be used while waiting for a
window to display.

multitestcase MyTest (LIST OF STRING lsMachine)

The test case function declaration starts with the multitestcase keyword. It specifies a LIST OF STRING
argument that contains the machine names for the set of client machines to be tested. You can implement
and maintain this list in your test plan, by using the test plan editor. The machine names you use in this list
are the names of the Agents of your target machines.

for each sMachine in lsMachine
 SetUpMachine (sMachine, Personnel)

To prepare your client machines for testing, you must connect Silk Test Classic to each Agent and, by
means of the Agent, bring up the application on each machine. In this example, all Agents are running the
same software and so all have the same MainWin declaration and therefore just one test frame file. This
means you can initialize all your machines the same way; for each machine being tested, you pass to
SetUpMachine the main window name you specified in your test frame file. The SetUpMachine function
issues a Connect call for each machine. It associates the main window name you specified (Personnel)
with each machine so that the DefaultBaseState function can subsequently retrieve it.

SetMultiAppStates ()

The SetMultiAppStates function reads the information associated with each machine to determine whether
the machine needs to be set to an application state. In this case no application state was specified (it would
have been a third argument for SetUpMachine). Therefore, SetMultiAppStates calls the DefaultBaseState
function for each machine. In this example, DefaultBaseState drives the Agent for each machine to open
the main window of the Personnel application. This application is then active on the client machine and
4Test can send test case statements to the Agent to drive application operations.

 for each sMachine in lsMachine
 spawn
 // The code to be executed in parallel by
 // all machines... (described below)
rendezvous

Because this is a concurrency test, you want all client applications to execute the test at exactly the same
time. The spawn statement starts an execution thread in which each statement in the indented code block
runs in parallel with all currently running threads. In this example, a thread is started for each machine in
the list of machines being tested. 4Test sends the statements in the indented code block to the Agents on
each machine and then waits at the rendezvous statement until all Agents report that all the code
statements have been executed.

The following is the code defined for the spawn statement:

// The code to be executed in parallel by
// all machines:
SetMachine (sMachine)
Personnel.EmployeeList.Select ("John Doe")
Personnel.Employee.Edit.Pick ()
Employee.Salary.SetText
[STRING] RandInt (50000, 70000))

Each thread executes operations that prepare for an attempt to perform concurrent writes to the same
database record. The SetMachine function establishes the Agent that is to execute the code in this thread.
The next two statements drive the application’s user interface to select John Doe’s record from the
employee list box and then to pick the Edit option from the Employee menu. This opens the Employee
dialog box and displays John Doe’s employee record. The last thread operation sets the salary field in this
dialog box to a random number. At this point the client is prepared to attempt a write to John Doe’s
employee record. When this point has been reached by all clients, the rendezvous statement is satisfied,
and 4Test can continue with the next script statement.

for each sMachine in lsMachine
 spawn

220 | Testing in Your Environment with the Classic Agent

 SetMachine (sMachine)
 Employee.OK.Click ()
 if (MessageBox.Exists (ACCEPT_TIMEOUT))
 SetMachineData (NULL, "sMessage",
 MessageBox.Message.GetText ())
 MessageBox.OK.Click ()
 Employee.Cancel.Click ()
 else if (Employee.Exists ())
 AppError ("Employee dialog not dismissed
 after {ACCEPT_TIMEOUT} seconds")
rendezvous

Now that all the clients are ready to write to the database, the script creates a thread for each client, in
which each attempts to save the same employee record at the same time. There is only one operation for
each Agent to execute: Employee.OK.Click, which clicks the OK button to commit the edit performed in
the previous thread.

The test expects the application to report the concurrency conflict with message boxes for all but one client
and for that client to close its dialog box within 15 seconds. The if-else construct saves the text of the
message in the error message box by means of the SetMachineData function. It then closes the message
box and the Employee window so that the recovery system will not report that it had to close windows.
This is good practice because it means fewer messages to interpret in the results file.

The "else if" section of the if-else checks to see whether the Employee window remains open, presumably
because it is held by a deadlock condition; this is a test case failure. In this case, the AppError function
places the string "***ERROR:" in front of the descriptive error message and raises an exception; all Agents
terminate their threads and the test case exits.

iSucceed = 0
for each sMachine in lsMachine
 sMessage = GetMachineData (sMachine, "sMessage")
 if (sMessage == NULL)
 iSucceed += 1
 else
 Print ("Machine {sMachine} got message '{sMessage}'")
Verify (iSucceed, 1, "number of machines that succeeded")

The last section of code evaluates the results of the concurrency test in the event that all threads
completed. If more than one client successfully wrote to the database, the test actually failed.

GetMachineData retrieves the message box message (if any) associated with each machine. If there was
no message, iSucceed is incremented; it holds the count of "successes." The Print function writes the text
of the message box to the results file for each machine that had a message box. You can read the results
file to verify that the correct message was reported. Alternatively, you could modify the test to automatically
verify the message text.

The Verify function verifies that one and only one machine succeeded. If the comparison in the Verify
function fails, Verify raises an exception. All exceptions are listed in the results file.

Notification Test Example Code (1 of 2)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This topic contains the complete test case file for a single-user notification test. It shows a testing
technique for a type of communication frequently used in client/server applications. Notification Test
Example Code (2 of 2) shows a notification test between two users running their own copies of the client
application. This illustrates doing the simplest case first and then adding the next level of complexity when
you go from one user to two users. For additional information on the testing technique, see Notification Test
Example Explained (1 of 2).

// ccmail.t
use "ccmail.inc"

Testing in Your Environment with the Classic Agent | 221

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

LogMeIn()
 LogInUser(GetMachineData(NULL, "Username"),
 GetMachineData(NULL, "Password"))

//--
multitestcase SingleUserNotification (STRING sMachine1 optional)
 if(sMachine1 == NULL)
 sMachine1 = "(local)"

 //=== MULTI-APPLICATION SETUP SECTION ===================//
 SetUpMachine(sMachine1, CcMail, "EnsureInBoxIsEmpty")
 SetMachineData(sMachine1, "Username", "QAtest1")
 SetMachineData(sMachine1, "Password", "QAtest1")
 SetMultiAppStates()

 //=== TEST BEGINS HERE ==================================//
 SetMachine(sMachine1)
 SimpleMessage("QAtest1", "Message to myself", "A message to myself")
 Verify(CcMailNewMailAlert.Exists(NOTIFICATION_TIMEOUT), TRUE)
 Verify(CcMailNewMailAlert.IsActive(), TRUE, "ALERT")
 CcMailNewMailAlert.OK.Click()
 CcMail.xWindow.GoToInbox.Pick ()
 Verify(CcMail.Message.DeleteMessage.IsEnabled(), TRUE,
 "MESSAGE WAITING")

Utility function
void SimpleMessage (STRING sRecipient, STRING sSubject,
 STRING sBody)
CcMail.Message.NewMessage.Pick()

NewMessage.MailingLabel.Recipient.SetText (sRecipient)
NewMessage.MailingLabel.Recipient.TypeKeys ("<Enter>")
NewMessage.MailingLabel.Recipient.TypeKeys ("<Enter>")
NewMessage.MailingLabel.SubjectField.SetText (sSubject)
NewMessage.MailingLabel.SubjectField.TypeKeys ("<Enter>")
NewMessage.EditBody.Body.TypeKeys (sBody)
NewMessage.EditBody.Body.TypeKeys ("<Ctrl-s>")

This function uses standard methods on Ccmail window components, defined in ccmail.inc, to do the
following:

1. Pick the NewMessage item from the Message menu.
2. Enter the string in argument one into the Recipient field and press the Enter key twice to move to the

Subject field.
3. Enter the string in argument two into the Subject field and press Enter to move to the message body

portion of the window (EditBody.Body).
4. Type the string in argument three into the Body field and type Ctrl + s to send the message.

The following block of code verifies the results of the test.

Verify(CcMailNewMailAlert.Exists(NOTIFICATION_TIMEOUT),
 TRUE)
Verify(CcMailNewMailAlert.IsActive(), TRUE, "ALERT")
CcMailNewMailAlert.OK.Click()
CcMail.xWindow.GoToInbox.Pick ()
Verify(CcMail.Message.DeleteMessage.IsEnabled(), TRUE,
 "MESSAGE WAITING")

The above code does the following:

1. Verifies that the sent message was received, as indicated by the NewMailAlert message box. The
NOTIFICATION_TIMEOUT value causes the Verify function to wait for that period of time for the
window to exist. If the timeout value is reached, the Verify raises an exception.

222 | Testing in Your Environment with the Classic Agent

2. Verify that the dialog box CcMailNewMailAlert is active.
3. If the Verify executes without an exception, click on the OK button in the CcMailNewMailAlert dialog

box.
4. Pick the GoToInbox menu item from the Window menu.
5. Verify that a message exists in the Inbox by checking to see that the Message menu has its

DeleteMessage menu item enabled. If the menu item is not enabled, there is no message in the Inbox
and the Verify function raises an exception.

• This script continues in Notification Test Example Code (2 of 2).

Notification Test Example Explained (1 of 2)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The first line in the test case file is a comment that lists the name of the file holding this code.

// csmail.t

The next line is an include statement. The explanations for each fragment of code follow that code.

use "ccmail.inc"

The ccmail.inc file is defined for this test case. It contains the window declarations for the application in
addition to application state definitions and definitions for general-purpose utility functions also needed by
other test cases designed for this application. You can find the ccmail.inc file in the Silk Test Classic
Examples directory. Code fragments from that file are included as needed in this discussion.

LogMeIn()
 LogInUser(GetMachineData(NULL, "Username"),
 GetMachineData(NULL, "Password"))

The utility function LogMeIn is called by the invoke method for the CC Mail main window, called CcMail.
The LogInUser function is defined in ccmail.inc. The machine data that LogInUser retrieves for its
arguments gets established by each test before the application state function for each machine is invoked.

multitestcase SingleUserNotification (STRING sMachine1)

The function declaration for the test case passes in the name of the Agent for the machine on which the
application is running.

if(sMachine1 == NULL)
 sMachine1 = "(local)"

This if statement if statement allows you to invoke the test case without specifying a machine name when
you want to run on the local machine.

SetUpMachine(sMachine1, CcMail, "EnsureInBoxIsEmpty")

The SetUpMachine function provides the name of the main application window, CcMail, and the
application state (EnsureInBoxIsEmpty) to be established by Silk Test Classic. EnsureInBoxIsEmpty
is defined in ccmail.inc. This statement is part of the standard setup code for multi-application tests.
The standard multi-application setup code is documented in template.t Explained and Concurrency Test
Example Code. The setup code in this test case is essentially the same.

This is a single-user test case and therefore does not actually need the setup methodology required by a
multi-application test. However, since client/server testing is frequently multi-application testing, all the
example test cases use the multi-application coding methods. We recommend that you also follow this
practice, since consistency of testing styles reduces coding errors in your test cases.

One difference for this test case is that this is an application that requires the user to log in. Therefore the
following code fragment provides the user name and password for the application under test:

SetMachineData (sMachine1, "Username", "QAtest1")
SetMachineData (sMachine1, "Password", "QAtest1")

Testing in Your Environment with the Classic Agent | 223

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

These statements associate two pieces of information, named "Username" and "Password," with the
specified machine. In both cases the value of the associated information is the same, "QAtest1." Now that
this information is available to the application state function, that function can log the user in. This will
happen as a result of the next statement.

SetMultiAppStates()

In this test, SetMultiAppStates function will actually only set the application state for the one machine.

SimpleMessage ("QAtest1", "Message to myself",
 "A message to myself")

The above line invokes the utility function from ccmail.inc, which sends the short message to the local
machine.

Notification Test Example Code (2 of 2)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This is the complete test case file for a two-user notification test. It shows the next level of complexity in
testing client/server notification operations. For additional information on the testing technique, see
Notification Example 2 Explained.

//--
// This testcase logs in as user QAtest1 on the first machine,
// and logs in as user QAtest2 on the second machine; then
// sends a message from the user on the first machine to the
// user on the second machine; it then switches to the second
// machine and waits to be notified that new mail has arrived.
//

multitestcase TwoUserNotification (STRING sMachine1, STRING sMachine2)

 //=== MULTI-APPLICATION SETUP SECTION ===================//
 SetUpMachine(sMachine1, CcMail)
 SetUpMachine(sMachine2, CcMail, "EnsureInBoxIsEmpty")
 SetMachineData(sMachine1, "Username", "QAtest1")
 SetMachineData(sMachine1, "Password", "QAtest1")
 SetMachineData(sMachine2, "Username", "QAtest2")
 SetMachineData(sMachine2, "Password", "QAtest2")
 SetMultiAppStates()

 //=== TEST BEGINS HERE ==================================//
 //---
 // Switch to the first machine:
 SetMachine(sMachine1)

 // Send mail from user 1 to user 2
 SimpleMessage("QAtest2", "Message to user 2", "Message from me to you.")

 //---
 // Switch to the second machine:
 SetMachine(sMachine2)

 // Wait for notification to occur, then acknowledge it:
 Verify(CcMailNewMailAlert.Exists(NOTIFICATION_TIMEOUT), TRUE)
 Verify(CcMailNewMailAlert.IsActive(), TRUE, "ALERT")
 CcMailNewMailAlert.OK.Click()

 // Refresh the In box and check that a message is waiting there:
 CcMail.xWindow.GoToInbox.Pick ()
 Verify(CcMail.Message.DeleteMessage.IsEnabled(), TRUE,
 "MESSAGE WAITING")

224 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Notification Test Example Explained (2 of 2)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The code in this two-user notification test is much the same as the code in the single-user example, except
that the test is distributed across two CcMail applications. Thus the primary differences in this example are
in the program flow.

Note: The described actions are carried out sequentially rather than concurrently.

The following actions are carried out by the code in the two-user notification test:

Before the test starts

1. The SetUpMachine function is carried out on two machines; the first machine defaults to the base state,
but the second machine specifies an application state that ensures that its InBox is empty.

2. The Username and Password values for both machines are set.
3. The SetMultiAppStates function is invoked for both machines.

Note: This function will set different application states for the two machines.

On Machine 1:

1. The SetMachine function specifies that Machine 1 should receive the next operation.
2. A simple message is sent to Machine 2.

On Machine 2:

1. Verify that the Alert dialog box exists.
2. Verify that the Alert dialog box is active. If it is not, the exception’s error message will be Verify

ALERT failed....
3. If the Alert dialog box has opened, dismiss it by clicking OK.
4. Refresh the InBox by picking the Inbox choice from CcMail’s Window menu.
5. Verify that the Message menu’s DeleteMessage menu item is enabled, proving that the message is in

the Inbox. If Verify fails, which means the menu item is not enabled, the exception’s error message will
read, Verify MESSAGE WAITING failed....

Code for template.t
This fragment of an example test case shows the required code with which you start a multi-application test
case. It connects Silk Test Classic to all the machines being tested and brings each to its first screen. This
is just a template; you must tailor your code to fit your actual needs. For information on the significance of
each line of code, see Template.t Explained.

multitestcase MyTest (STRING sMach1, STRING sMach2)
 SetUpMachine (sMach1, MyFirstApp, "MyFirstAppState")
 SetUpMachine (sMach2, MySecondApp, "MySecondAppState")
 SetMultiAppStates ()
 spawn
 SetMachine (sMach1)
 // Here is placed code that drives test operations

 spawn
 SetMachine (sMach2)
 // Here is placed code that drives test operations

 rendezvous
 // "..."

Testing in Your Environment with the Classic Agent | 225

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

template.t Explained
The following line of code in Code for template.t is the first required line in a multi-application test case file.
It is the test case declaration.

Note: The code does not pass an application state as in the stand-alone environment.

multitestcase MyTest (STRING sMach1, STRING sMach2)

In the multi-application environment the arguments to your test case are names of the machines to be
tested; you specify application states inside the test case. You can code the machine names arguments as
you like. For example, you can pass a file name as the only argument, and then, in the test case, read the
names of the machines from that file. Or you can define a LIST OF HMACHINE data structure in your test
plan, if you are using the test plan editor, to specify the required machines and pass the name of the list,
when you invoke the test case from the test plan. This template assumes that you are using a test plan and
that it passes the Agent names when it invokes the test case. For this example, the test plan might specify
the following:

Mytest ("Client1", "Client2")

The next two code lines are the first required lines in the test case:

SetUpMachine (sMach1, MyFirstApp, "MyFirstAppState")
SetUpMachine (sMach2, My2ndApp, "My2ndAppState")

You must execute the SetUpMachine function for every client machine that will be tested. For each
SetUpMachine call, you specify the application to be tested, by passing the name of the main window,
and the state to which you want the application to be set, by passing the name of the application state if
you have defined one.

The SetUpMachine function issues a Connect call for a machine you want to test and then configures
either the base state or a specified application state.

It does this as follows:

• It associates the client application’s main window name with the specified machine so that the
DefaultBaseState function can subsequently retrieve it to set the base state.

• It associates the name of the application’s base state, if one is specified, with the specified machine so
that the SetMultiAppStates function can subsequently retrieve it and set the application to that state
at the start of the test case.

The first argument for SetUpMachine is the machine name of one of your client machines. The second
argument is the name you supply in your main window declaration in your test frame file, frame.inc. For
this example, the frame.inc file specifies the following:

window MainWin MyFirstApp

Because this template specifies two different applications, it requires two different test frame files.

The third argument is the name you provide for your application state function in your appstate declaration
for this test. For this example, the appstate declaration is the following:

appstate MyFirstAppState () based on MyFirstBaseState

The appstate declaration could also be of the form:

appstate MyFirstBaseState ()

Although the DefaultBaseState function is designed to handle most types of GUI-based applications,
you may find that you need to define your own base state. It would be the application state that all your
tests for this application use. In this case, you would still pass this application state to SetUpMachine so
that your application would always be brought to this state at the start of each test case.

This template specifies two application states for generality. You would not use an application state if you
wanted to start from the main window each time. If you have a number of tests that require you to bring the

226 | Testing in Your Environment with the Classic Agent

application to the same state, it saves test-case code to record the application state once, and pass its
name to SetUpMachine. You will probably place your application state declarations in your test frame file.

SetMultiAppStates ()

The SetMultiAppStates function must always be called, even if the test case specifies no application
state, because SetMultiAppStates calls the DefaultBaseState function in the absence of an
appstate declaration. SetMultiAppStates uses the information that SetUpMachine associated with
each connected machine to set potentially different application states or base states for each machine.

 spawn
 SetMachine (sMach1)
 // Here is placed code that drives test operations

The spawn statement starts an execution thread, in which each statement in the indented code block below
it runs in parallel with all currently running threads. There is no requirement that your test case should drive
all your test machines at the same time, however, this is usually the case. The SetMachine function
directs 4Test to execute this thread’s code by means of the Agent on the specified machine. This thread
can then go on to drive a portion, or all, of the test operations for this machine.

 spawn
 SetMachine (sMach2)
 // Here is placed code that drives test operations
rendezvous
// "..."

The second spawn statement starts the thread for the second machine in this template. The rendezvous
statement blocks the execution of the calling thread until all threads spawned have completed. You can use
the rendezvous statement to synchronize machines as necessary before continuing with the test case.

defaults.inc
The defaults.inc file is provided by Silk Test Classic and implements the recovery system for a single
application test. That is, it contains the DefaultBaseState function that performs any cleanup needed
after an operation under test fails and returns the application to its base state.

You can define a base state function to replace the DefaultBaseState function by defining an
application state without using the basedon keyword. This creates an application state that 4Test executes
instead of the DefaultBaseState function.

The defaults.inc file contains six other functions that 4Test automatically executes unless you define
functions that replace them:

DefaultScriptEnter A null function, allows you to define a ScriptEnter function, as discussed
below.

DefaultScriptExit
(BOOLEAN bException)

Logs an exception to the results file when a script exits because of an
exception.

DefaultTestcaseEnter Executes the SetAppState function. If you have specified an application
state for this test case, the SetAppState function brings your test
application to that state. If you have no application state defined,
SetAppState brings the application to the base state (if necessary).

DefaultTestcaseExit
(BOOLEAN bException)

Logs an exception to the results file when a test case exits because of an
exception. The function then executes the SetBaseState function, which
calls a base state function that you have defined or the
DefaultBaseState function.

DefaultTestPlanEnter A null function, allows you to define TestPlanEnter, as discussed below,
to allow logging of results.

Testing in Your Environment with the Classic Agent | 227

DefaultTestPlanExit
(BOOLEAN bException)

A null function, allows you to define TestPlanExit, as discussed below,
to allow logging of results.

The word "Default" in each of the above function names signifies that you can define alternative functions
to replace these. If, for example, you define a function called TestcaseEnter, 4Test will invoke your function
before executing any of the code in your test case and will not invoke DefaultTestcaseEnter.

TestPlanEnter() is not called until the first test case in the plan is run. Or the first marked test case, if
you are only running marked test cases. Similarly, TestPlanExit() is called at the completion of the last
marked test case. TestPlanExit() is only called if the last marked test description contains an executable
test case, which means not a manual test case or a commented out test case specifier.

cs.inc
cs.inc is an automatically included file that contains functions used only in the multi-application
environment. The following functions provide a recovery system for managing automated testing of client/
server applications:

SetMultiAppStates Sets an application state for each connected machine, if the "AppState"
machine data lists one; if not, it calls the DefaultBaseState function,
which sets the application to its main window.

SetMultiBaseStates Sets the application to the lowest state in the application state hierarchy for
each connected machine, if the "AppState" machine data lists an
application state. The lowest application state is one in which the appstate
declaration did not use the basedon keyword. If there is no "AppState"
information associated with this machine, SetMultiBaseStates calls the
DefaultBaseState function, which sets the application to its main
window, invoking it beforehand if necessary.

SetUpMachine Connects Silk Test Classic to an agent on the specified machine. It provides
a way to associate a main window declaration and an application state
function with a machine name. These parameters are stored as data
accessible by means of the GetMachineData function. Both of these
names (the second and third arguments to the function) are optional;
however, if you omit both arguments, you will have no recovery system.

DefaultMultiTestCaseEnter Executes at the beginning of a multi-test case. It invokes a
DisconnectAll function. The invocation of the SetAppState function is
performed by the SetMultiAppStates function because the
DefaultTestCaseEnter function is not executed for a multi-test case.

DefaultMultiTestCaseExit Executes just before a multi-test case terminates. It logs any pending
exception, then invokes SetMultiBaseStates and DisconnectAll.

Include File Size
The maximum size of an include file is approximately 65536 lines. If your include file is very large, split it
into two files and continue with your testing.

Troubleshooting Distributed Testing
This section provides troubleshooting information for testing on multiple machines.

Handling Limited Licenses
By default, Silk Test Classic starts up an unplanned Agent on the local workstation. If you do not want to
use the local workstation as a test machine, set the Agent Name field in the Runtime Options dialog box
to (none) instead of (local). This will free up one license for a remote Agent.

228 | Testing in Your Environment with the Classic Agent

Resolving Port-Number Conflicts
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic connects to each Agent through a TCP/IP port that has a 4-digit or 5-digit ID. Typically, all
the machines in your testing network automatically use the same default port number. This allows the
Connect function to automatically specify the port number for all connections. If some other application on
one of your machines has already used the default port number, you have a port number conflict.

If you start an Agent on a PC and the default port is already in use, an error message is displayed.

In either case, you can use a different port number just for this machine, while using the default number for
the rest, or you can have all your machines use the same available port number. When you have an Agent
that uses a port number which is different than the default port number, you must specify the port number
in every reference to that Agent. The syntax is AgentName:nnnn where AgentName is the target machine
name and nnnn is the port number. Since you typically use a file or a list variable to hold your Agent
names, you can add the :nnnn where needed.

If there are no port conflicts, you do not have to specify ports. If you have a conflict, the port number used
for that machine must change. You can choose to change the port numbers used by all your PCs and
workstations so that all use the same number.

Setting-Up Extensions for Distributed Testing
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you are testing non-Web applications, you must disable browser extensions on your host machine. This is
because the recovery system works differently when testing Web applications than when testing non-Web
applications.

Furthermore, when you select one or both of the Internet Explorer (IE) extensions on the host machine’s
Extension dialog box, Silk Test Classic automatically selects the correct version of the host machine’s IE
application in the Runtime Options dialog box. If the target machine’s version of IE is not the same as the
host machine’s, you must remember to change the target machine’s version.

Testing ActiveX/Visual Basic Controls
The topics in this section describe how Silk Test Classic provides built-in support for testing ActiveX
controls and Visual Basic native controls with the Classic Agent.

The Open Agent does not provide dedicated support for testing ActiveX controls and native Visual Basic
controls. However, the Open Agent supports mapping Visual Basic native controls to custom controls, by
using the Win32 technology domain and the Custom Controls dialog box.

Overview of ActiveX/Visual Basic Support

Visual Basic 5 and 6 with the Classic Agent

Silk Test Classic provides built-in support for testing ActiveX controls and Visual Basic 5 and 6 native
controls with the Classic Agent. These controls can be embedded in:

• Visual Basic 5 and 6 applications
• Other 32-bit Windows applications
• HTML Web pages

In addition, you can test more than one application at a time.

Testing in Your Environment with the Classic Agent | 229

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Visual Basic 4 with the Classic Agent

If you are testing Visual Basic 4 applications with the Classic Agent, you do not have access to properties
and methods in native controls, just ActiveX controls. Since most Visual Basic 4 native controls map to
Windows native controls, you can use Silk Test Classic’s class mapping feature to test native controls.

Visual Basic with the Open Agent

The Open Agent does not provide dedicated support for testing ActiveX controls and native Visual Basic
controls. However, the Open Agent supports mapping Visual Basic native controls to custom controls, by
using the Win32 technology domain and the Custom Controls dialog box.

Enabling ActiveX/Visual Basic Support
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Before testing Visual Basic and ActiveX controls in a stand-alone application or in Internet Explorer, you
need to enable extensions. If you are testing ActiveX controls in Internet Explorer, you must complete set
up for testing ActiveX controls or Java applets in the browser.

Predefined Classes for ActiveX/Visual Basic Controls
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

In addition to the 4Test classes provided in Silk Test Classic, support for Visual Basic with ActiveX controls
includes predefined class definitions for:

• The native Visual Basic controls included in Microsoft Windows Visual Basic 6.0 Professional Edition.
• The ActiveX controls bundled with Visual Basic 6.0 Professional Edition.

These definitions are provided in a file as a convenience to help you quickly get started testing your
applications.

Property names that begin with the prefix VB, for example, rVBHeight of the OLEAniPushButton class,
are available only in Visual Basic applications. These properties are added to an ActiveX control by the
Visual Basic environment. They are not available in C/C++ environments.

Do you need to record additional classes?

If your application contains only those controls shipped with the Microsoft Windows Visual Basic
Professional Edition, then you do not need to record additional classes. If you are not sure, review the
controls in your application and compare them to the table in the list of controls.

• If your application uses only these types of controls, you do not need to record additional classes. Go to
Testing ActiveX/Visual Basic controls.

• If your application uses controls other than those listed in the table, for example, third-party ActiveX
controls, you must record classes for these additional controls, as described in Recording new classes
for ActiveX/Visual Basic controls. After you record the class, you can retrieve information about any
number of instances (objects) of that class.

Predefined Class Definition File for Visual Basic
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The vbclass.inc file provides 4Test class definitions for the native Visual Basic controls and bundled
ActiveX controls supported in included in Microsoft Windows Visual Basic 6.0 Professional Edition. Each
class in the file lists the prototypes of all properties and methods for the class.

230 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

If you did not install Visual Basic/ActiveX support but later want to enable it to test your applications, you
must manually edit startup.inc in order to use the predefined class definitions; otherwise, you will have
to record all class definitions yourself. The procedure for manually enabling Visual Basic/ActiveX support is
described in Enabling the ActiveX/Visual Basic Support.

List of Predefined ActiveX/Visual Basic Controls
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The following table lists each of the ActiveX and native Visual Basic controls for which classes are
provided, the enhanced Visual Basic- and ActiveX-specific 4Test class each control is associated with, and
the standard 4Test class from which that class is derived. For example, the 3D Check Box control is
associated with the OLESSCheck class, which is derived from the 4Test class CheckBox.

Native Visual Basic or
ActiveX Control

4Test Class for the
Control

Standard 4Test Class Derived From

3D Check Box Control OLESSCheck CheckBox

3D Command Button Control OLESSCommand PushButton

3D Frame Control OLESSFrame StaticText

3D Option Button Control OLESSOption RadioButton

3D Panel Control OLESSPanel Control

3D Group Push Button Control OLESSRibbon Control

Animation Control OLEAnimation Control

Animated Button Control OLEAniPushButton PushButton

CheckBox Control VBCheckBox CheckBox

ComboBox Control VBComboBox ComboBox

CommandButton Control VBCommandButton PushButton

Data Control VBData Control

DBCombo Control OLEDBCombo ComboBox

DBGrid Control OLEDBGrid Control

DBList Control OLEDBList ListBox

DirListBox Control VBDirListBox ListBox

DriveListBox Control VBDriveListBox PopupList

FileListBox Control VBFileListBox ListBox

Form VBMainForm MainWin

Form VBChildForm ChildWin

Form VBForm DialogBox

Frame Control VBFrame StaticText

Gauge Control OLEGauge Control

Graph Control OLEGraph ControlMultiWin

Grid Control OLEGrid Control

HScrollBar Control VBHScrollBar ScrollBar

Testing in Your Environment with the Classic Agent | 231

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Native Visual Basic or
ActiveX Control

4Test Class for the
Control

Standard 4Test Class Derived From

Image Control VBImage Control

Key State Control OLEMhState Control

Label Control VBLabel StaticText

ListBox Control VBListBox ListBox

ListView Control OLEListView ListView

Masked Edit Control OLEMaskEdBox TextField

MDIForm VBMDIForm MainWin

MSChart Control OLEMSChart Control

MSFlexGrid Control OLEMSFlexGrid Control

Multimedia MCI Control OLEMMControl ControlMultiWin

OLE Container Control VBOLE Control

OptionButton Control VBOptionButton RadioButton

Outline Control OLEOutline Control

PictureBox Control VBPictureBox Control

ProgressBar Control OLEProgressBar Control

RichTextBox Control OLERichTextBox TextField

Shape Control VBShape Control

Slider Control OLESlider Scale

SpinButton Control OLESpinButton Control

SSTab Control OLESSTab PageList

StatusBar Control OLEStatusBar StatusBar

TabStrip Control OLETabStrip Control

TextBox Control VBTextBox TextField

Toolbar Control OLEToolbar ToolBar

TreeView Control OLETreeView TreeView

UpDown Control OLEUpDown UpDown

VScrollBar Control VBVScrollBar ScrollBar

Access to VBOptionButton Control Methods
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To access the ActiveX methods and properties of a control of class VBOptionButton, you must set the
Don’t Group Radio Buttons Into a List option in the Agent Options dialog box. There are several ways
to do this:

Locally Enter the following statement in your script(s): Agent.SetOption (OPT_RADIO_LIST,
FALSE). The advantage of setting the option locally is that you can still treat a group of buttons
as a radio list, for example, for selection purposes.

232 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Globally Open the Agent Options dialog box, click the Compatibility tab, and check the Don’t Group
Radio Buttons into a List check box.

0-Based Arrays
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you access arrays using the methods provided in the Visual Basic and ActiveX extension, the arrays
are 0-based; that is, the first value is stored in slot 0. In contrast, GetArrayProperty and
SetArrayProperty, two methods provided for backward compatibility with previous releases, used 1-
based arrays. The following example illustrates the current and old syntax:

testcase GetColWidthForGrid () appstate none

 INTEGER iWidth1, iWidth2

 //Get width of col. 1 in MyGrid, using current syntax
 //Note that index (passed to GetColWidth method) is 0
 iWidth1 = MyApp.MyGrid.GetColWidth(0)

 //Changes the width of col. 1, using current syntax
 MyApp.MyGrid.SetColWidth (0, 555)

 //Gets width of col. 1 in MyGrid, using old syntax
 //Note that index of the ColWidth property arrow
 //(passed to GetArrayProperty method) is 1
 iWidth2 = MyApp.MyGrid.GetArrayProperty ("ColWidth", 1)

Passing an index of 0 to GetArrayProperty causes an error at runtime.

Dependent Objects and Collection Objects
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Active X controls can be composed of objects which themselves expose properties and methods. An
example is the Data control, which contains a Recordset control. Such contained objects are often referred
to as dependent objects because they don’t exist outside the context of the containing control. In many
cases, dependent objects are arranged into groups, or collections. For example, a TreeView control
contains a collection of Node objects.

Users of the ActiveX control need a way to get at dependent objects. In the case of a simple dependent
object, the outer control typically exposes a property that provides access to the contained object. In the
case of a collection, the outer control provides access to the items in a collection through an intermediate
object called a collection object.

You can get programmatic access to dependent objects by having the relevant control class inherit from a
special class provided for this purpose: the CompoundControl class. This class provides methods for
accessing the properties and methods of a simple dependent object, a collection object, or the individual
items within a collection.

Working with Dynamically Windowed Controls
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

In Internet Explorer, ActiveX controls may be dynamically windowed, which means their windows may
come and go, or change location as the object is scrolled in and out of view. Consequently, recording
declarations and actions against such objects can be tricky. You can achieve the most consistent results by

Testing in Your Environment with the Classic Agent | 233

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

bringing the ActiveX control into full view when recording declarations, classes, or actions. If you don't bring
the ActiveX control into full view, Silk Test Classic might not recognize it correctly.

Window Timeout
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you install Visual Basic and ActiveX support in Silk Test Classic, the Window Timeout setting in the
Agent Options dialog is initially set to 20 seconds. This setting determines how long the recovery system
waits when checking to see if your application exists. If you choose to change the Window Timeout setting
to a low number or 0, you may encounter a timing problem, where rapidly exiting and restarting an
application may generate "Windows not found" errors.

Setting this option is not required when testing ActiveX controls in Internet Explorer, but is recommended
as a general practice.

Conversion of BOOLEAN Values
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

In some cases, when you record a class declaration, the result is a method prototype that takes a SHORT
data type as a parameter even though the associated Visual Basic property takes a BOOLEAN parameter.

For example, in the following Visual Basic prototype, the syntax of the TabEnabled property of the SSTab
class is:

object.TabEnabled (tab) [= boolean]

where boolean, the return value, is a BOOLEAN value: TRUE for enabled, FALSE for disabled. The
prototype for its method equivalent in the SSTab class is shown in vbclass.inc as:

ole VOID SetTabEnabled (SHORT Index, SHORT Arg1)

Note: The SetTabEnabled method takes a value of type SHORT as its second argument, which is
equivalent to the BOOLEAN argument of the property. However, because 4Test and ActiveX define
the BOOLEAN type differently, attempting to pass TRUE or FALSE as you would in Visual Basic will
generate an argument type mismatch error in Silk Test Classic. Use the following constant values
instead, which are defined in oleclass.inc:

• OLE_TRUE (which equals –1)

• OLE_FALSE (which equals 0)

Testing Controls: 4Test Versus ActiveX Methods
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The most effective way to test a control depends on the type of the control. For some controls, the inherited
4Test methods are more efficient; for others, the ActiveX methods or properties are more efficient. In
general, we recommend that you begin by trying the 4T4Testest methods associated with the class from
which the control is derived. For example, for the OLERichTextBox use the 4Test methods and properties
for TextField.

Control Access is Similar to Visual Basic
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

234 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

You can access a control's internal properties and methods using the dot operator and a syntax similar to
standard Visual Basic.

Example

To retrieve the number of rows in a Grid ActiveX control, called MyGrid, you might use
the iRows property, as follows:

INTEGER iNumRows
iNumRows = MyApp.MyGrid.iRows

Example

To set the number of rows in the same grid to 10, you might use:

MyApp.MyGrid.iRows = 10

Prerequisites for Testing ActiveX/Visual Basic Controls
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You are ready to begin testing your application. First, please read the information on designing and
recording test cases in Overview of Test Cases. Become familiar with the basic concepts of test case
design, including the setup, verification, and cleanup stages, and the Record > Testcase and Record >
Action menu items.

Additionally, to test Visual Basic/Active X controls with Silk Test Classic, you must fulfil the following
prerequisites:

• You are familiar with routine Silk Test Classic tasks.
• You understand properties and methods as they relate to ActiveX controls or native Visual Basic

controls.
• You have access to the documentation for any ActiveX controls that are embedded in your test

application, and whose properties or methods you want to call.

ActiveX/Visual Basic Exception Values
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic generates exception values under given error conditions. These values are described in
the Help. In addition, the ActiveX/Visual Basic support defines the following set of exception values:

E_SPY_NOT_RESPONDING Unable to connect to the Visual Basic or Windows application with
embedded OLE controls.

E_OBJ_CALL_FAILED The method or property call returned an error.

E_OBJ_NOT_FOUND The Visual Basic or OLE control object could not be found.

E_ARG_TYPE_MISMATCH One of the arguments has the wrong type.

E_BAD_ARG_COUNT Wrong number of arguments for this method or property call.

E_ARG_VAL_OUT_OF_RANGE One of the arguments had a value that was out of range.

Testing in Your Environment with the Classic Agent | 235

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Recording New Classes for ActiveX/Visual Basic
Controls
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The process of recording a class involves querying the objects in your application, retrieving information on
properties and methods, and then translating the information into 4Test-style prototypes. Silk Test Classic
does this automatically for you when you select Record > Class.

We recommend that you create an include file (for example, userclass.inc) for your new class
definitions, instead of entering them in vbclass.inc. This way you will not have to update vbclass.inc
each time you record new class definitions.

1. Start your application. If you are recording classes for controls on a web page, navigate to that Web
page.

2. Open the include file you created for your new class definitions. For information on how to load class
definition files, see Loading Class Definition Files.

3. Click Record > Class > Scripted to open the Record Class dialog box.

4. Position the mouse pointer over the control for which you want to record a class.

5. When the correct name displays in the Window field, press Ctrl+Alt. Properties and methods for that
class are displayed in the Record Class dialog. Do not edit the tag name in the Tag field.

6. Click the Derived From drop-down menu to see the list of available 4Test classes. Then proceed as
follows:

• If there is a class type available that maps directly to your object, choose it. For example, if your
object is a SuperListBox, you might choose ListBox (note that similarly named objects might not
behave as expected). Your object will inherit all the standard 4Test methods and properties defined
for a list box.

• If there is not a class type that maps directly to your object, choose Control, which is a generic
class.

See winclass declaration and derived class for more details.

The Agent provides special handling for certain classes of objects. If your object is one of these types,
but does not work correctly while you are testing your application, you will also need to class map the
object after completing this procedure. For more information, see Options for Non-Graphical Custom
Controls.

7. Click Paste to Editor to paste the new class into the include file.

8. Repeat this process for every type of control in your application that does not appear in the list of
classes provided. When you are done recording classes, and then click Close.

Loading Class Definition Files
If you record classes into a file other than vbclass.inc, which we recommend, you must have Silk Test
Classic load the file in one of the following ways:

• In the Use Path fields of the Runtime Option dialog box, enter the path of the directory that contains
the class include file. By default, these files are installed in the Silk Test Classic installation directory.
Then, in the Use Files field, specify the name and extension of the include file.

• Insert a use statement in each script that needs to manipulate objects of the classes you just declared.
Use the following format:

use "directory\file-name.inc"

236 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

For example, to have Silk Test Classic load the class include file for third-party ActiveX controls,
thirdpty.inc, which resides in the default directory c:\mydir, insert the following statement:

use "c:\mydir\thirdpty.inc"

• If most of your work involves testing Visual Basic applications, you may want to add a use statement to
your startup.inc file.

Disabling ActiveX/Visual Basic Support
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You disable ActiveX/Visual Basic support for a particular application on the host machine, rather than in
general.

1. On the host machine, click Options > Extensions to open the Extensions dialog box.

2. For the application you want to disable, uncheck the ActiveX check box.

3. Click OK to close the Extensions dialog box.

When you’re done testing the application, you may want to remove it from the Extensions dialog box as
well as from the Extension Enabler dialog box.

Ignoring an ActiveX/Visual Basic Class
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you are using the ActiveX/Visual Basic extension and you want to ignore a class, you must edit the
axext.ini configuration file.

1. Open the axext.ini file, which is installed by default in the <SilkTest installation
directory>/extend folder.

2. In the [OmitClasses] section, enter either the class names or class ids, separated by commas. For
example:

[OmitClasses]
RawClassName=
CLSID=00010001-0000-0000-0000-111111111111

3. Save and close axext.ini. The next time you open Silk Test Classic, Silk Test Classic ignores the
class (or classes) you’ve listed.

Setting ActiveX/Visual Basic Extension Options
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The ActiveX/VB options you can set are:

• SetAdvSink which sets the Advise Sink.
• ShowAllWin which controls whether Silk Test Classic optimizes window hierarchy by skipping some

windows.
• MsgTimeout which controls the timeout for messaging in the extension.

You can set the ActiveX/VB extension options by manually editing the axext.ini file. The settings go in
the [VBOptions] section of axext.ini and are optional. You do not have to include them in your
axext.ini if you want the default behavior.

Testing in Your Environment with the Classic Agent | 237

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

SetAdvSink option

Default is TRUE. Setting the advise sink may cause certain applications to crash if they frequently destroy
and recreate ActiveX/VB controls. Try setting this option to FALSE if your application under test crashes.
Setting the option to FALSE disables the code in the ActiveX/VB extension that sets the advise sink.

ShowAllWin option

Default is FALSE. ShowAllWin lets you control whether or not Silk Test Classic recognizes the full window
hierarchy in ActiveX applications. The default FALSE setting causes the ActiveX extension to construct a
simplified window hierarchy that filters out windows perceived to be containers. Setting the option to TRUE
causes the ActiveX extension to recognize the full window hierarchy. Try setting this option to TRUE if a
control that you need to test is not recognized because it has the same position and size (in other words,
the same rectangle) as another control that is recognized.

MsgTimeout option

Default is 1000. Setting the MsgTimeout option controls the number in milliseconds of the timeout used for
messaging in the extension. 1000 milliseconds corresponds to 1 second. Try increasing the timeout to
2000 or 3000 (2 or 3 seconds) if you notice the following symptoms appearing at apparently random
intervals:

• The VB/ActiveX extension recognizes certain controls as CustomWin rather than as 4Test or recorded
classes.

• The application under test crashes while a test script is running.

Increasing the value of MsgTimeout may slow down the performance of Silk Test Classic when interacting
with an application.

To edit the ActiveX/VB extension options

1. Close Silk Test Classic and your application under test, if they are open.
2. Open axext.ini, located in the extend subdirectory of the directory where you installed Silk Test

Classic. If you are using a Silk Test Classic Project, the applicable axext.ini file is still in the Silk Test
Classic install directory.

3. Go to the [VBOptions] section and change the value of the option. You may need to add a line
containing the [VBOptions] section name, if it does not already exist.

4. Save and close the axext.ini file.
5. Restart Silk Test Classic.

Setup for Testing ActiveX Controls or Java Applets in
the Browser
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To test ActiveX controls in Internet Explorer, enable the extension for the version of the browser that you
are using. When you enable the extension, be sure to check the ActiveX check box for the extension. This
must be done manually whether you enable the extension manually or automatically.

To test Java applets in the browser, you must check the Java check box for the browser extension. In most
cases, Silk Test Classic detects the applet and automatically checks the check box.

Client/Server Application Support
Silk Test Classic provides built-in support for testing client/server applications including:

238 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• .NET WinForms
• Java AWT applications
• Java SWT/RCP application
• Java Swing applications
• Windows-based applications

In a client/server environment, Silk Test Classic drives the client application by means of an Agent process
running on each application’s machine. The application then drives the server just as it always does. Silk
Test Classic is also capable of driving the GUI belonging to a server or of directly driving a server database
by running scripts that submit SQL statements to the database. These methods of directly manipulating the
server application are intended to support testing in which the client application drives the server. For
additional information on this capability, see Testing Databases.

Client/Server Testing Challenges
Silk Test Classic provides powerful support for testing client/server applications and databases in a
networked environment. Testing multiple remote applications raises the level of complexity of QA
engineering above that required for stand-alone application testing. Here are just a few of the testing
methodology challenges raised by client/server testing:

• Managing simultaneous automatic regression tests on different configurations and platforms.
• Ensuring the reproducibility of client/server tests that modify a server database.
• Verifying the server operations of a client application independently, without relying on the application

under test.
• Testing the concurrency features of a client/server application.
• Testing the intercommunication capabilities of networked applications.
• Closing down multiple failed applications and bringing them back to a particular base state (recovery

control).
• Testing the functioning of the server application when driven at peak request rates and at maximum

data rates (peak load and volume testing).
• Automated regression testing of multi-tier client/server architectures.

Verifying Tables in ClientServer Applications
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When verifying a table in a client/server application, that is, an object of the Table class or of a class
derived from Table, you can verify the value of every cell in a specified range in the table using the Table
tab in the Verify Window dialog box. For additional information on verifying tables in Web applications, see
Working with Borderless Tables.

Specifying the range

You specify the range of cells to verify in the Range text boxes using the following syntax for the starting
and ending cells in the range:

row_number : column_name

or

row_number : column_number

Example

Specifying the following in the Range text boxes of the Verify Window dialog box
causes the value of every cell in rows 1 through 3 to be verified, starting with the column
named ID and ending with the column named Company_Name:

Testing in Your Environment with the Classic Agent | 239

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

From field: 1 : id

To field: 3 : company_name

After you specify a cell range in the Verify Window dialog box, you can click Update to
display the values in the specified range.

Specifying a file to store the values

You specify a file to store the current values of the selected range in the Table File Name text box.

What happens

When you dismiss the Verify Window dialog box and paste the code into your script, the following occurs:

• The values that are currently in the table's specified cell range are stored in the file named in the Table
File Name text box in the Verify Window dialog box.

• A VerifyFileRangeValue method is pasted in your script that references the file and the cell range
you specified.

For example, the following VerifyFileRangeValue method call would be recorded for the preceding
example:

table.VerifyFileRangeValue ("file.tbl", {{"1",
"id"}, {"3", "company_name"}})

When you run your script, the values in the range specified in the second argument to
VerifyFileRangeValue are compared to the values stored in the file referenced in the first argument to
VerifyFileRangeValue.

For additional information, see the VerifyFileRangeValue method.

Evolving a Testing Strategy
There are several reasons for moving your QA program from local to remote testing:

• You may have a stand-alone application that runs on many different platforms and now you want to
simultaneously drive testing on all the platforms from one Silk Test Classic host system.

• You may have been testing a client/server application as a single local application and now you want to
drive multiple instances of the application so as to apply a heavier load to the server.

• You may want to upgrade your client/server testing so that your test cases can automatically initialize
the server and recover from server failures— in addition to driving multiple application instances.

• You may need to test applications that have different user interfaces and that communicate as peers.

If you are already a Silk Test Classic user, you will find that your testing program can evolve in any of these
directions while preserving large portions of your existing tests. This topic and related topics help you to
evolve your testing strategy by showing the incremental steps you can take to move into remote testing.

Incremental Functional Test Design
Silk Test Classic simplifies and automates the classic QA testing methodology in which testing proceeds
from the simplest cases to the most complex. This incremental functional testing methodology applies
equally well in the client/ server environment, where testing scenarios typically proceed from the simplest
functional testing of one instance of a client application, to functional and performance testing of a heavily
loaded, multi-client configuration. Therefore, we recommend the following incremental progression for
client/server testing:

• Perform functional testing on a single client application that is running on the same system as Silk Test
Classic, with the server application on the same system (if possible).

240 | Testing in Your Environment with the Classic Agent

• Perform functional testing on a single remote client application, with the server application on a
separate system.

• Perform functional and concurrency testing on two remote client applications.
• Perform stress testing on a single client application running locally or remotely.
• Perform volume load testing on a configuration large enough to stress the server application.
• Perform peak load testing on a large configuration, up to the limits of the server, if possible.
• Perform performance testing on several sets of loads until you can predict performance.

Network Testing Types
Software testing can be categorized according to the various broad testing goals that are the focus of the
individual tests. At a conceptual level, the kinds of automated application testing you can perform using Silk
Test Classic in a networked environment are:

• Functional
• Configuration
• Concurrency

The ordering of this list conforms to the incremental functional testing methodology supported by Silk Test
Classic. Each stage of testing depends for its effectiveness on the successful completion of the previous
stage. Functional, configuration, and concurrency testing are variations of regression testing, which is a
prerequisite for any type of load testing. You can use Silk Performer for load testing, stress testing, and
performance testing.

You can perform functional testing with a single client machine. You can perform the first four types of test
with a testbed containing only two clients. The last two testing types require a heavy multi-user load and so
need a larger testbed.

Concurrency Testing
Concurrency testing tests two clients using the same server. This is a variation of functional testing that
verifies that the server can properly handle simultaneous requests from two clients. The simplest form of
concurrency testing verifies that two clients can make multiple non-conflicting server requests during the
same period of time. This is a very basic sanity test for a client/server application.

To test for problems with concurrent access to the same database record, you need to write specific scripts
that synchronize two clients to make requests of the same records in your server’s databases at the same
time. Your goal is to encounter faulty read/write locks, software deadlocks, or other concurrency problems.

Once the application passes the functional tests, you can test the boundary conditions that might be
reached by large numbers of transactions.

Configuration Testing
A client/server application typically runs on multiple different platforms and utilizes a server that runs on
one or more different platforms. A complete testing program needs to verify that every possible client
platform can operate with every possible server platform. This implies the following combinations of tests:

• Test the client application and the server application when they are running on the same machine—if
that is a valid operational mode for the application. This testing must be repeated for each platform that
can execute in that mode.

• Test with the client and server on separate machines. This testing should be repeated for all different
platform combinations of server and client.

Functional Testing
Before you test the multi-user aspects of a client/server application, you should verify the functional
operation of a single instance of the application. This is the same kind of testing that you would do for a
non-distributed application.

Testing in Your Environment with the Classic Agent | 241

Once you have written scripts to test all the operations of the application as it runs on one platform, you
can modify the scripts as needed for all other platforms on which the application runs. Testing multiple
platforms thus becomes almost trivial. Moreover, many of the tests you script for functional testing can
become the basis of your other types of testing. For example, you can easily modify the functional tests (or
a subset of them) to use in load testing.

Peak Load Testing
Peak load testing is placing a load on the server for a short time to emulate the heaviest demand that
would be generated at peak user times—for example, credit card verification between noon and 1 PM on
Christmas Eve. This type of test requires a significant number of client systems. If you submit complex
transactions to the server from each client in your test network, using minimal user setup, you can emulate
the typical load of a much larger number of clients.

Your testbed may not have sufficient machines to place a heavy load on your server system — even if your
clients are submitting requests at top speed. In this case it may be worthwhile to reconfigure your
equipment so that your server is less powerful. An inadequate server configuration should enable you to
test the server’s management of peak server conditions.

Volume Testing
Volume testing is placing a heavy load on the server, with a high volume of data transfers, for 24 to 48
hours. One way to implement this is to use one set of clients to generate large amounts of new data and
another set to verify the data, and to delete data to keep the size of the database at an appropriate level. In
such a case, you need to synchronize the verification scripts to wait for the generation scripts. The 4Test
script language makes this easy. Usually, you would need a very large test set to drive this type of server
load, but if you under-configure your server you will be able to test the sections of the software that handle
the outer limits of data capacity.

How 4Test Handles Script Deadlock
It is possible for a multi-threaded 4Test script to reach a state in which competing threads block one
another, so that the script cannot continue. This is called a script deadlock. When the 4Test runtime
environment detects a deadlock, it raises an exception and halts the deadlocked script.

Example

The following script will never exit successfully.

share INTEGER iIndex1 = 0
share INTEGER iIndex2 = 0

main ()
 parallel
 access iIndex1
 Sleep (1)
 access iIndex2
 Print ("Accessed iIndex1 and iIndex2")
 access iIndex2
 Sleep (1)
 access iIndex1
 Print ("Accessed iIndex2 and iIndex1")

Troubleshooting Configuration Test Failures
The test of your application may have failed for one of the reasons below. If the following suggestions do
not address the problem, you can enable your extension manually.

242 | Testing in Your Environment with the Classic Agent

Note: Unsupported and embedded browsers, other than AOL, are recognized as client/server
applications.

The application may not have been ready to test

1. Click Enable Extensions on the Basic workflow bar.
2. On the Enable Extensions dialog box, select the application for which you want to enable extensions.
3. Close and restart your application. Make sure the application has finished loading, and then click Test.

Embedded browsers, other than AOL, are recognized as Client/Server applications

If you want to work with a web browser control embedded within an application, you must enable the
extension manually.

Testing .NET Applications with the Classic Agent
Silk Test Classic provides built-in support for testing .NET applications with the Classic Agent.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Enabling .NET Support
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Before testing .NET controls, you need to enable extensions.

Do you need to record additional classes?

• If your application contains only the standard .NET WinForms controls, then you do not need to record
additional classes. If you are not sure, see .NET classes.

• If your application uses other controls, for example, third-party controls, and the Classic Agent, you
must record classes for these additional controls. After you record the class, you can retrieve
information about any number of instances (objects) of that class.

Tips for Working with .NET
This topic discusses common problems when testing .NET applications with Silk Test Classic and how to
solve them.

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

DefaultBaseState() enters an infinite loop when trying to close a dialog box

This problem is probably caused by the tag of the dialog box. If you declared the dialog box with multitags,
make sure that the first tag in the multitag is correct. Usually the first tag is the caption of the dialog box. If
the dialog box can have multiple captions, use wildcards to create a caption that covers all of them.
Alternatively, if the dialog box has a valid window ID, you may want to use that as the tag or first multitag
instead of the caption. If you must rely on a multitag for the dialog box, then be sure to close the dialog box
explicitly as part of your test case.

This is not a problem for just the .NET extension; it can occur with any application. However, .NET
applications are one of the few for which dialog boxes have valid Window IDs. Other dialog boxes only have
valid captions, so they usually only have a single tag instead of a multitag. Therefore if the tag is wrong, it
needs to be corrected in order to run the test case.

Testing in Your Environment with the Classic Agent | 243

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Predefined class definition file for .NET

The dotnet.inc file provides definitions for the supported .NET classes. Each class in the file lists the
prototypes of all properties and methods for the class.

If you did not install .NET support, but later want to enable it to test your applications, you must manually
edit dotnet.inc in order to use the predefined class definitions; otherwise, you will have to record all
class definitions yourself.

DefaultBaseState does not work

After you remove or change the security string for the Framework, the DefaultBaseState might not work
when you run Silk Test Classic. Follow the instructions described in Setting Your Machine Zone Security
and use the instructions that begin with Open your Control Panel…. Be sure to set the security for the
Framework.

Silk Test Classic only records the first character when you press and hold a key in a .NET text box
or combobox

If the cursor is in a text box or a combobox and you enter text by pressing down and holding a key, so that
multiple characters are entered, only the first character is recorded. For example, if you press and hold the
"x" key causing many x’s to display in the text box, Silk Test Classic does not record "xxxxxxxxxxxxxx"; Silk
Test Classic only records a single "x". You have to manually edit the argument to SetText in the script if
you want Silk Test Classic to play back multiple characters.

Windows Forms Applications
Silk Test Classic provides built-in support for testing .NET Windows Forms (Win Forms) applications using
the Open Agent as well as built-in support for testing .NET standalone and No-Touch Windows Forms (Win
Forms) applications using the Classic Agent. However, side-by-side execution is supported only on
standalone applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Using the Classic Agent to Test Windows Forms Applications
This section describes how you can use the Classic Agent to test Windows Forms applications.

For a complete list of the record and replay controls available for Win Forms testing with the Classic Agent,
see .Net Classes Used by the Classic Agent.

No-Touch Windows Forms Application Support

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Windows Forms applications are desktop applications that are built using the Windows Forms classes of
the .NET Framework. The .NET Framework allows system administrators to deploy applications and
updates to applications through a remote Web server. This technology is called no-touch deployment. With
no-touch deployment, applications can be downloaded, installed, and run directly on the machines of the
user without any alteration of the registry or shared system components.

No-touch deployment support is part of the .NET extension of Silk Test Classic; this includes Window
Forms applications.

Silk Test Classic provides built-in support for testing .NET no-touch Windows Forms applications. Silk Test
Classic does not support side-by-side execution of no-touch applications.

Before you begin testing your no-touch application, see the Prerequisites for Testing .NET No-Touch
Applications.

244 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Prerequisites for Testing .NET No-Touch Applications

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Before you can use Silk Test Classic to test .NET no-touch applications, you must:

• Have System Administrator privileges on the machine, on which the Silk Test agent is running.
• Have either the 2.0 or 1.1.NET Framework installed; these Frameworks are available for any version of

Windows.
• Have installed the .NET Framework Redistributable package, which contains everything needed to run a

program under the .NET Framework.
• Ensure that the Segue.SilkTest.Net.Shared.dll has been installed into the Global Assembly

Cache (GAC).
• Set the Machine Zone Security.

After you complete these steps, you can use the Basic Workflow to test any .NET no-touch application.

Recording New Classes for .NET Controls

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

After you enable extensions for testing a .NET Windows Forms application with the Classic Agent, if you
see CustomWin declarations in the Record Window Declarations, then click Record > Class in order to
work with the CustomWin controls. The process of recording a class involves querying the objects in your
application, retrieving information on properties and methods, and then translating the information into
4Test-style prototypes. Silk Test Classic does this automatically when you click Record > Class.

When you use the Record Class dialog box to record new classes for .NET controls, Silk Test Classic
automatically inserts the __typeinfo keyword in front of any method that has parameters that are either:

• Of type POINT or RECT.
• Of a type that has been declared explicitly in 4Test and uses the alias mechanism.

We recommend that you create an include file, for example userclass.inc, for your new class
definitions, instead of entering them in dotnet.inc. The dotnet.inc include file is shipped with Silk
Test Classic and we reserve the right to modify this file in future releases. If you modify dotnet.inc, you
may have to integrate your changes into future versions of that file.

To record new classes:

1. Start the .NET standalone Windows Forms application.

2. Open the include file that you created for your new class definitions.

For information on how to load class definition files, see Several Ways to Load Class Definition Files.

3. Click Record > Class > Scripted to open the Record Class dialog box.

4. Position the mouse pointer over the control for which you want to record a class.

5. When the correct name displays in the Window text box, press Ctrl+Alt.

Properties and methods for that class are displayed in the Record Class dialog box. Do not edit the tag
name in the Tag text box. If you check Show all methods on the Record Class dialog box, you see a
commented section called Other methods. Some methods are preceded by two slashes (//) and others
are preceded by three slashes plus two asterisks (/// **). The methods that are preceded by "/// ** "
cannot be called by Silk Test Classic; they are included only for reference purposes.

The methods in the Other methods section that are preceded by two slashes can potentially be called
by Silk Test Classic. These are methods that:

• Have parameters or return values of a type not declared in 4Test. To call such a method, you must
explicitly declare the types using alias. The data types in the argument list are just suggestions. You
must consult the documentation for the control in order to determine the native data type name and

Testing in Your Environment with the Classic Agent | 245

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

definition. After you have declared the types, you should compile your frame file and click Record >
Class. Now the recorder will recognize your new data types and will record as usable those methods
that were previously commented out because the data types had not been defined.

• Are overloaded methods, in other words methods for which the parameter list may vary. 4Test does
not support overloading of methods, since each method must have a unique name. You may choose
to un-comment one of the overloaded methods for use within your test scripts.

6. Click the Derived From list box to see the list of available 4Test classes. Then proceed as follows:

• If there is a class type available that maps directly to your object, choose it. For example, if your
object is a SuperListBox, you would likely choose ListBox. Your object will inherit all the standard
4Test methods and properties defined for a list box.

Note: Similarly named objects might not behave as expected.

• If there is not a class type that maps directly to your object, choose Control, which is a generic
class.

See winclass declaration and derived class for more details.

The Agent provides special handling for certain classes of objects. If your object is one of these types,
but does not work correctly while you are testing your application, you will also need to class map the
object after completing this procedure. For additional information, see Options for Non-Graphical
Custom Controls.

7. Click Paste to Editor to paste the new class into the include file.

8. Repeat this process for every type of control in your application that does not display in the list of
classes provided.

9. When you are done recording classes, click Close.

Recording Actions on the DataGrid

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

For standard DataGrids, Silk Test Classic records the following 4Test methods using the Classic Agent,
depending on the location or component in the grid:

• ClickCell()
• ClickCellButton()
• ClickCol()
• ClickRow()
• Collapse()
• Expand()
• SetCellValue()
• SetFocusCell()

Notes

For DataGrids with natively supported, embedded controls, Silk Test Classic records the appropriate
method call for the control with which you are interacting.

For DataGrids with embedded custom controls, Silk Test Classic records low-level events, such as
TypeKeys and Click.

Silk Test Classic records a ClickCell before a SetCellValue.

If you use the Open Agent, the DataGrid class uses a different set of methods.

246 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Example

If you record changing the value "Pine" to "Maple" in the Cell "Last_Name", Silk Test
Classic generates:

SwfDialogBox("SamplesExplorer").SwfDialogBox("Sort").DataGrid("P
rototype Grid")
 .ClickCell ({{1,1,2}, "Last_Name"})
SwfDialogBox("SamplesExplorer").SwfDialogBox("Sort").DataGrid("P
rototype Grid")
 .SetCellValue({{1,1,2}, "Last_Name"}, "Maple")

Record Class, Window Declarations, and Window Identifiers

Record Window Declarations displays an instance of the DataGrid class when you cursor over the grid.

Record Class is not supported for components in the DataGrid, but it does record class on Controls, such
as SwfTextField and CustomWin, in a DataGrid cell.

When you hover the cursor over a grid, Record Window Identifiers displays an instance of the DataGrid
class. Record Window Identifiers does not display any components in the grid; it displays controls, such as
SwfTextField and CustomWin, in a DataGrid cell.

Setting Your Machine Zone Security

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Before you can begin testing .NET no-touch applications, you must set up your machine security. You can
disable security so that Silk Test Classic can test your no-touch application using the command prompt or
the control panel.

Setting security changes various permissions for .NET no-touch applications. For example, UIPermission
controls access to user interface, ReflectionPermission controls access to metadata through the
System.Reflection APIs, and SecurityPermission controls a set of security permissions applied to code.

Setting Your Machine Zone Security using the Command Prompt

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. Open a command prompt.

2. Type caspol -machine -chggroup LocalIntranet_Zone FullTrust. This opens the
specified zone to the Full Trust level.

LocalIntranet_Zone is just one example; you might need to adjust to a different code group, depending
on what your application is using. Check with your application’s developer if you are not sure.

Now that you have set the Machine Zone Security, make sure you have installed the
Segue.SilkTest.Net.Shared.dll.

Setting Your Machine Zone Security using the Control Panel

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. Open the Control Panel and navigate to the Administrative Tools folder.

2. Double-click Microsoft.NET Framework Configuration.

Testing in Your Environment with the Classic Agent | 247

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

3. In the .NET Framework Configuration tool, click the Runtime Security Policy node.

4. Click Adjust Zone Security.

5. Select Make changes to this computer and click Next.

6. On the Adjust the Security Level for Each Zone dialog box, choose Full Trust level for this zone.

7. Click Next to apply your changes.

8. Click Finished.

9. Repeat as necessary for the other Framework Configuration (if you have both installed).

Now that you have set the Machine Zone Security, make sure you have installed the
Segue.SilkTest.Net.Shared.dll.

Ensuring that the Segue.SilkTest.Net.Shared.dll has been Installed

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Installing Silk Test Classic should install Segue.SilkTest.Net.Shared.dll into the GAC. To verify that
the DLL is in the GAC:

1. Click Control Panel > Administrative Tools.

2. Click Microsoft .NET Framework <version number> Configuration.

3. Right-click Assembly Cache under My Computer.

4. Click View > Assemblies . The item Segue.SilkTest.Net.Shared should be in the list. You may have to
scroll down to see it.

5. If the item Segue.SilkTest.Net.Shared is not in the list, add it by doing one of the following:

• Right-click Assembly Cache under My Computer and click Add, then browse to the DLL in the Silk
Test Classic installation directory.

• Click Segue.SilkTest.Net.Shared.dll and drag it into the <Windows directory>
\Assembly directory, which will cause the DLL to be added to the GAC.

Now that you have installed the Segue.SilkTest.Net.Shared.dll, you must also set the machine
zone security.

Suppressing Controls (Classic Agent)

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can suppress the controls for certain classes for .NET, Java SWT, and Windows API-based
applications. For example, you might want to ignore container classes to streamline your test cases.
Ignoring these unnecessary classes simplifies the object hierarchy and shortens the length of the lines of
code in your test scripts and functions. Container classes or ‘frames’ are common in GUI development, but
may not be necessary for testing.

The following classes are commonly suppressed during recording and playback:

Technology Domain Class

.NET Group

Java SWT org.eclipse.swt.widgets.Composite

org.eclipse.swt.widgets.Group

Windows API-based applications Group

To suppress specific controls:

248 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

1. Click Options > Class Map. The Class Map dialog box opens.

2. In the Custom class field, type the name of the class that you want suppress.

The class name depends on the technology and the extension that you are using. For Windows API-
based applications, use the Windows API-based class names. For Java SWT applications, use the fully
qualified Java class name. For example, to ignore the SWT_Group in a Windows API-based
application, type SWT_Group, and to ignore to ignore the Group class in Java SWT applications, type
org.eclipse.swt.widgets.Group.

3. In the Standard class list, select Ignore.

4. Click Add. The custom class and the standard class display at the top of the dialog box.

Infragistics Controls

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic has several built-in 4Test classes that support recording and playback for key Infragistics
Window Forms controls. These include:

• The UltraWinGrid controls through the 4Test DataGrid class.
• The UltraWinToolbars container and the elements within the UltraWinToolbars through the

4Test Toolbar class (Infragistics’ ToolBase).

Native support means that features such as the following are available when testing these controls:

• Action-based recording.
• Record Window declarations.
• Record identifiers.
• Record class.

Before you can use Silk Test Classic to test Infragistics Windows Forms controls, you must:

• Install the .NET Framework.
• Install NetAdvantage Window Forms.

For specific versions of these applications and other installation requirements, refer to the Release Notes.

Testing the Infragistics UltraWinGrid and UltraWinToolbars

Silk Test Classic has two classes for Infragistics support:

• DataGrid, which supports the Infragistics UltraWinGrid.
• UltraWinToolbars, which supports the Infragistics UltraWinToolbars container and the

UltraWinToolbars elements within the UltraWinToolbars.

There are many 4Test methods available with these new classes, some of which are available for
recording.

Support for Infragistics .dll Files

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic supports the following Infragistics .dll files (assemblies):

• Infragistics.Win.UltraWinGrid
• Infragistics.Win
• Infragistics.Shared
• Infragistics.Win.UltraWinToolbars

Silk Test Classic supports the following Infragistics NetAdvantage versions:

Testing in Your Environment with the Classic Agent | 249

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• CLR 1.1:

• 4.3.20043.27
• 5.1.20051.37
• 5.2.20052.27
• 5.3.20053.50
• 6.1.20061.28
• 6.2.20062.34
• 6.3.20063.53

• CLR 2.0:

• 7.3.20073.38

The CLR 2.0 library differs from the CLR 1.1 library. As a result, .dll files cannot be shared between CLR
2.0 and 1.1.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

If you are testing an application that uses a different version of these .dll files, you must modify either the
application configuration or the machine configuration file with instructions that redirect Silk Test Classic to
use the version that your application supports. Silk Test Classic can be configured post-installation to
support NetAdvantage version variations in the last two version fields, for example, x.x.20061.28.

If you do not redirect Silk Test Classic to use the proper .dll files, you may experience problems with Silk
Test Classic being unable to record Infragistics controls correctly, such as the following:

• Recording Typekeys() on a DataGrid instead of correctly recording ClickCell() and SetCell().
• Not recognizing the buttons inside the Toolbar when your mouse is pointing to the Toolbar.

Note:

• Since applications can specify which specific directory is used to load .dlls, the binding method
described below will work only if it is not overwritten or ignored.

• There may be other backward compatibility issues with Infragistics .dlls. For more details about
these issues, refer to the documentation of your .NET Framework SDK.

To redirect the .dlls, you must:

1. Choose whether to configure the machine or the application.
2. Choose whether to configure by editing a file or through the Control Panel. You can use either of

these methods to configure the machine or the application.

Configuring .NET

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Now that you have decided whether to change the configuration for just your application under test or for
your entire machine, you must decide how you want to make the change. You can use either of these
methods, regardless of whether you are changing the configuration for the application or for the machine:

• Edit a configuration file directly.
• Use the Control Panel to edit the configuration file.

Editing a Configuration File Directly

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To edit the configuration file directly:

1. Open the correct configuration file:

250 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

To configure… Open... Located In...

just the application <application name>.exe.config file the same directory as the
<application name>.exe

the whole machine machine.config file the Windows directory

2. If one of these configuration files do not exist, you must create it.

Pay attention to the location of the configuration file, as described in the table above.

3. Copy the sample section from above and paste the information into the configuration file to redirect
the .dlls.

4. Edit the sample so that your version number displays in place of 4.3.20043.54 where
newVersion="4.3.20043.54".

5. Save the configuration file.

When you restart your application and begin testing, the. dlls that Silk Test Classic requires will be
redirected to use the .dlls that your application requires.

Using the Control Panel to Edit Your Configuration File

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To use the control panel to edit your configuration file:

1. Click Start > Control Panel > Administrative Tools > Microsoft .NET Framework 1.1 Configuration.
The .NET Configuration 1.1 dialog box displays.

2. In the .NET Configuration 1.1 dialog box, you should see one or more of the Infragistics .dlls.

• If you do, you can skip to step #7.
• If you do not, you can either add all four Infragistics .dlls to your machine or just the application you

are testing.

3. To add the .dlls to your computer, navigate to My Computer/Configured Assemblies.

4. To add the .dlls to your .NET application, navigate to Applications/<your application name>/
Configured Assemblies.

5. Right-click Configured Assemblies and click Add.

6. On the Configure an Assembly dialog box, you select assemblies to add.

If you need more information about adding assemblies, refer to the information provided by Microsoft on
the .NET Framework Configuration Tool.

7. After you add the assemblies, you must change the binding policy for each of them by right clicking the
assembly name and selecting Properties.

8. In the Properties dialog box, click the Binding Policy tab.

9. Click the Requested Version column and enter the requested version that Silk Test Classic uses,
4.3.20043.27.

10.Click the New Version column and enter the new version, which is the .dll your application requires.

11.Repeat Steps #7-10 for each of the other assemblies.

12.Click OK to save the information.

When you restart your application and start testing, the .dlls that Silk Test Classic requires are redirected to
use the .dlls that your .NET application requires.

Choosing to Configure the Machine or the Application

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Testing in Your Environment with the Classic Agent | 251

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
HTTP://MSDN.MICROSOFT.COM/LIBRARY/DEFAULT.ASP?URL=/LIBRARY/EN-US/CPTOOLS/HTML/CPCONNETFRAMEWORKADMINISTRATIONTOOLMSCORCFGMSC.ASP
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

You may edit the configuration file for just your application or you may edit the configuration file for your
entire machine. If you do not have a configuration file, you may create one; see the sample file if you are
interested in creating one.

If you want to change the application configuration, you need to do so on the machine where the
application .exe is, in the same directory as that .exe. This approach establishes a "default" configuration
that is associated with the application.

If you want to change the machine configuration, you need to do so on the machine where the application
will run (which is the same location as the Silk Test Agent). This approach establishes a configuration that
will override any application configuration that may exist.

In either case, you can use the direct file editing or the Control Panel to edit the configuration file.

Recording Actions on the Infragistics Toolbars

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic records actions on the Infragistics UltraWinToolbars with a prefix of "Toolbar". All other
components, except for .NET SWF controls, are mapped as a CustomWin.

Class Silk Test Classic Records Description

ToolbarButton Click() You click a button on the toolbar.

ToolbarComboBox Select() You choose an item from the list box.

SetText() You type in the text area.

ToolbarList Select() You select an item.

Unselect() You unselect an item.

ToolbarPopup Select() You selected a new item.

ToolbarPopupMenu DropDown() You interact with the menu.

ToolbarTextBox SetText() You type in the text area.

Record Class, Window Declarations, and Window Identifiers

Silk Test Classic records the methods and properties of any UltraWinToolbars control or component when
you Record/Class/Scripted on children of the UltraWinToolbars class. Likewise, Record Window
Declarations displays the UltraWinToolbars class declaration and all the supported components and
controls that are children of the UltraWinToolbars control.

When you hover the cursor over a component or a control in UltraWinToolbars, Record Window Identifiers
displays that component or control as a child of an instance of the UltraWinToolbars class.

Testing Java AWT/Swing Applications with the Classic
Agent

Silk Test Classic provides built-in for testing stand-alone Java applications developed using supported Java
virtual machines and for testing Java applets using supported browsers. You must configure Silk Test
Classic Java support before using it. When you configure a Java AWT/Swing application or applet, Silk Test
Classic automatically provides support for testing standard Java AWT/Swing controls. You can also test
Java SWT controls embedded in Java AWT/Swing applications or applets as well as Java AWT/Swing
controls embedded in Java SWT applications.

You can test Java AWT/Swing applications using the Classic Agent or the Open Agent. When you create a
new Java AWT/Swing project, Silk Test Classic uses the Open Agent by default. However, you can use

252 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

both the Open Agent and the Classic Agent within a single Java AWT/Swing environment. Certain
functions and methods run on the Classic Agent only. As a result, if you are running an Open Agent
project, the Classic Agent may also open because a function or method requires the Classic Agent.

When you are using the Classic Agent to test Java AWT/Swing applications, Silk Test Classic uses the Sun
JDK by default.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Testing Standard Java Objects and Custom Controls
Any single Java application or applet may contain a mix of standard and custom Java objects. With Java
support, you can test both types of visible Java objects in applications and applets that you develop using
the Java Development Kit (JDK)/Java Runtime Environment (JRE).

Standard Java objects are often defined in class libraries. The Java support of Silk Test Classic lets you
record and play back tests against standard controls by providing 4Test definitions for many Java classes
defined in the following class libraries:

• Abstract Windowing Toolkit (AWT)
• Java Foundation Class (JFC), which includes the Swing set of GUI components
• Standard Widget Toolkit (SWT)
• Symantec Visual Café Itools (only for the Classic Agent)

If you are using the Classic Agent, you can use the setName("<desiredwindow ID>") method to create a
window ID that Silk Test Classic will detect. setName() is a method inherited from class
java.awt.Component, so it should work for most, if not all, of the Java classes that Silk Test Classic can
detect. If you are using the Open Agent, the equivalent of the setName method is the Name property of the
AWTComponent class.

By contrast, custom controls often use native properties and native methods written in Java. Increasingly,
custom controls also take the form of JavaBeans, which are reusable platform-independent software
components written in Java. Developers frequently design custom controls to achieve functionality that is
not available in standard class libraries. You can test custom Java objects, including JavaBeans, using the
Silk Test Classic Java support.

The Silk Test Classic approach to testing custom Java objects is to give you direct access to their native
methods and properties. A major advantage of this methodology is that it obviates the need to write your
own native methods.

The procedure for testing custom Java objects is simple: Record a class for the custom control, then save
the class definition in an include file. The class definition includes the native methods you can call and
native properties you can verify from your 4Test script.

The predefined property sets supplied with Silk Test Classic have not been customized for Java; however,
you can modify these property sets. For additional information about editing existing property sets or
creating new property sets, see Creating a Property Set.

Recording and Playing Back JFC Menus
For Sun JDK v1.4 or later, Silk Test Classic can record and play back regular menus that conform to the
Windows standard, as well as JFC heavyweight and lightweight pop-up menus.

Recording and Playing Back Java AWT Menus
Unlike JFC menus, AWT menus are not conform to the Java component-container paradigm. Therefore,
their behavior is different than that of the JFC menus, and is independent of the JVM version. Silk Test
Classic can record regular AWT menus for all versions of the JDK.

Testing in Your Environment with the Classic Agent | 253

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

For context menus that are conform to the Windows standard, which means that they can be opened with a
right-click, Silk Test Classic can play back, but not record, the context menus for all versions of the JDK.

For AWT popup menus that are not conform to the Windows standard, Silk Test Classic cannot record or
play back for all versions of the JDK. The JavaAwtPopupMenu class is available for playback only. Silk
Test Classic is not able to record it and you must hand script any interaction with such a menu.

Object Recognition for Java AWT/Swing Applications
Java AWT/Swing applications support hierarchical object recognition and dynamic object recognition. You
can create tests for both dynamic and hierarchical object recognition in your test environment. Use the
method best suited to meet your test requirements.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Using custom class attributes becomes even more powerful when it is used in combination with dynamic
object recognition.

To test Java AWT/Swing applications using hierarchical object recognition, record a test for the application
that you want to test. Then, replay the tests at your convenience.

Supported Controls for Java AWT/Swing Applications
For a complete list of the record and replay controls available for Java AWT/Swing testing with the Open
Agent, refer to the Java AWT and Swing Class Reference in the 4Test Language section of the Help.

For a complete list of the record and replay controls available for Java AWT/Swing testing with the Classic
Agent, refer to the Java AWT Classes for the Classic Agent and the Java JFC Classes in the 4Test
Language section of the Help.

Java AWT Classes for the Classic Agent
This section lists classes for Java AWT handling with the Classic Agent.

Supported Java Virtual Machines
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic supports the following Java virtual machines (JVMs) for testing standalone Java
applications:

• Sun Microsystems' Java Development Kit (JDK) (including the Java AppletViewer)
• Sun Microsystems' Java Runtime Environment (JRE)
• IBM's Java Development Kit (JDK)
• Symantec Visual Café

Supported Browsers for Testing Java Applets
Silk Test Classic supports the following browsers for testing Java applets:

• For the Classic Agent: Internet Explorer 7 using the Java plug-in.
• For the Open Agent: All supported versions of Internet Explorer and Mozilla Firefox.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

254 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

Overview of JavaScript Support
Silk Test Classic provides support for executing JavaScript code within a Web application. You can test
applications that include JavaScript by performing one of the following tasks:

• Configuring an xBrowser application that uses the Open Agent.
• Enabling extensions for a generic application that uses the Classic Agent.

The type of agent that you use determines the classes that are available for you to create tests with.

As a best practice, we recommend using xBrowser rather than the Web application because xBrowser
uses the Open Agent and dynamic object recognition.

We recommend recording test cases using dynamic object recognition. Then, replay the tests at your
convenience.

JavaScript Support for the Open Agent

With the Open Agent, you can use ExecuteJavaScript to test anything that uses JavaScript. You can:

• Call any function already contained in a document.
• Inject new functions into a document and call them.
• Trigger Document Object Model (DOM) events, such as calling onmouseover directly for an element.
• Modify the DOM tree.

JavaScript Support for the Classic Agent

If you use the Classic Agent, you can test JavaScript using the following methods:

• ExecLine

• ExecMethod

• ExecScript

Support for JavaBeans
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Many Java components are implemented as JavaBeans. Each JavaBean must provide an associated
BeanInfo class that describes the capabilities of the component, including its methods and properties.

Our Java support provides a 4Test method called GetBeanInfo method that you can use in scripts to
access information from the BeanInfo structure associated with JavaBeans in the applications or applets
you are testing.

Using GetBeanInfo, you can access the following information about JavaBeans:

• Name of the JavaBean.
• Methods.
• Properties.
• Events supported by the JavaBean.
• Methods associated with event listeners supported by the JavaBean.
• Size of the icon associated with the JavaBean.

Classes in Object-Oriented Programming Languages
Classes are the core of object-oriented programming languages, such as Java. Applets or applications
developed in Java are built around objects, which are reusable components of code that include methods

Testing in Your Environment with the Classic Agent | 255

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

and properties. Methods are tasks that can be performed on objects. Properties are characteristics of an
object that you can access directly.

Each object is an instance of a class of objects. GUI objects in Java, for example, may belong to such
classes as Menu, Dialog, and Checkbox. Each class defines the methods and properties for objects that
are part of that class. For example, the JavaAwtCheckBox class defines the methods and properties for
all Java Abstract Windowing Toolkit check boxes. The methods and properties defined for
JavaAwtCheckboxes work only on these check boxes, not on other Java objects.

Configuring Silk Test Classic to Test Java
This section describes how to configure Silk Test Classic to test Java applications.

Prerequisites for Testing Java Applications
To test… Install…

standalone Java applications JDK/JRE

Java applets JDK, supported browser, and plug-in (if necessary)

Java applets using the Java Applet Viewer JDK and plug-in

Note:

• When you are using the Classic Agent, Java support is configured automatically when you use
Enable Extensions in the Basic Workflow bar.

• When you are using the Open Agent, Java support is configured automatically when you use
Configure Applications in the Basic Workflow bar.

• You can use the Basic Workflow bar to configure your application or applet or manually configure
Java Support. If you choose to manually configure Java support, you may need to change the
CLASSPATH environment variable. For JVM/JRE 1.2 or later, you must also copy the applicable
Silk Test Classic .jar file to the lib\ext folder of your JVM/JRE.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Enabling Java Support
There are several ways to enable Java support for testing standalone Java applications. Pick the scenario
that fits your runtime environment and testing needs.

Scenario How to enable Java support

You need to test your application on the 32-bit Windows
host machine using a JVM that is invoked from a
java.exe, jre.exe, jrew.exe, or vcafe.exe
executable, including:

• JDK/JRE
• Symantec Visual Café (only if you are using the

Classic Agent)

Enable the default Java application.

You need to test your application on a remote 32-bit
Windows machine using a JVM that is invoked from
ajava.exe, jre.exe, jrew.exe, or vcafe.exe
executable.

Install Silk Test Classic on your remote machine and
enable the default Java application on your host machine.

You need to test your application on the 32-bit Windows
host machine using a JVM that is not invoked from a
java.exe, jre.exe, jrew.exe, or vcafe.exe
executable.

Enable a new Java application.

256 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

Scenario How to enable Java support

You need to test your application on a remote 32-bit
Windows machine using a JVM that is not invoked from a
java.exe, jre.exe, jrew.exe, or vcafe.exe
executable.

Install Silk Test Classic on your target machine and
enable a new Java application.

Configuring Silk Test Classic Java Support for the Sun JDK
When you are using the Classic Agent, Java support is configured automatically when you use Enable
Extensions in the Basic Workflow bar. When you are using the Open Agent, Java support is configured
automatically when you use Configure Applications in the Basic Workflow bar. We recommend that you
use the basic workflow bar to configure your application or applet, but it is also possible to manually
configure Java support.

If you incorrectly alter files that are part of the JVM extension, such as the accessibility.properties
file, in the Java\lib folder, or any of the files in the jre\lib\ext directory, such as
SilkTest_Java3.jar, unpredictable behavior may occur. There are two methods for configuring Silk
Test Classic Java Support:

• Manually configuring Silk Test Classic Java support.
• Configuring Standalone Java Applications and Java Applets.

Manually Configuring Silk Test Classic Java Support

If you want to enable Java support manually, or if the Basic Workflow does not support your configuration,
perform the following tasks:

If you are using
the Classic
Agent

Click Options > Extensions to open the Extensions dialog box and enable Java
applet or application support by checking or un-checking the Java check box for your
application. The Java check box can be checked or un-checked for a specific
application or applet. If you check or un-check this check box for one extension, it is
checked or un-checked for all.

If you are using
the Open Agent

Click Options > Application Configurations to open the Edit Application
Configuration and add a standard test configuration for your Java application.

Configuring Standalone Java Applications and Java Applets

In order for Silk Test Classic to recognize Java controls, you may need to change the CLASSPATH
environment variable. For JVM/JRE 1.3 or later, you must also copy the applicable SilkTest.jar file to
the lib\ext folder of your JVM/JRE. The SilkTest.jar file is located in the <SilkTest Install
Directory>\JavaEx directory.

1. If you are using JVM/JRE 1.3 or later, use SilkTest_Java3.jar.

For information about new features, supported platforms, and tested versions, refer to the Release
Notes.

2. For Java 1.3 or later, you should not set a specific classpath variable – instead, use the default
CLASSPATH=.;. Copy the SilkTest_Java3.jar file to the lib\ext folder of your JVM/JRE, and
remove any previous Silk Test Classic JAR files.

3. In the Silk Test Classic folder, rename the file access3.prop to accessibility.properties and
copy it to the Java…\lib folder.

4. Finally, qapjconn.dll and qapjarex.dll are new DLL files that must be installed in the Windows
\System32 directory.

The Silk Test Classic installer places these files in the Windows\System32 folder, and also places
copies of these files in the SilkTest\Extend folder. If the default directory for your library files is in a

Testing in Your Environment with the Classic Agent | 257

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

location other than Windows\System32, you must also copy qapjconn.dll and qapjarex.dll to
the alternate location.

Note:

• The Java recorder does not support applets for embedded Internet Explorer browsers(AOL).
• It is not possible, using normal configuration methods, to gain recognition of Java applications that

use .ini files to set the environment. However, if your application sets the Java library path using
the JVM launcher directive Djava.library.path=< path >, you can obtain full recognition by
copying qapjarex.dll and qapjconn.dll from the System32 directory into the location
pointed to by the JVM launcher directive.

Java Security Privileges Required by Silk Test Classic
Before reviewing your security privileges, make sure that you have configured Silk Test Classic Java
support.

Required security privileges

In order to load the Silk Test Classic Java support files, Silk Test Classic must have the appropriate Java
security privileges. At a minimum, Silk Test Classic requires the following abilities:

• Create a new thread.
• Access members of classes loaded by your application.
• Create, read from, and write to file on a local drive.
• Access, connect, listen and send information through sockets.
• Access AWT event queue.
• Access system properties.

For standalone applications, the security policy is set in the java.security file which is located in
JRE/lib/security. By default this file contains the following line:

Policy.provider = sun.security.provider.PolicyFile

which means that the standard policy file should be used. The standard policy file, java.policy, is
located in the same folder, JRE/lib/security. It contains the following code that gives all necessary
permission to any file located in lib\ext directory:

// Standard extensions get all permissions by default
grant codeBase "file:${java.home}/lib/ext/*"{permission
java.security.AllPermission;};

Silk Test Classic has the necessary privileges, if the SilkTest_Java3.jar file is in this directory and the
JVM runs with the default set of security permissions.

If you have changed the Java security policy

The system administrator can change security policy by starting the JVM with the following option:

java _Djava.security.policy=Myown.policy MyApp

In this case the custom policy file Myown.policy should contain the following lines that grant all
permission to classes from the lib\ext directory:

grant codeBase "file:${java.home}/lib/ext/*"{permission
java.security.AllPermission;};

The default java.policy may also be changed implicitly, for example, when the application uses an RMI
server with the custom RMISecurityManager and the client security policy. In cases like these, the client
security policy should grant all required permissions to Silk Test Classic by including the code listed above.

In some cases, setting these permissions may not provide Silk Test Classic with the necessary security
privileges. The cause of the problem may be that permissions are frame specific. So if Silk Test Classic

258 | Testing in Your Environment with the Classic Agent

runs in the context of frames (thread) in which it does not have the necessary permissions, it may fail. In
cases like this in which the client does not trust code running in the context of the AWT event thread, you
need to set the parameter ThreadSafe=False in the javaex.ini in the <Silk Test
installation>/extend directory. This prevents the Silk Test Classic Java code from running in the
context of the AWT event thread, preserving permissions granted to Silk Test Classic, but could make the
GUI less responsive.

Disabling Java Support
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To disable Java support:

1. Click Options > Extensions in the menu bar.

2. In the Application column, click the Java application that you want to disable and uncheck the Java
check box, as follows:

If you installed ... Uncheck Java check box for ...

Java Development Kit, Java Runtime Environment, or
Symantec Visual Café

Java Application

Any other Java virtual machine <name of executable file>.exe

3. Click OK.

Enabling Java Applications and Plugins
This section describes how you can enable Java applications and plugins.

Enabling Extensions for the Default Java Application

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To enable the default Java application:

1. In the Silk Test Classic menu bar, click Options > Extensions. The Extensions dialog box opens.

2. In the Application column, click Java Application and check the Java check box.

3. Click OK.

Enabling a New Extension for a Java Application

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You must enable a new Java application in both the Extension Enabler and the Extensions dialog box.

To enable a new extension for a Java application:

1. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Extension Enabler or
(in Microsoft Windows 10) Start > Silk > Extension Enabler.

If you are running your Java application on a remote 32-bit Windows machine, launch extinst.exe,
which is in the Silk Test Classic installation directory on the remote machine.

2. On the Extension Enabler dialog box, click New.

3.
Click to navigate to the location of the JVM executable you want to hook into, and then click OK.

4. Check the Java check box for the executable you just added, leave Primary Extension set to (None),
and then click OK.

Testing in Your Environment with the Classic Agent | 259

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

5. Start Silk Test Classic.

6. In the Silk Test Classic menu bar, click Options > Extensions. The Extensions dialog box opens.

7. On the Extensions dialog box, click New.

8.
Click to navigate to the location of the JVM executable you want to hook into, and then click OK.

9. Check the Java check box for the executable you just added, leave Primary Extension set to (None),
and then click OK.

10.Start your Java application.

Enabling Use of Sun Java Plug-In

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To use the JRE for running Java applets in any of our supported browsers, you must enable use of a plug-
in and your applet must explicitly request to run in the Java plug-in.

To enable use of a plug-in:

1. Make sure you have installed the Java plug-in for each of the supported browsers you want to use for
testing.

2. In the Silk Test Classic menu bar, click Options > Extensions. The Extensions dialog box opens.

3. In the Application column, click one of the browsers for which you installed the Java plug-in. If not
enabled, then select Enabled from the list box in the Primary Extension column.

4. In the Options section of the Extensions dialog box, click Extension.

5. Check the Enable use of Java plug-in check box, and then click OK.

6. Repeat the steps 3–5 for the other supported browsers.

7. Click OK to close the Extensions dialog box.

You can designate the JRE that the plug-in uses by clicking Start > Settings > Control Panel > Java
Plug-in and selecting the JRE on the Advanced tab of the Java Plug-in Properties dialog box. Make sure
that the appropriate Silk Test .jar file is accessible to the plug-in. For additional information, see Configuring
Standalone Java Applications and Java Applets.

Configuring Silk Test Classic to Support a Java Application Launched from a .lax File

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you are running your Java application from a launcher application executable (*.lax), you must add the
appropriate Silk Test Classic .jar file to the CLASSPATH inside the .lax file.

To find out which version of Java the .lax file is using, open a Command Prompt, type the path to Java that
displays in the .lax file, and then type java –version. If it is using Java 1.3 and later, add the
SilkTest_Java3.jar to the CLASSPATH inside the .lax file.

If you are running your application through a .lax file, make sure you add the .lax file as a new extension in
Silk Test Classic.

Testing Java Applications and Applets
Silk Test Classic supports testing Java applications that use the Sun JDK. By default, Silk Test Classic uses
the Sun JDK with the Classic Agent.

Preparing for Testing Stand-Alone Java Applications and Applets
To prepare for testing stand-alone Java applications using Silk Test Classic:

260 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

1. In the Basic Workflow bar:

• If you are using the Classic Agent, enable extensions for Java support for application and applet
testing.

• If you are using the Open Agent, configure your Java application.

2. If you do not plan to test applets during the session, disable browser support.

3. Identify the custom controls in your Java application.

4. If you are testing Java applications with the Classic Agent, enable the recovery system.

5. Record classes for any custom controls you want to test in a new class include file or in your test frame
file.

If Silk Test Classic does not recognize some of your custom objects, see Recording Classes for Ignored
Java Objects.

6. If you are testing standalone Java applications with the Classic Agent, record window declarations for
your Java application, including declarations for any new classes you defined.

Testing Browser-Based Java Applications
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The following procedure applies to JDK 1.4 applications:

1. Make sure the Java extension and appropriate browsers are enabled.

2. Make sure that Silk Test Classic is configured properly.

3. Open the file <SilkTest installation directory>\Silk\SilkTest\JavaEx\JFC
\JPI_index.html in the browser you want to use for testing.

4. Start Silk Test Classic and record as usual.

If you are testing JDK 1.4 browser-based applications and the application throws security exceptions, make
sure that the SilkTest_Java3.jar file was copied to the correct location. Installing security certificates
in the browser does not resolve this issue; the SilkTest_Java3.jar must be in the correct location.

Indexed Values in Test Scripts
4Test methods use a 1-based indexing scheme, where the first indexed value is stored in position 1. Native
Java methods use a 0-based indexing scheme, where the first indexed value is stored in position 0. This
incompatibility can create challenges in coding test scripts that access indexed values using both native
methods and 4Test methods.

Multitags and Java Applications
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic permits multitags when recording window declarations for Java applications. You are no
longer restricted to just the caption. The exception is that the default for top-level windows is only the
caption. The reason is that the window ID usually defaults to the class name with an index, and for top-level
windows, the index ("#1") leads to misidentification. If the window ID will be unique for a top-level window,
then you can highlight that window in the Record Window Declarations dialog box and check Window ID
in the Tag Information box.

When to Use 4Test Versus Native Java Controls
Silk Test Classic provides a predefined set of Java classes, including Abstract Windowing Toolkit (AWT)
controls, Java Foundation Class (JFC) controls, and Symantec Visual Café controls. To test these controls,
you can use their inherited 4Test methods. Inherited methods are the 4Test methods associated with the
class from which the control is derived.

Testing in Your Environment with the Classic Agent | 261

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

For custom Java controls, we provide access to native Java methods, as defined in JDK 1.1.2 or later. You
can also access native methods for predefined Java classes.

When both 4Test methods and native methods are available for all controls you want to test, we
recommend using 4Test methods in your test scripts. 4Test provides a richer, more efficient set of methods
that more closely mirror user interaction with the GUI elements of an application. For the
JavaAwtPushButton, for example, use the 4Test methods associated with the PushButton class.

When you must use native methods for controls that are not supported in 4Test, refer to the Java API
documentation to gain a full understanding of how the native method works. For example, 4Test methods
and native Java methods use incompatible array indexing schemes so you must use caution when
accessing indexed values.

Note: We recommend not to mix 4Test and native methods because of incompatibilities between Java
and 4Test.

Predefined Class Definition File for Java
The file javaex.inc includes 4Test class definitions for the following controls:

• Abstract Windowing Toolkit (AWT) controls
• Java Foundation Class (JFC) library controls
• Symantec Visual Café Itools controls
• Java-equivalent window controls

We provide these class definitions to help you quickly get started with testing your Java applications. You
can record additional classes if you determine that additional controls are necessary to test your
application.

The file javaex.inc is installed in the Extend subdirectory under the directory where you installed Silk
Test Classic.

Web Applications and the Recovery System
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When the recovery system needs to restore the base state of a Web application that uses the Classic
Agent, it does the following:

1. Invokes the default browser if it is not running.

2. Restores the browser if it is minimized.

3. Closes any open additional browser instances or message boxes.

4. Makes sure the browser is active and is not loading a page.

5. Sets up the browser as required by Silk Test Classic.

The recovery system performs the next four steps only if the wMainWindow constant is set and points
to the home page in your application.

6. If bDefaultFont is defined and set to TRUE for the home page, sets the fonts.

7. If BrowserSize is defined and set for the home page, sets the size of the browser window.

8. If sLocation is defined and set for the home page, loads the page specified by sLocation.

9. If wMainWindow defines a BaseState method, executes it.

10.For additional information, see DefaultBaseState and the wMainWindow Object.

To use the recovery system, you must have specified your default browser in the Runtime Options dialog
box. If the default browser is not set, the recovery system is disabled. There is one exception to this rule:
You can pass a browser specifier as the first argument to a test case. This sets the default browser at
runtime. For more information, see BROWSERTYPE Data Type.

262 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

The constant wMainWindow must be defined and set to the identifier of the home page in the Web
application for the recovery system to restore the browser to your application’s main page. This window
must be of class BrowserChild. When you record a test frame, the constant is automatically defined and
set appropriately. If you want, you can also define a BaseState method for the window to execute
additional code for the base state, for example if the home page has a form, you might want to reset the
form in the BaseState method, so that it will be empty at your base state.

On Internet Explorer 7.x and 8.x, when recording a new frame file using Set Recovery System, by default
Silk Test Classic does not explicitly state that the parent of the window is a browser. To resolve this issue,
add the "parent Browser" line to the frame file.

Java Extension Options
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

There are several options that you can set for the Java extension by manually editing the javex.ini file.
These options apply to SilkTest_Java3.jar only.

The settings go in the [Options] section of javaex.ini unless otherwise noted. These are optional
and you do not have to include the setting in your javaex.ini if you want the default behavior.

AwtCompTreeLockTimeout

Measured in milliseconds. The default value for this option is -1. This option applies only to AWT-based
applications that contain AWT popup menus. It should not be used with other applications because it will
slow performance. If your application contains AWT popup menus, then you should set this value to a
positive number, for example 1000, to prevent Silk Test Classic from freezing when interacting with the
AWT popup menus.

Note: Micro Focus generally recommends using PopupSelect() instead of
JavaAwtPopupMenu::Pick().

EnumAwtPeers

The default value for this option is TRUE for backward compatibility with previous versions of Silk Test
Classic. This option applies only to AWT-based applications. It will not affect applications based on JFC
(Swing). Setting the option to FALSE may significantly improve playback speed. However, it may change
the window identifier hierarchy, which may cause existing tests to fail.

The option controls whether Silk Test Classic searches for peers of AWT controls. Peers are windows that
represent counterparts to Java controls, but are not Java classes themselves. Examples of peer classes
that you may see in your window declarations are SunAwtFrame or SunAwtCanvas. If the option is set to
FALSE, Silk Test Classic does not recognize peer classes and does not include these classes in the
window identifier hierarchy. You should not set the option to FALSE if any of your window declarations
mention peer classes, otherwise you will have to change your existing test scripts to accommodate the
modified window identifier hierarchy.

If the option is set to FALSE, Silk Test Classic recognizes most custom Java components without having to
add their class names to the [ClassList] section of javaex.ini. There are two exceptions: custom
components that have children, and custom components that are derived from ignored container classes
such as Panel. In order to enable Silk Test Classic to recognize a component in one of those two
categories, you must add the class name to the [ClassList] section of javaex.ini. For additional
information, see Recording Classes for Ignored Java Objects. In order to identify the classes to add to the
[ClassList] section, you may need to enable Show all classes on the Record Class dialog box and
examine the resulting window declarations. You must remember to disable Show all classes before you
modify the [ClassList] section. Never play back scripts with Show all classes enabled, or performance
will slow down greatly.

Testing in Your Environment with the Classic Agent | 263

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

IncludeInstanceNumber

The default value for this option is FALSE. The Java extension uses the component name as the window ID
form of the tag. For most JFC (Swing) components, the component name is the component class name.
For AWT components, however, the component name has the form base name + instance number. The
base name resembles the component class name. For example, AWT Button has a base name of "button",
while AWT Dialog has a base name of "dialog". The instance number reflects the order in which this
instance of the component was created by the JVM. The order of creation, and therefore the instance
number, may vary depending on the sequence of actions performed against the application. This may
cause the window ID of a specific window to vary between runs of a test case, or even within a test case.

For example, the first time that you invoke a specific popup window, its window ID will be "dialog0" (base
class = "dialog"; instance number = 0). But if you discard this popup window and then invoke it again, the
window ID will be "dialog1". This will invalidate the window declaration if the window ID is the only tag form
being used for that window. If IncludeInstanceNumber is set to FALSE (the default value), then the
instance number will be omitted from the window ID, and the window ID will consist only of the base class.
If there are multiple windows with the same base class, then the window ID’s will have the form
"baseClass[n]", following the standard Silk Test Classic convention for distinguishing between multiple
controls with the same tag value.

Setting the option to TRUE will reintroduce the Java instance number into the window ID tag form, which
usually will make the window ID less robust. However, the option is included for purposes of backward
compatibility.

ParentPopupToInvoker

The default value for this option is TRUE. This option specifies how the parent of a popup menu should be
determined. When the option is set to TRUE (default), the parent of the popup menu will be the window that
invoked it or the first ancestor of the invoking window that is not ignored by the Java extension. When the
option is set to FALSE, the parent of the popup menu will be the container of the popup menu or the first
ancestor of the container that is not ignored by the Java extension.

Recognition of popup menus should be more robust using the default value, TRUE, because that value will
eliminate changes to the window hierarchy that occur when the container of a popup menu changes
because the size or placement of the menu changes. Prior to the introduction of this option, the container
was always used as the parent of the popup menu, corresponding to an option value of FALSE.

For example, for JFC (Swing) menus, the container by default is a panel. If the panel is ignored by the Java
extension, as usually will be the case, and if Silk Test Classic is using the container as the parent (option
value is FALSE), then Silk Test Classic will recognize the parent as the JavaMainWin that contains the
menu. However, if the menu extends beyond the boundary of the JavaMainWin, then the container, and
therefore the parent (if option value is FALSE) will be seen as a popup window (usually a JavaDialog).
So if the option value is FALSE, then the parent of the menu may change depending on the size of the
menu, causing the window declaration to be invalid. If Silk Test Classic is using the invoking window as the
parent (meaning that this option is TRUE), however, then the parent will not change because the same
window (usually the JavaMainWin) invokes the menu whether or not the menu lies within the boundaries
of the JavaMainWin.

The default value, TRUE, also allows Silk Test Classic to distinguish between popup menus that are invoked
in different contexts, for example by clicking different buttons in the same toolbar. The parent of the popup
menu is the button that was clicked to bring up the menu. In contrast, setting the value to FALSE may
cause popup menus invoked by clicking different buttons in a toolbar to be seen as children of the same
JavaMainWin, and therefore to be seen as part of the same popup menu.

TableGetValueAtOnly

The default value for this option is FALSE. This option, which is part of the [JavaJFCTable] section of
the javaex.ini file, determines how Silk Test Classic obtains the cell text for JavaJFCTable controls.
The default value, FALSE, uses the cell renderer object to find the cell text for non-string cell contents, such

264 | Testing in Your Environment with the Classic Agent

as for a cell that contains a custom component that displays text but does not implement toString(). If
Silk Test Classic does not return the correct table cell text with the value set to FALSE, then change the
value to TRUE. Setting the value to TRUE causes Silk Test Classic to use the cell data object rather than the
renderer object.

TreeNodeValueHasPrecedence

The default value for this option is FALSE. This option, which is a part of the [JavaJFCTreeView] section
of the javaex.ini file, determines how Silk Test Classic obtains the node text for JavaJFCTreeView
controls. With this option set to FALSE, Silk Test Classic attempts to find meaningful text for the tree node
by relying more heavily on the Java API. If Silk Test Classic does not return the correct tree node text with
the value set to FALSE, then change the value to TRUE. Setting the value to TRUE gives precedence to the
string representation of the value of the node, even if that value does not yield apparently meaningful text.

UseExpandButton

The default value for this option is FALSE. This option lets you specify how Silk Test Classic should expand/
collapse nodes in a JavaJFCTreeView. The default value, FALSE, specifies that Silk Test Classic should
double-click nodes to expand or collapse them. This value works for default implementations of a
JavaJFCTreeView. However, if your implementation of a JavaJFCTreeView does not use a double-click
to expand or collapse nodes, then set the value to TRUE, which directs Silk Test Classic to click on the
Expand button, which usually is a small square with a +/- sign.

Setting Java Extension Options Using the javaex.ini File
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can set several options for the Java extension by manually editing the javaex.ini file. These options
apply to SilkTest_Java3.jar only

To set Java extension options using the javaex.ini file:

1. Close Silk Test Classic and the AUT, if they are open.

2. Open javaex.ini, located in the extend subdirectory of the directory where you installed Silk Test
Classic.

If you are using a Silk Test Classic Project, the applicable javaex.ini file is in the project, not in the
Silk Test Classic install directory.

3. Go to the [Options] section, unless otherwise noted, and change the value of the option. You may
need to add a line containing the section name, if it does not already exist.

4. Save and close the javaex.ini file.

5. Restart Silk Test Classic.

Troubleshooting Java Applications
This section provides solutions for common reasons that might lead to a failure of the test of your
standalone Java application or applet. If these do not solve the specific problem that you are having, you
can enable your extension manually.

The test of your standalone Java application or applet may fail if the application or applet was not ready to
test, the Java plug-in was not enabled properly, if there is a Java recognition issue, or if the Java applet
does not contain any Java controls within the JavaMainWin.

Why Is My Java Application Not Ready To Test?

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Testing in Your Environment with the Classic Agent | 265

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

If your Java application is not ready to test, enable the extension for the application and restart the
application.

1. On the Basic Workflow bar, click Enable Extensions. The Enable Extensions dialog box opens.

2. On the Enable Extensions dialog box, select the Java application for which you want to enable
extensions.

3. Click OK. The Enable Extensions dialog box closes.

4. Close and restart the Java application.

5. When the application has finished loading, click Test.

Why Can I Not Test a Java Application Which Is Started Through a Command Prompt?

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you are starting your standalone Java application through a Command Prompt window, close and re-
open the Command Prompt window when you restart your application.

If you have forgotten to close and re-open the Command Prompt window, use the Basic Workflow bar to
enable the extension again, making sure that you close and re-open both your Java application and the
Command Prompt window before you click Test on the Test Extension Settings dialog box.

1. On the Basic Workflow bar, click Enable Extensions. The Enable Extensions dialog box opens.

2. On the Enable Extensions dialog box, select the Java application for which you want to enable
extensions.

3. On the Extension Settings dialog box, click OK.

4. Close your Java application and the Command Prompt window.

5. Open a Command Prompt and restart your application.

6. When the application has finished loading, click Test.

What Can I Do If My Java Application Not Contain Any Controls Below JavaMainWin?

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If your Java application (or applet) does not contain any Java children within JavaMainWin, your tests
against the application will fail. However, you might configure the Java extension to prevent this kind of
failure. Record against Java controls to make sure that the extension is enabled. For example, record a
push button as a JavaAWTPushButton or a JavaJFCPushButton.

How Can I Enable a Java Plug-In?

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If the browser that you are using has a plug-in enabled, or if the applet uses a plug-in, you must check the
Java Plug-in check box on the Extension Settings dialog box. In all other cases, uncheck the Java Plug-
in check box.

In Internet Explorer, click Tools > Internet Options and then click the Advanced tab, to determine if
Internet Explorer has a plug-in enabled. Scan the Settings list to see if a third party plug-in, such as Java
(Sun), has been enabled.

What Can I Do If the Java Plug-In Check Box Is Not Checked?

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

266 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

If a plug-in is enabled for the browser, and the applet is using a plug-in, but you did not check the Java
Plug-In check box, check the Java Plug-In check box and enable the extension again.

1. On the Basic Workflow bar, click Enable Extensions. The Enable Extensions dialog box opens.

2. On the Extension Settings dialog box, make sure DOM is the Primary Extension.

3. Check the Java Plug-in check box.

4. Click OK.

5. Close and restart your Java application.

6. When the application has finished loading, click Test.

What Can I Do When I Am Testing an Applet That Does Not Use a Plug-In, But the Browser Has a
Plug-In Loaded?

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you are testing an applet that does not use a plug-in, but the browser has a plug-in loaded, disable
the plug-in and enable the extension again.

1. In the browser that you are using, disable all plug-ins.

2. In the Basic Workflow bar, click Enable Extensions and enable the extension for the applet again.

3. In the Extension Settings dialog box, uncheck the Java Plug-in check box.

What Can I Do If the Silk Test Java File Is Not Included in a Plug-In?

If the SilkTest_Java3.jar file is not included in the lib/ext directory of the plug-in that you are
using:

1. Locate the lib/ext directory of the plug-in that you are using and check if the SilkTest_Java3.jar
file is included in this folder.

2. If the SilkTest_Java3.jar file is not included in the folder, copy the file from the javaex folder of
the Silk Test installation directory into thelib\ext directory of the plug-in.

What Can I Do If Java Controls In an Applet Are Not Recognized?

Silk Test Classic cannot recognize any Java children within an applet if your applet contains only custom
classes, which are Java classes that are not recognized by default, for example a frame containing only an
image. For information about mapping custom classes to standard classes, see Mapping Custom Classes
to Standard Classes. Additionally, you have to set the Java security privileges that are required by Silk Test
Classic.

Supported Java Classes
We provide 4Test definitions in our class definition file for the following Java classes:

• Abstract Windowing Toolkit (AWT) classes
• Java Foundation Class (JFC) library classes
• Symantec Visual Café Itools classes (only for the Classic Agent)
• Java-equivalent window classes

Each of these predefined classes inherits 4Test properties and methods, which are referenced in the class
descriptions in this Help. Not all inherited methods have been implemented for Java controls.

You can also access the native methods of the supported classes by removing the 4Test definition and re-
recording the class.

The only assumption that the Java extension makes about the implementation of the Java classes in an
AUT is that the classes do not violate the standard Swing or AWT models. The Java extension should be

Testing in Your Environment with the Classic Agent | 267

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

able to recognize and manipulate a Java class in an application, as long as the class extends one of the
components that the Java extension supports, and any customization does not violate the API of that
component. For example, changing a method from public to private violates the API of the component.

Predefined Java-Equivalent Window Classes

The following 4Test classes are provided for testing Java-equivalent window controls:

Classic Agent Open Agent

JavaApplet AppletContainer

JavaDialogBox AWTDialog

JDialog

JavaMainWin AWTFrame

JFrame

Predefined AWT Classes

The following 4Test classes are provided for testing Abstract Windowing Toolkit (AWT) controls:

Classic Agent Open Agent

JavaAwtCheckBox AWTCheckBox

JavaAwtListBox AWTList

JavaAwtPopupList AWTChoice

JavaAwtPopupMenu No corresponding class.

JavaAwtPushButton AWTPushButton

JavaAwtRadioButton AWTRadioButton

JavaAwtRadioList No corresponding class.

JavaAwtScrollBar AWTScrollBar

JavaAwtStaticText AWTLabel

JavaAwtTextField AWTTextField

AWTTextArea

Predefined JFC Classes

The following 4Test classes are provided for testing Java Foundation Class (JFC) controls:

Classic Agent Open Agent

JavaJFCCheckBox JCheckBox

JavaJFCCheckBoxMenuItem JCheckBoxMenuItem

JavaJFCChildWin No corresponding class.

JavaJFCComboBox JComboBox

JavaJFCImage No corresponding class.

JavaJFCListBox JList

JavaJFCMenu JMenu

JavaJFCMenuItem JMenuItem

268 | Testing in Your Environment with the Classic Agent

Classic Agent Open Agent

JavaJFCPageList JTabbedPane

JavaJFCPopupList JList

JavaJFCPopupMenu JPopupMenu

JavaJFCProgressBar JProgressBar

JavaJFCPushButton JButton

JavaJFCRadioButton JRadioButton

JavaJFCRadioButtonMenuItem JRadioButtonMenuItem

JavaJFCRadioList No corresponding class.

JavaJFCScale JSlider

JavaJFCScrollBar JScrollBar

JHorizontalScrollBar

JVerticalScrollBar

JavaJFCSeparator JComponent

JavaJFCStaticText JLabel

JavaJFCTable JTable

JavaJFCTextField JTextField

JTextArea

JavaJFCToggleButton JToggleButton

JavaJFCToolBar JToolBar

JavaJFCTreeView JTree

JavaJFCUpDown JSpinner

Predefined Symantec Itools Classes

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The following 4Test classes are provided for testing Symantec Visual Café Itools controls:

• JavaItoolsComboBox

• JavaItoolsListBox

• JavaItoolsPageList

• JavaItoolsPushButton

• JavaItoolsScale

• JavaItoolsTable

• JavaItoolsTreeView

• JavaItoolsUpDown

Recording Java Classes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This section describes how you can record Java classes.

Testing in Your Environment with the Classic Agent | 269

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

When to Record Classes

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Consider these criteria when deciding whether to record classes for Java objects. When you record
classes, Silk Test Classic derives tags from the Java class name. You may also find it helpful to consult the
decision tree for dealing with custom Java classes.

Am I testing only predefined Java classes?

If you are testing only predefined Java classes, then you do not need to record additional classes. Check
the list of predefined Java classes to be sure. If you want to access native methods for predefined Java
classes, then you must remove the existing definition and re-record the class.

Am I testing visible custom controls?

If you are testing custom Java controls that are not predefined, then you must record classes for these
controls. In this case, the custom controls are visible, but display as CustomWin objects. After you record
the class, you can retrieve information about any number of instances (objects) of that class.

Do I want to test custom controls that are currently ignored?

To maintain efficiency during the recording process, Silk Test Classic ignores custom Java controls that are
not considered relevant for testing, such as containers or panels. Ignored objects are not recognized at all
by Silk Test Classic, not even as CustomWin objects.

Even so, you can expose and record classes for ignored Java objects in standalone Java applications or in
Java applets that you consider important for testing purposes.

Have I modified an existing class definition?

If you add, delete, or modify any native methods or parameters for a custom Java class, you need to either
re-record the class or modify your class include file to reflect the changes.

Decision tree for dealing with custom Java classes

1. Can you see the object without Show All Classes checked?

a. If yes, then do you get any methods and properties using Record Class?

a. If yes, then use Record Class to generate a winclass for the custom class. We recommend that
you check Show all methods.

b. If no, then do you get any methods and properties using the CaptureObjectClass() or
CaptureAllClasses() function?

a. If yes, then use CaptureObjectClass() to generate a winclass for the custom class, or
CaptureAllClasses() to generate winclasses for the custom class and all child custom
classes.

b. If no, then go to Step 1.b.ii. You already know the class, but you will need to determine the
public methods.

b. If no, then can you see it with Show All Classes checked?

a. If yes, then you need to adjust the [ClassList] section in extend\JavaEx.ini.

a. Expose classes that are ignored by default, which means with Show All Classes unchecked,
by setting them to true.

b. You may also need to hide some classes that are exposed by default by setting them to
false. This may be true for tables where you see the individual cells but not the entire table,
or for classes that are obscured by container or panel classes.

270 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

c. Uncheck Show All Classes after you modify the ClassList, before recording any classes or
window declarations.

d. Go back to Step 1.
b. If no, then that indicates that the component is not derived from AWT Component. You will need

to find out from the customer what the custom class is and which public methods are available for
that class. The easiest way to determine the public methods is to find it out from the customer,
but you can also try using 'javap', which is part of the JDK, to extract the public methods from the
class.

a. Can you access the object (ObjectA) of this class (Class A) through a method of a different
class (Class B) that Silk Test Classic can recognize? The useful Class B method would only
be recorded if you check Show all methods when recording the class for the Class B object
(ObjectB).

a. If yes, then does the useful Class B method take only 4Test-compatible values as
parameters?

a. If yes, then do the methods that you want to call for Class A return 4Test-compatible
values and take 4Test-compatible values as parameters?

a. If yes, then you should be able to call ObjectB.invokeMethods() to call the
methods for ObjectA: ObjectB.invokeMethods ({"ClassBMethod",
"ClassAMethod"}, {lArgumentsForClassBMethod, lArgumentsForClassAMethod}).

b. If no, then use ObjectB.InvokeJava(). Within the class that you create for
InvokeJava(), call the Class B method that returns ObjectA, then call the Class A
method.

b. If no, then use ObjectB.InvokeJava(). Within the class that you create for
InvokeJava(), call the Class B method that returns ObjectA, then call the Class A
method.

b. If no, then use InvokeJava(). You will have to find a Silk Test Classic-recognizable object
that can indirectly be used to access ObjectA through intermediate objects.

2. Does Record Class or the capture class functions give you useful 4Test-accessible methods for the
class in question (Class A)?

a. If yes, then call the recorded methods directly in your scripts.
b. If no, then are the methods that you need to use commented out?

a. If yes, then are the methods commented out only because they return values that are not 4Test-
compatible, probably because they return custom classes?

a. If yes, then are there methods on the returned classes that return 4Test-compatible values
and take only 4Test-compatible values as parameters?

a. If yes, then you should be able to call invokeMethods() on the object of interest
(ObjectA): ObjectA.invokeMethods({"ClassAMethodOfInterest",
"4TestCompatibleMethodForClassReturnedByClassAMethod"},
{lArgumentsForClassAMethod, lArgumentsForMethodForClassReturnedByClassAMethod})

b. If no, then use InvokeJava() on the object of interest. Call the non-4Test-compatible
methods within the class that you create for InvokeJava(). Make sure that you eventually
return a 4Test-compatible value from the InvokeJava() class.

b. If no, then use InvokeJava() on the object of interest. Call the non-4Test-compatible
methods within the class that you create for InvokeJava(). Make sure that you eventually
return a 4Test-compatible value from the InvokeJava() class.

c. If no, then use InvokeJava() on the object of interest.

Testing in Your Environment with the Classic Agent | 271

How Methods and Properties are Enumerated

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you record classes, Silk Test Classic enumerates properties and methods as follows:

• By default, Silk Test Classic filters out methods and properties inherited at or above a certain level in a
class hierarchy. The threshold at which filtering occurs varies according to the hierarchy. The filtering
process makes it easier for you to find the methods and properties you use most frequently. You can
turn off this filter to access any of these inherited methods and properties.

• After filtering, Silk Test Classic enumerates only those native methods that accept or return supported
Java classes. You can however use unsupported native methods with subclasses that are supported.

Using Native Methods that are Not Enumerated

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you record classes, Silk Test Classic does not enumerate native methods that pass unsupported
Java classes as arguments; however, you can use these methods with supported subclasses. Add the
prototype by hand in your class definition include file and then use the method in your test script as
defined.

Example

If you record a class on a JFC ComboBox, the following native method prototypes are
not enumerated because the Java support in Silk Test Classic does not support the
Object class:

• Object getItemAt(int)
• Object getSelectedItem()
• void setSelectedItem(Object)

If you know that all the items on the JFC ComboBox are instances of a supported class,
such as the default Java string class, you can add these prototypes in your class
definition include file. Here's how the declarations should look for the Java string class:

• String getItemAt(int)
• String getSelectedItem()
• void setSelectedItem(String)

Thresholds for Filtering Methods and Properties

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

In this hierarchy… Classes are filtered at…

Abstract Windowing Toolkit (AWT) java.awt.Component and above

Java Foundation Classes (JFC) com.sun.java.swing.Jcomponent and above

Naming Conflicts

When you record a class, Silk Test Classic checks for and resolves naming conflicts that arise between
4Test methods and the supported native methods. When naming conflicts arise, make sure you call the
appropriate method in your test scripts. The following table shows how Silk Test Classic resolves the
naming conflicts:

272 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Type of Naming Conflict How Silk Test Classic Resolves the Conflict

overloaded native methods Appends "_n" to overloaded method names to ensure
that each is unique, where n is an integer that starts at 2.

native method has the same name as a 4Test method Prefixes the letter "x" to the name of the native method.

For ActiveX/Visual Basic methods only, Silk Test Classic
prefixes an underscore character (_) to native methods
that begin with "set" and "get" in order to distinguish them
from the Get and Set methods that Silk Test Classic
constructs from properties.

native method uses a reserved 4Test keyword in an
inappropriate context

Prefixes the letter "x" to the name of the native method.

When Silk Test Classic prefixes the letter "x" to the name of a native method or property, it also adds the
alias keyword with the original name of the native method.

Example: Resolve Conflicts for Overloaded Methods

Overloaded Method How Silk Test Classic Resolves
the Conflict

obj void wait(int i1) obj void wait(int i1)

obj void wait(int i1, int i2) obj void wait_2(int i1, int i2)

obj void wait() obj void wait_3()

Example: Resolve Naming Conflicts Between 4Test and Native Java Methods

4Test Method Native Java method

getName() getName() -> xgetName()

isEnabled() isEnabled() -> xisEnabled()

Example: Resolve Naming Conflicts Between 4Test Reserved Words and Native
Java Methods

4Test Reserved Word Native Java method

LIST data type list() -> xlist()

select statement select() -> xselect()

Java Custom Windows

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You do not need to write your own extensions in Java for testing custom Java objects, which are also called
CustomWins. Instead, the Silk Test Classic Java support lets you access native methods that you can call
in your test scripts to manipulate custom Java controls.

You access native methods for a custom Java object by recording a class for that object. To get started,
take a look at our guidelines for when and how to record classes.

Testing in Your Environment with the Classic Agent | 273

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Loading Class Definition Files or Test Frame Files

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can use these procedures to load 4Test include files or test frames.

We recommend that you record new class definitions in a new include file or in your test frame file. Do not
store these definitions in javaex.inc, or another predefined class definition file such as dotnet.inc,
because we may upgrade *.inc files in a later Silk Test release.

To load class definitions or test frames in selected test scripts

Insert a use statement in each test script that needs to manipulate the controls that you have declared or
the objects of the classes that you have defined. Use the following format:

use "<directory\file-name>.inc"

For example, if your class include file is custobj.inc and it resides in the directory c:\mydir, insert the
following statement:

use "c:\mydir\custobj.inc"

Recording Classes for Custom Java Controls

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To enable Silk Test Classic to recognize custom controls, you must record classes for these objects.

The process of recording a custom Java class involves querying the objects, retrieving information on
methods and properties for these objects, and then translating this information into 4Test-style prototypes
that you can use to write test scripts.

How to Record Classes

Using the Java support in Silk Test Classic, you can use the following approaches to record classes for
custom controls in Java applications and applets:

• Record classes for custom Java objects using the recorder.
• Recording classes for custom Java objects from a script.
• Record classes for a window and all of its children using one function call.

Where to store your new class definitions

We recommend that you store your class definitions in a new include file, for example custobj.inc or in
your test frame file. Do not store these definitions in javaex.inc, which is the predefined Java class
definition file, because we will upgrade javaex.inc in future versions of our Java support. You will need
to load new class include files in Silk Test Classic before testing your application or applet.

If you add, delete, or modify any native methods or parameters for a custom Java class, you need to either
re-record the class or modify your class include file to reflect the changes.

Recording Classes for Custom Java Controls Using the Recorder

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Before beginning this procedure, make sure you have taken the necessary prerequisite steps to set up your
environment as described in Configuring Silk Test Classic to Test Java.

To record new classes for custom controls using the recorder:

1. Start your Java application or applet.

274 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

2. Create a new include (.inc) file, open an existing include file, or open the test frame file for storing your
new class definitions.

3. Click Record > Class > Scripted to open the Record Class dialog box.

4. To include native methods with return or parameter types that do not match valid 4Test methods, check
the Show all methods check box in the lower left corner of the dialog box.

You cannot call these methods directly from your 4Test scripts but you can use the InvokeMethods or
the InvokeJava method to call them. When you capture the class, Silk Test Classic displays these
methods prefaced by comments in the Record Class dialog box. When you click Paste to Editor, Silk
Test Classic adds the InvokeMethods method and these methods, prefaced by comments, to your
test script.

5. Position the mouse pointer over the control for which you want to record a class.

6. When the correct name displays in the Window text box, press Ctrl+Alt.
Methods and properties for that class are displayed in the Record Class dialog box. If you have
checked Show All Methods, Silk Test Classic displays these non-4Test methods as comments, that is,
prefaced by forward slashes (//).

7. Click the Derived From list box to see the list of available 4Test classes. If there is a class type in the
list that maps directly to your object, choose it. If not, choose AnyWin, which is a generic class.

For example, if your object is JavaAwtTextField, choose TextField. If your object is Spinner,
choose Anywin. For additional information, see winclass Declaration and derived class.

8. Click Paste to Editor to paste the new class into the include file.

9. Uncheck the Show all methods check box in the Record Class dialog box, if you chose it for this
record action.

10.Repeat this procedure for each custom control that does not display in the predefined list of Java
classes provided. When you are finished recording classes, click Close.

11.Load the include file that contains the new class definitions.

If you find that Silk Test Classic does not recognize some of your custom Java controls, you may need to
take additional steps to record classes for these "ignored" objects.

To include native methods with return or parameter types that do not match valid 4Test methods, check the
Show All Methods check box on the Record Class dialog box. Silk Test Classic displays these methods
as comments in Methods list.

When you finish recording the class, uncheck the Show all methods check box to turn off the recording of
all methods. Turning off Show all methods when you don’t need it helps to keep performance optimal.

Although you cannot call these methods directly from your 4Test script, you can use InvokeMethods or
InvokeJavaCode to call them from your script.

If you add or delete native methods, or modify the parameters of native methods for a custom Java class,
you need to either re-record the class or edit your class include file to reflect the changes.

If your test script fails with the error Function x is not defined for window y, you might need to
modify your window tag from CustomWin to the name of your new window class.

Recording Classes for Custom Java Controls from a Script

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic provides two functions that allow you to capture the class information of custom Java
controls from a script:

• CaptureAllClasses

• CaptureObjectClass

The following procedure explains how to use these functions to record new classes for custom Java
controls. Before beginning this procedure, make sure you have taken the necessary prerequisite steps to

Testing in Your Environment with the Classic Agent | 275

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

set up your environment as described in Configuring Silk Test Classic Java Support and Overview of
Testing Java Applications and Applets.

To record new classes for custom controls from a script:

1. Start your Java application or applet.

2. Create a new include (.inc) file, open an existing include file, or open an existing test frame file for
storing your new class definitions.

3. Open a new script (.t) file.

4. Load the include file captureclass.inc, located in the directory where you installed Silk Test
Classic.

Note: We recommend loading this include file only in the scripts that call CaptureObjectClass
or CaptureAllClasses.

5. Open the windows that contain the custom controls and their parent windows.

6. Record declarations for the windows containing your custom controls and paste the declarations into
your script file.

7. In your script file, write a main routine that calls one or both of the capture functions, according to the
following guidelines:

If you want to capture … Call …

The class for one custom control CaptureObjectClass.

The class for a custom control and all of its children CaptureAllClasses.

8. Save and run your script file. The results file opens on your desktop and contains the new class
definitions.

9. Copy the class definitions from your results file and paste them into the include file you have designated
in step 2.

10.Load the include file that contains the new class definitions.

• If you find that Silk Test Classic does not recognize some of your custom Java controls, you may need
to take additional steps to record classes for these "ignored" objects.

• If you add or delete native methods, or modify the parameters of native methods for a custom Java
class, you need to either re-record the class or edit your class include file to reflect the changes.

• If your test script fails with the error Function x is not defined for window y, you might need
to modify your window tag from CustomWin to the name of your new window class. For the correct
sequence of steps to perform before you begin writing test scripts, see Testing Java Applications and
Applets.

Example Script that Calls CaptureObjectClass

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This call to CaptureObjectClass records a class named SwingSplitPane for
JavaxSwingJSplitPane, a custom control in the SplitPane window.

Note: You must pass the full path of the window whose class you want to capture. In this example, the
full path is SplitPane.JavaxSwingJSplitPane.

// capture_obj.t
use "captureclass.inc"

window JavaMainWin TestApplication
 tag "TestApplication"
 JavaJFCMenu File
 JavaJFCMenu Control
 JavaJFCMenu Menu

276 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

window JavaDialogBox SplitPane
 tag "SplitPane"
 parent TestApplication
 JavaJFCCheckBox Horizontal
 JavaJFCCheckBox Enabled
 JavaJCFCheckBox Exit
 CustomWin JavaxSwingJSplitPane

main()
 print("Calling
CaptureObjectClass(""SwingSplitPane"",SplitPane.JavaxSwingJSplitPane)")
 CaptureObjectClass("SwingSplitPane",SplitPane.JavaxSwingJSplitPane)

Results of Call to CaptureObjectClass

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Following is the results file produced by running a sample script that calls the CaptureObjectClass
function to record a class named SwingSplitPane for JavaxSwingJSplitPane, a custom control in
the SplitPane window. The new class declaration has been expanded to show the class information that
is recorded.

// capture_obj.res
Calling CaptureObjectClass("SwingSplitPane", SplitPane.JavaxSwingJSplitPane)
 winclass SwingSplitPane : Control
 tag "[javax.swing.JSplitPane]"

// Properties
property int iDividerLocation alias "$DividerLocation"
property int iDividerSize alias "$DividerSize"
property int iLastDividerLocation alias "$LastDividerLocation"
property int iOrientation alias "$Orientation"

// Accessible Native Methods
obj boolean isContinuousLayout()
obj boolean isOneTouchExpandable()
obj boolean isValidateRoot()
obj int getDividerLocation()
obj int getDividerSize()
obj int getLastDividerLocation()
obj int getMaximumDividerLocation()
obj int GetMinimumDividerLocation()
obj int GetOrientation()
obj String getUIClassID()
obj void remove(int il)
obj void removeAll()
obj void resetToPreferredSizes()
obj void setContinuousLayout(boolean bl)
obj void setDividerLocation(float fl)
obj void setDividerLocation_2(int il)
obj void setDividerSize(int il)
obj void setLastDividerLocation(int il)
obj void setOneTouchExpandable(boolean bl)
obj void setOrientation(int il)
obj void updateUI()

Example Script that Calls CaptureAllClasses

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

// capture_all.t
use "captureclass.inc"

Testing in Your Environment with the Classic Agent | 277

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

window JavaMainWin TestApplication
 tag "TestApplication"
 JavaJFCMenu File
 JavaJFCMenu Control
 JavaJFCMenu Menu
window JavaDialogBox SplitPane
 tag "SplitPane"
 parent TestApplication
 JavaJFCCheckBox Horizontal
 JavaJFCCheckBox Enabled
 JavaJCFCheckBox Exit
 CustomWin JavaxSwingJSplitPane

main()
 print("Calling CaptureAllClasses(TestApplication)")
 CaptureAllClasses(TestApplication)
 print("****************")
 print("Calling CaptureAllClasses(SplitPane, FALSE)")
 CaptureAllClasses(SplitPane, FALSE)
 print("****************")
 print("Calling CaptureAllClasses(SplitPane, TRUE)")
 CaptureAllClasses(SplitPane, TRUE)

The first two calls to CaptureAllClasses record classes for custom controls in the named window and
its children. Classes are not recorded for controls whose classes are already defined, for example, controls
that have predefined 4Test classes.

The third function call records classes for all controls in SplitPane and its children, including controls
whose classes are already defined.

Results of Call to CaptureAllClasses

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Following is the results file produced by running a sample script that calls the CaptureAllClasses
function to record classes for visible custom controls.

Note: The third call to CaptureAllClasses passes TRUE as the second argument, directing the
function to capture classes for all child objects - even those whose classes are predefined, such as
JavaJFCPushButton, JavaJFCTextField, and JavaJFCImage.

Calling CaptureAllClasses(TestApplication)
 winclass SunAwtDialog : Control
 winclass JavaxSwingSplitPane : Control
 winclass JavaxSwingPlafMetalMetalSplitPaneDivider : Control

Calling CaptureAllClasses(SplitPane, FALSE)
 winclass JavaxSwingSplitPane : Control
 winclass JavaxSwingPlafMetalMetalSplitPaneDivider : Control

Calling CaptureAllClasses(SplitPane, TRUE)
 winclass JavaJFCCheckBox : Control
 winclass JavaJFCPushButton : Control
 winclass JavaxSwingSplitPane : Control
 tag "[javax.swing.JSplitPane]"

// Properties
property int iDividerLocation alias "$DividerLocation"
property int iDividerSize alias "$DividerSize"
property int iLastDividerLocation alias "$LastDividerLocation"

278 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

property int iOrientation alias "$Orientation"

// Accessible Native Methods
obj boolean isContinuousLayout()
obj boolean isOneTouchExpandable()
obj boolean isValidateRoot()
obj int getDividerLocation()
obj int getDividerSize()
obj int getLastDividerLocation()
obj int getMaximumDividerLocation()
obj int GetMinimumDividerLocation()
obj int GetOrientation()
obj String getUIClassID()
obj void remove(int il)
obj void removeAll()
obj void resetToPreferredSizes()
obj void setContinuousLayout(boolean bl)
obj void setDividerLocation(float fl)
obj void setDividerLocation_2(int il)
obj void setDividerSize(int il)
obj void setLastDividerLocation(int il)
obj void setOneTouchExpandable(boolean bl)
obj void setOrientation(int il)
obj void updateUI()

Recording Classes for Ignored Java Objects

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic ignores certain objects during recording that normally should remain transparent to users,
such as panels and containers. Typically these classes don’t have a graphical component, or are used
solely to aid the placement of objects. However, there may be cases in which these ignored classes have
been extended and contain objects that you want to test. In some situations, custom objects, such as user-
defined objects or third-party JavaBeans, might be inadvertently ignored.

Using our Java support in Silk Test Classic, you can expose these ignored objects, then record classes for
them in Java applications and in Java applets.

To record classes for ignored Java objects:

1. Start your Java application and make sure Java support is enabled.

2. Create a new include (.inc) file, open an existing include file, or open the test frame file for storing your
new class definitions.

We recommend that you store your new class definitions in a new include file, for example
custobj.inc, or in your test frame file. Do not store these definitions in javaex.inc, the predefined
Java class definition file, because we will upgrade javaex.inc in future versions of our Java support.

3. Click Record > Class and then check the Show all classes check box in the lower left corner of the
dialog box.

4. To include native methods with return or parameter types that do not match valid 4Test methods, check
the Show all methods check box in the lower left corner of the dialog box.

You cannot call these methods directly from your 4Test scripts but you can use the InvokeMethods or
the InvokeJava method to call them. When you capture the class, Silk Test Classic displays these
methods prefaced by comments in the Record Class dialog box. When you click Paste to Editor, Silk
Test Classic adds the InvokeMethods method and these methods, prefaced by comments, to your
test script.

5. Position the mouse pointer over the control for which you want to record a class, and when the correct
name displays in the Window field, press Ctrl+Alt.

Testing in Your Environment with the Classic Agent | 279

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Methods and properties for that class are displayed in the Record Class dialog box. If you have
checked Show All Methods, Silk Test Classic displays these non-4Test methods as comments, that is,
prefaced by forward slashes (//).

6. Click the Derived From list box to see the list of available 4Test classes.

• If there is a class type in the list that maps directly to your object, choose it.
• If not, choose AnyWin, which is a generic class. See winclass declaration and derived class for more

details.

Note: Note the Tag for the class you just recorded; you will need this name later.

7. Click Paste to Editor to paste the new class into the include file.

8. Uncheck the Show all classes check box in the Record Class dialog box, and the Show all methods
check box, if you chose it for this record action, and then click Close.

It is very important to check Show all classes only while you are trying to record the class for an
ignored Java object.

9. Open javaex.ini, located in the extend subdirectory of the directory where you installed Silk Test
Classic.

10.In javaex.ini, create a section called [ClassList] and add a line that reads <class tag
name>=true.

For example, if the tag of the class you just recorded is [com.mycompany.Spinner], add this line:

com.mycompany.Spinner=true

Note: The name can contain wildcards, which can be useful for exposing all classes in a package,
for example:

com.mycompany.module_classes_to_expose.*\=true

11.Save and close javaex.ini.

When you uninstall Silk Test Classic, the file javaex.ini is backed up as javaex.bak in the <Silk
Test install directory>\extend folder. Any changes you made to javaex.ini can be
reinstated by copying them from javaex.bak and pasting them into the new javaex.ini that is
created when you reinstall Silk Test Classic.

12.Restart the Agent and your application.

13.Load the include file that contains the new class definitions.

Recording Java Window Declarations

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To record Java window declarations:

1. Create a new test frame file.

Silk Test Classic loads a new test frame file by automatically specifying its full path in the Use Files text
box of the Runtime Options dialog box. Instead of creating a new test frame, you can open a test
frame file that you already created for this Java test script or suite. If you use an existing test frame file
that has not been loaded, load the test frame file now.

2. If you recorded classes for any Java controls, load the class definition file now.

3. With your test frame file as the active window, choose Record > Window Declarations and record
declarations.

You can now use multitags when recording window declarations for Java applications. However, additional
considerations must be made for top-level windows.

280 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Turning On the Class Declaration Filter

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you record classes, Silk Test Classic by default filters out properties and methods inherited at or
above a certain level in a class hierarchy. The threshold at which filtering occurs varies according to the
hierarchy.

You can turn off this filter if you want these properties and methods to be enumerated. If you then want to
turn the filter back on, follow the procedure described below.

Note: We provide this filter as a convenience, but it has not been thoroughly tested.

To turn on the class declaration filter:

1. Open the javaex.ini file.

The path is <SilkTest install directory>\extend\javaex.ini.

2. Either remove the declaration FilterClassDecl=false from the [Recording] section, or change
the declaration to FilterClassDecl=true.

3. Restart the Agent, and the application or applet under test.

Turning Off the Class Declaration Filter

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you record classes, Silk Test Classic by default filters out properties and methods inherited at or
above a certain level in a class hierarchy. The threshold at which filtering occurs varies according to the
hierarchy. You can turn off this filter if you want these properties and methods to be enumerated.

We provide this filter as a convenience, but it has not been thoroughly tested.

To turn off the class declaration filter:

1. Open the javaex.ini file.

The path is <SilkTest install directory>\extend\javaex.ini.

2. In the [Recording] section, add the command FilterClassDecl=false.

3. Save and close javaex.ini.

4. Restart the Agent, and the application or applet under test.

Extending Java Support
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This section describes how you can extend Java support.

Keeping the DOS Window Open when Returning to DefaultBaseState

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Java applications running in Windows are launched from DOS.

You do not need to perform this task if appstate is set to none.

To keep the DOS window open when returning to base state:

1. Launch your Java application.

Testing in Your Environment with the Classic Agent | 281

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• If you are running JDK, your DOS window is minimized.
• If you are running JRE, your DOS window is not minimized.

2. Click Record > Window Identifiers in the Silk Test Classic menu bar.

3. Click the DOS window. If the DOS window is minimized, restore it first. Place your cursor over the title
bar of the DOS window and press Ctrl+Alt to record the identifier.

4. Open your test frame file and expand the main window declaration for the Java application which you
are testing.

5. Un-comment the line that begins const lwLeaveOpen and select the text ? near the end of that line.

6. In the Record Windows Identifiers dialog box, click Paste to Editor to insert the DOS window
identifier as the value for lwLeaveOpen, inside the {} brackets.

7. Close the Record Windows Identifiers dialog box and save the test frame file.

Redirect Output from Java Console to File

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you enable Java support, you can redirect Java console output to a local file, where you can more
easily scroll and copy the text.

To redirect Java console output to a local file:

1. Choose Options > Extensions from the Silk Test Classic menu bar. The Extensions dialog box opens.

2. Select and highlight an enabled Java application or browser.

3. Click Java. The Extension Options dialog box opens.

4. Check the Redirect Java Console Output check box.

5. In the Java Console File Name text box, enter the path to the file where you want to redirect Java
console output.

6. Click OK.

Note: Silk Test Classic hangs if you are using Java Plug-In for JVM 1.4.2 and call Browser.Close()
with the Java Console open.

Using Java Database Connectivity (JDBC)

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To verify information from an SQL-compliant database, you might want to hook into JDBC to access the
data. You can access JDBC directly by using the InvokeJava method to call a Java class that makes a
series of JDBC calls and returns the data of interest.

invokeMethods Method

Class

JavaMainWin.

Availability

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Action

Retrieves information about a visible Java GUI object by calling a sequence of nested methods inside Java
with arguments specified in 4Test.

282 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Syntax
anyValue = object.invokeMethods(lsMethods, llanyArgs)

Variable Description

anyValue Value describing the object. ANYTYPE.

lsMethods A list of method names in the order that they are to be
called. LIST OF STRING.

llanyArgs A list of argument lists, to be matched with the method
names in lsMethods. LIST OF LIST OF ANYTYPE.

Notes

This method is available for Windows environments. The first method in the lsMethods method list is
invoked on object with the argument list specified by the first element of llanyArgs. This method call and all
subsequent calls except the last one must have a return object. Each return object becomes the target for
calling the next method in lsMethods with the next argument list in llanyArgs until the last method call. If the
method names, argument lists, and return classes do not match, a runtime error is generated and reported
to 4Test.

Requirements

The invokeMethods method is declared for all built-in 4Test Java classes. However, you must add the
method to the class declaration of any custom class for which invokeMethods is invoked.

Note: Record class will include the invokeMethods declaration if you check the Show all methods
check box.

Example 1

The following simple example uses invokeMethods to call getScrollPosition,
which returns a Point object. Then invokeMethods calls the toString method,
which returns a string representing the point object returned from the first call to
getScrollPosition.

sValue =
MyDialog.ScrollableObject.invokeMethods({"getScrollPosition",
"toString"}, {{}, {}})

Example 2

To draw a line in a multiline text field, you need to access a graphics object inside the
text field by calling the following methods in Java:

main()
{
 TextField multiLine = ...; // get reference to multiline text
field
 Graphics graphObj = multiLine.getGraphics();
 graphObj.drawLine(10, 10, 20, 20);
}

However, you cannot call the above sequence of methods from 4Test because
Graphics is not 4Test-compatible. Instead, you can insert the invokeMethods
prototype in the TextField class declaration, then add invokeMethods by hand to
your test script to draw a line in the Graphics object nested inside the multiline text
field, as shown in this 4Test function:

DrawLineInTextField()
MyDialog.Invoke() // Invoke Java dialog that contains the text

Testing in Your Environment with the Classic Agent | 283

field
MyDialog.TheTextField.invokeMethods({"getGraphics",
"drawLine"}, {{}, {10, 10, 20, 20}})

In this code, the following methods are called in Java:

• getGraphics is invoked on the multiline text field TheTextField with an empty
argument list, returning a Graphics object.

• drawLine is invoked on the Graphics object, to draw a line starting from (x,y)
coordinates (10,10) and continuing to (x,y) coordinates (20,20).

Invoking Java Applications and Applets
This section describes how you can invoke Java applications and applets.

Invoking Java Applets

To invoke the Java applet from within a supported browser, perform the following tasks:

• If you are using the Classic Agent, configure Silk Test Classic for Java support and enable the Java
extension.

• If you are using the Open Agent, configure the application.

Invoking JDK Applications

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Once you configure Silk Test Classic for testing standalone Java applications, you can invoke JDK
applications as you normally would from the command line.

To invoke JDK applications using -classpath

Enter the following command:

java -classpath <Java support path>;<other directories, if any> <name of
application>

Example

In this example, let us assume the following:

• You have installed Silk Test Classic in the default directory c:\Program Files
\Silk\SilkTest.

• You are using JDK 1.3 as your Java Virtual Machine (JVM).
• Your CLASSPATH contains only the Java support path.

Given these assumptions, you would launch the application MyJDKapp by entering:

java -classpath c:\Program Files\Silk\SilkTest\JavaEx
\SilkTest_Java3.jar MyJDKapp

To invoke JDK applications without using command line arguments

Enter the following command:

java <name of application>

284 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Example

To invoke the application MyJDKapp, enter:

java MyJDKapp

Invoking JRE Applications

Once you set CLASSPATH for testing standalone Java applications, you are ready to invoke your
application using the Java Runtime Environment (JRE).

Note: The JRE ignores the CLASSPATH environment variable. As a result, you must invoke JRE
applications with command line arguments to pick up the value of CLASSPATH.

The following table describes the commands you can use:

Command Description

-cp Searches first through directories and files specified, then
through standard JRE directories.

-classpath Ignores the value of your CLASSPATH environment
variable. You must specify a complete search path on the
command line.

Does not search the standard JRE directories.

To invoke JRE applications using -cp

Enter the following command:

jre -cp %CLASSPATH%;<other directories, if any> <name of application>

Example

Assuming your CLASSPATH is set to the complete search path including the Java
support path, you would launch the application MyJREapp by entering:

jre -cp %CLASSPATH% MyJREapp

Invoking JRE Applications Using -classpath

To invoke JRE applications using –classpath, enter the following command:

jre -classpath <Java support path>;<other directories, if any>

Example

Assuming you installed Silk Test Classic in the default directory c:\Program Files
\Silk\SilkTest, you are using JRE 1.1.5 as your Java Virtual Machine (JVM), and
your CLASSPATH contains only the Java support path, you would launch the application
MyJREapp by entering:

Java -classpath c:\Progra~1\Silk\SilkTest\JavaEx
\SilkTest_Java3.jar MyJREapp

Invoking Symantec Visual Café Applications from Command Line

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Testing in Your Environment with the Classic Agent | 285

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

When you invoke Visual Café applications from the command line, the CLASSPATH environment variable
is ignored. Therefore, to tell Visual Café about the Java support path, you must use the -classpath
argument on the command line to specify the locations of the following class libraries:

Library Path

Java support Java support path

AWT and java.* classes <Visual Café install directory>\java
\lib\classes.zip

Symantec Itools classes

This library is required only if your application uses Itools

<Visual Café install directory>\bin
\components\SymBeans.jar

To invoke Visual Café applications from the command line:

1. Move to the directory where your Visual Café executable resides or put this directory on your path.
The directory is <Visual Café install directory>\java\bin\.

2. Enter the following command:

java.exe -classpath <Java support path>;
 <Visual Café install directory>\java\lib\classes.zip;
 <Visual Café install directory>\bin\components\SymBeans.jar <application>

Sample Visual Café Command Line

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Assuming the following conditions:

• You install Silk Test Classic in c:\Silk
• You install Visual Café 2.0+ in c:\Symantec
• Your application uses Itools controls
• Your application is MyApp.class

Then, your Visual Café command line should look like the following:

286 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Invoking Symantec Visual Café Applications from IDE

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Before you invoke Visual Café applications from the Integrated Development Environment (IDE), you must
first add the Java support path to the CLASSPATH by editing the sc.ini file.

To invoke Visual Café applications from the IDE:

1. Make sure Silk Test Classic is configured to test Java.
2. Open the sc.ini file in your favorite text editor.

The file is located in <Visual Café install directory>\bin\sc.ini.

3. On the line that begins with CLASSPATH=, add the Java support path.

For example if you have installed Silk Test Classic in c:\Silk and you are using Visual Café 2.0 as
your Java Virtual Machine (JVM), add the following Java support path to the end of the CLASSPATH:

;c:\Silk\SilkTest_Java3.jar

For additional information, refer to the VisualCafe documentation.
4. Save and close sc.ini.

5. Restart Visual Café.
6. Click Project > Execute to invoke your application within the IDE.

invokeMethods Example: Draw a Line in a Text Field

To draw a line in a multiline text field, you need to access a graphics object inside the text field by calling
the following methods in Java:

main()
{
 TextField multiLine = ...; // get reference to multiline text field
 Graphics graphObj = multiLine.getGraphics();
 graphObj.drawLine(10, 10, 20, 20);
}

However, you cannot call the above sequence of methods from 4Test because Graphics is not 4Test-
compatible. Instead, you can insert the invokeMethods prototype in the TextField class declaration, then
add invokeMethods by hand to your test script to draw a line in the Graphics object nested inside the
multiline text field, as shown in this 4Test function:

DrawLineInTextField()
MyDialog.Invoke() // Invoke Java dialog that contains the text field
MyDialog.TheTextField.invokeMethods ({"getGraphics", "drawLine"}, {{}, {10,
10, 20, 20}})

In this code, the following methods are called in Java:

• getGraphics is invoked on the multiline text field TheTextField with an empty argument list, returning a
Graphics object.

• drawLine is invoked on the Graphics object, to draw a line starting from (x,y) coordinates (10,10) and
continuing to (x,y) coordinates (20,20).

Accessing Java Objects and Methods
This section describes how you can access Java objects and methods.

Accessing Native Methods for Predefined Java Classes

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

In some situations, you might want to access the native methods for predefined Java classes, for example if
a particular function was not supported in 4Test, but could be performed using a native method. You can

Testing in Your Environment with the Classic Agent | 287

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

access the native methods for controls that are part of predefined Java classes by re-recording the class
for the control.

To access native methods for predefined Java classes:

1. Start your Java application or applet, and Silk Test Classic.

2. Open the predefined class definition file, javaex.inc, and comment out the predefined definitions for
classes whose native methods you want to access.

3. Create a new include (.inc) file or open an existing include file for storing your new class definitions.

4. Click Record > Class > Scripted to open the Record Class dialog box.

5. Position the mouse pointer over the predefined control for which you want to record a new class.

6. When the correct name displays in the Window field, press Ctrl+Alt. Methods and properties for that
class are displayed in the Record Class dialog box.

7. Click the Derived From list box to see the list of available 4Test classes. If there is a class type in the
list that maps directly to your object, choose it. If not, choose AnyWin, which is a generic class. See
winclass declaration and derived class for more details.

8. Click Paste to Editor to paste the new class into the include file.

9. Repeat this procedure for each predefined class whose native methods you want to access. When you
are finished recording classes, click Close.

10.Load the class include file that stores your new class definitions.

Accessing Nested Java Objects

Sometimes you cannot retrieve 4Test-compatible information about a Java control with a single call to a
4Test method; instead, you need to call several nested methods, each returning an intermediate object to
be passed to the next method. If any of these methods returns intermediate results that are not 4Test-
compatible, you will not be able to perform these nested calls from 4Test.

You can use the following methods to access nested Java objects:

Method Agent What it does

InvokeJava Classic Agent This method allows you to invoke a Java class from 4Test
for manipulating a nested Java object.

invokeMethods Classic Agent

Open Agent

Allows you to perform nested calls inside Java, even if
intermediate results are not 4Test-compatible.You can call
invokeMethods for any Java object as long as you add
the invokeMethods prototype inside the object's class
declaration.

Accessing Non-Visible Java Objects

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Currently, Silk Test Classic cannot enumerate or manipulate Java objects that are not derived from the
Abstract Windowing Toolkit (AWT) Component object.

With the InvokeJava method, you can access these non-visible objects by performing the following steps:

1. A development group adds a Java class to an application that provides methods for accessing object
references to non-visible objects of interest.

2. Create the Java class to be invoked by the InvokeJava method.

3. In the Java class that is invoked by InvokeJava, call the access methods that provide a reference to
the non-visible objects of interest in your application.

4. Manipulate the non-visible objects as desired.

288 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Calling Nested Methods

Sometimes you cannot retrieve 4Test-compatible information about a Java control with a single call to a
4Test method; instead, you need to call several nested methods, each returning an intermediate object to
be passed to the next method. If any of these methods returns intermediate results that are not 4Test-
compatible, you will not be able to perform these nested calls from 4Test.

You can use the following methods to call nested methods:

Method Agent What it does

InvokeJava Classic Agent This method allows you to invoke a Java class from 4Test
for manipulating a nested Java object.

invokeMethods Classic Agent

Open Agent

Allows you to perform nested calls inside Java, even if
intermediate results are not 4Test-compatible.You can call
invokeMethods for any Java object as long as you add
the invokeMethods prototype inside the object's class
declaration.

Example: How to add an invokeMethods prototype to your script

This example shows how to add an invokeMethods prototype inside the declaration
for a JavaAwtListBox in javaex.inc.

winclass JavaAwtListBox : ListBox
 tag "[JavaAwtListBox]"

 setting MultiTags = {TAG_CAPTION}

 obj AnyType invokeMethods(list of Strings stra, List of List
of Anytype anyaa)

Identifying Custom Controls

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To identify custom Java controls:

1. Click Record > Window Declarations.

2. Pass your cursor over the controls you want to test. You will be able to identify the custom controls by
their class, which appears as CustomWin in the Record Windows Declarations dialog box. You can
also press Ctrl+Alt to pause tracking and view the controls you want to test.

Ignoring a Java Object

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you are using the Java extension and you want to ignore a Java class, object, or container, you must edit
your javaex.ini file:

1. Open javaex.ini, located in the <SilkTest install directory>\extend folder.

2. Add myclass=false as a new line to the file, where myclass is the full class name.

For example, if the tag of the class you just recorded is [com.mycompany.Spinner], add the
following line:

com.mycompany.Spinner=false

Testing in Your Environment with the Classic Agent | 289

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Note: The name can contain wildcards, which can be useful for ignoring all classes in a package,
for example com.mycompany.module_classes_to_ignore.*\=false. You must use the
value false and not the value ignore.

You might find that ignoring a top level object causes all objects underneath it to be ignored as well. If this
is an issue, you can mark the top level object as false and add any objects that you do not want to be
ignored to the ClassList and set to the value to true. For example:

com.ignore.this.object = false
 com.dontignore.this.object = true

The second object displays in the GUI as a child of the first.

Testing Java Scroll Panes

A scroll pane in Java is a container that holds a single child component. If the scroll pane is smaller than
the child component, you can scroll vertically and horizontally to see all parts of that component.

The state of the scroll bars in a scroll pane is managed by internal objects that implement the Adjustable
interface. To manipulate the scroll bars, you must first get an Adjustable object, and then use
Adjustable and scroll bar methods to move them.

To test scroll bars in a scroll pane, use invokeMethods, a method that allows you to perform nested calls
inside Java to access Adjustable objects.

Frequently Asked Questions About Testing Java
Applications
This section provides answers to frequently asked questions about classpath and testing Java applications
and applets.

Why Do I See so Many Java CustomWin Objects?
Objects that do not belong to any of our predefined Java classes are custom controls, which are identified
as CustomWin objects by Silk Test Classic. Most Java applications and applets use many custom controls
to fine tune functionality and the user interface.

To manipulate a custom Java object for testing, you do not need to write your own extensions. Instead, you
can use the object's own native methods and properties. Our Java support lets you access native methods
and properties, by recording classes for custom controls.

Why Do I Need to Disable the Classpath if I have Java Installed but Am
not Testing It?
If you are not testing Java but do have Java installed, we recommend that you disable the classpath before
using Silk Test Classic. If you do not disable the classpath, Silk Test Classic checks for a Java classpath
every time you run a test plan. To disable the classpath during the Silk Test Classic installation, select
None on the Java dialog box. To verify that you have disabled the classpath, verify that the path to the Java
extension is disabled in the Java variable, which is stored in the system variables.

For example, to verify that the path to the Java extension is disabled on Microsoft Windows 7, perform the
following steps:

1. Click Start > Control Panel.
2. In the Control Panel, click System and Security.
3. In the System and Security pane, click System.
4. In the System pane, click Advanced System Settings.
5. In the System Properties dialog box, click Environment Variables.

290 | Testing in Your Environment with the Classic Agent

6. In the System variables area of the Environment Variables dialog box, select the Java variable.
7. Disable the path to the Java extension, by placing an underscore at the beginning of the path.

When Should I Record Classes?
If you are using the Classic Agent, and Silk Test Classic has recognized an object in the tested Java
application or applet as a CustomWin, record the class for this object if you need to manipulate this object.

How Do I Decide Whether to Use 4Test Methods or Native Methods?
For information on when to use 4Test methods or native methods, see When to Use 4Test Versus Native
Java Controls.

How Can I Save the Changes I Make to javaex.ini?
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you uninstall Silk Test Classic, the file javaex.ini is backed up as javaex.bak in the extend
subdirectory of your install location. Any changes you made to javaex.ini can be reinstated by copying
them from javaex.bak and pasting them into the new javaex.ini that is created when you reinstall
Silk Test Classic.

How Can I Record AWT Menus?
You cannot use the JavaAwtPopupMenu class to record AWT menus. It is available for playback only. You
must manually script any interaction with AWT menus.

Can I Use the Java Plug-In to Test Applets Outside My Browsers Native
JVM?
For testing purposes, you can use the Java plug-in to run applets outside the native Java virtual machine of
your browser.

Can I Test JavaScript Objects?
With the Classic Agent, you can use InvokeJava to access methods for testing JavaScript objects, if
these objects reside on a Web page that contains an applet.

With the Open Agent, you can use ExecuteJavaScript to test anything that uses JavaScript.

Can I Invoke Java Code from 4Test Scripts?
• If you are using the Classic Agent, you can invoke Java code from 4Test scripts using the method

InvokeJava.
• You can invoke Java code from 4Test scripts using the method invokeMethods, for both the Classic

Agent and the Open Agent.

Testing Java SWT and Eclipse Applications with the
Classic Agent

This section describes how to test Java SWT and Eclipse applications with the Classic Agent.

Testing in Your Environment with the Classic Agent | 291

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Suppressing Controls (Classic Agent)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can suppress the controls for certain classes for .NET, Java SWT, and Windows API-based
applications. For example, you might want to ignore container classes to streamline your test cases.
Ignoring these unnecessary classes simplifies the object hierarchy and shortens the length of the lines of
code in your test scripts and functions. Container classes or ‘frames’ are common in GUI development, but
may not be necessary for testing.

The following classes are commonly suppressed during recording and playback:

Technology Domain Class

.NET Group

Java SWT org.eclipse.swt.widgets.Composite

org.eclipse.swt.widgets.Group

Windows API-based applications Group

To suppress specific controls:

1. Click Options > Class Map. The Class Map dialog box opens.

2. In the Custom class field, type the name of the class that you want suppress.

The class name depends on the technology and the extension that you are using. For Windows API-
based applications, use the Windows API-based class names. For Java SWT applications, use the fully
qualified Java class name. For example, to ignore the SWT_Group in a Windows API-based
application, type SWT_Group, and to ignore to ignore the Group class in Java SWT applications, type
org.eclipse.swt.widgets.Group.

3. In the Standard class list, select Ignore.

4. Click Add. The custom class and the standard class display at the top of the dialog box.

Java SWT Classes for the Classic Agent

Testing Web Applications with the Classic Agent
To create a web application that uses the Classic Agent, create a Generic Classic Agent project. Projects
that use the Classic Agent support hierarchical object recognition only.

As a best practice, we recommend using the Rich Internet Application Web project rather than the Generic
Classic Agent project type because the Web application uses the Open Agent and supports dynamic
object recognition. You can create tests for both dynamic and hierarchical object recognition in your test
environment. You can use both recognition methods within a single test case if necessary. Use the method
best suited to meet your test requirements.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Testing Methodology for Web Applications
The testing of any application, both web-based and non-web-based, includes the following test phases:

• Creating and working with test plans.
• Designing and recording test cases.

292 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

• Running tests and interpreting results.
• Debugging test cases.
• Generalizing test cases.
• Handling exceptions.
• Making test cases data-driven.
• Customizing Silk Test Classic.

Supported Controls for Web Applications
For a complete list of the controls available for record and replay of Web applications, see the
browser.inc and explorer.inc files. By default, these files are located in C:\Program Files\Silk
\SilkTest\extend\. The browser.inc file contains the objects that are shared by all Web browsers,
for example the Back button on the toolbar. Objects that are unique to each browser are included in a
separate file. Internet Explorer objects are contained in explorer.inc.

Sample Web Applications
To access the Silk Test Classic sample web applications, go to:

• http://demo.borland.com/InsuranceWebExtJS/
• http://demo.borland.com/gmopost
• http://demo.borland.com/gmoajax

API Click Versus Agent Click
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

By default, Silk Test Classic issues API-based clicks rather than Agent-based clicks to improve the
reliability of recorded and scripted clicks in HTML applications. An API click is generated internally by the
browser, instead of the Silk Test Classic Agent. API clicks are more reliable than Agent clicks, which can
click the wrong location of an object.

By default, Silk Test Classic issues API clicks instead of Agent-based clicks for the following Html classes
and method combinations:

Class Method

HtmlCheckBox • Click

• Check

• UnCheck

• Toggle

HtmlColumn Click

HtmlHeading Click

HtmlImage Click

HtmlLink Click

HtmlMarquee Click

HtmlPushButton Click

HtmlRadioButton Click

HtmlRadioList Select

Testing in Your Environment with the Classic Agent | 293

http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/gmopost
http://demo.borland.com/gmoajax
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Class Method

HtmlText Click

HtmlTextField Click

API Clicks and OnClick JavaScript Events

Generally, API-based clicks behave just like the Agent-based clicks. If an HTML object has an OnClick
JavaScript event, an API click should cause the event to fire as normal. However, on HtmlText objects an
API click may not trigger an OnClick event in the same way an Agent click does.

This could happen because HtmlText might not map to a single element within the HTML. The API click
could apply to a different element than the one containing the OnClick event. If API clicks on HtmlText do
not start the expected events, you should use Agent clicks instead.

Testing Dynamic HTML (DHTML) Popup Menus
Silk Test Classic supports testing Dynamic HTML (DHTML) popup menus in tests that use hierarchical and
dynamic object recognition; specifically for JavaScript popup menus.

• For tests that use hierarchical object recognition, to produce an accurate recording of interactions with a
DHTML popup menu, you can record window declarations and record your actions.

• For tests that use dynamic object recognition, you can manually create tests since recording is not
supported for dynamic object recognition.

Recording Dynamic HTML (DHTML) Popup Menus
You must enable extensions for the application that contains the JavaScript and use the Classic Agent to
record dynamic popup menus.

If you want your action-based recordings to contain references to window identifiers instead of dynamic
instantiations, first record the window declarations for the pages with DHTML popup menus. There are
various techniques used to build DHTML popup menus and their menu hierarchies. The techniques you
use affect what Silk Test Classic sees when recording window declarations. You may find that once a page
is completely loaded in the browser, all of the menus and submenus are recognized immediately by Silk
Test Classic. Other times, in order for the menus and submenus to be completely seen in the Record
Window Declarations dialog box, you may need to expose some or all of the menus and submenus by
moving the mouse over the menu items.

Typically when you record actions, the recorder ignores mouse movement events, which are set in the
Ignore Mouse Move Events text box of the Recorder Options dialog box. However, the recorder
generates MoveMouse() method calls as you expose popup menus. Those calls are necessary to ensure
that when you play back the script, Silk Test Classic exposes the menus as it navigates through them. The
MoveMouse() calls contain coordinates because the hot spot of the item used to expose the menu may not
be the entire rectangle for that item. Therefore, Silk Test Classic cannot assume that moving the mouse to
the default spot, which is the upper-left corner of the rectangle for the item, will actually expose the menu.

Setting Up a Web Application (Classic Agent)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Before testing a web application, perform the following setup steps:

• Enable support for browsers and disable all non-web extensions.
• Specify your default browser.
• Ensure your browser is configured properly.

294 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• Disable browser add-ons.
• Set the proper agent options.

Recording the Test Frame for a Web Application
(Classic Agent)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Record a test frame file for a web application to store information about the web application, for example
the URL.

1. Start your browser and go to the initial page of your web application.

2. Click File > New from the menu bar.

3. Click Test Frame and then click OK. The New Test Frame dialog box displays.

4. Select your web application.

The New Test Frame dialog box displays the following fields:

File name Name of the frame file you are creating. You can change the name and path to
anything you want, but make sure you retain the .inc extension.

Application The title of the currently loaded page.

URL The URL of the currently loaded page.

4Test identifier The identifier that you will use in all your test cases to qualify your application's home
page. We recommend to keep the identifier short and meaningful.

5. Edit the file name and 4Test identifier as appropriate.

6. Click OK.

Recording Window Declarations for a Web Application
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Window declarations can be saved in a single file or in multiple files. If you save them in multiple files, make
them available to scripts using the 4Test use statement.

1. Click the test frame to activate it.

2. Click Record > Window Declarations. Silk Test Classic displays the Record Window Declarations
dialog box.

3. Load a page in your application in the browser.

4. Place your mouse pointer over the page.

The value in the Class field should be BrowserChild, since that is the class for a page in a Web
application.

5. Move your mouse pointer around the page. The values in the dialog box reflect the object over which
the mouse pointer is currently located.

6. To record a specific window declaration, press Ctrl+Alt. The contents freeze in the Record Window
Declarations dialog box.

7. Click Paste to Editor. Silk Test Classic pastes the new declarations to your frame file.

8. To declare another page of the application, go to that page. Then, in the Record Window Declarations
dialog box, click Resume Tracking.

9. Click Close.

Testing in Your Environment with the Classic Agent | 295

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

You can use multitags when recording window declarations for Java applications. However, additional
considerations must be made for top-level windows. When you have declared each of the pages in the
AUT, you can modify the recorded identifiers to make them more meaningful.

Streamlining HTML Frame Declarations
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

As you navigate within a web site that uses frames, the GUI objects in individual frames may change
independently of other frames in the same window. When you capture declarations for the new GUI objects
inside a frame, Silk Test Classic re-declares the frame and the frame’s own parent window. If all pages in
the frame have the same caption, you will want to do the following:

1. Record a new test frame for the Web page. Silk Test Classic captures all the active HTML frames as
displayed on the browser.

2. To declare other HTML frames, make the page display in the browser. This is usually done by clicking a
link in an "index" type HTML frame. For example, a static HTML frame region may contain a menu bar
or image map to navigate the Web site.

3. Open the newly recorded declaration, and locate the declaration for the new HTML frame. Copy this
BrowserChild object and paste it into bottom of the declaration. This new BrowserChild is a sibling
(at the same level) to the initial BrowserChild declarations recorded. Re-name this BrowserChild
as desired for easier recognition.

4. Remove the recorded window declaration (remember you just copied the declaration for the new Html
frame into the "main/root" BrowserChild declaration. This declaration and all its children should not
be deleted.)

Overview of Test Frames
A test frame is an include file (.inc) that serves as a central global repository of information about the
application under test. It contains all the data structures that support your test cases and test scripts.
Though you do not have to create a test frame, by declaring all the objects in your application, you will find
it much easier to understand, modify, and interpret the results of your tests.

When you create a test frame, Silk Test Classic automatically adds the frame file to the Use files field of
the Runtime Options dialog box. This allows Silk Test Classic to use the information in the declarations
and recognize the objects in your application when you record and run test cases.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box. For extensions that use
the Open Agent, Silk Test Classic names the include file <technology_type>.inc. For instance, if you
enable extensions for an Apache Flex application, a file named flex.inc is added. If you enable
extensions for an Internet Explorer browser, Silk Test Classic adds the explorer.inc file to the Runtime
Options dialog box.

A constant called wStartup is created when you record the test frame. By assigning the identifier of the
login window to wStartup and by recording a new invoke method, your tests can start the application,
enter any required information into the login window, then dismiss the login window.

See Marking 4Test Code as GUI-Specific to learn about the ways you modify the test frame when porting
your test cases to other GUIs.

The Test Frame File for a Web Application
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The test frame file includes the following:

296 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• A constant named wMainWindow.
• A window of class BrowserChild.

wMainWindow

This constant points to the home page of your application, that is, the page that was loaded when you
created the test frame. The recovery system uses wMainWindow to restore the browser to that page when
a test fails. Just as a non-web application typically has a state where you want the tests to start (the base
state), Web applications also have a base state. Typically, it is the first page in the application.

BrowserChild

The window has the same identifier as the value of wMainWindow. This window loads in order to restore
the base state. The window declaration contains:

• The constant sLocation, which is the URL for the page. The recovery system uses this constant to
load the page when necessary.

• Two commented constants, sUserName and sPassword which specify the user name and password to
access the application. See Specifying username and password.

• Two commented constants, BrowserSize and bDefaultFont, which specify the size of the browser
window and the default font to use for displaying text. See Specifying browser size and fonts.

• All the objects in the page, such as HtmlHeadings, HtmlText, HtmlLinks, HtmlText,
HtmlPushButtons, and so on.

Recording the Test Frame for a Web Application (Classic Agent)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Record a test frame file for a web application to store information about the web application, for example
the URL.

1. Start your browser and go to the initial page of your web application.

2. Click File > New from the menu bar.

3. Click Test Frame and then click OK. The New Test Frame dialog box displays.

4. Select your web application.

The New Test Frame dialog box displays the following fields:

File name Name of the frame file you are creating. You can change the name and path to
anything you want, but make sure you retain the .inc extension.

Application The title of the currently loaded page.

URL The URL of the currently loaded page.

4Test identifier The identifier that you will use in all your test cases to qualify your application's home
page. We recommend to keep the identifier short and meaningful.

5. Edit the file name and 4Test identifier as appropriate.

6. Click OK.

Tags and Identifiers
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Each object in a declarations file, such as a test frame file, has a class, a tag, and an identifier. The home
page has the class BrowserChild. Its default identifier is the name in the 4Test identifier field you
specified when you created the test frame. The tag is generated by Silk Test Classic. It is the way that Silk
Test Classic identifies the page at runtime.

Testing in Your Environment with the Classic Agent | 297

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Modifying the Identifiers
Identifiers are arbitrary strings. You use identifiers to identify objects in your scripts. Tags, on the other
hand, are not arbitrary and should not be changed except in well-specified ways.

To make your tests easier to understand and maintain, you can change your objects’ identifiers to
correspond to their meaning in your application. Then when Silk Test Classic records tests, it will use the
identifiers that you specify.

Specifying Browser Size and Fonts
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

By default, two other built-in constants are also enclosed in comment tags in a generated test frame:
BrowserSize and bDefaultFont. The recovery system uses these two constants to set the browser’s
state before and after Silk Test Classic runs each test. They are useful in establishing a consistent
environment for your testing.

BrowserSize

Specifies the width and height of the browser window, in pixels. The data type is POINT, which is a record
of two integers. The first integer is the width in pixels. The second integer is the height in pixels. The default
value ({600, 400}) is an appropriate size for a screen with VGA resolution (640 by 480).

If you are using a higher resolution, you would want a larger size for the browser window (the larger the
better, in order to minimize scrolling in the test cases). For example, if you are using a resolution of 1280 by
1024, a good BrowserSize might be {650, 900}, which would take up about half the width and most of the
height of the desktop.

bDefaultFont

If this constant is set to TRUE, the recovery system will restores the fonts to the shipped defaults for the
browser, as described in SetDefaultFont.

Using these constants

To have the recovery system set the size and fonts, un-comment the constants in the test frame and
specify appropriate values for BrowserSize.

Having the recovery system set the browser size and fonts ensures maximum portability of your window
declarations in different testing sessions and between browsers. We strongly recommend that you un-
comment these constants and use the recovery system for your Web testing.

Specifying Username and Password
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The two built-in constants, sUserName and sPassword, are enclosed in comment tags in the generated
test frame. You can un-comment those constants and supply values to specify your user name and
password, if your application requires you to enter such information. Once you have done this, whenever
you are loading a page, and you are prompted for user name and password, Silk Test Classic will
automatically supply the values and click OK in the message box. The test case can run unattended.

User Options
This section describes how you can set user options for DOM extensions and table recognition.

298 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Setting DOM Extension Options
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

There are three different ways to set options for the DOM extension.

• In the DOM Extensions dialog box.
• By using BrowserPage.SetUserOption() in a script.
• By editing the values in the [Options] section of the domex.ini file.

Depending on where you set the option, the option can be set globally, or turned on and off at various
points of your testing.

Setting an option in domex.ini or in the DOM Extensions dialog box sets it globally. However, if you want
to set the option only at certain points in your script, use BrowserPage.SetUserOption() as described
in SetUserOption().

Regardless of how an option is set, you can read its value by using GetUserOption().

Options you can set in domex.ini

To set these options, you enter them on a line in the [Options] section of domex.ini, for example:

ScrollListItemIntoView=FALSE

You can set the following options in domex.ini, but you cannot set them with SetUserOption():

DOMWaitForBrowser Default is 10000 milliseconds (or 10 seconds). The value you set
is expressed in milliseconds. This option specifies how long Silk
Test Classic will wait for the browser to complete an action. If the
browser fails to respond within the given time, Silk Test Classic
will try to force a ready-state. If this fails too, an error will occur.

IgnoreDivTags Default is FALSE. If HTML controls nested between the <DIV>
and <\DIV> tags are not recognized, set this option to TRUE to
ignore the <DIV> and <\DIV> tags.

ReturnListContentsPropertyAsString Default is FALSE meaning that normally the $Contents
property for HtmlList objects returns a LIST OF STRING. Set
this option to TRUE if you want $Contents to return a STRING
for HtmlList objects.

SetActiveXBrowserStateActive Default is FALSE. Set this option to TRUE, if Silk Test Classic
does not recognize the properties and methods of an ActiveX
control in the browser. Setting the option to TRUE forces the
DOM extension to behave as if the browser is ready when
recognizing the ActiveX control, even though the browser
Document complete message was not received.

ScrollListItemIntoView Default is TRUE. Set this option to FALSE to avoid scrolling a list
box item or PopupList item into view before selecting it.

ShowHTCViewlink Default is FALSE. Set this option to TRUE to allow the DOM
extension to look for HTC ViewLinks. Setting this option to TRUE
slows performance for recording and playback.

UseDocumentEvents Default is FALSE. For more information, see HtmlPopupList
Causes the Browser to Crash when Using IE DOM Extension.

XMLNodeNamingVersion Default is 0. For more information, see XMLNode Class.

Testing in Your Environment with the Classic Agent | 299

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Options that you can set in domex.ini and through SetUserOption

To set the following options, you can edit domex.ini or you can use SetUserOption():

IgnoreSpanTags Default is FALSE. If Silk Test Classic recognizes multiple text objects as
one HtmlText object and the object is a SPAN object that is parented to
a SPAN object, set this option to TRUE to ignore the and <
\SPAN> tags.

RowTextIncludesEmptyCells Controls the recognition of blank cells in bordered and borderless tables.
This option is set to FALSE by default. If you want to return blank cells in
tables as empty strings, set this option to TRUE.

ShowBodyText Default is FALSE meaning that the DOM extension does not record
BodyText objects, which are text that is not contained within an HTML
tag. In previous releases body text displayed as HtmlText. Set this
option to TRUE if you do want the DOM extension to record BodyText
objects. We suggest keeping this option set to FALSE for improved
performance, particularly when recording window declarations on large
pages. You can also set this option on the DOM Extensions dialog box.

ShowBorderlessTableFlags Indicates input elements that you do not want Silk Test Classic to
consider as input elements; for details, see Overview of Input Elements
and Borderless Tables.

ShowBorderlessTables Default is .5 meaning that the DOM extension does record
BorderlessTable objects. However, .76 is the threshold where Silk
Test Classic starts to recognize more objects within tables, such as
images, hidden text, check boxes, text fields, and buttons. Set this option
to .76 or greater if you want the DOM extension to record
BorderlessTable objects. You can also set this option on the DOM
Extensions dialog box.

ShowHtmlForm Default is FALSE meaning that the DOM extension does not record Form
objects. Set this option to TRUE if you do want the DOM extension to
record Form objects. You can also set this option on the DOM Extensions
dialog box.

ShowInvisible Default is TRUE, meaning that invisible objects are recorded. This option
lets you control whether or not invisible objects are recorded by the DOM
extension. If your browser-based application consists of pages that
contain many invisible objects that you do not need to test, then you can
improve performance by setting the option to FALSE in order to ignore all
invisible objects. You can also set this option on the DOM Extensions
dialog box.

ShowHtmlHidden Default is TRUE meaning that the DOM extension records Hidden
objects. Set this option to FALSE if you do not want the DOM extension to
record Hidden objects. You can also set this option on the DOM
Extensions dialog box.

ShowHtmlMeta Default is TRUE meaning that the DOM extension records Meta objects.
Set this option to FALSE if you do not want the DOM extension to record
Meta objects. You can also set this option on the DOM Extensions dialog
box.

ShowHtmlTable default is TRUE meaning that the DOM extension records HtmlTable
objects. Set this option to FALSE if you do not want the DOM extension to
record HtmlTable objects. You can also set this option on the DOM
Extensions dialog box.

300 | Testing in Your Environment with the Classic Agent

ShowHtmlText Default is TRUE meaning that the DOM extension records Text objects.
Set this option to FALSE if you do not want the DOM extension to record
Text objects. You can also set this option on the DOM Extensions dialog.
If you are testing a transaction type page with lots of text consider not
recording Text objects. This prevents Silk Test Classic from recording the
many text objects, which helps your declarations to be clean. If, on the
other hand, you're looking for formatting and styles of text objects, you'll
want to select this option.

ShowListItem Default is TRUE. Set this option to FALSE if you do not want to show the
text contained within HtmlList controls in your browser. If mouse events
are associated with your list items, set this option to TRUE so Silk Test
Classic can interact with the list items. When set in the domex.ini file or
DOM Extensions dialog box, this setting is global. However, if you want
to set this option for only certain points in your script, use
BrowserPage.SetUserOption() as described in SetUserOption().

ShowOverflow Default is TRUE meaning that Silk Test Classic recognizes elements with
overflow styles. These elements are very similar to IFrame elements in
that they have their own scrollbar and can contain their own elements.
Set this option to FALSE if you want Silk Test Classic to ignore elements
with overflow styles; this means that Silk Test Classic may not interact
with the elements contained by this overflow element.

ShowVirtualColumns Default is FALSE. Affects how the DOM extension records asymmetric
tables. These are tables that use either column span or row span
attributes, or tables whose rows don't have the same number of columns.
An example of an asymmetric table is a typical calendar page that has
the month of January written across the top row and the seven days of
the week in seven columns across the second row. We recommend that
you check this box if you are working with tables that have asymmetrical
rows. Check this check box if you want Silk Test Classic to create virtual
columns for any row in a table. In the example below, it causes the top
row to contain one real column for January, followed by six virtual
columns which are blank. These virtual columns appear where there are
none in order to complete the table and they are named virtual1, virtual2,
and so on. These virtual columns cause the table to be symmetrical.
Uncheck this check box to avoid creating virtual columns. This causes
Silk Test Classic to record the top row as the name for first column. This
occurs because there is no second column in the top row; Mon is
promoted to the name of the second column, and so on. You can also set
this option on the DOM Extensions dialog box.

January
Sun Mon Tues Weds Thurs Fri Sat

SearchWholeDOMTree Default is FALSE. This check box determines how windows declarations
are found. If this value is set to TRUE, when recording window
declarations, the search algorithm of current objects searches the whole
DOM tree.

ShowXML Default is TRUE meaning that the DOM extension records XML objects.
Set this option to FALSE if you do not want the DOM extension to record
XML objects. You can also set this option on the DOM Extensions dialog
box.

UseBrowserClosestText Default is FALSE. Determines how the DOM extension finds the closest
static text for HtmlTable, HtmlLink-text, HtmlColumn, HtmlLink-image,
HtmlImage, HtmlHeading, HtmlText, HtmlRadioList, and HtmlPushbutton.

Testing in Your Environment with the Classic Agent | 301

Check this check box if you want Silk Test Classic to use the DOM
extension to find the closest static text for the objects listed above. This
does not apply to invisible objects such as XML, Meta, and Hidden; those
objects do not rely on any text on a page and so it would be meaningless
to try to associate them with any objects. Uncheck this check box if you
want to use the Agent to determine closest static text for the objects listed
above. You can also set this option on the DOM Extensions dialog box.

UseOverflowScrolling Default is FALSE. Set this option to TRUE if off-screen HTML elements
with overflow do not scroll into view properly.

UseScrollIntoView Default is FALSE. This option is useful if you are having problems
scrolling objects into view. This sometimes happens on HTML pages that
contain scrollable iframes or scrollable HTCs. In general, the action/
testcase recorder does not record the content inside an HTC. For other
nested scrollable objects such as IFrames and overflow elements, the
flashing rectangle displays in the wrong place, but the action/testcase
recorder does generate correct script actions. If you are having problems
playing back actions against nested scrollable objects, then set
UseScrollIntoView to TRUE. Setting this option to TRUE helps avoid
getting nested scrollable objects into view.

Note: API-based clicking is not affected by the value of this option.

User Options for Table Recognition
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The following user options control table recognition:

RowTextIncludesEmptyCells Controls the recognition of blank cells in bordered and borderless tables.
This option is set to FALSE by default. If you want to return blank cells in
tables as empty strings, set : BrowserPage.SetUserOption
("RowTextIncludesEmptyCells", TRUE).

ShowBorderlessTables Changes the level of recognition of tables in your web pages. See Setting
options for ShowBorderlessTables.

ShowBorderlessTableFlags Indicates input elements that you do not want to consider as input
elements. See Overview of input elements and borderless tables.

Testing Web Applications on Different Browsers
Testing web applications can be challenging because of the large number of browsers and browser
versions available. Your web applications must support the browsers that the users of these applications
prefer to use. While developing tests for web applications, you might ask your self the following questions:

• How will your test cases handle differences between browsers?
• How can you specify which browser to use for the test case or test script?

Handling differences between browsers

In most cases, your include files (declarations) and scripts apply to any browser. You can run test cases
against different browsers by simply changing the default browser and running the test case, even if the
pages look a bit different, such as pushbuttons being in different places. Because Silk Test Classic is
object-based, the layout is not relevant. All that matters are the objects on the page.

302 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Declarations and scripts might have one or more lines that apply only to particular browsers. In such a
case you can use browser specifiers to make lines specific to one or more browsers. Browser specifiers are
of the built-in data type BROWSERTYPE.

VO Automation
This section describes how you can convert your automation to use the DOM extension, because Silk Test
Classic no longer supports the VO extension.

Information for Current Customers that Are Using VO
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic no longer supports the VO extension and you must convert your automation to use the
DOM extension. If you simply enable the DOM extension, there is no guarantee that previously written
scripts will run without modification.

Using the DOM extension will require you to make changes to your scripts and include files. The number of
automation changes will depend on how you have structured your tests and is hard to predict, since
everyone has their own style of structuring their automation.

There are differences in the way DOM and VO recognize objects and so you will have to make script
changes regardless of which way you choose to use the DOM. For example, if you use the DOM extension,
the caption tag as well as the window ID tag might be different for some objects than if you used VO. This
means you would have to at least update your window declarations and possibly update your scripts.

Changing Existing VO Automation to the DOM Extension
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Perform the following steps to port your current VO automation to the DOM extension:

1. Make sure the DOM extension is on.

2. Record a new window declaration for the particular objects with which you are having difficulties.

3. Look for any differences in the identifier names and object hierarchy. Make changes in the include file
and scripts where appropriate.

If you decide to use the DOM exclusively, use one of these two approaches after you turn on the DOM
extension:

Approach #1 Run your scripts and look for a "Window '[class] Tagname' was not found"
error message. Look for any differences in the identifier names and object hierarchy.
Repeat this until all errors are resolved.

Approach #2 Re-record all of your declarations. Look for any differences in the identifier names and
object hierarchy. Make changes in the include file and scripts where appropriate. This
approach could potentially be more work than is necessary. Exactly how much work
depends on how you have structured your automation.

Comparison of DOM and VO
In many respects, the VO and DOM extensions provide similar functionality, but the following differences
are worth noting:

DOM Extension VO Extension

Properties The value of exposed properties cannot be set The value of exposed
properties can be set.

Testing in Your Environment with the Classic Agent | 303

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

DOM Extension VO Extension

Tags In the DOM, the tags may vary compared to VO. This could apply for
check boxes, radio lists, and text boxes. For additional information,
refer to the Release Notes.

Always uses the closest
static text.

Tables Recognizes all tables, bordered and borderless, as they are defined.
By default, support for some borderless tables is turned on for some
borderless tables. You may edit the level of support for tables.

Recognizes all bordered
tables as they display.
Cannot distinguish between
borderless tables used for
aligning objects and
borderless and bordered
tables used for presenting
content.

Classes Includes the following additional classes:

• HtmlForm

• HtmlHidden

• HtmlMarquee

• XMLNode

Embedded links Records embedded links twice. The first time, it records the text of
the link (the HTML <.a ref>. tag); the second time, it records the text
of the jump.

Records just the link as an
HtmlLink object.

Testing Objects in a Web Page with the Classic Agent
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The Document Object Model (DOM) extension uses information in the HTML source to recognize and
manipulate objects on a web page. Silk Test Classic uses the DOM extension to test the objects that are
included in a web application.

Using the DOM extension provides several advantages:

• During recording, Silk Test Classic displays a rectangle which highlights the active control.
• The DOM extension is highly accurate, because it gets information directly from the browser. For

example, the DOM extension recognizes text size and the actual name of objects.
• The DOM extension is independent of the browser size and text size settings.
• The DOM extension recognizes non-visible objects in the UI. For example, the DOM extension will find

objects of the types HtmlMeta, HtmlHidden, XML Node, and HtmlForm.
• The DOM extension offers support for borderless tables.
• The DOM extension is consistent with the standard being developed by the W3C.

Useful Information About DOM
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Internet Explorer

• When you use the DOM extension with Internet Explorer, in order to interact with a browser dialog box,
the dialog box must be the active (foreground) window. If another application is active, then Silk Test
Classic is not able to interact with the browser dialog box, and the test case times out with an
Application not ready exception.

• You may receive a Window not found error when you are running scripts using the DOM
extension. This error occurs when the test case calls Exists() on the browser page before it is finished

304 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

loading. This problem is due to the fact that the DOM extension does not check for DOM Ready in the
Exists() method. The workaround is to call Browser.WaitForReady() in your script, prior to the
Exists() method.

• If you are using the Classic Agent, see the GetProperty method and GetTextProp method for
information about how Silk Test Classic recognizes tags.

• If you are using the Classic Agent, you may see differences in image tags based on the same URL if
you used two different URLs to get there. For example, Silk Test Classic cannot differentiate between
two images if Internet Explorer displays two different URLs that both point to the same image.

• The DOM extension does not record inside a secure frame. This means that if an Html page contains
frames with security, for example on a banking page, the DOM extension on Internet Explorer will not be
able to record the window declaration for the page because the secure site prevents DOM from getting
any information.

Mozilla Firefox

There are several things to remember when you work with Mozilla Firefox and XML User-interface
Language (XUL). XUL is a cross-platform language for describing user interfaces of applications. The
support of XUL elements in Silk Test Classic is limited. All menu, toolbar, scrollbar, status bar and most
dialog boxes are XUL elements. Almost all elements in the browser are XUL elements except the area that
actually renders HTML pages.

• If you are using the Classic Agent, you can record window declarations on the menu and toolbar by
pointing the cursor to the caption of the browser.

• You can record actions and test cases against the menu and toolbar through mouse actions.
• If you are using the Classic Agent, you can record window declarations on a single frame XUL dialog

box, such as the authentication dialog box. However, you cannot record window declarations on a multi-
framed XUL dialog box, for example, the preference dialog box.

• Silk Test Classic does not support:

• Keyboard recording on the menu and toolbar. There is no keyboard recording on the URL.
• Record actions and record test case on XUL dialog boxes.
• Record identifier and location on XUL elements.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Recording and playback

• When you record using the Internet Explorer DOM extension, a rectangle will flash to indicate the
current target object of the recorder.

• Silk Test Classic can recognize XML Node objects in your Web page if your Web page contains XML
content.

• The DOM extension supports HTML Components (HTCs), including those implemented using the
viewLink property.

• It is a limitation of DOM that it cannot see the location of any text that is a direct descendant of the
<body> tag. GetRect() does not work for body text. For example, when you record window
declarations with the Classic Agent over body text, you do not get any objects. This was implemented
for HTML pages where no <p> tags or other text formatting tags preface the displayed text.

• DOM cannot find an insertion on a multi-line text field.
• If you are using the Classic Agent, images created with the <input type="image"> tag are seen as

HtmlPushButtons.
• If you are using the Classic Agent and you open a font statement on a Web page with several

HtmlText fields and HtmlCheckbox controls, but do not close it off, the DOM extension will not
recognize anything beyond the first object. Closing off the font statement with a tag enables
Silk Test Classic to work correctly.

• The DOM extension is not designed to handle multiple links with the same file name. If you do have
multiple links, be sure to use the full URL to identify links.

Testing in Your Environment with the Classic Agent | 305

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

• If you are using the Classic Agent to test Html pages that do not have explicit titles and which load
ActiveX applications, you may have to modify test frames that you have previously recorded using the
VO Extension before you can use them with the DOM extension. This is because the DOM extension
tags the BrowserChild slightly differently. Alternatively you could record new declarations for the
page.

• If you are using the Classic Agent, the GetPosition() function of the TextField class always returns
the last position when called on an HtmlTextField. There is no method in the DOM which allows Silk
Test Classic to get the cursor position in an HtmlTextField.

• If you are using the Classic Agent to record a window declaration over a table that has indented links,
the indentation is recorded as an additional HtmlText object.

• If you are using the Classic Agent and you are recording with the DOM extension, TypeKeys
("<Tab>") are not captured. Since the script refers to the object to type in directly, it is not necessary
to record this manual Tab. You can manually enter a TypeKeys ("<Tab>") into your script if you want
to; it just is not recorded.

• For additional information about Silk Test Classic's rules for object recognition, refer to Object
Recognition with the Classic Agent. To open the document, click (in Microsoft Windows 7) Start >
Programs > Silk > Silk Test > Documentation > Silk Test Classic > Tutorials or (in Microsoft
Windows 10) Start > Silk.

The 4Test language and the DOM extension

• If you are using the Classic Agent, use the ForceReady method when Silk Test Classic never receives
a Document complete message from the browser. Unless Silk Test Classic receives the Document
complete message, Silk Test Classic acts as if the browser is not ready and will raise an
Application not ready error.

• For a list of the supported classes for the DOM extension on each agent, see Differences in the Classes
Supported by the Open Agent and the Classic Agent.

• If you are using the Classic Agent, use the FlushCache method of the BrowserChild class to re-
examine the currently loaded page and to get any new items as they are generated. This method is very
useful when you are recording dynamic objects that may not initially display.

Dynamic Tables
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If columns have objects in them, such as links or controls, Silk Test Classic declares each of the links and
controls when you record window declarations for the column.

If your application dynamically builds tables, such that you do not know at runtime how many rows there
will be and consequently do not know how many objects there will be, you should not declare individual
objects in tables. You should remove their declarations from those that Silk Test Classic creates when you
declare a window.

You can use the GetRowChildren method to get a list at runtime of all children (controls and objects) in a
specified row of a table or column.

How Silk Test Classic Declares HTML Frames
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

HTML frames are multiple web pages displayed concurrently in a browser. Each HTML frame is an
independent scrollable region. The HTML frames form a hierarchy defined by the main web page. The
main web page lays out the regions and the web pages associated with these regions. In more complex
HTML designs, frames may be further nested.

306 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Silk Test Classic recognizes each frame as a BrowserChild and nests the BrowserChild objects as
defined by the HTML frame hierarchy. The main web page is the root object and is recognized as
BrowserChild object which may contain children of type BrowserChild.

Silk Test Classic declares each frame on a web page as a child of the main window. Silk Test Classic
derives the identifier and tag of BrowserChild object from the title element in the html source. If the title
element does not exist, then Silk Test Classic will use the main page's title plus an index to identify each
BrowserChild.

By default, Silk Test Classic derives the identifier and tag of an HTML frame from its caption. In turn, the
caption of an HTML frame is derived from the first text contained in the frame, such as an HtmlText or
HtmlHeading element. If there is no text in an HTML frame, Silk Test Classic derives the identifier from
the frame’s Window ID and the tag from the frame’s index.

Testing Columns and Tables
• If you are using the Classic Agent, tables in Web applications are recognized as HtmlTable controls.

An HtmlTable consists of two or more HtmlColumn controls.
• If you are using the Open Agent, tables in Web applications are recognized as DomTable controls.

Rows in a table are recognized as DomTableRow controls.

Definition of a Table (Classic Agent)
For the Classic Agent, the definition of a table in HTML is the following:

• An HtmlTable with 2 or more rows, which are specified with the <tr> tag in the page source.
• Where at least 1 row has 2 or more columns, which are specified with the <td> tag in the page source.

A single <td> with a colspan > 1 does not qualify as 2 or more columns.

If a table with insufficient dimensions is nested inside other tables, then the parent tables of this table are
not recognized as HtmlTable controls, even if these parent tables have sufficient dimensions.

If a table does not meet this definition, Silk Test Classic does not recognize it as a table. For example, if a
table is empty, which means that it has no rows or columns, and you attempt to select a row by using
table.SelectRow (1, TRUE, FALSE), you will get an error message saying E_WINDOW_NOT_FOUND,
when you might expect to see a message such as E_ROW_INDEX_INVALID instead.

Testing Controls
Web applications can contain the same controls as standard applications, including the following:

Control Classic Agent Class Open Agent Class

check box HtmlCheckBox DomCheckBox

combo box HtmlComboBox No corresponding class.

list boxes HtmlListBox DomListBox

popup lists HtmlPopupList DomListBox

pushbuttons HtmlPushButton DomButton

radio lists HtmlCheckBox DomCheckBox

All these classes are derived from their respective standard class. For example, HtmlCheckBox is derived
from CheckBox. So all the testing you can do with these controls in standard applications you can also do
in Web applications.

Testing in Your Environment with the Classic Agent | 307

Classic Agent Example

The following code gets the list of items in the credit card list in the Billing Information
page of the sample GMO application:

LIST OF STRING lsCards
lsCards = BillingPage.CreditCardList.GetContents ()
ListPrint (lsCards)

Result:
American Express
MasterCard
Visa

Open Agent Example

The following code gets the list of items in the credit card list in the Billing Information
page of the sample GMO application:

LIST OF STRING lsCards
lsCards = WebBrowser.BrowserWindow.CardType.Items
ListPrint(lsCards)

Result:
American Express
MasterCard
Visa

Testing Images

Classic Agent

If you are using the Classic Agent, images in your Web application are objects of type HtmlImage. You
can verify the appearance of the image by using the Bitmap tab in the Verify Window dialog box.

If an HtmlImage is an image map, which means that the image contains clickable regions, you can use
the following methods to test the clickable regions:

• GetRegionList

• MoveToRegion

• ClickRegion

Open Agent

If you are using the Open Agent, you can test images by using the IMG locator. For example, the following
code sample finds an image and then prints some of the properties of the image:

Window img = FindBrowserApplication("/
BrowserApplication").FindBrowserWindow("//BrowserWindow").Find("//
IMG[@title='Image1.png']")
String src = img.GetProperty("src")
String altText = img.GetProperty("alt")
print(src)
print(altText)

Testing Links
• If you are using the Classic Agent, links in your application are objects of type HtmlLink.
• If you are using the Open Agent, links in your application are objects of type DomLink.

308 | Testing in Your Environment with the Classic Agent

Silk Test Classic provides several methods that let you get their text properties as well as the location to
which they jump.

Classic Agent Example

The following code returns the definition for the HtmlLink on a sample home page:

STRING sJump
sJump = Acme.LetUsKnowLink.GetLocation ()
Print (sJump)

Result:
mailto:support@acme.com

Open Agent Example

The following code returns the definition for the DomLink on the sample home page:

STRING sJump
sJump =
WebBrowser.BrowserWindow.LetUsKnowLink.GetProperty("href")
Print(sJump)

Result:
mailto:support@acme.com

Testing Text in Web Applications

Classic Agent

Straight text in a Web application can be in the following classes:

• HtmlHeading

• HtmlText

Silk Test Classic provides methods for getting the text and all its properties, such as color, font, size, and
style.

There are also classes for text in Java applets and applications.

Classic Agent Example

For example, the following code gets the copyright text on a sample Web page:

STRING sText
sText = Acme.Copyright.GetText ()
Print (sText)

Result:
Copyright © 2006 Acme Software, Inc. All rights reserved.

Open Agent

When you are using the Open Agent, use the GetText() method to get text out of every DomElement
control.

Open Agent Example

For example, the following code gets the text of a DomLink control:

Window link = FindBrowserApplication("/BrowserApplication")

Testing in Your Environment with the Classic Agent | 309

 .FindBrowserWindow("//BrowserWindow")
 .FindDomLink("A[@id='story2128000']")
String linkText = link.GetText()
print(linkText)

Tips on how Silk Test Classic Recognizes Objects in Browsers
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The following notes describe how Silk Test Classic recognizes objects in browsers with the Document
Object Model (DOM) extension:

• DOM uses the name attribute for input elements as the object’s window ID. This makes object
recognition for input objects independent of the way those objects appear in a browser.

• If you are using the Classic Agent, an HtmlHeading must be tagged with <H1> through <H6> to be
found as text. If the text is tagged with <TH>(table header), the text is identified as a header if it is
in the first row, or as HtmlText otherwise. If the text is simply bold it is considered simply a row and
GetTextProp("$FontStyle") will record FS_BOLD. If you have bold text, DOM does not interpret
that text as headings.

• If you are using the Classic Agent, the GetText method returns the first line as defined by any existing
line break characters. For example
. Because the DOM extension does not offer a visual
interpretation of browser content, GetText always returns the same value regardless of browser size,
font size, or browser.

• When you use the DOM extension, Silk Test Classic attempts to group HTML text objects into one 4Test
text object. However, Silk Test Classic will separate objects if it encounters
 tags. This means if you
use
 tags within your HTML pages, Silk Test Classic may record more text objects than you expect.
This is because with the DOM extension, Silk Test Classic considers text separated by
 tags as
separate objects. For example:

<p>
Welcome

and Opening Remarks
</p>

You might expect this to be recorded as one object, but Silk Test Classic records this as two.
• If you are using the Classic Agent, the DOM extension records both an HtmlImage and an HtmlLink

for an image.
• If you spawn an additional browser window, Silk Test Classic sees the second browser as another

BrowserPage, which means that you have to set the window active before interacting with it. This will
ensure that you are working with the correct browser window.

• With the DOM extension, Silk Test Classic captures only the first text style within a paragraph and
assumes that the captured style applies to the whole paragraph.

For additional information about the Silk Test Classic rules for object recognition, refer to Object
Recognition with the Classic Agent and Silk Test Classic Quick Start Tutorial for Dynamic Object
Recognition. To access these tutorials, click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test
> Documentation > Silk Test Classic > Tutorials or (in Microsoft Windows 10) Start > Silk.

Testing Borderless Tables
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Borderless tables are used to present content, but more commonly they are used to align text, figures, and
other objects on a Web page. Often, borderless tables are nested within other borderless tables, many
levels deep. Depending on the Web page, you may want to test only those tables that visually appear to be

310 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

tables on the Web page, that is, those with actual borders. At other times, you might want to test a
borderless table that presents content.

To meet your varying needs, the IE DOM extension has an option that allows you to set the level of
recognition of tables. This is optional. You do not need to specify a value in order to use the DOM
extension.

Overview of Input Elements and Borderless Tables

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can use the ShowBorderlessTableFlags option in domex.ini to indicate input elements which
you do not want Silk Test Classic to consider as input elements.

This feature is provided as a convenience to you, but it has not yet been thoroughly tested.

To describe the HTML input element, you must use the tag you’d use in HTML. For example, setting
ShowBorderlessTableFlags=img indicates that a borderless table having at least 1 image input
element, described by the HTML tag, is considered to have NO input elements at all, even if other
input elements such as push buttons are contained in the table. This flag is implemented using OR
functionality. For example:

 ShowBorderlessTableFlags=img|input

means that any HTML table with EITHER tag(s) OR <input …> tag(s) is considered to have NO
input elements. To be even more specific about the type of input element you want to describe, you can
use the values that are permitted for the "type" attribute of the input tag in HTML. For example,

 ShowBorderlessTableFlags=submit

means that the presence of the HTML construct <input type=submit>, which creates a submit button,
causes Silk Test Classic to consider a table having this tag as having NO input elements.

Note:

• Input elements are: HtmlTextField, HtmlImage, HtmlPushButton, HtmlPopupList,
HtmlRadioButton,HtmlCheckBox, HtmlListBox, and HtmlHidden.

• These settings do not apply to bordered tables. All bordered tables are recognized as tables.
• Except for the value of 1, all tables must meet the basic definition of a table.
• If performance is a consideration for you, consider setting the value for borderless tables to zero or

1. That causes Silk Test Classic to find either no tables or all tables and your scripts will run faster.
• If the value for ShowBorderlessTables is set to less than .75, the

ShowBorderlessTableFlags option is set, and the value matches an element in any cell of a
table, then Silk Test Classic will show that table.

• If the value for ShowBorderlessTables is set to less than .75, the
ShowBorderlessTableFlags option is not set, and a cell contains an input element (IMG,
SELECT, INPUT, BUTTON AND TEXTAREA), then Silk Test Classic will not show the table. It will
ignore it.

Guidelines to Recognizing Borderless Tables

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic, by default, uses ShowBorderlessTables=.5. At this setting, a borderless table which
contains one or more input elements will not be considered to be an HtmlTable by Silk Test Classic.
Additionally, at the .5 setting, if a borderless table containing an input element is part of a set of nested
borderless tables, none of the tables that contain that table , regardless of their content, will be considered
to be an HtmlTable.

For this discussion, input elements are defined as:

Testing in Your Environment with the Classic Agent | 311

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• HtmlTextField
• HtmlImage
• HtmlPushButton
• HtmlPopupList
• HtmlRadioButton
• HtmlCheckBox
• HtmlListBox
• HtmlHidden

To change the level of recognition of tables in your web pages, you must set the value of the
ShowBorderlessTables option.

Below are two charts that describe the guidelines for recognizing borderless tables on a Web page in Silk
Test Classic.

Use the chart below if the borderless table in question does not contain input elements.

Does the table
have nested
tables?

Do any of the
nested tables have
input elements?

Level of
nested
tables

To recognize this table as an HtmlTable, set
ShowBorderlessTables to:

No N/A N/A 0 < x < .30

Yes No 1 .30 < x <.60

Yes No 2 .60 < x < .75

Yes No > 2 1

Yes Yes Irrelevant 1

Use the chart below if the borderless table in question does contain input elements.

Does the
table have
nested
tables?

Do any of the nested
tables have input
elements?

Level of
nested
tables

To recognize this table as an HtmlTable, set
ShowBorderlessTables to:

No N/A N/A .75<=x<.9

Yes No 1 or 2 .75<=x<.9

Yes No 3 .91<=x<.99

Yes No > 3 1

Yes Yes Irrelevant 1

Notes

All values between the suggested ranges in the preceding tables are the same. For example, it does not
make any difference if you use 0 or 0.28 as borderless table value. Silk Test Classic will ignore all
borderless HtmlTables if the level is set to less than 0.0001, if the level is set to greater than or equal to .75,
Silk Test Classic will show all borderless tables.

Levels of Recognition for Borderless Tables

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The following chart describes in general how the ShowBorderlessTable values affect the tables that Silk
Test Classic recognizes.

312 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

To recognize Then set the value to

no borderless tables as 4Test HtmlTables ShowBorderlessTables=0

all borderless tables, regardless of content or dimensions,
as 4Test HtmlTables.

ShowBorderlessTables=1

If performance is a consideration for you, consider setting the value for borderless tables to 0 or 1. Silk Test
Classic will find no or all tables and your scripts will run faster.

Setting Options for ShowBorderlessTables

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To change the level of recognition of tables in your Web pages, you must set the value of the
ShowBorderlessTables option. There are two ways to do this.

• On the DOM Extensions dialog box, check the Table check box and set a value for borderless table
recognition. .76 is the threshold where Silk Test Classic starts to recognize more objects within tables,
such as images, hidden text, check boxes, textfields, and buttons.

• Tweak your script by setting the option within the script itself. This does not apply the value to the whole
script but applies the value after that point in your script. You can use this method to adjust the level of
recognition within your scripts, as you require. You do this by entering the following into your script:
BrowserPage.SetUserOption ("ShowBorderlessTables",value). For example,
BrowserPage.SetUserOption ("ShowBorderlessTables",.5).

Setting the ShowListItem Option

To change the level of recognition of text contained within HtmlList controls in your browser, you must set
the value of the ShowListItem option. For instance, if mouse events are associated with your list items,
check this check box or set this value to TRUE, so Silk Test Classic can interact with the list items. You can
do this in the following ways:

• On the DOM Extensions dialog box, check the List Item check box. Access this dialog box by clicking
Options > Extensions, enabling the browser extension in the Primary Extension column, and then
clicking Extension in the Options area. Note that the browser extension must be enabled before you
can click Extension. The information that you enter on this dialog box is saved in the domex.ini file.
This setting is global. However, if you want to set this option for only certain points in your script, use
BrowserPage.SetUserOption().

• In the domex.ini file, set the ShowListItem value to TRUE. This setting is global. However, if you
want to set this option for only certain points in your script, use BrowserPage.SetUserOption().

• Modify your script by setting the option within the script itself. This does not apply the value to the whole
script but applies the value after that point in your script. You can use this method to adjust the level of
recognition within your scripts, as you require. You do this by entering the following into your script:

BrowserPage.SetUserOption ("ShowListItem", true)

Tag Declaration for SSTab Control

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If your application contains an SSTab control, which is associated with the class OLESSTab, you must use
either the index or window ID for the tag in the window declaration. You cannot use the caption for the tag,
because the caption changes based on which tab is selected.

Testing XML
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Testing in Your Environment with the Classic Agent | 313

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

You can use Silk Test Classic to verify that different renderings of your Web page display the same XML
data. For example, if you change the presentation layer of your website, you can use Silk Test Classic to
"see" through the new presentation and test the XML data.

4Test Class

To support testing XML data, the 4Test language was modified to include the XmlNode. Users can access
the XML Elements through properties and methods that have been defined within this new class.

Identifiers and Tags with XML Objects

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When creating identifiers and tags for XML objects, Silk Test Classic first looks to the objects value. If no
value is declared Silk Test Classic takes the objects name/content. This is most important to remember in
terms of Attributes. For example, the following is the source for some information about a book in a book
catalog:

<Book BookType="Fiction" BookISBN ="x0682">

From this example we see that this book has two attributes: it is of BookType Fiction and its Book ISBN is
x0682. The declaration for this appears as follows:

 [-] XmlNode Book1
 [+] multitag "Book [1]"
 [-] XmlNode FICTION
 [+] multitag "FICTION"
 [-]XmlNode X0682
 [+] multitag "x0682"

Note: Silk Test Classic grabs the values Fiction and x0682 as the identifiers and tags.

Window Declarations for XML

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When Silk Test Classic captures the window declarations for an XML page, it first captures the presentation
layer, the HTML objects that represent the XML data. Then below the declared HTML objects, the XML
objects are declared.

Setting Options for XML Recognition

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To recognize XML elements:

1. Click Options > Extensions to display the Extension dialog.

2. Click in the Primary Extension column for the browser that you want to use, then select the browser
name from the list box to enable the DOM extension.

3. In the Options area, click Extension.

4. On the DOM Extension dialog, check the XML check box and click OK.

5. Close the Option Extensions dialog, click OK.

6. Close the Extensions dialog, click OK.

To turn off XML recognition, uncheck the check box you checked in step 4 above.

314 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

General Web Application Classes
This section lists the classes that you can use to test Web applications with the Classic Agent.

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Testing Windows API-Based Applications
This section describes how Silk Test Classic provides built-in support for testing Microsoft Windows API-
based applications.

Overview of Windows API-Based Application Support
Silk Test Classic provides built-in support for testing Microsoft Windows API-based applications. Several
objects exist in Microsoft applications that Silk Test Classic can better recognize if you enable Accessibility.
For example, without enabling Accessibility Silk Test Classic records only basic information about the menu
bar in Microsoft Word and the tabs that display in Internet Explorer 7.0. However, with Accessibility
enabled, Silk Test Classic fully recognizes those objects. You can also improve Silk Test Classic object
recognition by defining a new window, if necessary.

You can test Windows API-based applications using the Classic or Open Agent.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Object Recognition

Windows API-based applications support hierarchical object recognition and dynamic object recognition.
You can create tests for both dynamic and hierarchical object recognition in your test environment. Use the
method best suited to meet your test requirements.

When you record a test case with the Open Agent, Silk Test Classic creates locator keywords in an INC file
to create scripts that use dynamic object recognition and window declarations.

Existing test cases that use dynamic object recognition without locator keywords in an INC file will continue
to be supported. You can replay these tests, but you cannot record new tests with dynamic object
recognition without locator keywords in an INC file.

To test Windows API-based applications using hierarchical object recognition, record a test for the
application that you want to test. Then, replay the tests at your convenience.

Supported Controls

For a complete list of the record and replay controls available for Windows-based testing for each Agent
type, view the WIN32.inc and winclass.inc file. To access the WIN32.inc file, which is used with the
Open Agent, navigate to the <SilkTest directory>\extend\WIN32 directory. By default, this file is
located in C:\Program Files\Silk\SilkTest\extend\WIN32\WIN32.inc. To access the
winclass.inc file, which is used with the Classic Agent, navigate to the <SilkTest directory>\
directory. By default, this file is located in C:\Program Files\Silk\SilkTest\winclass.inc.

Locator Attributes for Windows API-Based
Applications
Silk Test Classic supports the following locator attributes for the controls of Windows API-based client/
server applications:

Testing in Your Environment with the Classic Agent | 315

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

• caption.
• windowid.
• priorlabel. For controls that do not have a caption, priorlabel is used as the caption

automatically. For controls with a caption, it may be easier to use the caption.

Note: Attribute names are case sensitive. Attribute values are by default case insensitive, but you can
change the default setting like any other option. The locator attributes support the wildcards ? and *.

Suppressing Controls (Classic Agent)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can suppress the controls for certain classes for .NET, Java SWT, and Windows API-based
applications. For example, you might want to ignore container classes to streamline your test cases.
Ignoring these unnecessary classes simplifies the object hierarchy and shortens the length of the lines of
code in your test scripts and functions. Container classes or ‘frames’ are common in GUI development, but
may not be necessary for testing.

The following classes are commonly suppressed during recording and playback:

Technology Domain Class

.NET Group

Java SWT org.eclipse.swt.widgets.Composite

org.eclipse.swt.widgets.Group

Windows API-based applications Group

To suppress specific controls:

1. Click Options > Class Map. The Class Map dialog box opens.

2. In the Custom class field, type the name of the class that you want suppress.

The class name depends on the technology and the extension that you are using. For Windows API-
based applications, use the Windows API-based class names. For Java SWT applications, use the fully
qualified Java class name. For example, to ignore the SWT_Group in a Windows API-based
application, type SWT_Group, and to ignore to ignore the Group class in Java SWT applications, type
org.eclipse.swt.widgets.Group.

3. In the Standard class list, select Ignore.

4. Click Add. The custom class and the standard class display at the top of the dialog box.

Suppressing Controls (Open Agent)
This functionality is supported only if you are using the Open Agent.

To simplify the object hierarchy and to shorten the length of the lines of code in your test scripts and
functions, you can suppress the controls for certain unnecessary classes in the following technologies:

• Win32.
• Java AWT/Swing.
• Java SWT/Eclipse.
• Windows Presentation Foundation (WPF).

For example, you might want to ignore container classes to streamline your test cases.

To suppress specific controls:

316 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. Type the name of the class that you want to ignore during recording and playback into the text box.

If the text box already contains classes, add the new classes to the end of the list. Separate the classes
with a comma. For example, to ignore both the AOL Toolbar and the _AOL_Toolbar class, type AOL
Toolbar, _AOL_Toolbar into the text box.

The OPT_TRANSPARENT_CLASSES option is set to true for these classes.

4. Click OK. The OPT_TRANSPARENT_CLASSES option is set to true for these classes, which means
the classes are added to the list of the classes that are ignored during recording and playback.

Configuring Standard Applications
A standard application is an application that does not use a Web browser, such as a Windows application
or Java SWT application.

Configure the application that you want to test to set up the environment that Silk Test Classic will create
each time you record or replay a test case.

1. Start the application that you want to test.

2. Click Configure Applications on the basic workflow bar.

If you do not see Configure Applications on the workflow bar, ensure that the default agent is set to
the Open Agent.

The Select Application dialog box opens.

3. Select the Windows tab.

4. Select the application that you want to test from the list.

Note: If the application that you want to test does not appear in the list, uncheck the Hide
processes without caption check box. This option, checked by default, is used to filter only those
applications that have captions.

5. Optional: Check the Create Base State check box to create a base state for the application under test.

By default, the Create Base State check box is checked for projects where a base state for the
application under test is not defined, and unchecked for projects where a base state is defined. An
application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended
execution. When you configure an application and create a base state, Silk Test Classic adds an include
file based on the technology or browser type that you enable to the Use files location in the Runtime
Options dialog box.

6. Click OK.

• If you have checked the Create Base State check box, the Choose name and folder of the new
frame file page opens. Silk Test Classic configures the recovery system and names the
corresponding file frame.inc by default.

• If you have not checked the Create Base State check box, the dialog box closes and you can skip
the remaining steps.

7. Navigate to the location in which you want to save the frame file.

8. In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save. Silk Test Classic creates a base state for the application and opens
the include file.

9. Record the test case whenever you are ready.

Note: For SAP applications, you must set Ctrl+Alt as the shortcut key combination to use. To change
the default setting, click Options > Recorder and then check the
OPT_ALTERNATE_RECORD_BREAK check box.

Testing in Your Environment with the Classic Agent | 317

Determining the priorLabel in the Win32 Technology
Domain
To determine the priorLabel in the Win32 technology domain, all labels and groups in the same window as
the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, the priorLabel is determined based upon the

following criteria:

• If one label is to the left and the other above the control, the left one is preferred.
• If both levels are to the left of the control, the upper one is preferred.
• If both levels are above the control, the left one is preferred.

• If the closest control is a group control, first all labels within the group are considered according to the
rules specified above. If no labels within the group are eligible, then the caption of the group is used as
the priorLabel.

Testing Embedded Chrome Applications
An embedded Chrome application is a desktop application with an embedded web browser engine that is
based on the Chromium core. Such applications enable you to add web browser capabilities to a desktop
application. You can create such an app by using for example the Chromium Embedded Framework (CEF)
or the Electron framework.

Silk Test Classic provides full support for testing embedded Chrome applications that allow remote
debugging through the --remote-debugging-port command line argument. Silk Test Classic does not
support testing embedded Chrome applications that are based on Java, for example Java AWT and Swing
applications.

To test an embedded Chrome application with Silk Test Classic, you have to set the debugging ports for the
executable of the application. Start the application from the command line and set the remote debugging
port.

• Silk Test Classic checks if the -remote-debugging-port argument is set in the command line
arguments of the embedded Chrome application. If the argument is set, Silk Test Classic automatically
sets the Enable embedded Chrome support field to the appropriate executable and debugging port.

• If the -remote-debugging-port argument is not set in the command line arguments of the
embedded Chrome application, you have to manually specify the executable and the port in the Enable
embedded Chrome support field:

1. In the Silk Test Classic UI, select Edit Options.
2. In the Options dialog, select the Advanced tab.
3. In the Enable embedded Chrome support option, specify the executable and the port as a comma-

separated value pair:

<application name>.exe=<port number>

Note: You cannot test embedded Chrome applications that do not allow remote debugging with Silk
Test Classic.

Note: Silk Test Classic does not support testing non-browser menus of Electron apps.

318 | Testing in Your Environment with the Classic Agent

Example

For example, you can start the application myApp from the command line as follows:

myApp.exe --remote-debugging-port=9222

You can then specify the executable and port in the Enable embedded Chrome
support option as follows:

myApp.exe=9222

Microsoft Foundation Class Support
The class ID of a Microsoft Foundation Class (MFC) control might change over time and therefore cannot
be used to generate a stable locator. To avoid generating unstable locators, Silk Test Classic uses the
following attributes for the locators:

• The MFC class name, if the Windows class name of the MFC control starts with Afx:.
• The Windows class name, if the Windows class name of the MFC control does not start with Afx:.

Silk Test Classic only supports MFC version 140, and only supports the following combinations:

• Release, x86, MBCS
• Release, x86, Unicode
• Debug, x86, MBCS
• Debug, x86, Unicode
• Release, x64, MBCS
• Release, x64, Unicode
• Debug, x64, MBCS
• Debug, x64, Unicode

Note: To execute existing tests with MFC control locators that have been generated with Silk Test
Classic 18.5 or prior, set the OPT_COMPATIBILITY option in the affected test scripts to version 18.5.0
or prior:

'VB .NET code
Agent.SetOption("OPT_COMPATIBILITY", "18.5.0")

Testing Applications with the SilkBean
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Using the SilkBean, you can test standalone Java applications on non-Windows platforms, such as UNIX
and Linux. You can perform cross-platform testing of 100% pure Java controls in standalone Java
applications in a number of test environments. SilkBean provides flexibility that enables you to:

• Test a single standalone Java application on a non-Windows target machine.
• Set up multiple testing sessions on the same Windows host machine to test multiple standalone Java

applications on the same non-Windows target machine.
• Set up multiple testing sessions on different Windows hosts to test multiple standalone Java

applications on the same target machine.

When using SilkBean, you create all functions using Silk Test Classic on your Windows host machine, and
then play back the scripts on a non-Windows target machine running SilkBean.

SilkBean runs on the following certified platforms:

• Solaris 2.5 or later.

Testing in Your Environment with the Classic Agent | 319

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• Redhat Linux 6.0 and 6.2.
• Hewlett-Packard UNIX (HP-UX) 10.2 and 11.0.
• Advanced Interactive Executive (AIX) 4.3.2 and 4.3.3.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Preparing Test Scripts to Run with SilkBean
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you are preparing test scripts to run with the SilkBean, keep the following tips in mind:

• Do not use ~ActiveApp in window declarations that will be used with SilkBean. Either use a generic
parent tag, such as [JavaMainWin]#1/ in the tag statement, or use a tag function if the parents can
occur at different levels in the window hierarchy. For details see the multitag statement topic.

• Note: In certain cases where dialog boxes are parented to other dialog boxes, the window
hierarchy may differ between SilkBean and Windows. As for ~ActiveApp, use a tag function to
compensate for the different levels of the parent windows.

• Do not call Desktop.GetActive() in your scripts, since it is invalid for SilkBean.
• The index tag of a MoveableWin, for example a main window or dialog box, may differ between

SilkBean and the standard Java extension. The difference is not due to a difference in operating
systems, like UNIX and Windows, but rather to a difference between the Java extension and SilkBean.
For example, the Java extension may see the top visible window as "#1", but SilkBean may see the
bottom-most window, which was the first one created, as "#1".

• If you must use an index tag, then you can use a conditional expression in the tag to accommodate both
the Java extension and SilkBean. The condition should be based on the value of the
OPT_USE_SILKBEAN Agent option, which is TRUE if SilkBean is currently being used. For example, if
the index for the Java extension is #1 and the index for SilkBean is #3, use:

tag "#{Agent.GetOption (OPT_USE_SILKBEAN) ? "3" : "1"}"

• Insert a right-mouse Click() before JavaAwtPopupMenu or JavaJFCPopupMenu in order to bring up the
menu.

Additional considerations when testing AWT

• If your application contains Abstract Windowing Toolkit (AWT) menus or AWT menu items, modify your
declarations for these controls in a new test frame file as follows:

If the AWT declaration is … Change the declaration to …

Menu JavaAwtMenu

MenuItem JavaAwtMenuItem

• If you are testing AWT controls, do not use low-level methods to simulate mouse and keyboard events.
Due to the limitations of platform-specific implementations of AWT controls, low-level events are not
supported. Instead, use high-level methods when possible.

Java Foundation Class (JFC) controls support low-level events.

Configuring SilkBean Support on the Target (UNIX)
Machine
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This section contains instructions for configuring the target UNIX machine when the test application is
running in Java 2 environments, which means JDK/JRE versions greater than or equal to 1.2.

320 | Testing in Your Environment with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

1. Make sure that JDK 1.2 or later is installed on the UNIX machine and that the path to its "bin" directory
is included in the PATH variable.

2. Copy the following files from your Silk Test Classic installation on the Windows machine onto the UNIX
machine:

• Copy SilkTest_Java3.jar to the JVM’s lib/ext directory.
• Copy access3bean.prop to the JVM's lib directory and rename it to

accessibility.properties.

3. Start the SilkBean using the following command:

java segue.server.SilkBean debug <port number> &

• Include the optional debug parameter if you want to run the SilkBean server in debug mode.
• The port number defaults to 2966, if it is not specified.
• The ampersand (&) at the end of the line should only be used on an UNIX target machine. It

specifies that the SilkBean should run in the background.

4. Start the test application manually or from the script.

Note: There are two SilkBean-specific options for the Java command line that is used to start the
AUT. The options are specified using the '-D' switch.

ST_CONN_TIMEOUT The maximum time (in seconds) allowed for connection between the
SilkBean and the application. If unspecified, the default value of 30 seconds
is used.

qap.port The port through which to connect SilkBean. The default is 2966. This
number must match the port number specified in the SilkBean command
line. java segue.server.SilkBean <port number> &.

Example

For example, to start the Java application myapp.jar with port number 2970 and a
connection timeout of 60 seconds, use:

java -Dqap.port=2970 -DST_CONN_TIMEOUT=60 myapp.jar

Configuring SilkBean Support on the Host Machine
when Testing Multiple Applications
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you are testing multiple applications on the same machine, or different platforms, you must make the
following changes on the host machine to enable the Agent to interact with the SilkBean running on the
UNIX machine:

Enable SilkBean by adding the following code to the script file:

Agent.SetOption(OPT_USE_SILKBEAN, FALSE)
Agent.SetOption(OPT_SET_TARGET_MACHINE, "targetmachine:port#"))
Agent.SetOption(OPT_USE_SILKBEAN, TRUE)

Correcting Problems when Using the SilkBean
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Testing in Your Environment with the Classic Agent | 321

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

General help

For general help when testing Java applications with the SilkBean, you can start up the SilkBean in debug
mode on the target machine. Then, look for AppRegistered debug messages to display after invoking your
Java application.

Specific workarounds

There are workarounds for the following specific problems:

• I cannot test the AWT FileOpen dialog box.
• I cannot pick AWT menus.
• SetActive, Minimize, and Restore methods do not work with SilkBean.
• I cannot select menu items in JFC cascaded menus.
• SilkBean cannot find a main window or a dialog box declared with an index tag.
• I cannot redirect console output to a text file.

322 | Testing in Your Environment with the Classic Agent

Using Advanced Techniques with the
Classic Agent

This section describes advanced techniques for testing you applications with Silk Test Classic and the
Classic Agent.

Starting from the Command Line
This section describes how you can start Silk Test Classic from the command line.

Starting Silk Test Classic from the Command Line
You can start the Silk Test Classic executable program from the command line by:

• Clicking Run in the Start menu.
• Using the command-line prompt in a DOS window or batch file.

The syntax is:

partner [-complog filename] [-m mach] [-opt optionset.opt] [-p mess] [-proj
filename [-base filename]]
[[-q] [-query query name] [-quiet] [-r filename] [-resexport] [-resextract] [-
r] scr.t/suite.s/plan.pln/link.lnk
[args]]

The filename specified for various options expects the file to be located in the working directory. The default
location is the Silk Test Classic installation directory, C:\Program Files (x86)\Silk\SilkTest. If
you want to use a file that is located in another directory, you must specify the full path in addition to the
filename.

Options

The partner command can be called with the following options:

args Optional arguments to a script file. You can access the arguments using the GetArgs
function and use them with your scripts.

If you pass arguments in the command line, the arguments provided in the command line
are used and any arguments specified in the currently loaded options set are not used. To
use the arguments in the currently loaded options set, do not specify arguments in the
command line.

For additional information, see Passing arguments to a script.

-complog Tells Silk Test Classic to log compilation errors to a file you specify. Enter the argument as
-complog filename. For example:

partner [-complog c:\testing\logtest1.txt]

If you include this argument, Silk Test Classic checks that the specified file exists each time
that you compile. If the file does not exist, Silk Test Classic creates and opens the file. If the
file exists, Silk Test Classic opens it and adds the information. The number of errors is
written in the format n error(s), for example 0 errors, 1 error, or 50 errors.
Compilation errors are written to the error log file as they are displayed in the Errors

Using Advanced Techniques with the Classic Agent | 323

window. The error log file is automatically saved and closed when Silk Test Classic finishes
writing errors to it.

-m Specifies the target machine. The default is the current machine. Call the 4Test built-in
function Connect to connect to a different machine at runtime.

In order to use the -m switch, you need to have the Network setting of the Runtime
Options dialog box set to TCP/IP or NetBIOS. If this is set to '(disabled)', the target
machine is ignored. To set the Network setting, either set it interactively in the Runtime
Options dialog box before running from the command line, or save the setting in an option
set and add the '-opt <option set>' argument to the command line.

-opt Specifies an options set. Must be followed by the path of the .opt file that you want to use.

-p Provided for use with a Windows shell program that is running Silk Test Classic as a batch
task. This option enables another Windows program to receive a message containing the
number of errors that resulted from the run. Silk Test Classic broadcasts this message
using the Windows PostMessage function, with the following arguments:

• hWnd = HWND_BROADCAST

• uiMsg = RegisterWindowMessage (mess)

• wParam = 0

• lParam = number of errors

To take advantage of the -p option, the shell program that runs Silk Test Classic should
first register the message (mess), and should look for the message while Silk Test Classic
is running.

-proj Optional argument specifying the project file or archived project to load when starting Silk
Test Classic or Silk Test Classic Runtime. For example:

partner –proj d:\temp\testapp.vtp –r agent.pln

-base is an optional argument to –proj. You use the base argument to specify the
location where you want to unpack the package contents. For example, partner –proj
d:\temp\testapp.stp –base c:\rel30\testapp unpacks the contents of the
package to the c:\rel30\testapp directory.

-q Quits Silk Test Classic after the script, suite, or test plan completes.

-query Specifies a query. Must be followed by the name of a saved query. Tells Silk Test Classic to
perform an Include > Open All, then Testplan > Mark By Named Query, then Run >
Marked Tests.

-quiet Starts Silk Test Classic in quiet mode, which prevents any pop-up dialog boxes from
displaying when Silk Test Classic starts up.

The quiet option is particularly useful if you are doing unattended testing where a user is
not available to respond to any pop-up dialog boxes that may display.

-r Must be the last option specified, followed only by the name of a Silk Test Classic file to
open. This includes files such as script (and, optionally, arguments that the script takes), a
suite, test plan, or link file. If you specify a link file, tells Silk Test Classic to resolve the link
and attempt to open the link target. Otherwise, tells Silk Test Classic to run the specified
script, suite, or test plan, optionally passing args as arguments to a script file. For example,
partner –proj d:\temp\testapp.stp –base c:\rel30\testapp –r
Agent.pln unpacks the archive from the temp subdirectory into the c:\rel30\testapp
subdirectory and then loads and executes the Agent.pln file.

324 | Using Advanced Techniques with the Classic Agent

-resexport Tells Silk Test Classic to export a one line summary of the most recent results sets to .rex
files automatically. Specifying -resexport has the same effect as if each script run
invokes the ResExportOnClose function during its execution.

-resextract Tells Silk Test Classic to extract all information from the most recent results sets to a .txt
file. Both the Silk Test Classic Extract menu command and the -resextract option
create UTF-8 files.

script.t/
suite.s/
plan.pln/
link.lnk

The name of the Silk Test Classic script, suite, test plan, or link file to load, run, or open.

Examples

• To load Silk Test Classic, type the following:

partner

• To run the test.s suite, type the following:

partner -r test.s

• To run the test.t script on the system with the hostname "sys1", type the following:

partner -m sys1 -r test.t

• To run the test.t script with arguments, type the following:

partner -r test.t arg1 arg2

• To run the tests marked by the query named query3 in tests.pln, type the
following:

partner -query query3 -r tests.pln

• To run tests.pln and to export the most recent results set from tests.res to
tests.rex, type the following:

partner -q -resexport -r tests.pln

• To edit the test.inc include file, type the following:

partner test.inc

Starting the Classic Agent from the Command Line
This functionality is available only for projects or scripts that use the Classic Agent.

You can start the Classic Agent executable program from the command line by:

• Clicking Start>Run.
• Using the command-line prompt in a DOS window.

The syntax is:

agent [-p port]

Options

The following option is available for the agent command:

-p <port> Temporarily set network protocol to TCP/IP and port to specified <port>. For the Classic
Agent, the default port is the value in the partner.ini file. If there is no value set in the
partner.ini file, then the port is set to 2965. To permanently set a protocol and port, right-
click the Agent window and select Network.

Port numbers may not be negative numbers or _D.

Using Advanced Techniques with the Classic Agent | 325

Examples

To load the Classic Agent, enter:

agent

To load the Classic Agent and specify network protocol to TCP/IP and port to 2965 (the
default port for the Classic Agent), enter:

agent -p

To load the Classic Agent and specify network protocol to TCP/IP and port to 1234,
enter:

agent –p 1234

Recording a Test Frame
This section describes how you can record a test frame.

Overview of Object Files
Object files are the compiled versions of include (.inc) or script (.t) files. Object files are saved with an
"o" at the end of the extension, for example, .ino, or .to. Object files cannot be edited; the only way to
change compiled objects is to recompile the include or script file. When you save a script or include file, a
source file and an object file are saved. Object files are not platform-specific; you can use them on all
platforms that Silk Test Classic supports.

In order for Silk Test Classic to run a script or include file that is in source form, it must compile it, which
can be time-consuming. Object files, on the other hand, are ready to run.

Note: You cannot call objects that exist in the object file (.to) from a test plan; you must have the
script file (.t).

To disable saving object files during compilation, the AutoComplete options on the General Options
dialog box as well as the Save object files during compilation option on the Runtime Options dialog
box need to be unchecked.

Silk Test Classic always uses object files if they are available. When you open a script file or an include file,
Silk Test Classic loads the corresponding object file as well, if there is one. If the object file is not older than
the source file, Silk Test Classic does not recompile the source file. The script is ready to run. If the source
file is more recent, Silk Test Classic recompiles the source file before the script is run. If you then later save
the source file, Silk Test Classic automatically saves a new object file.

If a file is loaded during compilation, that is, if you include a file in another file that is being compiled, Silk
Test Classic loads only the object file, if it exists and is newer than the corresponding source file.

Object files may not be backward-compatible, although sometimes they will be. Specifically, object files will
not work with versions of Silk Test Classic for which the list of GUI/browser types is different than for the
version used to compile the object file. The list is in 4Test.inc. For example, object files created before
'mswxp' was added as the GUI type for Windows XP cannot be used with ST5.5 SP3, which includes the
'mswxp' GUI type.

If you are using a .ino file, but during compilation Silk Test Classic displays a message that the
corresponding .inc file is missing, then you may be experiencing the object file version incompatibility
explained in the preceding paragraph.

Advantages of Object Files
Advantages of object files include:

326 | Using Advanced Techniques with the Classic Agent

• Because object files are ready to run, they do not need to be recompiled if the source file has not
changed. This can save you a lot of time. If your object file is more recent than your source file, the
source file does not need to be recompiled each time the file is first opened in a session; the object file
is used as is.

• You can distribute object files without having to distribute the source equivalents. So if you have built
some tests and include files that you want to distribute but don’t want others to see the sources, you can
distribute only the object files.

Since an object file cannot be run directly:

• Define the code you want to "hide" in an include file, which will be compiled into an .ino object file.
• Call those functions from an ordinary script file.
• Distribute the .t script file and the compiled .ino include file. Users can open and run the script file as

usual, through File > Run.

Here’s a simple example of how you might distribute object files so that others cannot see the code.

In file test.inc, place the definition of a function called TestFunction. When you save the file, the
entire include file is compiled into test.ino.

TestFunction ()
 ListPrint (Desktop.GetActive ())

In the file test.t use the test.inc include file. Silk Test Classic will load the .ino equivalent. Call
TestFunction, which was defined in the include file.

use "test.inc"

 main ()
 TestFunction () // call the function

Distribute test.t and test.ino. Users can open test.t and run it but do not have access to the actual
routine, which resides only in compiled form in test.ino.

Object File Locations
By default, an object file is read from and written to the same directory as its corresponding source file. But
you can specify different directories for object files.

Specifying d:\obj in the Objfile Path text box of the Runtime Options dialog box tells Silk Test Classic to
read and write all object files in the d:\obj directory, regardless of where the source files are located.

Specifying obj in the Objfile Path text box tells Silk Test Classic to read and write an object file in the
directory obj that is a subdirectory of the directory containing the source file. In this scenario, each
directory of source files will have a different directory of object files. For example, if a source file is in d:
\src, its corresponding object file would be read from and written to d:\src\obj.

You can specify several directories in the Objfile Path text box. New files are written to the first directory
specified. Silk Test Classic searches the directories in the order in which you have specified them to find
existing files and will subsequently re-save existing files in the same directory where it found them.

Specifying where Object Files Should be Written To and Read From
By default, an object file is read from and written to the same directory as its corresponding source file. But
you can specify different directories for object files. To specify where object files are written to and read
from:

1. Click Options > Runtime.

2. Specify a directory in the Objfile Path text box.

• Leave the text box empty if you want to store object files in the same directory as their corresponding
source files.

Using Advanced Techniques with the Classic Agent | 327

• Specify an absolute path if you want to store all object files in the same directory.
• Specify a relative path if you want object files to be stored in a directory relative to the directory

containing the source files.

3. Click OK.

Object files are saved in the location you specify here. In addition, Silk Test Classic will try to find object
files in these locations. If it fails to find an object file, it will look in the directory containing the source file.

Declarations
This section describes declarations.

Generic Message Box Declaration
This functionality is available only for projects or scripts that use the Classic Agent.

When Silk Test Classic generates the window declarations for the main window of your application, it also
includes a declaration for a generic object named MessageBox. Therefore, you do not have to record a
declaration for each of the message boxes (potentially hundreds) in your application.

A message box is a dialog box that has static text and pushbuttons, but no other controls. Typically,
message boxes are used to prompt users to verify an action, for example Save changes before
closing?, or to alert users to an error.

The message box declaration is generic for three reasons:

• The tag of the dialog box specifies that its parent is the current active application.
• The most likely names for pushbuttons are accounted for: OK, Cancel, Yes, and No.
• The tag of the message is an index number, not the text of the message.

If your application contains message boxes that have extra pushbuttons or if your pushbuttons use different
names, you need to add the declarations for those buttons to the declaration for the generic MessageBox
object. For example, if a message box contains a Test pushbutton, you need to add the following lines to
the recorded declaration:

PushButton Test
 tag "Test"

Here is the declaration for the generic message box:

window MessageBoxClass MessageBox
 tag "~ActiveApp/[DialogBox]$MessageBox"
 PushButton OK
 tag "OK"
 PushButton Cancel
 tag "Cancel"
 PushButton Yes
 tag "Yes"
 PushButton No
 tag "No"
 StaticText Message
 mswnt tag "#2"
 tag "#1"

GUI Specifiers
Where Silk Test Classic can detect a difference from one platform to the next, it automatically inserts a
GUI-specifier in a window declaration to indicate the platform, for example msw.

For a complete list of the valid GUI specifiers, see GUITYPE data type.

328 | Using Advanced Techniques with the Classic Agent

Overview of Dialog Box Declarations
The declarations for the controls contained by a dialog box are nested within the declaration of the dialog
box to show the GUI hierarchy.

The declarations for menus are nested (indented) within the declaration for the main window, and the
declarations for the menu items are nested within their respective menus. This nesting denotes the
hierarchical structure of the GUI, that is, the parent-child relationships between GUI objects. Although a
dialog box is not physically contained by the main window, as is true for menus, the dialog box nevertheless
logically belongs to the main window. Therefore, a parent statement within each dialog box declaration is
used to indicate that it belongs to the main window of the application.

In the sample Text Editor application, MainWin is the parent of the File menu. The File menu is
considered a child of the MainWin. Similarly, all the menu items are child objects of their parent, the File
menu. A child object belongs to its parent object, which means that it is either logically associated with the
parent or physically contained by the parent.

Because child objects are nested within the declaration of their parent object, the declarations for the child
objects do not need to begin with the reserved word window.

Classic Agent Example

The following example from the Text Editor application shows the declarations for the
Find dialog box and its contained controls:

window DialogBox Find
 tag "Find"
 parent TextEditor
 StaticText FindWhatText
 multitag "Find What:"
 "$65535"
 TextField FindWhat
 multitag "Find What:"
 "$1152"
 CheckBox CaseSensitive
 multitag "Case sensitive"
 "$1041"
 StaticText DirectionText
 multitag "Direction"
 "$1072"
 RadioList Direction
 multitag "Direction"
 "$1056"
 PushButton FindNext
 multitag "Find Next"
 "$1"
 PushButton Cancel
 multitag "Cancel"
 "$2"

Open Agent Example

The following example from the Text Editor application shows the declarations for the
Find dialog box and its contained controls:

window DialogBox Find
 locator "Find"
 parent TextEditor
 TextField FindWhat
 locator "@caption='Find What:' or @windowId='65535'"
 StaticText FindWhatText

Using Advanced Techniques with the Classic Agent | 329

 locator "@caption='Find What:' or @windowId='1152'"
 CheckBox CaseSensitive
 locator "@caption='Case sensitive' or @windowId='1041'"
 StaticText DirectionText
 locator "@caption='Direction' or @windowId='1072'"
 RadioList Direction
 locator "@caption='Direction' or @windowId='1056'"
 PushButton FindNext
 locator "@caption='Find Next' or @windowId='1'"
 PushButton Cancel
 locator "@caption='Cancel' or @windowId='2'"

Main Window and Menu Declarations

The main window declaration

The main window declaration begins with the 4Test reserved word window. The term window is historical,
borrowed from operating systems and window manager software, where every GUI object, for example
main windows, dialogs, menu items, and controls, is implemented as a window.

As is true for all window declarations, the declaration for the main window is composed of a class, identifier,
and tag or locator.

Classic Agent Example

The following example shows the beginning of the default declaration for the main
window of the Text Editor application:

window MainWin TextEditor
 multitag "Text Editor"
 "$C:\PROGRAMFILES\<SilkTest install directory>\SILKTEST
\TEXTEDIT.EXE"

Part
of
Decl
arati
on

Value for TextEditor's main window.

Clas
s

MainWin

Ident
ifier

TextEditor

Tag Two components in the multiple tag:

• " Text Editor "—The application’s caption

• " executable path "—The full path of the executable file that
invoked the application

Open Agent Example

The following example shows the beginning of the default declaration for the main
window of the Text Editor application:

window MainWin TextEditor
 locator "Text Editor"

330 | Using Advanced Techniques with the Classic Agent

Part
of
Decl
arati
on

Value for TextEditor's main window.

Clas
s

MainWin

Ident
ifier

TextEditor

Loca
tor

" Text Editor "—The application’s caption

sCmdLine and wMainWindow constants

When you record the declaration for your application’s main window and menus, the sCmdLine and
wMainWindow constants are created. These constants allow your application to be started automatically
when you run your test cases.

The sCmdLine constant specifies the path to your application’s executable. The following example shows
an sCmdLine constant for a Windows environment:

mswnt const sCmdLine = "c:\program files\<SilkTest install directory>\silktest
\textedit.exe"

The wMainWindow constant specifies the 4Test identifier for the main window of your application. For
example, here is the definition for the wMainWindow constant of the Text Editor application on all platforms:

const wMainWindow = TextEditor

Menu declarations

When you are working with the Classic Agent, the following example from the Text Editor application shows
the default main window declaration and a portion of the declarations for the File menu:

window MainWin TextEditor
 multitag "Text Editor"
 "$C:\PROGRAM FILES\<SilkTest install directory>\SILKTEST\TEXTEDIT.EXE"
 .
 .
 .
 Menu File
 tag "File"
 MenuItem New
 multitag "New"
 "$100"

Menus do not have window IDs, but menu items do, so by default menus are declared with the tag
statement while menu items are declared with the multitag statement.

When you are working with the Open Agent, the following example from the Text Editor application shows
the default main window declaration and a portion of the declarations for the File menu:

window MainWin TextEditor
 locator "Text Editor"
 .
 .
 .
 Menu File
 locator "File"
 MenuItem New
 locator "@caption='New' or windowId='100'"

Using Advanced Techniques with the Classic Agent | 331

Window Declarations
A window declaration specifies a cross-platform, logical name for a GUI object, called the identifier,
and maps the identifier to the actual name of the object, which is called the tag or locator. Because
your test cases use logical names, if the actual name of the object changes on the current GUI, on another
GUI, or in a localized version of the application, you only need to change the tag in the window
declarations. You do not need to change any of your scripts.

You can add variables, functions, methods, and properties to the basic window declarations recorded by
Silk Test Classic. For example, you can add variables to a dialog box declaration that specify what the tab
sequence is, what the initial values are, and so on. You access the values of variables at runtime as you
would a field in a record.

After you record window declarations for the GUI objects in your application and insert them into a
declarations file, called an include file (*.inc), Silk Test Classic references the declarations in the include
file to identify the objects named in your test scripts. You tell Silk Test Classic which include files to
reference through the Use Files field in the Runtime Options dialog box.

Improving Silk Test Classic Window Declarations
The current methodology for identifying window declarations in Microsoft Windows-based applications
during a recording session is usually successful. However, some applications may require an alternate
approach of obtaining their declarations because their window objects are invisible to the Silk Test
Recorder. You can try any of the following:

• Turning on Accessibility - use this if during a session started with the Recorder, Silk Test Classic is
unable to recognize objects within a Microsoft Windows-based application. This functionality is available
only for projects or scripts that use the Classic Agent.

• Defining a new window - use this if turning on Accessibility does not help Silk Test Classic to recognize
the objects. This functionality is available only for projects or scripts that use the Classic Agent.

• Creating a test case that uses dynamic object recognition - use this to create test cases that use XPath
queries to find and identify objects. Dynamic object recognition uses a Find or FindAll method to
identify an object in a test case. This functionality is available only for projects or scripts that use the
Open Agent.

Improving Object Recognition by Defining a New Window
If Silk Test Classic is having difficulty recognizing objects in Internet Explorer or Microsoft Office
applications, try enabling Accessibility. If that does not help improve recognition, try defining a new window.

How defined windows works

When you use Defined Window, you use the mouse pointer to draw a rectangle around the object that Silk
Test Classic cannot record and then assign a name to the object. When you save your work, Silk Test
Classic stores the name and the object’s coordinates in a test script. When you replay the script, Silk Test
Classic uses a Click() method on the center of the area you have specified.

Notes

• Defining a new window is only available for projects or scripts that use the Classic Agent.
• Defining a new window is not available for Java applications or applets.
• Defined Window does not support nesting of defined objects.
• Defined Window is location-based and uses pixel coordinates to locate the object in the parent window.

Thus, if the layout of your parent window changes and/or the object’s coordinates change frequently,
you may need to re-define the window in order for Silk Test Classic to correctly declare the object.

• If you draw a rectangle around an unrecognized object, but also include an object that Silk Test Classic
easily recognizes, Silk Test Classic records both and lists the easily recognized object first.

332 | Using Advanced Techniques with the Classic Agent

Recording Window Declarations for the Main Window and Menu
Hierarchy

1. Start your application.

2. Click File > New in Silk Test Classic.

3. Click Test Frame and then click OK. Silk Test Classic displays the New Test Frame dialog box.

4. If you are using the Open Agent, follow the appropriate wizard to select your application, depending on
whether you want to test an application that uses a Web browser or not. When you have stepped
through the wizard, the Choose name and folder of the new frame file dialog box opens.

5. In the Frame filename (Classic Agent) or the File name (Open Agent) text box, accept the default test
frame name (frame.inc), or type a new name.

By default, Silk Test Classic names the new test frame file frame.inc, denoting it is an include file that
contains declarations. If you change the default name of the file, make sure to include the file
extension .inc in the new file name. If you do not, the file is not identified to Silk Test Classic as an
include file and Silk Test Classic will give it a .txt extension and report a compilation error when you click
OK to create the file.

6. If you are using the Classic Agent, select your application from the Application list box.

The Application list box displays all applications that are open and not minimized. If your test
application is not listed, click Cancel, open your application, and click File > New again.

7. Click OK (Classic Agent) or Save (Open Agent). Silk Test Classic creates the new test frame file.
Window declarations display in the test plan editor, which means that the declarations for individual GUI
objects can be expanded to show detail, collapsed to hide detail, and edited if necessary.

Recording a Window Declaration for a Dialog Box
After you record your test application's main window and menus, you record all the dialog boxes you want
to test. Use this procedure once for each dialog box in your application.

This functionality is available only for projects or scripts that use the Classic Agent.

1. Make sure that the test frame (.inc) file that contains the declarations for the application’s main
window is open.

The dialog box declarations will be appended to this file.

2. Click Record > Window Declarations.

3. Make your application active and invoke one of its dialog boxes, referred to in this procedure as the
target dialog box. If necessary, arrange windows so that you can see the target dialog box and position
the cursor on the title bar of the target dialog box.

Note: As you move the cursor toward the title bar, the contents of the Window Declaration list
box change dynamically to reflect the object at which you’re pointing, as well as any contained
objects. When the cursor is positioned correctly, the Window Detail group box (upper left) shows
the caption of the dialog box in the Identifier field.

4. Press Ctrl+Alt. The declaration is frozen in the lower half of the dialog box.

5. Close the target dialog box.

6. In the Record Window Declarations dialog box, click Paste to Editor. The information in the Record
Window Declarations dialog box is cleared, and the newly recorded declarations are appended to the
test frame after the last recorded declaration.

7. If you are finished recording declarations, click Close on the Record Window Declarations dialog box.
Otherwise, click Resume Tracking to begin recording the declarations for another dialog box.

Many applications begin with a login window, which is not accounted for when you record the test frame.
Therefore, make sure that you invoke this window and record a declaration for it when you are recording
the declarations for your application’s dialog boxes.

Using Advanced Techniques with the Classic Agent | 333

Defining a New Window
Defining a new window can improve how Silk Test Classic records Microsoft Office-based and Internet
Explorer applications.

You must have an include file open in order to define a new window.

This functionality is available only for projects or scripts that use the Classic Agent.

1. Click Record > Defined Window.

2. Click Draw Rectangle.

3. Click and drag to form a rectangle around the object you want Silk Test Classic to record.

Note: The position of the rectangle is recorded in pixels in the Window Rectangle field.

4. Once you lift the mouse button, click Add.

The Update Window Declaration Detail confirmation message box opens, containing a message
similar to the following:
The window declarations in the following files will be updated c:\program files\<SilkTest installation
directory>\silktest\projects\aaa\frame.inc.

5. Click OK. The information is saved to the specified file.

The file opens. Scroll to see the new DefinedWin with the name you assigned and a tag with the
coordinates of the rectangle you drew.

 [-] DefinedWin StartWindow
 [] tag "(295,380-997,642)"

Specifying Tags
This functionality is available only for projects or scripts that use the Classic Agent.

When you are recording declarations, you can select any combination of tags to record by selecting check
boxes in the Tag Information group box in the Record Window Declarations dialog box. You can record
different tags for different objects. You can also specify which tags you want recorded by default.

Default tags

You can record more than one tag for an object. Doing so makes scripts less sensitive to changes when
the tests are run. For example, if you record a caption and a window ID for a control, then even if the
caption on the control changes (such as the caption "Case sensitive" changing to "Case is significant"), Silk
Test Classic can still find the control based on its window ID.

This is particularly an issue in situations where captions change dynamically, such as in MDI applications
where the window title changes each time a different child window is made active.

By default, when you record window declarations, each object is given two tags: the caption (if there is one)
and the Window ID (if there is one).

Note: Two tags are checked in the Tag Information box of the Record Declarations dialog box:
Caption and Window ID.

For example, here is the default recorded declaration for the Case sensitive check box:

CheckBox CaseSensitive
 multitag "Case sensitive"
 "$1041"

Silk Test Classic specifies multiple tags in a declarations file using the multitag statement. In the previous
example, the check box is declared with two tags:

• The string "Case sensitive", which is its caption.

334 | Using Advanced Techniques with the Classic Agent

• The string "$1041", which is its Window ID.

Using class-specific multiple tags

You can specify which multiple-tag types to use for an individual class. For example, maybe you don’t want
window ID used with a particular class, even though you want window ID used with all other classes. You
can specify this by including a setting statement in the declaration for the class.

For additional information, see the winclass Declaration.

Multiple tags at runtime

When running your test cases, the Agent tries to resolve each part of a multiple tag from top to bottom until
it finds an object that matches.

Consider this declaration:

CheckBox CaseSensitive
 multitag "Case sensitive"
 "#1"

When Silk Test Classic encounters a reference to Find.CaseSensitive, it first looks for a check box
whose caption is "Case sensitive". If it finds one, it uses it. If it doesn’t find one, it looks for the first check
box in the dialog box (because of the index tag "#1"). If there is one, Silk Test Classic uses it. If none of the
tags resolve, an exception is raised.

For complete information about tag resolution, see multitag Statement.

Changing tags

Sometimes you need to change tags from what Silk Test Classic named them by default.

Why change the tags

By default, the GUI object’s caption and index are used for the tag, because they are the most portable. In
most cases, these are what you want to use.

However, there are situations in which the default tag is not suitable.

Example: Changing a tag

You might want to provide more than one caption for a control if the control’s caption
can change dynamically. For example, if a push button sometimes says Yes and
sometimes says Continue, you could change the tag as shown here:

PushButton Confirm
 multitag "Yes"
 "Continue"

The Agent would find the pushbutton if it had either caption.

To separate different tag components, use the pipe character: |.

Modify a Declaration in the Record Window Declarations Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can modify the identifier or tag for a dialog box as you record it.

1. In the Window declaration list box at the bottom of the Record Window Declarations dialog box, click
the line for the object containing the tag or identifier you want to change. Silk Test Classic updates the
Window Detail group box in the upper left of the dialog box to include the information from the line you
clicked.

Using Advanced Techniques with the Classic Agent | 335

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

2. To change the identifier, replace the existing identifier with one of your choice.

3. To change the tag, select the tag types you want to include in the generated multitag.

You can edit the contents of each tag type in the text fields in the Tag Information group box.

The Window declaration list box updates dynamically as you enter the new information.

4. When finished making modifications, click Paste to Editor. Silk Test Classic appends the declarations
for the dialog box to the test frame file.

Changing the Tags Recorded by Default
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. Click Record > Window Declarations.

2. Click Options.

3. On the Record Window Declarations Options dialog box, check and uncheck the check boxes in the
Default multitags box as appropriate.

4. Click OK. The next time you record window declarations, Silk Test Classic will use the tag types you
selected by default. You can always override the defaults for a particular object.

Turning Off Multiple Tag Recording
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. Click Record > Window Declarations.

2. Click Options. Silk Test Classic displays the Record Window Declarations Options dialog box.

3. Uncheck the Record multiple tags check box. The check boxes in the Default tag group box become
option buttons.

4. Select the tag type you want Silk Test Classic to use by default.

5. Click OK.

When you record window declarations, Silk Test Classic defaults to the tag type you selected and record
the tag in a tag statement. You can always override the default for a particular object.

Use the member-of Operator to Access Data
Use the member-of operator (.) to reference the data defined in a window declaration. For example, if a
script needs to know which control should have focus when the Find dialog box is first displayed, it can
access this data from the window declaration with this expression:

Find.lwTabOrder[1]

Similarly, to set focus to the third control in the list:

Find.lwTabOrder[3].SetFocus ()

Record Window Declarations Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Record Window Declarations dialog box to record descriptions, called window declarations, of
the GUI objects in your application and insert them into a declarations file, called an include file (*.inc).

Click Record > Window Declarations.

The declaration is a combination of class, identifier, and tag. As you move the mouse over your application,
the contents of the dialog box change to reflect the object under the mouse. When you position the mouse

336 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

over the object you want to declare and press Ctrl+Alt, the Record Window Declarations dialog box
freezes the current contents, in effect, taking a snapshot of the declaration.

Silk Test Classic references the declarations in the include file to identify the objects named in your test
scripts. You tell Silk Test Classic which include file(s) to reference through the Use Files field in the
Runtime Options dialog box.

Window detail area

The Window Detail area displays the class, identifier, and tag of the object selected in the Window
Declaration list and is used to edit the class and identifier of an object.

Class The class is the GUI object type and determines which methods can operate on the object.

Identifier The identifier is a unique and logical, generalized platform-independent name for referring to
an object. The identifier is the name you use to refer to an object in your test case. It is
arbitrary—you can use any unique identifier you want for an object. By default Silk Test
Classic constructs the identifier from the object’s label or caption, removing any embedded
spaces or accelerators. You can edit the identifier, for example, to make it more descriptive.
The change will be reflected in the list box. To change the default identifier, see Options.

Tag Not modifiable. A tag is the actual internal name that Silk Test Classic uses to refer to an
object. By default, Silk Test Classic constructs the tag from the caption and Window ID of the
object. You can also construct the tag from other components of the object in the Tag
information area. You can use the Record Windows Declarations Options dialog box to
change how Silk Test Classic constructs the default tag.

Class Map Click to open the Class Map dialog box. Use this dialog box to change the class of a custom
object. For additional information, see Perform a Class Mapping when a Declaration for a
CustomWin Appears in the Record Window Declaration Dialog.

Tag information area

The Tag Information area displays the components that Silk Test Classic can use to construct the tag for
the object. Once you have paused tracking, Silk Test Classic displays the information for the currently
selected object in the Window declaration list box. Check the corresponding check box for the
components that you want Silk Test Classic to use. By default, Caption, Window ID, and Attributes are
checked.

To edit the tag information, first select the object in the Window declaration list box and then edit the tag
information for the component in the corresponding field.

Caption Caption or label as it appears to the user.

Prior text The closest static text above or to the left of the object. You must use the ^ character to
preface a prior text tag.

Index The order, from top left to bottom right, in relation to other sibling objects of the same class.
You must use the # character to preface an index tag.

Window ID GUI-specific ID. You must use the $ character to preface a window ID tag.

Location The physical location, expressed as a pair of (x, y) coordinates. You must use the @
character to preface a location tag.

Attributes Any HTML attribute you want to record, including custom attributes. You may use the ? and *
wildcards in attribute values. The * character matches zero or more characters. The ?
character matches exactly one character. The following characters are not allowed in
attribute names: (space) ~`!@#$%^&*()_-+={[}]|\:;"’<,>.?/

Using Advanced Techniques with the Classic Agent | 337

The values of attributes have been tested for up to 900 characters and there is a limit of
4096 characters for the total number of characters you can paste or type into the Attributes
field.

General

Keep on top When checked, the Record Window Declarations dialog box is kept in the
foreground even when you are tracking the cursor over your application. By default,
this check box is checked.

Edit Class
Attributes...

Click to display the Edit Class Attributes dialog box, where you can select the
attributes you want to record for HTML objects when you record window declarations
and play back test scripts. To maintain backward compatibility, recording attributes is
turned off by default. For additional information, see Edit Class Attributes dialog.

Buttons

Resume
Tracking

Click to resume tracking. After pasting declarations into the editor, when you are ready to
record another declaration, click Resume Tracking.

Paste to
Editor

Click to insert the "frozen" declarations in the Window Declaration list box into the active
script or include file. If neither an include nor script file is active, Silk Test Classic creates
and pastes the declaration to an untitled include file. The Record Window Declarations
dialog box is cleared. Each time you select Paste to Editor, Silk Test Classic inserts the
declarations at the end of the same file. You can paste up to 4096 characters.

Copy to
Clipboard

Use instead of Paste to Editor, if you want to paste declarations elsewhere in the file or if
you write your test scripts with another editor than the one provided with Silk Test Classic.

Click to copy the declarations in the list box to the clipboard. The Record Window
Declarations dialog box is cleared. Use Edit > Paste to insert the declarations into a
different editing window or to insert them into the current window at the location of your
choice.

Options Click to open the Record Window Declarations Options dialog box, which lets you
customize settings for the default tag, identifier, and the recording dialog box. For
additional information, see Record Window Declarations Options dialog.

Close Click to close the dialog box. If you have pasted declarations into a file, Silk Test Classic
displays the editing window that contains your declarations.

Window declaration list box

The Window declaration list box displays the declarations you have recorded. The GUI hierarchy shows
the class, identifier, and tag of the recorded object and its child (subordinate) objects. The declarations for
child objects are embedded within the declaration of the parent (superior) object and are shown indented in
the list box.

Press Ctrl+Alt to pause tracking - press these hotkeys to freeze the Record Window Declarations
dialog box and capture the contents of the current window. The object that the mouse is over when you
press Ctrl+Alt is selected in the Window declaration list box and the tag information of that object is
displayed in the Window detail area.

To modify the declaration of an object displayed in the list box, select it. The class, identifier, and tag of the
selected object are displayed in the Window detail area, where you can edit this information.

By default, custom objects of class CustomWin are shown in red on color monitors (bold on black-and-
white monitors). This highlighting serves as a visual reminder for you to map the class of custom objects to
a standard class supported by Silk Test Classic. Also, by default, custom objects of class Ignore are not
included in the declarations. To change the default behaviors, click Options.

338 | Using Advanced Techniques with the Classic Agent

Record Window Declarations Options Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Record Window Declarations Option dialog box to customize the settings for the default tag,
identifier, and recording dialog box.

Click Options on the Record Window Declarations dialog box.

Default multitags area

Controls the manner in which Silk Test Classic constructs the tag. The defaults are Caption, Window ID,
and Attributes. If this check box is not available, see the description of the multiple tags agent option.

Caption Check to indicate that the caption or label, as it appears to the user, should be used to
construct the tag.

Prior text Check to indicate that the prior text, which is the closest static text above or to the left of the
object, should be used to construct the tag.

Index Check to indicate that the order, from top left to bottom right, in relation to other sibling
objects of the same class should be used to construct the tag.

Window ID Check to indicate that the GUI-specific ID should be used to construct the tag.

Location Check to indicate that the physical location, expressed as a pair of (x, y) coordinates, should
be used to construct the tag.

Attributes Check to indicate that the HTML attribute you want to record, including custom attributes,
should be used to construct the tag.

If you uncheck the Record multiple tags check box, the Default Multitags area becomes the
Default Tag group box, and the check boxes for the tag types become option buttons,
allowing you to choose only one tag component.

Window declaration identifiers area

Controls the default manner in which Silk Test Classic constructs the identifiers in the declaration. By
default, this value is set to use the caption.

Window declaration viewer area

Lets you determine how Silk Test Classic displays and declares objects of custom classes. By default, both
check boxes are unchecked.

Record
multiple
tags

If checked, Silk Test Classic allows you to capture multiple identifiers in the declarations.
Silk Test Classic records the tags that are selected in this dialog box. By default, this check
box is checked.

Note: if you change the setting for Record Multiple tags here, the check box on the
Recorder Options dialog box is automatically updated.

Identifiers and Tags
This section describes identifiers and tags.

Captions for Objects
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Using Advanced Techniques with the Classic Agent | 339

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

By default, Silk Test Classic follows these steps to create a Caption tag for an object:

1. Silk Test Classic uses the literal label or caption of the object, if there is one.
2. If the object has a sibling object with the same label or caption, Silk Test Classic appends the object’s

index number to the tag. The index number is the object’s order of appearance in relation to other
sibling objects of the same class, from top left to bottom right within the parent object.

For example, if a dialog box has two objects labeled Find, the tag of the one nearest the top left of the
dialog box is Find[1] and the tag of the one nearest the bottom right of the dialog box is Find[2].

3. If the object does not have a label or caption, Silk Test Classic uses the index number.

For example, if a dialog box contains two unnamed text boxes, the text box closest to the upper left
corner of the dialog box has the tag #1, and the other has the tag #2.

Overview of Identifiers
When you record test cases, Silk Test Classic uses the window declarations in the test frame file to
construct a unique identifier, called a fully qualified identifier, for each GUI object. The fully-qualified
identifier consists of the identifier of the object, combined with the identifiers of the object’s ancestors. In
this way, the 4Test commands that are recorded can manipulate the correct object when you run your test
cases.

If all identifiers were unique, this would not be necessary. However, because it is possible to have many
GUI objects with the same identifier, for example the OK button, a method call must specify as many of the
object’s ancestors as are required to uniquely identify it.

The following table shows how fully qualified identifiers are constructed:

GUI Object Fully-Qualified Identifier Example

Main Window The main window’s identifier TextEdit.SetActive ()

Dialog The dialog’s identifier Find.SetActive ()

Control The identifiers of the dialog and the
control

Find.Cancel.Click ()

Menu item The identifiers of the main window, the
menu, and the menu item

TextEditor.File.Open.Pick ()

The fully qualified identifier for main windows and dialog boxes does not need to include ancestors
because the declarations begin with the keyword window.

An identifier is the GUI object’s logical name. By default, Silk Test Classic derives the identifier from the
object’s actual label or caption, removing any embedded spaces or special characters (such as
accelerators). So, for example, the Save As label becomes the identifier SaveAs. Identifiers can contain
single-byte international characters, such as é and ñ.

If the object does not have a label or caption, Silk Test Classic constructs an identifier by combining the
class of the object with the object’s index. When you are using the Classic Agent, the index is the object’s
order of appearance, from top left to bottom right, in relation to its sibling objects of the same class. For
example, if a text box does not have a label or caption, and it is the first text box within its parent object, the
default identifier is TextField1. When you are using the Open Agent, the index depends on the underlying
technology of the application under test.

Note: The identifier is arbitrary, and you can change the generated one to the unique name of your
choice.

Overview of Tags
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

340 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

The tag is the actual name of the object, as opposed to the identifier, which is the logical name. Silk Test
Classic uses the tag to identify objects in the application under test when recording and when executing
test cases. Test cases never use the tag to refer to an object; they always use the identifier.

Alternatively, you can use locator keywords, rather than tags, to create scripts that use dynamic object
recognition and window declarations. Or, you can include locators and tags in the same window
declaration.

There are several types of tags:

Tag Type Description

Caption The caption or label as it appears to the user.

Prior text Closest static text above or to the left of the object. Prior text tags begin with the ^
character.

Index The order (from top left to bottom right) in relation to its sibling objects of the same
class. Index tags must begin with the # character.

Window ID The GUI-specific internal ID of the object. Window ID tags begin with the $ character.

Location The physical location (coordinates) of the object. Location tags begin with the @
character.

Attributes The attribute name(s) of the Html object. If the object is not an Html object, nothing is
recorded.

Not all types of objects have all tags. Dialog boxes, for example, do not have window IDs, so they cannot
have a Window ID tag.

In the Record Window Declarations dialog box, if you record declarations for the Case sensitive check
box in the Text Editor’s Find dialog box, the possible tags for the check box include:

Tag Type Value Comments

Caption Case sensitive

Prior text ^Find What: "Find What" is the nearest static text above or to the left of
the check box

Index #1 The Case Sensitive check box is the first check box in the
dialog

Window ID $1041

Location @(57,75)

Attributes [blank] Attributes are only recorded for Html objects.

These are the possible tags that can be used by Silk Test Classic to identify the Case sensitive check box
when recording or executing test cases.

It is helpful to understand how Silk Test Classic identifies tags in browsers. For additional information, see
Comparison of DOM and VO.

Save the Test Frame
To save a test frame, click File > Save when the test frame is the active window. If it is a new file, it is
automatically named frame.inc. If you already have a frame.inc file, a number is appended to the file
name. You can click File > Save to select another name.

If you are working within a project, Silk Test Classic automatically adds the new test frame (.inc) to the
project.

When saving a file, Silk Test Classic does the following:

Using Advanced Techniques with the Classic Agent | 341

• Saves a source file, giving it the .inc extension. The source file is an ASCII text file, which you can
edit. For example: myframe.inc.

• Saves an object file, giving it the .ino extension. The object file is a binary file that is executable, but
not readable by you. For example: myframe.ino.

Specifying How a Dialog Box is Invoked
4Test provides two equivalent ways to invoke a dialog box:

• Use the Pick method to pick the menu item that invokes the dialog box. For example:
TextEditor.File.Open.Pick ()

• Use the Invoke method: Open.Invoke ()

While both are equivalent, using the Invoke method makes your test cases more maintainable. For
example, if the menu pick changes, you only have to change it in your window declarations, not in any of
your test cases.

The Invoke method

To use the Invoke method, you should specify the wInvoke variable of the dialog box. The variable
contains the identifier of the menu item or button that invokes the dialog box. For example:

window DialogBox Open
 tag "Open"
 parent TextEditor
WINDOW wInvoke = TextEditor.File.Open

Class Attributes
This section describes class attributes.

Attributes Tag Notation
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The attributes tag does not use the [n] notation to distinguish between windows with the same value of the
tag. If the attributes tag is comprised only of an attribute that is not unique, then the same tag is recorded
for multiple objects. The duplication is not detected until Silk Test Classic tries to match the tag at runtime,
at which time an E_WINDOW_NOT_UNIQUE exception will be raised.

If you anticipate that multiple windows may have the same value for the attributes tag, then use
multitags instead (the attributes tag will have precedence).

Enabling Class Attribute Recording
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You must turn on attribute recording in order for Silk Test Classic to capture Html class attributes.

1. Click Record > Window Declarations, then click Options.

2. On the Record Window Declarations Options dialog box, check the Attributes check box in the
Default multi-tag area.

As with other attributes, if you want to record only the Attributes tags, uncheck the Record multiple
tags check box. As with previous versions of Silk Test Classic, if you want to record multiple tags, leave
the Record multiple tags check box checked.

3. Click OK to save your selection.

342 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Recording Existing Html Class Attributes and Specifying the Hierarchy
of Attributes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You must enable attribute recording to allow Silk Test Classic to capture Html class attribute information
while recording.

1. Click Record > Window Declarations, then click Edit Class Attributes.

2. On the Edit Class Attributes dialog box, select Browser DOM from the Set list box.

3. Select a class from the Class list box.

For example, select HtmlCheckBox to specify attributes within the HtmlCheckBox class that you want
to record.

4. After you have selected a class, select the attribute you want to record from the list of attributes in the
Defined attributes list box.

5. Click >> to move the attribute to the Class attributes pane.

You can only select a single attribute at a time.

6. Select an attribute, then click Move Up or Move Down to indicate the order in which you want the
attributes to appear when you paste the window declaration to the Editor.

You may select only a single attribute at a time.

7. Click OK to save your work and return to the Record Window Declarations dialog box. Silk Test
Classic records the attribute tags in the order you have specified.

You can record custom class attributes in a test that uses hierarchical object recognition and Silk Test
Classic will record the attribute tags in the order you have specified.

For example, record four attributes for the HtmlImage class. First you select id from the Defined
Attributes list box, then you click >> to move it to the Class Attributes list box. You repeat that process for
the name, rel, and src attributes. Once the four attributes are listed in the Class Attributes list box, you
use Move Up and Move Down so that the attributes display in the order you want them to display.

After you click OK, Silk Test Classic displays the Record Window Declarations dialog box. Whenever Silk
Test Classic recognizes an HtmlImage object, Silk Test Classic records the attributes you specified on the
Edit Class Attributes dialog box. The full string for the attributes tag information that Silk Test Classic
records is:

&id='myButton';name='button';src='file:???D:?buttonnext.gif';rel='start'

Adding a New Class Attribute and Specifying the Hierarchy of
Attributes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can add a new attribute to the list that Silk Test Classic records for an Html class and specify the order
in which the attributes are recorded. Add custom attributes to a Web application to make a test more
specific.

To capture class attribute information, you must first enable attribute recording.

1. Click Record > Window Declarations, then click Edit Class Attributes.

2. On the Edit Class Attributes dialog box, select Browser DOM from the Set list box.

3. Select a class from the Class list box.

For example, select HtmlCheckBox to specify attributes within the HtmlCheckBox class that you want
to record.

Using Advanced Techniques with the Classic Agent | 343

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

4. Type the name of the new attribute in the text box above Add and Remove, then click Add.

There is a 62 character limit to attribute names. You may type in the name or you can copy and paste
the name from the text editor. If you are typing in a long name, the field stops accepting characters after
the 62nd character. If you paste in a long name, the name is truncated at 62 characters. The following
characters are not allowed in attribute names: (space) ~`!@#$%^&*()_-+={[}]|\:;"’<,>.?/

5. Click >> to move the new attribute to the Class Attributes pane.

6. Select an attribute, then click Move Up or Move Down to indicate the order in which you want the
attributes to display when you paste the window declaration to the Editor.

You may select only a single attribute at a time.

7. Click OK to save your work and return to the Record Window Declarations dialog box. Silk Test
Classic will now record the new attribute tags in the order you specified. To record a test that uses the
custom Html class attribute, you must use the Classic Agent.

Deleting a Class Attribute
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can delete an Html class attribute or a Java SWT custom class attribute if you want Silk Test Classic to
avoid recording it.

1. Click Record > Window Declarations, then click Edit Class Attributes.

2. On the Edit Class Attributes dialog box, select the name of the attribute you want to delete from the
Defined attributes list box.

3. Click Remove. The name is removed from the list of attributes. It is possible to delete an attribute from
the Defined attributes list box and still have it display in the Class attributes list box. An attribute
remains in the Class attributes list box until you move it to the Defined attributes list box and then
delete it, if you like.

4. Click OK to save your work and return to the Record Window Declarations dialog box, or click Cancel
to avoid deleting the attribute.

Edit Class Attributes Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use to select which attributes you want to record for selected classes in browser applications.

Click Options > Class Attributes or click Edit Class Attributes on the Record Window Declarations
dialog box.

Class information

Class Default as well as available Html classes such as HtmlCheckBox and HtmlTable. Select the
class for which you want to set the list of attributes that Silk Test Classic records. Silk Test Classic
provides a Default class that is set by default to record the ID attribute only and applies it to all
classes. For example, if there are no other attributes defined for a class such as HtmlText, the
HtmlText class records whatever attribute is selected for the <Default> class, if any. At this
time, the only class available for Java SWT is Default. When you specify the Default class for
Java SWT, the attributes that you select apply to all classes.

Attribute selection

Defined
attributes

Lists the attributes that are available for you to record.

344 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Class
attributes

Lists the attributes that you have selected for Silk Test Classic to record for the listed class.
Silk Test Classic can only record a particular attribute if that attribute is defined for the Html
object you are recording. For example, you have set up your Class Attributes list in the
Edit Class Attributes dialog box so that Silk Test Classic records only the "name" attribute
for the HtmlImage class. Silk Test Classic records the "name" attribute for HtmlImage
objects as long as the HtmlImage objects actually have a …name="value" attribute
defined. If there is no name="value" attribute defined for the HtmlImage, Silk Test Classic
records nothing.

>> Moves the selected attribute from the Defined Attributes pane to the Class Attributes
pane. You may only select a single attribute at a time.

<< Moves the selected attribute from the Class Attributes pane to the Defined Attributes
pane. You may only select a single attribute at a time.

Add text Is the blank text field. Type the name of the new attribute in this field, then click Add. There
are two ways to insert attributes into the Class attributes field on the Edit Class
Attributes dialog box. You may type the name or you can copy and paste the name from
the text editor.

There is a 62 character limit to attribute names. If you are typing a long name, the field
stops accepting characters after the 62nd character. If you paste in a long name, the name
is truncated at 62 characters.

The following characters are not allowed in attribute names:

(space) ~`!@#$%^&*()_-+={[}]|\:;"’<,>.?/

Add Click to add the new attribute to the list of Defined attributes for the specified class. After
you have used Add to include the attribute, use the Move Up and Move Down buttons to
indicate the order in which you want the attributes to be recorded.

Remove Click to remove the selected attribute from the list of Defined attributes for the specified
class.

Move Up Click to move the selected attribute up the list of captured attributes. You use this list to
indicate the hierarchy of how the attributes are recorded. The attributes are recorded in the
order you specify here.

Move Down Click to move the selected attribute down the list of captured attributes. You use this list to
indicate the hierarchy of how the attributes are recorded. The attributes are recorded in the
order you specify here.

OK Click to save your work and to close the dialog box. Silk Test Classic will now record the
new attribute tags that you have entered. When you click OK, the information in the Edit
Class Attributes dialog box is saved to the attributes.ini file. We strongly
recommend that you only use the Edit Class Attributes dialog box to edit the information
within this file.

Improving Object Recognition with Microsoft Accessibility
You can use Microsoft Accessibility (Accessibility) to ease the recognition of objects at the class level.
There are several objects in Internet Explorer and in Microsoft applications that Silk Test Classic can better
recognize if you enable Accessibility. For example, without enabling Accessibility Silk Test Classic records
only basic information about the menu bar in Microsoft Word and the tabs that appear. However, with
Accessibility enabled, Silk Test Classic fully recognizes those objects.

Using Advanced Techniques with the Classic Agent | 345

Example

Without using Accessibility, Silk Test Classic cannot fully recognize a DirectUIHwnd
control, because there is no public information about this control. Internet Explorer uses
two DirectUIHwnd controls, one of which is a popup at the bottom of the browser
window. This popup usually shows the following:

• The dialog box asking if you want to make Internet Explorer your default browser.
• The download options Open, Save, and Cancel.

When you start a project in Silk Test Classic and record locators against the
DirectUIHwnd popup, with accessibility disabled, you will see only a single control. If
you enable Accessibility you will get full recognition of the DirectUIHwnd control.

Enabling Accessibility
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you are testing an application and Silk Test Classic cannot recognize objects, you should first enable
Accessibility. Accessibility is designed to help Silk Test Classic recognize objects at the class level. If that
does not help with recognition, then you should try defining a new window by clicking Record > Defined
Window.

Accessibility is turned off by default, and you need to enable your extension as usual. There are two ways
to enable accessibility:

• If you are using the Basic Workflow, Silk Test Classic is usually able to do this automatically when you
check the Enable Accessibility check box on the Extension Settings dialog box.

• If you are configuring your extension manually, you can enable Accessibility by checking the
Accessibility check box on the Extension Enabler and the Extensions Option dialog box.

Adding Accessibility Classes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use accessibility to help Silk Test Classic better identify unrecognizable objects. The information you add to
the list of classes is stored in the accex.inc file, which is installed by default in the <Silk Test
installation directory>\Extend or <Project name>\extend directory.

You cannot add duplicate or blank class names.

1. Open the application containing the unrecognizable objects.

2. Open Silk Test Classic, then click Record > Class > Accessibility.

3. On the Windows Accessibility dialog box, click and drag the Finder tool icon over the object you want
to identify. A black rectangle displays around the edge of the control. When you release the mouse
button, the object's information displays in the Name and Class text boxes.

4. Click Add to move the class name to the list of Accessibility classes that Silk Test Classic can identify,
then click OK.

Improving Object Recognition with Accessibility
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

There are several objects in Internet Explorer and Microsoft applications that Silk Test Classic can better
recognize if you enable Accessibility. For example, without enabling Accessibility Silk Test Classic records

346 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

only basic information about the menu bar in Microsoft Word and the tabs that appear in Internet Explorer
7.0. However, with Accessibility enabled, Silk Test Classic fully recognizes those objects.

Accessibility is not available for Java applications or applets.

Comparison of what Silk Test Classic records

Without Accessibility enabled on Microsoft Excel, Silk Test Classic records the following if the mouse points
to the File command on the main toolbar:

[+] CustomWin MenuBar
[+] multitag "[MsoCommandBar]Menu Bar"
[] "[MsoCommandBar]$0[1]"
[+] CustomWin TypeAQuestionForHelp
[+] multitag "[RichEdit20W]Type a question for help"
[] "[RichEdit20W]$16075636"
[+] CustomWin Standard
[+] multitag "[MsoCommandBar]Standard"
[] "[MsoCommandBar]$0[2]"
...

However, if you record the same test case with Accessibility enabled, Silk Test Classic is able to record the
following:

[+] AccObject WorksheetMenuBar
 [+] multitag "Worksheet Menu Bar"
 [] "$window"
[+] AccObject WorksheetMenuBar2
 [+] multitag "Worksheet Menu Bar[2]"
 [] "$menu bar[2]"
 [+] AccMenuItem File
 [+] multitag "File"
 [] "$menu item[1]"
 [+] AccMenuItem Edit
 [+] multitag "Edit"
 [] "$menu item[2]"
 [+] AccMenuItem View
 [+] multitag "View"
 [] "$menu item[3]"
 [+] AccMenuItem Insert
 [+] multitag "Insert"
 [] "$menu item[4]"
 [+] AccMenuItem Format
 [+] multitag "Format"
 [] "$menu item[5]"
…

With Accessibility enabled Silk Test Classic is able to record more than simple details about the File menu
command.

Silk Test Classic stores the information about Accessibility classes in the accex.inc file which is installed
by default in the <Silk Test installation directory>/Extend or <Project name>\extend
directory. The accex.inc file comes pre-loaded with several classes, including the MsoCommandBar, the
class of the Microsoft Office menu bar.

Removing Accessibility Classes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You use Accessibility to help better identify unrecognizable objects. However, you may want to delete
classes from the list of classes you created in order to clean up your .inc file or to prevent recognition of
classes.

Using Advanced Techniques with the Classic Agent | 347

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

1. Click Record > Class > Accessibility.

2. On the Windows Accessibility dialog box, select the name of the class you want to remove from the
list of Accessibility classes.

3. Click Remove to delete the class name, then click OK.

The information is removed from the list of classes in the accex.inc file. The accex.inc file is installed
by default to the <SilkTest installation directory>\Extend or <name of project>\extend
directory.

Calling Windows DLLs from 4Test
This section describes how you can call Windows DLLs from 4Test.

Note: The Open Agent supports DLL calling for both 32-bit and 64-bit DLL calls, while the Classic
Agent supports DLL calling only for 32-bit calls.

Silk Test Classic supports only the _stdcall calling convention.

Note: In some versions of Silk Test Classic, you can also use the _cdecl calling convention, although
it is not officially supported. The _cdecl calling convention does not work with Silk Test 14.0 or later.
Using the _cdecl calling convention might lead to unexpected failures of previously functioning DLL
calls when migrating from the Classic Agent to the Open Agent or when upgrading Silk Test Classic to
a newer version in which _cdecl does not work. If you are facing such failing DLL calls, ensure that
you are using the _stdcall calling convention with the _stdcall naming decoration rules applied. For
additional information on the DLL calling conventions, see /Gd, /Gr, /Gv, /Gz (Calling Convention).

Aliasing a DLL Name
If a DLL function has the same name as a 4Test reserved word, or the function does not have a name but
an ordinal number, you need to rename the function within your 4Test declaration and use the 4Test alias
statement to map the declared name to the actual name.

For example, the exit statement is reserved by the 4Test compiler. Therefore, to call a function named
exit, you need to declare it with another name, and add an alias statement, as shown here:

dll "mydll.dll"
my_exit ()
alias "exit"

Calling a DLL from within a 4Test Script
A declaration for a DLL begins with the keyword dll. The general format is:

dll dllname.dll
prototype
[prototype]...

where dllname is the name of the dll file that contains the functions you want to call from your 4Test
scripts and prototype is a function prototype of a DLL function you want to call.

Environment variables in the DLL path are automatically resolved. You do not have to use double
backslashes (\\) in the code, single backslashes (\) are sufficient.

The Open Agent supports calling both 32bit and 64bit DLLs. You can specify which type of DLL the Open
Agent should call by using the SetDllCallPrecedence method of the AgentClass class. If you do not
know if the DLL is a 32bit DLL or a 64bit DLL, use the GetDllCallPrecedence function of the
AgentClass Class. The Classic Agent provides support for calling 32bit DLLs only.

Silk Test Classic supports only the _stdcall calling convention.

348 | Using Advanced Techniques with the Classic Agent

http://msdn.microsoft.com/en-us/library/46t77ak2.aspx

Note: In some versions of Silk Test Classic, you can also use the _cdecl calling convention, although
it is not officially supported. The _cdecl calling convention does not work with Silk Test 14.0 or later.
Using the _cdecl calling convention might lead to unexpected failures of previously functioning DLL
calls when migrating from the Classic Agent to the Open Agent or when upgrading Silk Test Classic to
a newer version in which _cdecl does not work. If you are facing such failing DLL calls, ensure that
you are using the _stdcall calling convention with the _stdcall naming decoration rules applied. For
additional information on the DLL calling conventions, see /Gd, /Gr, /Gv, /Gz (Calling Convention).

Prototype syntax

A function prototype has the following form:

return-type func-name ([arg-list])

where:

return-
type

The data type of the return value, if there is one.

func-name An identifier that specifies the name of the function.

arg-list A list of the arguments passed to the function, specified as follows:

[pass-mode] data-type identifier

where:

pass-mode Specifies whether the argument is passed into the function (in), passed
out of the function (out), or both (inout). If omitted, in is the default.

To pass by value, make a function parameter an in parameter.

To pass by reference, use an out parameter if you only want to set the
parameter’s value; use an inout parameter if you want to get the
parameter’s value and have the function change the value and pass the
new value out.

data-type The data type of the argument.

identifier The name of the argument.

You can call DLL functions from 4Test scripts, but you cannot call member functions in a DLL.

Example

The following example writes the text hello world! into a field by calling the
SendMessage DLL function from the DLL user32.dll.

use "mswtype.inc"
use "mswmsg32.inc"

dll "user32.dll"
 inprocess ansicall INT SendMessage (HWND hWndParent, UINT
msg, WPARAM wParam, LPARAM lParam) alias "SendMessageA"

testcase SetTextViaDllCall()
 SendMessage(UntitledNotepad.TextField.GetHandle(),
WM_SETTEXT, 0, "hello world! ")

Using Advanced Techniques with the Classic Agent | 349

http://msdn.microsoft.com/en-us/library/46t77ak2.aspx

Passing Arguments to DLL Functions

Valid data types for arguments passed to DLL functions

Since DLL functions are written in C, the arguments you pass to these functions must have the appropriate
C data types. In addition to the standard 4Test data types, Silk Test Classic also supports the following C
data types:

• char, int, short, and long
• unsigned char, unsigned int, unsigned short, and unsigned long
• float and double

Note: Any argument you pass must have one of these data types (or be a record that contains fields
of these types).

Passing string arguments

The char* data type in C is represented by the 4Test STRING data type. The default string size is 256
bytes.

The following code fragments show how a char array declared in a C struct is declared as a STRING
variable in a 4Test record:

// C declaration
typedef struct
{
...
char szName[32];
...
}

// 4Test declaration
type REC is record
...
STRING sName, size=32
...

To pass a NULL pointer to a STRING, use the NULL keyword in 4Test. If a DLL sets an out parameter of
type char* to a value larger than 256 bytes, you need to initialize it in your 4Test script before you pass it to
the DLL function. This will guarantee that the DLL does not corrupt memory when it writes to the
parameter. For example, to initialize an out parameter named my_parameter, include the following line of
4Test code before you pass my_parameter to a DLL:

my_parameter = space(1000)

If the user calls a DLL function with an output string buffer that is less then the minimum size of 256
characters, the original string buffer is resized to 256 characters and a warning is printed. This warning,
String buffer size was increased from x to 256 characters (where x is the length of the
given string plus one) alerts the user to a potential problem where the buffer used might be shorter than
necessary.

Passing arguments to functions that expect pointers

When passing pointers to C functions, use these conventions:

• Pass a 4Test string variable to a DLL that requires a pointer to a character (null terminated).
• Pass a 4Test array or list of the appropriate type to a DLL that requires a pointer to a numerical array.
• Pass a 4Test record to a DLL that requires a pointer to a record. 4Test records are always passed by

reference to a DLL.

350 | Using Advanced Techniques with the Classic Agent

• You cannot pass a pointer to a function to a DLL function.

Passing arguments that can be modified by the DLL function

An argument whose value will be modified by a DLL function needs to be declared using the out keyword.
If an argument is sometimes modified and sometimes not modified, then declare the argument as in and
then, in the actual call to the DLL, preface the argument with the out keyword, enclosed in brackets.

For example, the third argument (lParam) to the SendMessage DLL function can be either in or out.
Therefore, it is declared as follows:

// the lParam argument is by default an in argument
dll "user.dll"
LRESULT
SendMessage (HWND hWnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

Then, to call the DLL with an out argument, you use the keyword out, enclosed within brackets:

SendMessage (Open.hWnd, WM_GETTEXT, 256, [out] sText)

Passing window handles to a DLL function

If a parameter takes a window handle, use the hwnd property or the GetHandle method of the AnyWin
class to get the window handle you need.

Using DLL Support Files Installed with Silk Test
Classic
Silk Test Classic is installed with the following include files that contain all the declarations, data types, and
constants necessary for you to call hundreds of functions within the Windows API from your scripts.

msw32.inc Contains use statements for the include files that apply to 32-bit Windows:
mswconst.inc, mswtype.inc, mswfun32.inc, mswmsg32.inc, and
mswutil.inc.

By including msw32.inc in your 4Test scripts, you have access to all the information in
the other include files.

Note: The DLL functions declared in the files included in msw32.inc are aliased
to the W (wide-character) functions.

mswconst.inc Declares constants you pass to DLL functions. These constants contain style bits,
message box flags, codes used by the GetSystemMetrics function, flags used by the
GetWindow function, window field offsets for the GetWindowLong and the
GetWindowWord functions, class field offsets for the GetClassLong and
GetClassWord functions, and menu function flags.

mswfun32.inc Contains 4Test declarations for 32-bit functions in the user32.dll and
kernel32.dll files. The mswfun32.inc file provides wide character support. This
means that you no longer have to edit mswfun32.inc in order to call Windows DLL
functions. See the description of mswfun32.inc in the Dll declaration section.

mswmsg32.inc Declares 32-bit Microsoft Window messages, control messages, and notification codes.

mswtype.inc Declares many data types commonly used in the Windows API.

mswutil.inc Contains the following utility functions:

• PrintWindowDetail

• GetStyleBitList

Using Advanced Techniques with the Classic Agent | 351

• PrintStyleBits

Extending the Class Hierarchy
This section describes how you can extend the class hierarchy.

Classes
This section describes the 4Test classes.

Overview of Classes
The class indicates the type, or kind, of GUI object being declared.

Note: This is the 4Test class, not the class that the GUI itself uses internally. For example, although
the class might be Label on one GUI and Text on another, 4Test uses the class name StaticText to
refer to text strings that cannot be edited.

A class defines data and behavior

The class also defines methods (actions) and properties (data) that are inherited by the GUI object. For
example, if you record a declaration for a pushbutton named OK, a test case can legally use a method like
Click on the pushbutton because the Click method is defined at the class level. In other words, the
definition of what it means to click on a pushbutton is included within the definition of the 4Test class itself,
and this definition is inherited by each pushbutton in the GUI. If this were not true, you would have to define
within each GUI object’s window declaration all the methods you wanted to use on that object.

The class as recorded cannot be changed

The one exception is that if the recorded class is CustomWin, meaning that Silk Test Classic does not
recognize the object. You can, when appropriate, map the class to one that is recognized.

Custom classes

Enable an application to perform functions specific to the application and to enhance standard class
functionality. Custom classes are also easy to maintain and can be extended easily by developers. All
custom objects default to the built-in class, CustomWin.

Custom objects fall into two general categories:

Visible
objects

Objects that Silk Test Classic knows about, but cannot identify, for example, the icon in an
About dialog box. Two further categories of visible objects include:

• Common objects are those that look and behave like standard objects, for example, a
third-party object that looks and acts like a PushButton, but is recorded as a
CustomWin.

• Uncommon objects, on the other hand, have no relation to the existing standard objects.
For example, an Icon. there is no corresponding Icon class.

Invisible
objects

Objects that Silk Test Classic cannot recognize at all.

Polymorphism
If a class defines its own version of a method or property, that method or property overrides the one
inherited from an ancestor. This is referred to as polymorphism. For example, the ListBox class has its
own GetContents method, which overrides the GetContents method inherited from the AnyWin class.

352 | Using Advanced Techniques with the Classic Agent

CursorClass, ClipboardClass, and AgentClass
The following three classes are not part of the AnyWin class hierarchy, because they define methods for
objects that are not windows:

CursorClass Defines the three methods you can use on the cursor: GetPosition, GetType, and
Wait.

ClipboardClass Defines the two methods you can use on the system clipboard: GetText and
SetText.

AgentClass Defines the methods you can use to set options in the 4Test Agent. The 4Test Agent
is the component of Silk Test Classic that translates the method calls in your test
cases into the appropriate GUI- specific event streams.

Predefined identifiers for Cursor, Clipboard, and Agent

You do not record declarations for the cursor, the clipboard, or the Agent. Instead, you use predefined
identifiers for each of these objects when you want to use a method to act against the object. The
predefined methods for each are:

• 4Test Agent: Agent
• clipboard: Clipboard
• cursor (mouse pointer): Cursor

For example, to set a 4Test Agent option, you use a call such as the following:

Agent.SetOption (OPT_VERIFY_COORD, TRUE)

Defining New Classes with the Classic Agent
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Consider the declarations for the Open and the Save As dialog boxes of the Text Editor application, which
each contain exactly the same child windows:

window DialogBox Open
 tag "Open"
 parent TextEditor
 StaticText FileNameText
 tag "File Name:"
 TextField FileName1
 tag "File Name:"
 ListBox FileName2
 tag "File Name:"
 StaticText DirectoriesText
 tag "Directories:"
 StaticText PathText
 tag "#3"
 ListBox Path
 tag "#2"
 StaticText ListFilesOfTypeText
 tag "List Files of Type:"
 PopupList ListFilesOfType
 tag "List Files of Type:"
 StaticText DrivesText
 tag "Drives:"
 PopupList Drives
 tag "Drives:"
 PushButton OK

Using Advanced Techniques with the Classic Agent | 353

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

 tag "OK"
 PushButton Cancel
 tag "Cancel"
 PushButton Network
 tag "Network"

window DialogBox SaveAs
 tag "Save As"
 parent TextEditor
 StaticText FileNameText
 tag "File Name:"
 TextField FileName1
 tag "File Name:"
 ListBox FileName2
 tag "File Name:"
 StaticText DirectoriesText
 tag "Directories:"
 StaticText PathText
 tag "#3"
 ListBox Path
 tag "#2"
 StaticText ListFilesOfTypeText
 tag "List Files of Type:"
 PopupList ListFilesOfType
 tag "List Files of Type:"
 StaticText DrivesText
 tag "Drives:"
 PopupList Drives
 tag "Drives:"
 PushButton OK
 tag "OK"
 PushButton Cancel
 tag "Cancel"
 PushButton Network
 tag "Network"

It is not uncommon for an application to have multiple dialogs whose only difference is the caption: The
child windows are all identical or nearly identical. Rather than recording declarations that repeat the same
child objects, it is cleaner to create a new class that groups the common child objects.

For example, here is the class declaration for a new class called FileDialog, which is derived from the
DialogBox class and declares each of the children that will be inherited by the SaveAs and Open dialog
boxes:

winclass FileDialog : DialogBox
 parent TextEditor
 StaticText FileNameText
 tag "File Name:"
 TextField FileName1
 tag "File Name:"
 ListBox FileName2
 tag "File Name:"
 StaticText DirectoriesText
 tag "Directories:"
 StaticText PathText
 tag "#3"
 ListBox Path
 tag "#2"
 StaticText ListFilesOfTypeText
 tag "List Files of Type:"
 PopupList ListFilesOfType
 tag "List Files of Type:"
 StaticText DrivesText
 tag "Drives:"

354 | Using Advanced Techniques with the Classic Agent

 PopupList Drives
 tag "Drives:"
 PushButton OK
 tag "OK"
 PushButton Cancel
 tag "Cancel"
 PushButton Network
 tag "Network"

To make use of this new class, you must do the following:

1. Rewrite the declarations for the Open and Save As dialog boxes, changing the class to FileDialog.
2. Remove the declarations for the child objects inherited from the new class.

Here are the rewritten declarations for the Open and Save As dialog boxes:

window FileDialog SaveAs
 tag "Save As"
window FileDialog Open
 tag "Open"

For more information on the syntax used in declaring new classes, see the winclass declaration.

The default behavior of Silk Test Classic is to tag all instances of the parent class as the new class. So, if
you record a window declaration against a standard object from which you have defined a new class, Silk
Test Classic records that standard object’s class as the new class. To have all instances declared by
default as the original class, add the following statement to the declaration of your new class: setting
DontInheritClassTag = TRUE. For example, let’s say you define a new class called FileDialog and
derive it from the DialogBox class. Then you record a window declaration against a dialog box. Silk Test
Classic records the dialog box to be of the new FileDialog class, instead of the DialogBox class. To
have Silk Test Classic declare the class of the dialog box as DialogBox, in the FileDialog definition,
set DontInheritClassTag to TRUE. For example:

winclass FileDialog : DialogBox
 setting DontInheritClassTag = TRUE

Defining New Class Properties
You can define new properties for existing classes using the property declaration. You use these class
properties to hold data about an object; you can use class properties anywhere in a script.

DesktopWin
Because the desktop is a GUI object, it derives from the AnyWin class. However, unlike other GUI objects,
you do not have to record a declaration for the desktop. Instead, you use the predefined identifier Desktop
when you want to use a method on the desktop.

For example, to call the GetActive method on the desktop, you use a call like the following:

wActive = Desktop.GetActive ()

Logical Classes
The AnyWin, Control, and MoveableWin classes are logical (virtual) classes that do not correspond to
any actual GUI objects, but instead define methods common to the classes that derive from them. This
means that Silk Test Classic never records a declaration that has one of these classes.

Furthermore, you cannot extend or override logical classes. If you try to extend a logical class, by adding a
method, property or data member to it, that method, property, or data member is not inherited by classes
derived from the class. You will get a compilation error saying that the method/property/data member is not
defined for the window that tries to call it. Nor can you override the class, by rewriting existing methods,
properties, or data members. Your modifications are not inherited by classes derived from the class.

Using Advanced Techniques with the Classic Agent | 355

Class Hierarchy (Classic Agent)
You can define your own methods and properties, as well as define your own classes. You can also define
your own attributes, which are used in the verification stage in test cases.

The 4Test class hierarchy defines the methods and properties that enable you to query, manipulate, and
verify the data or state of any GUI object in your application. You can define your own methods and
properties, as well as define your own classes. You can also define your own attributes, which are used in
the verification stage in test cases. The following schema shows a listing of the built-in class hierarchy for
the core classes and the Classic Agent:

• AgentClass

• AnyWin

• Control

• CheckBox

• ComboBox

• DynamicText

• Header

• ListBox

• ListView

• PageList

• PopupList

• PushButton

• RadioList

• Scale

• ScrollBar

• HorizontalScrollBar

• VerticalScrollBar

• StaticText

• StatusBar

• Table

• TextField

• ToolBar

• TreeView

• TreeViewEx

• UpDown

• ControlMultiWin

• CustomWin

• DefinedWin

• DesktopWin

• Menu

• MenuItem

• SysMenu

• PopupMenu

• PopupStart

• MoveableWin

• ChildWin

• DialogBox

356 | Using Advanced Techniques with the Classic Agent

• MessageBoxClass

• MainWin

• TaskbarWin

• WinPart

• ClipboardClass

• CursorClass

Verifying Attributes and Properties
This section describes how you can use attributes and properties to verify test cases.

Attribute Definition and Verification
When you record a test case, you can verify the test case using attributes.

You can choose to verify using either attributes or properties. Generally you will verify using properties,
because property verification is more flexible.

For example, the attributes for the DialogBox class are Caption, Contents, Default button,
Enabled, and Focus. The following 4Test code implements the Default Button attribute in the
winclass.inc file:

attribute "Default button", VerifyDefaultButton, QueryDefaultButton

As this 4Test code shows, each attribute definition begins with the statement, followed by the following
three comma-delimited values:

1. The text that you want to display in the Attribute panel of the Verify Window dialog box. This text must
be a string.

2. The method Silk Test Classic should use to verify the value of the attribute at runtime.
3. The method Silk Test Classic should use to get the actual value of the attribute at runtime.

Defining a New Attribute for an Existing Class
To add one or more attributes to an existing class, use the following syntax:

winclass ExistingClass : ExistingClass...
attribute_definitions

Each attribute definition begins with the attribute statement, followed by the following three comma-
delimited values:

1. The text that you want to display in the Attribute panel of the Verify Window dialog box. This text must
be a string.

2. The method Silk Test Classic should use to verify the value of the attribute at runtime.
3. The method Silk Test Classic should use to get the actual value of the attribute at runtime.

Each attribute definition must begin and end on its own line. When you define a new attribute, you usually
need to define two new methods (steps 2 and 3 above) if none of the built-in methods suffice.

Silk Test Classic allows you to add, delete, or edit the existing functionality of a class; this applies to both
functions and variables of a class. However, we recommend that you do not override a function or a
variable by declaring a function or variable of that same name. Furthermore, you should never override a
variable that has a tag associated with it. You cannot have two variables with the same name in the same
level of an object. If you do so, Silk Test Classic will display a compile error.

Defining New Verification Properties
You can perform verifications in your test cases using properties. These verification properties are different
from class properties, which are defined using the property declaration. Verification properties are used

Using Advanced Techniques with the Classic Agent | 357

only when verifying the state of your application in a test case. Silk Test Classic comes with built-in
verification properties for all classes of GUI objects.

You can define your own verification properties, which will be added to the built-in properties listed in the
Verify Window dialog box when you record a test case.

Syntax for Attributes
To add one or more attributes to an existing class, use the following syntax:

winclass ExistingClass : ExistingClass...
attribute_definitions

Each attribute definition must begin and end on its own line.

When you define a new attribute, you usually need to define two new methods if none of the built-in
methods suffices.

For example, to add a new attribute to the DialogBox class that verifies the number of children in the
dialog box, you add code like this to your test frame (or other include file):

winclass DialogBox:DialogBox

 attribute "Number of children", VerifyNumChild, GetNumChild

 integer GetNumChild()
 return ListCount (GetChildren ()) // return count of children of dialog

 hidecalls VerifyNumChild (integer iExpectedNum)
 Verify (GetNumChild (), iExpectedNum, "Child number test")

As this example shows, you use the hidecalls keyword when defining the verification method for the new
attribute.

Hidecalls Keyword
The keyword hidecalls hides the method from the call stack listed in the results. Using hidecalls allows you
to update the expected value of the verification method from the results. If you do not use hidecalls in a
verification method, the results file will point to the frame file, where the method is defined, instead of to the
script. We recommend that you use hidecalls in all verification methods so that you can update the
expected values.

An Alternative to NumChildren as a Class Property
Instead of defining NumChildren as a class property, you could also define it as a variable, then initialize
the variable in a script. For example, in your include file, you would have:

winclass DialogBox : DialogBox
INTEGER NumChild2
 // list of custom verification properties
LIST OF STRING lsPropertyNames = {"NumChild2"}

And in your script, before you do the verification, you would initialize the value for the dialog box under test,
such as:

Find.NumChild2 = ListCount(Find.GetChildren ())

Defining Methods and Custom Properties
This section describes how you can define methods and custom verification properties.

358 | Using Advanced Techniques with the Classic Agent

Defining a New Method
To add a method to an existing class, you use the following syntax to begin the method definition:

winclass ExistingClass : ExistingClass

The syntax ExistingClass : ExistingClass means that the declaration that follows extends the
existing class definition, instead of replacing it.

Note: Adding a method to an existing class adds the method to all instances of the class.

Example

To add a SelectAll() method to the TextField class, add the following code to your
frame.inc file:

 winclass TextField : TextField
 SelectAll()
 TypeKeys("<Ctrl+a>")

In your test cases, you can then use the SelectAll method like any other method in
the TextField class.

UntitledNotepad.TextField.SelectAll()

Defining a New Method for a Single GUI Object
To define a new method to use on a single GUI object, not for an entire class of objects, you add the
method definition to the window declaration for the individual object, not to the class. The syntax is exactly
the same as when you define a method for a class.

To add a method to a single GUI object, for example to add the SelectAll() method to a specific
TextField object, locate the GUI object in your frame.inc file, like described in the following code
sample:

window MainWin UntitledNotepad

 ...

 TextField TextField
 locator "//TextField"

In your test cases, you can then use the SelectAll method like any other method of the TextField
object:

window MainWin UntitledNotepad

 ...

 TextField TextField
 locator "//TextField"
 SelectAll()
 TypeKeys("<Ctrl+a>")

Note: Adding a method to a single GUI object adds the method only to the specific GUI object and
not to other instances of the class.

Classic Agent Example

For example, suppose you want to create a method named SetLineNum for a dialog
box named GotoLine, which performs the following actions:

Using Advanced Techniques with the Classic Agent | 359

• Invokes the dialog box.
• Enters a line number.
• Clicks OK.

The following 4Test code shows how to add the definition for the SetLineNum method
to the declaration of the GotoLine dialog box.

window DialogBox GotoLine
 tag "Goto Line"
 parent TextEditor
 const wInvoke = TextEditor.Search.GotoLine

 void SetLineNum (STRING sLine)
 Invoke () // open dialog
 Line.SetText (sLine) // populate text field
 // whose identifier is Line
 Accept () // close dialog, accept values

 //Then, to go to line 7 in the dialog, you use this method
call in your testcases:
 GotoLine.SetLineNum (7)

Recording a Method for a GUI Object
If you need to perform an action on an object, which is not supported by the class of the object, you can
record or manually script a new method that performs the action. Add the new method to the class or to the
window declaration of the object to use the method in the same way as the built-in methods of the class.

You can use the Record Method dialog box to record a method for a class or window declaration.

Note: Before you can record a method, you must have recorded window declarations.

1. Open an include file or script file.

2. Move the mouse cursor into the declaration of the GUI object to which you want to add a method.

3. Click Record > Method.

Note: This is only available when an include file or script file is the active window and the mouse
cursor is within a class or object declaration because methods are necessarily part of a class or
object definition.

The Record Method dialog box appears.

4. Type a name for the method into the Method name field.

You can also select one of the predefined methods:

• BaseState

• Close

• Invoke

• Dismiss

5. Click Start Recording. Silk Test Classic is minimized and displays the application under test.

• If you are using the Open Agent, the Recording window appears.
• If you are using the Classic Agent, the Record Status on Classic Agent dialog box appears.

6. Perform and record the actions that you require.

7. Stop recording.

• If you are using the Open Agent, click Stop Recording.
• If you are using the Classic Agent, click Done.

360 | Using Advanced Techniques with the Classic Agent

The Method code field in the Record Method dialog box displays the actions that you have recorded
translated into 4Test statements.

8. On the Record Method dialog box, click OK to paste the code into the file in the editor.

9. Edit the 4Test statements that were recorded, if necessary.

Note: To add a method to a class which is using the Open Agent, you can also copy the method into
the script from a recorded test case.

Deriving a New Method from an Existing One
To derive a new method from an existing method, you can use the derived keyword followed by the scope
resolution operator (::).

Use the following syntax:

new method : existing method

The following example defines a GetCaption method for WPFNewTextBox that prints the string Caption
as is before calling the built-in GetCaption method (defined in the AnyWin class) and printing its return
value:

winclass WPFNewTextBox : WPFTextBox
GetCaption ()
Print ("Caption as is: ")
Print (derived::GetCaption ())

Defining Custom Verification Properties

1. In a class declaration or in the declaration for an individual object, define the variable
lsPropertyNames as follows:

LIST OF STRING lsPropertyNames

2. Specify each of your custom verification properties as elements of the list lsPropertyNames. Custom
verification properties can be either:

• Class properties, defined using the property statement.
• Variables of the class or individual object.

Any properties you define in lsPropertyNames will override built-in properties with the same name. With
your custom verification properties listed as elements in lsPropertyNames, when you record and run a
test case, those additional properties will be available during verification.

Redefining a Method
There may be some instances in which you want to redefine an existing method. For example, to redefine
the GetCaption method of the Anywin class, you use this 4Test code:

winclass AnyWin : AnyWin
 GetCaption ()
 // insert method definition here

Confirming the Property List
You can use the GetPropertyList method to confirm the list of verification properties for an object. For
example, the following simple test case prints the list of all the verification properties of the Find dialog to
the results file:

testcase FindDialogPropertyConfirm ()
TextEditor.Search.Find.Pick ()
ListPrint (Find.GetPropertyList ())
Find.Cancel.Click ()

Using Advanced Techniques with the Classic Agent | 361

Examples
This section provides examples for defining methods and custom verification properties.

Example: Adding a Method to TextField Class
This example adds to the TextField class a method that selects all of the text in the text box.

winclass TextField : TextField
 SelectAll ()
 STRING sKey1, sKey2
 switch (GetGUIType ())
 case mswnt, msw2003
 sKey1 = "<Ctrl-Home>"
 sKey2 = "<Shift-Ctrl-End>"
 case mswvista
 sKey1 = "<Ctrl-Up>"
 sKey2 = "<Shift-Cmd-Down>"
 // return cursor to 1,1
 this.TypeKeys (sKey1)
 // highlight all text
 this.TypeKeys (sKey2)

The keyword this refers to the object the method is being called on.

The preceding method first decides which keys to press, based on the GUI. It then presses the key that
brings the cursor to the beginning of the field. It next presses the key that highlights (selects) all the text in
the field.

Example: Adding Tab Method to DialogBox Class
To add a Tab method to the DialogBox class, you could add the following 4Test code to your frame.inc
file (or other include file):

winclass DialogBox : DialogBox
Tab (INTEGER iTimes optional)
if (iTimes == NULL)
 iTimes = 1
this.TypeKeys ("<tab {iTimes}>")

Example: Defining a Custom Verification Property
Let's look at an example of defining a custom verification property. Say you want to test a dialog box.
Dialog boxes come with the following built-in verification properties:

• Caption
• Children
• DefaultButton
• Enabled
• Focus
• Rect
• State

And let's say that you have defined a class property, NumChildren, that you want to make available to the
verification system.

Here is the class property definition:

property NumChildren
INTEGER Get ()
return ListCount (GetChildren ())

That property returns the number of children in the object, as follows:

362 | Using Advanced Techniques with the Classic Agent

• The built-in method GetChildren returns the children in the dialog box in a list.
• The built-in function ListCount returns the number of elements in the list returned by GetChildren.

To make the NumChildren class property available to the verification system (that is, to also make it a
verification property) you list it as an element in the variable lsPropertyNames. So here is part of the
extended DialogBox declaration that you would define in an include file:

winclass DialogBox : DialogBox
 // user-defined property
 property NumChildren
 INTEGER Get ()
 return ListCount (GetChildren ())
 // list of custom verification properties
 LIST OF STRING lsPropertyNames = {"NumChildren"}

Now when you verify a dialog box in a test case, you can verify your custom property since it will display in
the list of DialogBox properties to verify.

Note: As an alternative, instead of defining NumChildren as a class property, you could also define it
as a variable, then initialize the variable in a script. For example, in your include file, you would have:

winclass DialogBox : DialogBox
 INTEGER NumChild2
 // list of custom verification properties
 LIST OF STRING lsPropertyNames = {"NumChild2"}

And in your script-before you do the verification-you would initialize the value for the dialog box under
test, such as:

Find.NumChild2 = ListCount (Find.GetChildren ())

Porting Tests to Other GUIs
This section describes how you can port tests to other GUIs.

Handling Differences Among GUIs
This section describes how you can handle differences between GUIs when porting tests to other GUIs.

Creating a Class that Maps to Several Silk Test Classic Classes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Consider the Direction control in the Find dialog box of the Text Editor application, which allows a user to
specify the direction (up or down) of searches. Suppose that this control is implemented as a check box on
one GUI, but as a radio list on all other GUIs. As a radio list, the user clicks either the Up or the Down
option button. As a check box, the user checks the check box to select Up, and leaves the check box
unchecked to select Down.

The first step in solving this portability scenario is to create a new window class that you will use for the
object on all platforms. The class you need to define, in effect, generalizes several distinct 4Test classes
into one logical class.

To achieve this generalization, you:

• Derive the new class from the 4Test Control class, since both radio lists and check boxes derive from
this class.

• Define the class with a GUI-specific tag statement for each platform. Each tag statement states the
actual class of the control on the particular GUI. This allows Silk Test Classic to know what the actual
class on the control will be at runtime on each of the GUIs.

Using Advanced Techniques with the Classic Agent | 363

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• Define generalized methods that use a switch statement to branch to the 4Test code that implements
the method on the particular GUI.

Here is the class declaration, which is arbitrarily named DirButton:

// The class is derived from Control
winclass DirButton : Control
 tag "[RadioList]"
 msw9x tag "[CheckBox]"
 void Select (LISTITEM Item optional)
 BOOLEAN bState
 switch (GetGUIType ())
 case msw9x
 bState = (Item == "Up")
 CheckBox (WndTag).SetState (bState)
 default
 RadioList (WndTag).Select (Item)

Note:

• The Select method acts against the control, regardless of whether it is a RadioList or CheckBox.
The method contains a switch statement which executes the SetState method if the control is a
check box, and the Select method if the control is a radio list. The Select method also takes an
optional parameter, as indicated by the keyword optional.

• Because the tag of the object differ on each GUI, rather than specifying an identifier in the
SetState and Select method calls, you use the WndTag property. By doing this, you force Silk
Test Classic to construct a dynamic identifier for the object at runtime which will uniquely identify
the object as a check box in the one case and as a radio list in all other cases.

The next step is to change your window declarations so that the control has the new class.

Continuing the example, you change the class of the control named Direction to DirButton.

window DialogBox Find
 tag "Find"
 parent TextEditor
 DirButton Direction
 tag "Direction"

Creating GUI-Specific Tags
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To close a file on one operating system, you click, for example, File > Quit, whereas on all other platforms
you click File > Exit. The following window declaration accounts for these differences with two tag
statements:

MenuItem Exit
 tag "Exit"
 [other OS] tag "Quit"

With this declaration, the Exit identifier can be used to refer to the menu item regardless of the actual
label.

Conditionally Loading Include Files
If you are testing different versions of an application, such as versions that run on different platforms or
versions in different languages, you probably have different include files for the different versions. For
example, if your applications run under different languages, you might have text strings that display in
windows defined in different include files, one per language. You want Silk Test Classic to load the proper
include file for the version of the application you are currently testing.

364 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Load Different Include Files for Different Versions of the Test
Application

1. Define a compiler constant.

For example, you might define a constant named MyIncludeFile.

2. Insert the following statement into your 4Test file: use constant.

For example, if you defined a constant MyIncludeFile, insert the following statement: use
MyIncludeFile. In this example, constant can also be an expression that evaluates to a constant at
compile time.

3. When you are ready to compile your 4Test files, specify the file name of the include file you want loaded
as the value of the constant in the Compiler Constants dialog box.

Be sure to enclose the value in quotation marks if it is a string.

4. Compile your code.

Silk Test Classic evaluates all compiler constants and substitutes their values for the constants in your
code. In this case, the constant MyIncludeFile will be evaluated to a file, which will be loaded through
the use statement.

Deciding which Form of Tag to Use
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When an object’s caption or label changes on a different GUI, it is usually preferable to use multiple tags,
each based on the GUI-specific label or caption, instead of using the index. Not only does it make your
declarations easier to understand, but it shields your test cases from changes to the sequence of child
objects. For example, if the Exit item changes so that it is the fourth item and not the fifth, your test cases
will still run.

Different Error Messages
The VerifyErrorBox function, shown below, illustrates how to solve the problem of different error
messages on each GUI platform. For example, if a GUI platform always adds the prefix "Error:" to its
message, while the other platforms do not, you might use or create a GUI Specifier for that platform and
then use the VerifyErrorBox function as follows:

VerifyErrorBox (STRING sMsg)
 // verifies that the error box has the correct error
 // message, then dismisses the error box

 const ERROR_PREFIX = "ERROR: "
 const ERROR_PREFIX_LEN = Len (ERROR_PREFIX)
 STRING sActMsg = MessageBox.Message.GetText ()

 // strip prefix "ERROR: " from GUI Specifier for that platform error
messages
 if (GetGUIType () == GUI Specifier for that platform)
 sActMsg = SubStr (sActMsg, ERROR_PREFIX_LEN + 1)

 Verify (sActMsg, sMsg)
 MessageBox.Accept ()

One Logical Control can Have Two Implementations
Consider the case where the same logical control in your application is implemented using different classes
on different GUIs.

Using Advanced Techniques with the Classic Agent | 365

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

If the kinds of actions you can perform against the object classes are similar, and if Silk Test Classic uses
the same method names for the actions, then you do not have a portability problem to address.

For example, the methods for the RadioList and PopupList classes have identical names, because the
actions being performed by the methods are similar. Therefore, if a control in your application is a popup
list on one GUI and a radio list on another, your scripts are already portable.

If the two object classes do not have similar methods, or if the methods have different names, then you
need to port your scripts.

Options Sets and Porting
Options sets save all current options except General Options. Options sets can be very useful when trying
to use the same scripts on different operating systems. The primary differences between the two may be
compiler constants.

For example, you might use the compiler constant sCmdLine. Usually, the command line to invoke an
application differs between the PC operating systems. You could create a compiler constant (note that
there is a string limit on compiler constants) for use in the sCmdLine constant to differentiate between the
platforms' command lines. You might also use a compiler constant for methods that work slightly differently
on the two operating systems, such as the Pick() methods.

Specifying Options Sets
In a test plan, you can specify options sets to be used with the test plan or parts of it. You use options sets
to automatically run different tests that require different options without having to manually open options
sets.

To ensure that everyone working on a project has the same options settings (such as class mapping), do
one of the following:

• Open an Options Set.
• Set these option values at runtime.
• Specify the following statement in the test plan: optionset: filename.opt.

Dependent test cases will run with the specified options set opened. The options set will be closed when it
passes out of scope. If you don't specify a full path name, the file is considered to be in a directory relative
to the directory containing the current test plan or sub-plan.

Remember:

• Options can also be set at runtime in a test script by using the Agent method, SetOption, and
passing in the name of the option and its value.

• Many Agent options and their values are found in the Agent Options dialog box.
• Agent options can be set in a testcase/ function.
• Class map settings, set at runtime, are best set before any tests are executed (for example, in

ScriptEnter) and after each test case (for example TestcaseExit) in case any have been changed in the
course of a test case.

• Class mappings set at runtime using the Agent method SetOption are only in effect during test
execution; these settings are not available to the recorders.

Supporting Differences in Application Behavior
Although you can account for differences in the appearance of your application in the window declarations,
if the application’s behavior is fundamentally different when ported, you need to modify your test cases
themselves. To modify your test cases, you write sections of 4Test code that are platform-specific, and then
branch to the correct section of code using the return value from the GetGUIType built-in function.

This topic shows how to use the GetGUIType function in conjunction with if statements and the switch
statements.

366 | Using Advanced Techniques with the Classic Agent

Switch statements

You can use GUI specifiers before an entire switch statement and before individual statements within a
case clause, but you cannot use GUI specifiers before entire case clauses.

testcase GUISwitchExample()
INTEGER i
FOR i=1 to 5
mswxp, mswnt switch(i)

// legal:
mswxp, mswnt switch (i)
 case 1
 mswxp Print ("hello")
 mswnt Print ("goodbye")
 case 2
 mswxp raise 1, "error"
 mswnt Print ("continue")
 default
 mswxp Print ("ok")

// NOT legal:
switch (i)
 mswxp case 1
 Print ("hello")
 mswnt case 1
 Print ("goodbye")

If statements

You can use GUI specifiers in if statements, as long as GUI specifiers used within the statement are
subsets of any GUI specifiers that enclose the entire if statement.

// legal because no GUI specifier
// enclosing entire if statement:
if (i==j)
 msw32, mswnt Print ("hi")
 msw2000 Print ("bye")

// legal because msw is a subset of enclosing specifier:
msw32, msw2000 if (i==j)
 mswnt Print("hi")

// legal for the same reason as preceding example:
msw32, msw2000 if (i==j)
 Print ("hi")
mswnt else
 Print ("Not the same")

// NOT legal because msw2000 is not a subset
// of the enclosing GUI specifier msw:
msw32 if (i==j)
 msw2000 Print ("bye") // Invalid GUI type

If you are trying to test multiple conditions, then you should use a select or switch block. You could use
nested if.else statements, but if you have more than two or three conditions, the levels of indentation
will become cumbersome.

You should not use an if..else if..else block. Although if..else if..else will work, it will be
difficult to troubleshoot exceptions that occur because the results file will always point to the first if
statement even if it was actually a subsequent if statement that raised the exception.

For example, in the following test case, the third string, Not a date, will raise the exception:

*** Error: Incompatible types -- 'Not a date' is not a valid date

Using Advanced Techniques with the Classic Agent | 367

The exception actually occurs in the lines containing:

GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006

For the nested if..else and the select blocks, the results file points to those lines as the sources of
the exceptions. However, for the if..else if..else block, the results file points to the first if
statement, in other words to the line:

[-] if IsNull (sVal)

even though that line clearly is not the source of the exception because it does not concern DATETIME
values.

[+] testcase IfElseIfElse ()
[-] LIST OF STRING lsVals = {...}
[] "2006-05-20"
[] "2006-11-07"
[] "Not a date"
[] STRING sVal
[]
[-] for each sVal in lsVals
[-] do
[-] if IsNull (sVal)
[] Print ("No date given")
[-] else if sVal == FormatDateTime (GetDateTime (), "yyyy-mm-dd")
[] Print ("The date is today")
[-] else if GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006
[] Print ("The year is this year")
[-] else
[] Print ("Some other year")
[-] except
[] ExceptLog ()
[]
[-] do
[-] if IsNull (sVal)
[] Print ("No date given")
[-] else
[-] if sVal == FormatDateTime (GetDateTime (), "yyyy-mm-dd")
[] Print ("The date is today")
[-] else
[-] if GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006
[] Print ("The year is this year")
[-] else
[] Print ("Some other year")
[-] except
[] ExceptLog ()
[]
[-] do
[-] select
[-] case IsNull (sVal)
[] Print ("No date given")
[-] case sVal == FormatDateTime (GetDateTime (), "yyyy-mm-dd")
[] Print ("The date is today")
[-] case GetDateTimePart ([DATETIME]sVal, DTP_YEAR) == 2006
[] Print ("The year is this year")
[-] default
[] Print ("Some other year")
[-] except
[] ExceptLog ()
[]

Text Box Requires Return Keystroke
On some GUIs, the Enter/Return key must be pressed after data is entered into a text box. Suppose you
want to create a test case that enters invalid data into the text box, and then checks if the application

368 | Using Advanced Techniques with the Classic Agent

detects the error. After the test case enters the invalid data, it needs to use the GetGUIType function to
determine the GUI, and then press the Return key if the GUI requires it.

For example:

// code to enter an invalid string into field
if (GetGUIType () == mswnt)
 MyTextField.TypeKeys ("<Return>")
// code to verify that application detected error

Using Cross-Platform Methods in Your Scripts
In scripts, you can use your cross-platform method names. The window declarations map the cross-
platform method names you use in your scripts to the actual methods required to carry out the actions you
want on each of the GUIs.

Continuing the example from Creating a Class that Maps to Several Silk Test Classic Classes, you use the
Select method in your code to select the control named Direction.

testcase SearchBackward ()

 LISTITEM Item
 Item = "Up"
 Find.Invoke ()
 Find.Direction.Select (Item)
 .
 .
 .
 Find.Dismiss ()

Note: The script does not indicate that anything unusual is happening. All of the steps necessary to
make the Select method work properly, regardless of the class of the object, are encapsulated in the
class and window declarations.

Using the Index as the Tag
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you are certain that an object’s position in relation to its sibling objects of the same class will remain the
same when the application is ported, you can use the index form for the tag.

Repeating the example from the preceding section, because the Exit/Quit menu item is the fifth menu item
on the File menu (on all platforms), you can use the index form for the tag (#5) as shown here:

MenuItem Exit
 tag "#5"

About GUI Specifiers
This section describes GUI specifiers.

Class Declarations
Be careful using GUI specifiers before class declarations; they can be ambiguous. Any ambiguities must be
resolvable at compile-time.

// bad style:
msw winclass myclass
mswnt winclass myclass
window myclass inst // Ambiguous. Is it an instance of
 // the msw class or the mswnt class?

Using Advanced Techniques with the Classic Agent | 369

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

The preceding example’s ambiguity can be resolved by specifying a GUI target with conditional compilation
(so that, for example, only code for msw gets compiled, in which case inst would be an instance of the msw
class or by explicitly using a GUI specifier for the window, as follows:

// good style:
msw winclass myclass
mswnt winclass myclass
msw window myclass inst

Conditional Compilation
If you have GUI-specific code in your scripts and declarations, you can have Silk Test Classic conditionally
compile your code based on the values of the GUI specifiers - only code specific to a particular GUI is
compiled (as well, of course, as all code that is not GUI-specific). This has the following two advantages:

• The compilation is faster.
• The resulting code is smaller and requires less memory to run.

You can also cause conditional compilation by using constants, which are evaluated at compile time.

Constants are not restricted to conditional compilation. You can use constants for any value that you want
resolved at compile time.

Conditionally Compile Code

1. Prefix any 4Test statements that are GUI-specific with the appropriate GUI specifier.

2. Specify the platforms that you want to compile for by entering the appropriate GUI specifiers in the GUI
Targets field in the Runtime Options dialog box. You can specify as many GUI targets as you want;
separate each GUI specifier by a comma.

Setting a GUI target affects which classes are listed in the Library Browser.
3. To conditionalize code based on the value of constants you define, do the following:

1. Click Compiler Constants in the Runtime Options dialog box.
2. The Compiler Constants dialog box is displayed.
3. Define a constant and specify its value.
4. Use the constant in your code anywhere you can specify an expression.

4. Click OK to close the Runtime Options dialog box.

GUI with Inheritance
When using GUI specifiers for parent classes, you must explicitly use the GUI specifiers with the
descendants:

mswxp winclass newclass
mswxp winclass subclass : newclass
mswxp window subclass inst

GUI with Global Variables
Be careful when using GUI specifiers with global variables, because Silk Test Classic initializes global
variables before connecting to an Agent. This might not give you the results you want if you are doing
distributed testing.

Let’s say that you are running tests on a remote machine that is listed in the Runtime Options dialog box.
Because Silk Test Classic initializes all global variables before connecting to an Agent, any GUI specifier at
the global level will initialize to the host machine, not the target machine you want to test against.

For example, say the host machine is running a different operating system than the target machine.
Consider the following script:

mswxp STRING sVar1 = SYS_GetEnv("UserName")

370 | Using Advanced Techniques with the Classic Agent

mswxp STRING sVar1 = SYS_GetRegistryValue
 (HKEY_LOCAL_MACHINE, "System\CurrentControlSet\Control", "Current
User")

main()
 print(sVar1)

This script fails, with the error message:

*** Error: Registry entry 'Current User' not found

because sVar1 is initialized to the value for the host system, not the target system.

Constants behave similarly to global variables if you use a GUI specifier to initialize the variable (or
constant). It is a good idea to use GUI specifiers in the main function, under Options > Runtime or
another function that is called after the Agent is contacted.

Marking 4Test Code as GUI Specific
Using Silk Test Classic, you can create portable test cases that will test your application on any of the
supported GUIs. The reason for this is that your test cases use logical names, called identifiers, to refer to
the GUI objects, and not actual names, called tags. Therefore, if there are differences in the ported
application’s appearance, you need only change the window declarations, not the test cases themselves.

The porting scenarios described section use 4Test keywords called GUI specifiers to indicate that portions
of include files or script files are specific to a particular GUI. Before studying these scenarios, you should
understand which GUI specifiers are available and how to use them in your include files and script files.

4Test includes a long list of GUI specifiers.

Syntax of a GUI Specifier
A GUI specifier has this syntax:

[[gui-type [,gui-type]] | [!gui-type]]

gui-type is the GUI. You can express this in one of two mutually exclusive ways. For example, you can
specify one or more GUIs separated by commas, as in:

mswxp, mswin7

Or you can specify all but one GUI, as in the following, which indicates that what follows applies to all
environments except Windows NT-based operating systems:

! mswnt

What Happens when the Code is Compiled
Only code relevant to the GUI environments specified in the GUI Targets field (plus all common code) will
be compiled. If you do not list any GUI specifiers in the GUI Targets field, all code will be compiled; at
runtime, code not relevant to the platform the application is running on will be skipped.

The constants you have defined are evaluated and used to compile the code. You can use this feature to
conditionally load include files.

Where You Use GUI Specifiers
A GUI specifier can be located before any 4Test declaration or statement except the use statement, which
must be evaluated at compile time, with the following exceptions:

• Switch statements
• If statements
• Type statements
• Do… except statements

Using Advanced Techniques with the Classic Agent | 371

• Class declarations
• GUI with inheritance
• GUI with global variables

If you try to use a browser specifier instead of a GUI specifier to specify a window, Silk Test Classic will
generate an error. The primary use of browser specifiers is to address differences in window declarations
between different browsers. Each Agent connection maintains its own browser type, allowing different
threads to interact with different browsers.

do...except Statements
You can use GUI specifiers to enclose an entire do...except statement before individual statements, but
you cannot use GUI specifiers before the except clause.

// legal:
do
 mswxp Verify (expr1,expr2)
 mswin7 Verify (expr3,expr4)
except
 mswin7 reraise
 mswxp if (ExceptNum () == 1)
 Print ("err, etc.")
// NOT legal:
mswin7 do
 Verify (expr,expr)
mswxp except
 reraise

Type Statements
You can use a GUI specifier before a type type ... is enum or type ... is set statement, but not
before an individual value within the type declaration.

Supporting GUI-Specific Objects
This section describes how Silk Test Classic supports testing GUI-specific objects.

Supporting GUI-Specific Captions

Classic Agent

When you are using the Classic Agent, by default Silk Test Classic bases the tag for an object on the actual
caption or label of the object. If the captions or labels change when the application is ported to a different
GUI, you have two options:

• You can have multiple tags, each based on the platform-specific caption or label.
• You can have a single tag, using the index form of the tag, as long the relative position of the object is

the same in the ported versions of the application.

Then, in your test cases, you can use the same identifier to refer to the object regardless of what the
object’s actual label or caption is.

Open Agent

When you are using the Open Agent, Silk Test Classic creates locator keywords in an INC file to create
scripts that use dynamic object recognition and window declarations. The locator is the actual name of the
object, as opposed to the identifier, which is the logical name. Silk Test Classic uses the locator to identify
objects in the application when executing test cases. Test cases never use the locator to refer to an object;
they always use the identifier.

The advantages of using locators with an INC file include:

372 | Using Advanced Techniques with the Classic Agent

• You combine the advantages of INC files with the advantages of dynamic object recognition. For
example, scripts can use window names in the same manner as traditional, Silk Test Classic tag-based
scripts and leverage the power of XPath queries.

• Enhancing legacy INC files with locators facilitates a smooth transition from using hierarchical object
recognition to new scripts that use dynamic object recognition. You use dynamic object recognition but
your scripts look and feel like traditional, Silk Test Classic tag-based scripts that use hierarchical object
recognition.

• You can use AutoComplete to assist in script creation. AutoComplete requires an INC file.

Supporting GUI-Specific Executables
The command to start the application will almost always be different on each GUI. The Invoke method of
Silk Test Classic expects to find the command in the constant sCmdLine, which is defined in the main
window declaration of your application. You should declare as many sCmdLine variables as there are GUIs
on which your application runs, beginning each declaration with the appropriate GUI specifier.

For example, the following constants specify how Silk Test Classic should start the Text Editor application
on Windows and Windows Vista:

msw32 const sCmdLine = "c:\program files\<SilkTest install directory>\silktest
\textedit.exe"
mswvista const sCmdLine = "{SYS_GetEnv(‘SEGUE_APPS’)}/SilkTest/demo/textedit"

Supporting GUI-Specific Menu Hierarchies
When an application is ported, there are two common structural differences in the menu hierarchy:

• The menu bar contains a platform-specific menu.
• A menu contains different menu items.

To illustrate the case of the platform-specific menu, consider the Microsoft Windows system menu or a
Vista menu (for example). Silk Test Classic recognizes these kinds of standard GUI- specific menus and
includes the appropriate GUI specifier for them when you record declarations.

For menus that Silk Test Classic does not recognize as platform-specific, you should preface the window
declaration with the appropriate GUI specifier.

Different menu items - example

To illustrate the case of different menu items, suppose that the Edit menu for the Text Editor application
has a menu item named Clear which displays on the Windows version only. The declaration for the Edit
menu should look like the following:

Classic Agent Open Agent

Menu Edit
 tag "Edit"
 msw32 MenuItem Clear
 tag "Clear"
 MenuItem Undo
 tag "Undo"

Menu Edit
 locator "Edit"
 msw32 MenuItem Clear
 locator "Clear"
 MenuItem Undo
 locator "Undo"

Supporting Custom Controls
This sections describes how Silk Test Classic supports custom controls.

Using Advanced Techniques with the Classic Agent | 373

Why Silk Test Classic Sees Controls as Custom
Controls
A control is defined by the following:

• The actual class name of the control.
• The underlying software code that creates and manipulates the control.

Whenever the definition of a control varies from the standard, Silk Test Classic defines the control as a
custom control. During recording, Silk Test Classic attempts to identify the class of each control in your GUI
and to assign the appropriate class from the built-in class hierarchy. If a control does not correspond to one
of the built-in classes, Silk Test Classic designates the control as a custom control.

• When you are using the Classic Agent, Silk Test Classic assigns custom controls to the CustomWin
class.

• When you are using the Open Agent, Silk Test Classic assigns custom controls to the Control class or
another class.

Classic Agent Example

For example, Silk Test Classic supports the standard MFC library, which is a library of
functions that allow for the creation of controls and the mechanism of interaction with
them. In supporting these libraries, Silk Test Classic contains algorithms to interrogate
the controls based upon the standard libraries. When these algorithms do not work, Silk
Test Classic reports the control as a CustomWin.

Suppose that you see a text box in a window in your application under test. It looks like
a normal text field, but Silk Test Classic calls it a control of the class CustomWin.

Reasons Why Silk Test Classic Sees the Control as a
Custom Control
For the following reasons Silk Test Classic might recognize a control as a custom control:

• The control is not named with the standard name upon the definition of the control in the application
under test. For example, when a TextField is named EnterTextRegion. If this is the only reason why
Silk Test Classic recognizes the control as a custom control, then you can class map the control to the
standard name.

The class mapping might not work. The class mapping will work if the control is not really a custom
control, but rather a standard control with a non-standard name. Try this as your first attempt at dealing
with a custom control.

• If the class mapping does not work the control truly is a custom control. The software in the application
under test that creates and manipulates the control is not from the standard library. That means that the
Silk Test Classic algorithms written to interrogate this kind of control will not work, and other approaches
will have to be used to manipulate the control.

When you are using the Classic Agent, the support for custom controls depends on whether the control is a
graphical control, such as a tool bar, or a non-graphical control, such as a text box.

Supporting Graphical Controls
If an application contains a graphical area, for example a tool bar, which is actually composed of a discrete
number of graphical controls, Silk Test Classic records a single declaration for the entire graphical area; it
does not understand that the area contains individual controls.

374 | Using Advanced Techniques with the Classic Agent

Custom Controls (Classic Agent)
This section describes how the Classic Agent supports custom controls.

Mapping Custom Classes to Standard Classes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When a control shows up in the Record Window Declarations dialog box as a CustomWin, but is actually
a standard GUI object which the application developers have renamed, you should map the custom class
name to the built-in class name while in the dialog box.

Among the standard classes the Silk Test Classic displays in the Class Map dialog box, there are the
following three classes that can be described as "meta" classes:

• BUTTON causes the Agent to treat the object as a kind of button, whether it be an instance of
PushButton, CheckBox, or RadioButton. The kind of button depends on the object’s style bits.

• STATIC causes the Agent to treat the object as Static Text if the appropriate style bits (for example,
SS_LEFT and SS_CENTER) are set. Otherwise, only the methods of the AnyWin class apply.

• MDI client windows are containers that sit between application frame windows and MDI document
windows. Mapping a custom object to MDICLIENT means you do not need a tag for it in order to refer to
one of its children. You cannot perform operations on them.

Perform a Class Mapping when a Declaration for a CustomWin
Displays in the Record Window Declaration Dialog
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When a declaration for a CustomWin displays in the Record Window Declarations dialog box, perform
the following steps:

1. Press Ctrl+Alt. The declarations are frozen in the Window Declaration list box in the lower half of the
Record Window Declarations dialog box.

2. In the Window Declarations list box, click the line containing the declaration for the custom object. The
line is highlighted and the declaration for the CustomWin displays in the Window Detail group box.

3. In the Window Detail group box, click Class Map. The Class Map dialog box opens. The name of the
custom class is displayed in the Custom Class text box.

4. In the Standard Class field, enter the name of the built-in 4Test class to which you are mapping the
custom class.

5. Click Add. Silk Test Classic adds the class name.

6. Click OK.

When you resume recording, the object has the standard 4Test class. If Silk Test Classic encounters a
similar object, it automatically maps the object to the correct 4Test classes. You must modify any
prerecorded declarations containing these objects to use the standard class.

Non-Graphical Custom Controls
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Non-graphical custom controls are controls which are not owner drawn. If your application uses a non-
graphical control that does not map to any of the controls that are supported by Silk Test Classic, you have
the following options:

Using Advanced Techniques with the Classic Agent | 375

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• If the developer of the application has created DLLs to interact with the custom object, you can call the
DLL functions from a script.

• Otherwise, and only if you are working with the Classic Agent, you can add partial support for the non-
graphical custom object by creating a new class, derived from AnyWin. Then, to implement the
methods for the non-graphical control, you can write methods that use the primitive methods of the
AnyWin class, like TypeKeys and MoveMouse. You have to manually change the scripts for your
application, because the custom methods cannot be recorded.

Example

In the following sample code, the class MyCustomTextField, which is a custom control in
the application myApplication, is derived from the AnyWin class. The method
TypeText is added to MyCustomTextField, and performs a Click and a TypeKeys.

const wDynamicMainWindow = MyApplication

window MainWin MyApplication
 locator "/MainWin[@caption=My Application']"

 // The working directory of the application when it is invoked
 const sDir = "%USERPROFILE%"

 // The command line used to invoke the application
 const sCmdLine = "C:\myApplication.exe"

 MyCustomTextField TextField
 tag "TextField"

winclass MyCustomTextField : AnyWin
 void TypeText(string text)
 Click(1, 0)
 TypeKeys(text)

The test case Test1 calls the TypeText method.

testcase Test1 ()
 recording
 MyApplication.SetActive()
 MyApplication.TextField.TypeText("test")

Adding xy Coordinates to a Declaration
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Record the x, y coordinates of a graphical control, such as a toolbar, to add them to a window declaration:

1. Position the cursor in the window declaration at the end of the tag to which you want to add coordinates.

2. Type a slash character /.

3. Click Record > Window Locations to open the Record Window Locations dialog box.

4. Track the cursor over the object.

The dialog box displays the name of the object and its x,y coordinates relative to the screen, the frame,
which is the main window and its window decoration, and the client, which is the main window minus its
window decoration.

5. Press Ctrl+Alt to freeze the declaration.

6. Since this procedure is appending the location to a window declaration, click Client option.

7. Click Paste to Editor, and then click Close.

376 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Modify Declarations for Each of the Icons Contained in an Evenly Sized
and Spaced Tool Bar
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. In the window declarations file, make as many copies of this recorded declaration as there are discrete
objects.

2. You can retain the original class (CustomWin) if the functionality inherited from the AnyWin class is
sufficient. Or you can specify the name of a class you create that contains the added functionality you
need.

3. Change the identifier to some string that represents the icon’s action.

4. Append the tag with the icon’s location suffix in the tool bar. You express the location using this syntax:

(column:total-columns, row:total-rows)

For example, you specify the icon in the third column, first row, like this:

 (3:26, 1:1)

You append this location to the tag with the forward slash (/) character.

Adding a Location Suffix to the Tag of a Declaration
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can, however, create declarations for each discrete object. To do this, make as many copies of the
original recorded declaration as there are discrete objects. Then add a location suffix to the tag in each
declaration, which is the location of the object within the graphical area.

Silk Test Classic provides two ways to specify the location suffix of contained graphical objects, depending
on the size and spacing of the control.

Controls that are sized and spaced evenly in a grid

If a group of graphical controls are equal in size and evenly spaced in a grid, you can specify the location of
each control as column y of the total number of columns and row x of the total number of rows. This syntax
is both cross-platform and resolution independent.

Controls that are sized and spaced irregularly in a grid

If the graphical controls in a group are not the same size or are not evenly spaced in a grid, you need to
specify in the declaration the location suffix of each control as an exact x,y point. This x,y point typically
corresponds to the center of the object. This syntax is not necessarily cross-platform or resolution
independent.

You specify a location in its declaration as an x,y coordinate using the following syntax:

(x, y)

You append this location to the tag with the forward slash (/) character.

Silk Test Classic Does Not Recognize the Class of a Control
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

While using the Record Window Declarations dialog box, you will on occasion notice that the recorded
class is CustomWin, indicating that Silk Test Classic does not recognize the class of the object. The object
is interpreted as a custom object. Custom objects often look and act the same as their corresponding
known, standard objects and they may correspond to built-in, known classes.

Using Advanced Techniques with the Classic Agent | 377

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

If the object is in fact a custom object, to be able to record and run test cases that interact with the custom
object, see Mapping Custom Classes to Standard Classes.

However, if the object is not actually a custom object, but is instead a standard object that your
application’s developers have renamed, you can record and run test cases merely by establishing a class
map between the renamed class and the standard 4Test class. You can also filter out unneeded custom
classes from the class hierarchy.

Class mapping only works for objects that are created with standard API calls but are given non-standard
names.

Supporting Custom Text Fields
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Suppose your application has an object that acts like a text box, but which is not implemented using your
GUI’s standard text box object. The following example illustrates how you can derive a new class from
AnyWin and define methods for the custom object. The example defines the ClearText,
GetMultiText, SetMultiText, and GetMultiSelText methods.

// This new class defines methods that re-implement
// the methods of the TextField class so that they will
// work on custom text boxes. To be able to use these
// methods, you must change the class of object in the
// declarations from CustomWin to CustomTextField.

winclass CustomTextField : AnyWin

 // This method clears the text box by moving the
 // cursor to the start of field, selecting the text
 // to the end of the file, and deleting the selected
 // text

 void ClearText ()
 TypeKeys ("<Ctrl-Home>")
 TypeKeys ("<Ctrl-Shift-End>")
 TypeKeys ("<Backspace>")

 // This method writes text to the text field.
 // It first calls ClearText and then uses TypeKeys to
 // input the text passed in.

 void SetMultiText (STRING sText)
 ClearText ()
 TypeKeys (sText)

 // This copies the currently selected text to the
 // clipboard and returns the clipboard contents.

 LIST OF STRING GetMultiSelText ()
 Clipboard.SetText () // Clear the clipboard
 TypeKeys ("<Ctrl-Insert>")
 return (Clipboard.GetText ())

 // This method highlights all of the text in the
 // text field, copies the highlighted text to the
 // clipboard, and returns the clipboard contents.

 LIST OF STRING GetMultiText ()
 Clipboard.SetText () // Clear the clipboard
 TypeKeys ("<Ctrl-Home>")
 TypeKeys ("<Ctrl-Shift-End>")

378 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

 TypeKeys ("<Ctrl-Insert>")
 TypeKeys ("<Left>")
 return (Clipboard.GetText ())

Supporting Custom List Boxes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To support custom list boxes, you can write "low-level" methods. Or, a second approach is to implement the
necessary Microsoft Windows messages and set the necessary Windows style bits so that you can use the
standard list box methods on your custom list box. The Microsoft Windows messages which you must
implement are:

• LB_GETCOUNT

• LB_GETTEXT

• LB_GETITEMRECT

• LB_GETTOPINDEX

• LB_GETSEL

• LB_GETTEXTLEN

And the Windows style bits that you must set are:

• WS_VSCROLL

• LBS_EXTENDEDSEL

• LBS_MULTIPLESEL

Class Map Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Class Map dialog box to map a CustomWin to a built-in class and to suppress the controls for
certain classes for .NET and Windows API-based applications. For example, you might want to ignore
container classes to streamline your test cases.

Click Options > Class Map.

Silk Test Classic assigns the class CustomWin to all custom objects. If the custom object can be mapped
to a standard Silk Test Classic class, you should create this mapping before you paste (insert) the
declarations into an include file.

Custom Class Displays the name of the custom class.

Standard Class Allows you to type/select the name of the built-in 4Test class to which you are mapping
the custom class.

Edit Click to edit the selected mapped custom class. Available only if a class is selected in
the Classes list box.

Remove Click to remove the selected mapped custom class. Available only if a class is selected
in the Classes list box.

Add Click to add a newly mapped custom class.

Custom class Type the name of the class that you want map to a standard class. The class name
depends on the technology and the extension that you are using. For Windows API-
based applications, use the Windows API-based class names. For example, to map the
SWT_Group in a Windows API-based application, type SWT_Group.

Standard class Select the class that you want to map to the custom class. You can also select Ignore to
suppress controls for a certain class.

Using Advanced Techniques with the Classic Agent | 379

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Using Clipboard Methods
If you are having trouble getting or setting information with a custom object that contains text, you might
want to try the 4Test Clipboard methods. For example, assume you have a class, CustomTextBuffer,
which is similar to a TextField, but using the GetText and SetText methods of the TextField does
not work with the CustomTextBuffer. In such a case, you can use the GetText and SetText methods
of the ClipboardClass.

Get and Set Text Sample Code
The following sample code retrieves the contents of the CustomTextBuffer by placing it on the
Clipboard, then printing the Clipboard contents:

// Go to beginning of text field
CustomTextBuffer.TypeKeys ("<Ctrl-Home>")
// Highlight it
CustomTextBuffer.TypeKeys ("<Ctrl-Shift-End>")
// Copy it to the Clipboard
CustomTextBuffer.TypeKeys ("<Ctrl-Insert>")
// Print the contents of the Clipboard
Print (Clipboard.GetText())

Setting text

Similarly, the following sample code inserts text into the custom object by pasting it from the Clipboard:

// Go to beginning of text field
CustomTextBuffer.TypeKeys ("<Ctrl-Home>")
// Highlight it
CustomTextBuffer.TypeKeys ("<Ctrl-Shift-End>")
// Paste the Clipboard contents into the text field
CustomTextBuffer.TypeKeys ("<Shift-Insert>")

You can wrap this functionality in GetText and SetText methods you define for your custom class,
similar to what was shown in supporting custom text boxes.

Using the Modified Declaration
Once you create window declarations like these for the graphical objects in your application, you can
manipulate them as you would any other object. For example, if the tool bar was contained in an
application named MyApp, to click on the FileOpen icon in the tool bar, you use the following command:

MyApp.FileOpen.Click()

You need to write this statement, and others that access the objects declared above, such as Save and
Printer, by hand. Record > Testcase and Record > Actions will not use these identifiers.

Filtering Custom Classes
This section describes how you can filter custom classes.

Using Class Mapping to Filter Custom Classes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can use 4Test to filter out unnecessary classes, such as invisible containers. Ignoring these
unnecessary classes simplifies the object hierarchy and shortens the length of the lines of code in your test
scripts and functions. Container classes or ‘frames’ are common in GUI development, but might not be
necessary for testing.

380 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

You enable Silk Test Classic to ignore instances of a container class through the Class Map dialog box.
When you enable Silk Test Classic to ignore these classes, the classes are not recorded.

You can suppress the controls for certain classes for .NET, Java SWT, and Windows API-based
applications. Other extensions do not support this type of class-mapping for window classes, so you must
modify the extension .ini file in order to ignore window classes in the Java or ActiveX/VB extensions.

After filtering out a custom container class, you may lose the ability to see its child objects.

You can also map a class to LookUnder to look ‘through’ the class, seeing the objects under it. For
example, there is a BlackFrame class in Visual Basic that is a 3-D black border around controls.
LookUnder is not in the standard classes list, so if you want to use it you must type it in.

You can use class mapping to filter out the following:

• Object layers to ignore non-logical windows.
• Extra or "invisible" window layers in the object hierarchy.
• An overlaying window that obstructs an object under it.

Overview of Style-Bits
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Classes may allow different styles of instantiation. Style-bits determine the styles that can be applied to an
object. For example, a PushButton, CheckBox, and RadioButton are all variants of the native Windows
Button class. They are all the same class, but each has different style-bit to determine the specific look and
behavior of the button.

You can map not only an entire class, but also specific ‘styles’ of one class to another known class.

Class Mapping with Style-Bits
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. In the Custom Class text box of the Class Map dialog box, enter the class name, style-bit, and style-
mask.

The style-mask tells Silk Test Classic which parts of the style-bit to use. As a general rule, repeat the
style-bit.

2. In the Standard Class text box, enter the known class.

This can be any standard 4Test class or a user-defined class.

3. Click Add and then click OK.

Note: The style-mask can also take the format 0xFFFFFFFF, where ‘F’ includes the bit and ‘0’ turns it
off. For example, one custom PageList might look like 0x12345678 and another of the same type
might look like 0x12345679. You can class map it like:

newpageclass,0x12345678,0x12345678=PageList
newpageclass,0x12345679,0x12345679=PageList

And on and on for each one like it, or…

newpageclass,0x12345678,0xFFFFFFF0=PageList

What this says is that every instance of newpageclass 0x1234567? should be class mapped to
PageList. The last bit, being turned off, is ignored.

Using Advanced Techniques with the Classic Agent | 381

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Invisible Containers
Sometimes a window contains an invisible dialog box that contains controls. You can set these "dialog box
containers" to Ignore using class mapping and style-bits in order to avoid making all of the dialog boxes
disappear.

See the following examples for details.

Example: WordPad with No Class Mappings
[-] window MainWin WordPad
[+] multitag "*WordPad"
[+] Menu File
[+] Menu Edit
[+] Menu View
[+] Menu Insert
[+] Menu Format
[+] Menu Help
// toolbars seen, but are nested
[+] CustomWin BottomStatusBar
[-] CustomWin Frame
[+] CustomWin FormatBar
[+] ComboBox ComboBox1
[+] ComboBox ComboBox2
[+] CustomWin StandardBar
[+] CustomWin Ruler
[-] main ()
WordPad.Frame.FormatBar.ComboBox1.Select ("Arial")

Example: WordPad with AfxControlBar Ignored
[-] window MainWin WordPad
[+] multitag "*WordPad"
[+] Menu File
[+] Menu Edit
[+] Menu View
[+] Menu Insert
[+] Menu Format
[+] Menu Help
// toolbars, ruler, and statusbar not seen
[+] ComboBox ComboBox1
[+] ComboBox ComboBox2
[+] TextField Document
[-] main ()
WordPad.ComboBox1.Select ("Arial")

Example: Class Mapping Using Style-Bits
[-] MainWin MyApp
[+] multitag "My App"

// the following are default declarations; these are really
// a push button, checkbox, and a radio button
[-] CustomWin AVButton
tag "[AVButton]#1"
[-] CustomWin AVButton2
tag "[AVButton]#2"
[-] CustomWin AVButton3
tag "[AVButton]#3"

// in the Class Map Dialog set up class mapping

382 | Using Advanced Techniques with the Classic Agent

// using style bits:
// class map AVButton,0x0000,0x0000 to PushButton
// class map AVButton,0x0003,0x0003 to CheckBox
// class map AVButton,0x0004,0x0004 to RadioButton
[-] MainWin MyApp
[+] multitag "My App"

// notice that the following windows are now declared correctly
[-] PushButton Close
tag "Close"
[-] CheckBox PrintReport
tag "Print Report"
[-] RadioButton PieChart
tag "Pie Chart"

OCR Support
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic provides a 4Test include file, OCR.inc, which contains two 4Test functions that are used
to perform optical character recognition (OCR). One function converts bitmap files to text. The other allows
you to pass in a window identifier and extract the text from the window (or a region of the window). To use
the 4Test OCR functions, include OCR.inc in your test script or include file, or add the include file through
the Use Files text box in the Runtime Options dialog box. To include the function documentation in the
library browser, add OCR.txt through the Help files for library browser text box in the General Options
dialog box.

The 4Test functions call functions in a Silk DLL file that extends the third-party Textract DLL file from
Structu Rise. The Textract DLL uses a font pattern database file to recognize text of certain sizes and
styles for fonts that are specified in an initialization file. Although a default version of the font pattern
database is installed with Silk Test Classic, we recommend that you configure the font pattern database to
include the fonts used by your application.

The Silk Test Classic OCR Module
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The following files comprise the OCR module provided with Silk Test Classic. All of the files must reside in
the Silk Test directory:

Exgui.exe Utility for generating the font pattern database. Can also be used as a standalone
utility for text recognition.

OCR.inc The 4Test include file that provides high-level 4Test functions based on the functions
in SgOcrLib.dll.

SgOcrLib.dll Borland extension of Textract.dll that provides high-level functions.

SgOcrLib.inc Declares the functions in SgOcrLib.dll so that they can be called in 4Test.

SgOcrPattern.pat Font pattern database that controls text conversion.

Textract.dll Textract OCR DLL provided by Structu Rise.

Textract.ini Initialization file for the Textract OCR DLL. The following two sections contain settings
that may require modification:

• In the [Options] section, the Database Path setting must point to the OCR
pattern file, <SilkTest directory>\SgOcrPattern.pat.

Using Advanced Techniques with the Classic Agent | 383

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• The [Recognition] section contains settings that control which fonts are used
to generate the pattern file.

The 4Test OCR Functions
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

OCR.inc includes the following 4Test functions for OCR:

Function Description Parameters Syntax

OcrGetTextFromBmp Converts a bitmap file
into text. The conversion
uses the pre-configured
pattern file, which is
specified in the
Database Path
setting in the
textract.ini file.

iRet Result
length. If
conversion
fails, then
an
E_OCR
exception
will be
raised.
INTEGER.

sOcrText The result
of
converting
the bitmap
to text.
NULL if
conversion
failed.
OUT.
STRING.

sBitmapFile The
bitmap
(.bmp) file
to convert.
STRING.

iRet = OcrGetTextFromBmp
(sOcrText, sBitmapFile)

OcrGetTextFromWnd Converts a bitmap of a
window, or an area within
a window, into text. The
conversion uses the pre-
configured pattern file,
which is specified in the
Database Path
setting in the
textract.ini file.

iRet Result
length. If
conversion
fails, then
an E_OCR
exception
will be
raised.
INTEGER.

sText The result
of
converting
a bitmap of
the window
to text.
NULL if
conversion
failed. OUT.
STRING.

iRet = OcrGetTextFromWnd
(sText, wWindow[,
rCapture])

384 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Function Description Parameters Syntax

wWindow The window
that will be
the source
of the
bitmap to
be
converted
to text.
WINDOW.

rCapture The
capture
region.
OPTIONAL.
RECT.

Example

The sample test script (ocrtest.t) includes a test case (shown below) that extracts the
text from a Microsoft Word document. Microsoft Office controls are recognized as
custom windows (CustomWin) by Silk Test Classic, so you cannot use the 4Test
GetText() method to get the text. However, you can use the OcrGetTextFromWnd()
function to capture a bitmap of the document window and convert it to text. Notice that,
if necessary, the test case will scroll through the document and capture multiple
bitmaps.

testcase GetOcrAPIDocText (STRING sDocument)
 MSWord.SetActive ()

 // Open the specified document.
 MSWord.OpenDoc (sDocument)

 // Capture each page in succession.
 // Start at the top and page down until the bottom is reached
 LIST OF STRING lsResults = {}
 STRING sResult = NULL
 INTEGER iMaxPos, iCurPos, iLastPos = -1
 INTEGER iResLen, iTotalLen = 0

 withoptions
 BindAgentOption (OPT_REQUIRE_ACTIVE, FALSE)
 BindAgentOption (OPT_VERIFY_ACTIVE, FALSE)
 TheDoc.ScrollBarV.ScrollToMin ()
 iCurPos = TheDoc.ScrollBarV.GetPosition ()
 iMaxPos = TheDoc.ScrollBarV.GetRange ().iMax

 while TRUE
 // If we are capturing the first page, then eliminate the
flashing cursor
 // by highlighting the current character. Otherwise, page
down to capture
 // the next page.
 MSWord.SetActive ()
 if sResult == NULL
 // First page
 MSWord.TypeKeys ("<Shift-Right>")
 else
 // Page down
 withoptions
 BindAgentOption (OPT_REQUIRE_ACTIVE, FALSE)
 BindAgentOption (OPT_VERIFY_ACTIVE, FALSE)

Using Advanced Techniques with the Classic Agent | 385

 TheDoc.ScrollBarV.ScrollByPage (1)
 iLastPos = iCurPos
 iCurPos = TheDoc.ScrollBarV.GetPosition ()
 // If scrolling did not change the scrollbar position,
then
 // we have reached the bottom. Also, if we scrolled up
instead
 // of down by paging down, then we have reached the
bottom.
 if iCurPos <= iLastPos
 break

 // Convert the bitmap for the current view.
 iResLen = OcrGetTextFromWnd (sResult, TheDoc.CurrentView)
 if sResult != NULL
 ListAppend (lsResults, sResult)
 iTotalLen = iTotalLen + Len (sResult)

 ResPrintList ("Document text ({iTotalLen} chars)", lsResults)

If neither of the 4Test functions in OCR.inc provides the functionality that you need, you
can call the DLL functions in the Borland DLL, SgOcrLib.dll, through directly using
the function declarations in SgOcrLib.inc. The DLL functions are documented at the
top of SgOcrLib.inc. The functions in OCR.inc can serve as an example of how to
use the DLL functions.

Instructions for Generating the Font Pattern Database
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Exgui.exe utility to generate the pattern file SgOcrPattern.pat. The text conversion is
performed using Windows fonts. Before conversion, the required fonts must be processed into the pattern
file. Before generating the pattern file, the required fonts, font sizes, and font styles must be configured in
the Textract.ini file. Open Textract.ini and adjust the following settings in the [Recognition]
section:

Include1 List of fonts that are to be converted.

Exclude List of fonts that are not to be converted.

Italic 1 - Convert italic characters; 0 - Exclude italic characters.

Bold 1 - Convert bold characters; 0 - Exclude bold characters.

Underlined 1 - Convert underlined characters; 0 - Exclude underlined characters.

Sizes Range of font sizes, <min>-<max>, that are to be converted.

Once Textract.ini has been configured, open the Exgui.exe application and click Build font pattern
database. When the Textract - Build Font Base dialog box opens, click OK and wait for the pattern file to
be generated. The file name and path will be saved based on the Database Path setting in the
[Options] section of the textract.ini file.

More Information about SGOCRLIB.DLL
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Copy the following files into the directory where the executable that calls the dll, for example
Partner.exe, resides:

386 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• SgOcrLib.dll

• SgOcrPattern.pat

• Textract.dll

• Textract.ini

For convenient pattern file generation, we recommend that you also copy the exgui.exe file to this
directory.

Open the Textract.ini file and modify the Database Path setting in the [Options] section to point
to the correct location of SgOcrPattern.pat.

Have the application, for example Silk Test Classic, load SgOcrLib.dll, which contains the functions
explained in the following section.

Pattern File Generation
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the exgui.exe application to generate the appropriate pattern file. The text conversion is performed
using Windows fonts. The required fonts must be processed into the pattern file before any conversion is
performed. The required fonts, font sizes, and font styles must first be configured in the textract.ini
file. Open textract.ini and adjust the following settings:

Include1 List of fonts that are to be converted.

Exclude List of fonts that are not to be converted.

Italic 1 - Convert italic characters; 0 - Exclude italic characters.

Bold 1 - Convert bold characters; 0 - Exclude bold characters.

Underlined 1 - Convert underlined characters; 0 - Exclude underlined characters.

Sizes Range of font sizes, <min>-<max>, that are to be converted.

Then open the exgui.exe application and click Build font pattern database. Click OK and wait for the
pattern file to be generated. The file name and path will be saved based on the Database Path setting in
the textract.ini file.

Supporting Internationalized Objects
This section describes how you can work with internationalized objects.

Overview of Silk Test Classic Support of Unicode
Content
Silk Test Classic is Unicode-enabled, which means that Silk Test Classic is able to recognize double-byte
(wide) languages. We have enabled components within the application to deal with Unicode content. The
Silk Test Classic GUI supports the display and input of wide text. The 4Test language processor has been
enhanced to support wide text. All 4Test library functions have been widened. The extensions have been
enhanced to support the input and output of wide text.

We have added and modified 4Test functions to deal with internationalization issues. With Silk Test Classic
you can test applications that contain content in double-byte languages such as Chinese, Korean, or
Japanese (Kanji) characters, or any combination of these. You can also name Silk Test Classic files using
internationalized characters. Silk Test Classic supports three text file formats: ANSI, Unicode and UTF-8.

Silk Test Classic supports the following:

Using Advanced Techniques with the Classic Agent | 387

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• Localized versions of Windows.
• International keyboards and native language Input Method Editors (IME).
• Passing international strings as parameters to test cases, methods, and so on, and comparing strings.
• Accessing databases through direct ODBC standard access.
• Reading and writing text files in multiple formats: ANSI, Unicode, and UTF-8.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Before testing double-byte characters with Silk Test Classic

Testing an internationalized application, particularly one that contains double-byte characters, is more
complicated than testing an application that contains strictly English single-byte characters. Testing an
internationalized application requires that you understand a variety of issues, from operating system
support, to language packs, to fonts, to working with IMEs and complex languages.

Before you begin testing your application using Silk Test Classic, you must do the following:

• Meet the needs of your application under test (AUT) for any necessary localized OS, regional settings,
and required language packs.

• Install the fonts necessary to display your AUT.
• If you are testing an application that requires an IME for data input, install the appropriate IME.

Using DB Tester with Unicode Content
To use DB Tester with Unicode characters:

• You must have a Unicode-capable driver (ODBC version 3.5 or higher) associated with the data source
name you are using in your test plan.

• The database must be Unicode capable (SQL Server 7 and 2000, Oracle 8 and higher).

Issues Displaying Double-Byte Characters
When you are dealing with internationalized content, being able to display the content of your application is
critical. Carefully consider the following:

Operating
system

Your operating system needs to be capable of displaying double-byte characters in
the system dialog boxes and menus used by your application.

Silk Test Classic You need to be concerned about displaying your content in the Silk Test Editor and
the Silk Test Classic dialog boxes.

Application
under test

You need to have a font installed that is capable of displaying the content of your
application. If you have multiple languages represented in your application, you will
need a font that spans these languages.

Browser If your application is web-based, make sure that you are using a browser that
supports your content, that the browser is configured to display your content, and that
you have the necessary fonts installed to display your application.

Complex scripts
(languages)

Silk Test Classic does not support complex scripts such as the bi-directional
languages Hebrew and Arabic. These are languages that require special processing
to display and edit because the characters are not laid out in a simple linear
progression from left to right, as are most western European characters.

Learning More About Internationalization
There are a variety of online sites that provide general information about internationalization issues. You
may find the following Web sites useful if you are learning about internationalization, localization or
Unicode. They include:

388 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

• Microsoft’s Professional Developer’s Site for Software Globalization Information (http://
www.microsoft.com/globaldev/default.asp)

• The definitive word on the W3C’s Web site (http://www.w3.org/international)
• The Unicode Consortium, a non-profit organization founded to develop, extend and promote use of the

Unicode Standard (http://www.unicode.org)
• IBM’s International Components for Unicode (http://oss.software.ibm.com/icu/userguide/index.html)
• A tutorial from Sun on how to internationalize Java applications (http://java.sun.com/docs/books/tutorial/

i18n)

Silk Test Classic File Formats
Silk Test Classic gives you the ability to specify the file format of text files and .ini files. Before Silk Test
Classic 5.5, all files were in the ANSI file format. You can create the following formats:

ANSI For Silk Test Classic purposes, ANSI is defined as the Microsoft Windows ANSI character set
from Code Page 1252 Windows Latin 1.

Unicode Is an extended form of ASCII that provides the ability to represent data in a uniform plaintext
format that can be sorted and processed efficiently. Unicode encompasses nearly all
characters used in computers today.

UTF-8 Unicode Transformation Format (UTF) Is a multi-byte encoding that can handle all Unicode
characters. It is used to compress Unicode, minimize storage consumption and maximize
transmission.

You have the ability to save text files in any of three file formats: ANSI, UTF-8, and Unicode. By default all
files are saved in UTF-8 format. The Save As dialog boxes throughout include a list box from which you
can select the file format in which you want to save your file.

• ANSI files cannot contain non ANSI characters
• The file formats available will depend on the content of your text file. If your file contains characters not

available on code page 1252, ANSI will not display in the list box. If you are working with an existing
ANSI file and add non-ANSI characters, the Save As dialog box will open when you attempt to save the
file. In order to save the changes you will need to change the file format and click Save.

• The title bar indicates the file format: When you have a file open, the format of that file is indicated on
the title bar.

• Silk Test Classic uses the Microsoft standard Byte Order Marked (BOM) to determine the file type for
UTF-8 and Unicode files. If a Unicode file does not have the BOM marker then Silk Test Classic sees
the file as an ANSI file, and the Unicode characters cannot be displayed.

Reusing Silk Test Classic Single-Byte Files as Double-Byte
If you have existing single-byte Silk Test Classic text files, such as *.pln, *.inc or *.t, that you want to
use in double-byte testing, the files must:

• Be compatible with Silk Test Classic, such as files created using the IE 5.x DOM extension for testing a
Web application.

• Be recompiled in Silk Test Classic because the object files, *.ino and *.to, are not compatible.

Opening an existing Silk Test Classic file as a double-byte file

Choose one of the following:

• Copy the file you want to re-use to a new directory. Do not copy the associated object (*.ino or *.to)
files. In Silk Test Classic, open this new file.

• In the existing directory, delete the object files associated with the file you want to re-use. In Silk Test
Classic, open the desired file.

Using Advanced Techniques with the Classic Agent | 389

http://www.microsoft.com/globaldev/default.asp
http://www.microsoft.com/globaldev/default.asp
http://www.w3.org/international
http://www.unicode.org
http://oss.software.ibm.com/icu/userguide/index.html
http://java.sun.com/docs/books/tutorial/i18n
http://java.sun.com/docs/books/tutorial/i18n

When the Silk Test Classic file is compiled, new objects files are created. If you enter double-byte content
into the file, when you try to close the file you will be prompted to save the file in a compatible file format,
Unicode or UTF-8.

Specifying File Formats for Existing Files with Unicode Content
If you want to save an existing file in a different file format, choose one of the following:

Overwriting the file

If the file is already referenced from other files, you may want to change the format without changing the
name or its location. As you cannot have two files with the same name saved in the same directory, even in
different formats, the only option is to overwrite the file.

1. Make sure the file is the active window. Click File > Save As and select the file from the list.
2. From the Save as format list box, select the file format. ANSI is not available if the file contains

characters outside of the ANSI character set.
3. Click Save. A dialog box displays asking if you want to overwrite the file.
4. Click Yes.

Saving in the same directory

If you want to have versions of a file in various formats within the same directory, you must save each file
with a different name.

1. Make sure the file is the active window. Click File > Save As.
2. In the File name text box, enter the new name of the file.
3. From the Save as format list box, select the file format. ANSI is not available if the file contains

characters outside of the ANSI character set.
4. Click Save.

Saving in a different directory

If you would like to keep the name of the file but change the format, you must save the file in a different
directory.

1. Make sure the file is the active window. Click File > Save As and select the file from the list.
2. Navigate to the directory in which you want to save the file.
3. From the Save as format list box, select the file format. ANSI is not available if the file contains

characters outside of the ANSI character set.
4. Click Save.

If you modify an ANSI text file and the modifications include characters outside of the ANSI characters set,
when you try to save your changes, the Save As dialog box will open and you need to either overwrite the
ANSI file with a file of the same name but in a different format, or rename the file and save in Unicode or
UTF-8 format .

Specifying File Formats for New Files with Unicode content
This topic contains instructions on specifying the file format for:

With the exception of test frames, to specify the file format of a new file:

1. Click File > New.
2. On the New dialog box, select the file type.
3. Click OK. The untitled file opens.
4. Click File > Save As. The Save As dialog box opens.
5. Navigate to where you want to store the file and enter the name of the file in the File name text box.

390 | Using Advanced Techniques with the Classic Agent

6. Select a file format (UTF-8 is the default) from the Save as format list box. ANSI is not available if the
file contains characters outside of the ANSI character set.

7. Click Save.

To specify the file format for a new test frame:

1. Click File > New.
2. On the New dialog box, select the file type Test Frame and click OK. The New Test Frame dialog box

opens.
3. To select a file format, click Browse. The Save As dialog box opens. The default file format for test

frames is UTF-8. If you simply type the path and file name in the File name text box of the New Test
Frame dialog box and click OK, the file is saved in UTF-8.

4. Navigate to where you want to store the file and enter the name the file in the File name text box.
5. Select the file format from the Save as format list box. If you select ANSI and if the file contains

characters outside of the ANSI character set, when you try to save the file you will need to change the
file format to a compatible format, Unicode or UTF-8.

6. Click Save. The New Test Frame dialog box regains focus.
7. On the New Test Frame dialog box, select the application and proceed as normal.

If you modify an ANSI text file and the modifications include characters outside of the ANSI characters set,
when you try to save your changes, the Save As dialog box will open and you need to either overwrite the
ANSI file with a file of the same name but in a different format, or rename the file and save in Unicode or
UTF-8 format .

Working with Bi-Directional Languages
Silk Test Classic supports bi-directional languages to the extent that the operating system does. Silk Test
Classic captures static text in all Unicode languages. However, scripting, playback and many string
functions are not fully supported for complex languages, the most common of these being the bi-directional
languages Hebrew and Arabic. The problems you may encounter are discussed below.

Silk Test Classic with bi-directional languages on Windows XP

Windows XP is a multi-lingual operating system and is capable of handling bi-directional languages when
configured properly.

On Windows XP if you input characters from RIGHT to LEFT (CBA) provided that the default system
locale is set for a bi-directional language, Silk Test Classic will correctly record and playback the characters
as they were entered and display, from RIGHT to LEFT. When you use a 4Test string function such as
StrPos (string position) to return the third element, 4Test correctly counts from right to left and returns
"C"

Once you have set a default system locale, the operating system continues to be able to read and write
that language properly, even after another locale has been set as the default. This works only if the
language is not unchecked from the Language Settings area after another default is set. Once a language
is unchecked, the ability to read and write in that language will be gone when you reboot your system. You
would need to reset it as the default to restore the capability.

Recording Identifiers for International Applications
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

By default, Silk Test Classic records an object’s caption text as its identifier (ID). With Silk Test Classic you
can override this default and specify ASCII-only IDs, where the ID is based on the object’s class and index.
This helps to automatically declare English IDs while keeping the tags native.

The identifier has the form ClassnameIndex, where Classname is the 4Test class of the object and Index is
an internally generated integer that ensures that identifiers within a window are unique.

Using Advanced Techniques with the Classic Agent | 391

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

To select ASCII-only identifiers:

1. On the Record Window Declarations dialog box, click Options. The Record Window Declarations
Options dialog box opens.

2. In the Window declaration identifiers area, click Use the 4Test Class.
3. Click OK. ASCII-only IDs will now be captured when you record new window declarations.

Configuring Your Environment
This section describes how you can configure your environment for internationalized objects.

Configuring Your Microsoft Windows XP PC for Unicode Content
If you have already configured your Windows XP PC to run your internationalized application, you may be
able to disregard this topic and see Recording Identifiers for International Applications.

On Microsoft Windows XP you may need to do all or some of the following:

• Install language support required by your application through modifications in the Regional and
Language Options dialog box.

• If your application contains content that is in a large-character-set language, such as simplified Chinese,
you may need to install an Input Method Editor (IME) if you want to input data in this language. For
additional information about IMEs, refer to the Microsoft support site.

Fonts

To display the content of your application in Silk Test Classic you will need to have an appropriate font
installed and specify this font in the system registry and in the Silk Test Classic Options/Editor Font.

Installing Language Support

You must have administrator privileges to install language packs or set the system default locale.

Microsoft Windows XP provides built-in support for many double-byte languages. Enabling this support can
be done at the time of install or after setup through the Regional and Language Options dialog box. If
you enable language support after setup, you may need files from the Microsoft Windows XP installation
CD. Configurations will vary depending on your needs and how your system has been configured
previously. The following instructions are intended only to be general information to get you started:

1. Click Start > Settings > Control Panel > Regional and Language Options.

2. If you are testing East Asian languages, select the Languages tab, and then check the Install files for
East Asian languages check box.

You may be prompted to insert the Microsoft Windows XP CD for the necessary files.

3. Click the Advanced tab on the Regional and Language Options dialog box.

4. Select the language that matches the language of the non-Unicode programs you want to use.

For example Chinese (PRC).

5. Click OK.

6. Reboot your computer for the changes to take effect.

After you restart your computer, if you want to input data in a language other than the default language,
you must click the Language bar icon in your system tray and select the language from the multi-lingual
indicator.

Setting Up Your Input Method Editor

If you want to use an Input Method Editor (IME) to input data in the language you selected, you may need
to set up your IME.

392 | Using Advanced Techniques with the Classic Agent

1. Click Start > Settings > Control Panel > Regional and Language Options.

2. Click the Languages tab.

3. Click Details in the Text Services and Input Language area.

4. In the Settings tab on the Text Services and Input Language dialog box, select the language you
want to use as your default input language.

5. In the Preferences section of the Settings tab, click Language Bar, make sure the Show the
Language Bar on the desktop check box is checked, and then click OK on the Settings tab.

This default will enable your system to display this language in dialog boxes and menus. We
recommend setting the default to the language of the AUT.

Displaying Double-Byte Characters
While Silk Test Classic can process Unicode, displaying double-byte characters is not automatic. Keep the
following in mind:

• Is your operating system configured to display your content?
• Is Silk Test Classic configured to display double-byte content in its dialog boxes?
• Do you have the right font set to display your content in the Editor?

Displaying Double-Byte Characters in Dialog Boxes

If Silk Test Classic is rendering squares or pipes in dialog boxes where you expect double-byte characters,
you may need to make a simple modification to Silk Test Classic using a script we have provided. This
script is located in <SilkTest Installation directory>\Tools.

1. In Silk Test Classic, click File > Open.

2. In the Tools directory, open font.t.

3. Click Run > Testcase. The Run Testcase dialog box opens.

4. In the arguments area, type the name of the font in quotes.

For example, Arial Unicode MS. It is not necessary to include the type of font, for example Arial
Unicode MS (True Type).

5. Click Run.

6. Reboot your computer for the changes to take effect.

Displaying Double-Byte Characters in the Editor

In order for the Editor to display double-byte characters, such as those captured in your test frame, you
must select a font that is able to display these characters.

1. In Silk Test Classic, click Options > Editor Font.

2. From the available fonts, select one that is able to display the language of your application.

If your application contains multiple languages, make sure that you have a font installed that is capable of
rendering all the languages, as the Editor does not display multiple fonts. Licensed Microsoft Office 2000
users can freely download the Arial Unicode MS font from Microsoft.

Localized Browser Support for the Classic Agent
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The Classic Agent provides support for several internationalized versions of Internet Explorer and Mozilla
Firefox; localized browser include files are provided.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Using Advanced Techniques with the Classic Agent | 393

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

The following files, in ANSI format, are available in the <SilkTest Installation directory>
\Locale:

• ...\French\browser.inc

• ...\French\explorer.inc

• ...\French\firefox.inc

• ...\German\browser.inc

• ...\German\explorer.inc

• ...\German\firefox.inc

Silk Test Classic also contains the following files in UTF-8 format in the <SilkTest Installation
directory>\Locale:

• ...\japanese\browser.inc

• ...\japanese\explorer.inc

• ...\simplified_chinese\browser.inc

• ...\simplified_chinese\explorer.inc

• ...\simplified_chinese\Firefox.inc

Changing the Default Browser Include Files

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To change the default English-US browser include files to one of the supported localized browsers:

1. Navigate to <SilkTest Installation directory>\Locale.

2. In the Locale directory, locate the language of the localized browser you are using.

3. Copy the files contained in the <Language directory> directory.

4. Go to <SilkTest Installation directory>\Extend and paste the files, overwriting the existing
files.

Resetting Browser Support to Default

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To reset support for the English-US browsers to the defaults when you no longer want to test a localized
version of the browser:

1. Navigate to <SilkTest Installation directory>\Locale.

2. Copy the files from within the US directory.

3. Navigate to <SilkTest Installation directory>\Extend and paste the files, overwriting the
existing files.

Note: Use statements cannot be used to swap browser include files. You must overwrite the files
within the Extend directory.

Using an IME with Silk Test Classic
Silk Test Classic supports IMEs. The IME is enabled only after you have installed an Asian language
package. The IME will work once you have installed it, enabled it, and are in an application with IME
support. In Silk Test Classic, the IME is only available when a file, such as an include or script, is active.

For additional information about IMEs and for downloads, see the Microsoft support site.

394 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Troubleshooting Unicode Content
This section contains topics to help troubleshoot unicode content.

Display Issues
This section describes how you can troubleshoot display issues in Unicode contents.

Why Are My Window Declarations Recording Only Pipes?

If your window declarations record only pipes (|), You’ve probably forgotten to set the Options > Font
Editor to a font that can display the language of your AUT.

What Are Pipes and Squares Anyway?

The pipes and squares, or even question marks (?), display in place of characters which the system has
not yet been configured to display. A font that does not support the language is being used in the dialog
boxes and menus. Whether or not you see pipes or squares depends on what font is used and what
language you are trying to display.

Why Can I Only Enter Pipes Into a Silk Test Classic File?

If you can only enter pipes into a file, for example a frame file or an include file, the Silk Test Classic Editor
font is not set to display the language of your AUT.

Why Do I See Pipes and Squares in the Project Tab?

Pipes, squares, and questions marks (?) display in place of characters which the system has not yet been
configured to display. A font that does not support the language is being used in the dialog boxes and
menus. Whether or not you see pipes or squares depends on what font is used and what language you are
trying to display.

You must configure your system and make sure that you have set the regional settings.

Why Cannot My System Dialog Boxes Display Multiple Languages?

If you are testing an application whose content contains multiple languages, meaning that it has several
character sets represented, you may need to:

• Make sure that you have a font installed on your machine that can display all the languages.
• Configure Silk Test Classic to use a font that can display your content.

Why Do I See Pipes and Squares in My Win32 AUT?

If you start up your application under test and see pipes and squares in the title bar, menus, or dialog
boxes, it may mean that the operating system cannot support your application or that your system is not
properly configured to display your content.

Why Do the Fonts on My System Look so Different?

Fonts that display in your menus, title bars and so on, are controlled by the registry settings and the
Display Properties > Appearance settings of your computer.

If your fonts display too large or too small, you may have incorrectly set the appearance for an item:

1. Navigate to Start > Settings > Control Panel > Display.
2. Navigate to the Appearance tab and select Windows standard in the Scheme field.
3. Click OK.

Your desktop should now display normal.

Using Advanced Techniques with the Classic Agent | 395

Why Do Unicode Characters Not Display in the Silk Test Project Explorer

To view Unicode characters in the Silk Test Project Explorer, you must have installed a language pack with
Unicode characters.

Why Is My Web Application Not Displaying Characters Properly?

If your Web application is not displaying the characters properly, or strange symbols or character are mixed
in with your content, you may need to change a setting in your browser.

Internet Explorer Users

Check the settings for Encoding:

1. In Internet Explorer, click View > Encoding.
2. Select one of the following:

• From the listed encodings, select one that meets the requirements of your application.
• Click More, then select an encoding that meets the requirements of your application.
• Click Auto-Select.

Mozilla Firefox Users

Check the settings for Character Coding:

1. In Mozilla Firefox, click Settings > Content.
2. In the Fonts & Colors section, click Advanced.
3. Select a character coding that meets the requirements of your application.

If you still have problems, ensure that your system locale is set for the language of your application under
test.

File Formats
This section describes how you can troubleshoot issues with file formats in Unicode contents.

Considerations for VB/ActiveX Applications

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If your VB/ActiveX application uses richtextbox controls, you need to base that control on riched32.dll
version 5.00.213.4.1 which supports Unicode text characters. Before you begin using Silk Test Classic with
Unicode content, check to make sure you do not have the older riched32.dll version (4.00.993.4). To
do this:

1. Using Windows Explorer, locate the riched32.dll on your system.
2. Right-click the file and select Properties.
3. In the riched32.dll Properties dialog box, click the Version tab. Make sure you have version

5.00.213.4.1.

Why Am I Getting Compile Errors?

You may be trying to compile a file with an incompatible file format. Silk Test Classic supports three file
formats: ANSI, UTF-8, and Unicode. If you try to compile files in Silk Test Classic that are in other formats,
such as DBCS, you will get compile errors.

Workaround: In a Unicode-enabled text editor, save the file in one of the Silk Test Classic supported file
formats: ANSI, UTF-8 or Unicode.

396 | Using Advanced Techniques with the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Why Does Silk Test Classic Open Up the Save As Dialog Box when I Try to Save an Existing File?

You have likely added content to the file that is incompatible with the file’s existing file format. For example,
you could have added Japanese characters to a frame file that was previously saved in ANSI format.

You must save the existing file in a compatible format.

Working with Input Method Editors
This section describes how you can troubleshoot issues when working with Input Method Editors (IMEs).

Why is English the Only Language Listed when I Click the Language Bar Icon?

You must be running an application, or area within the application, that supports an IME for a language
other than English to be displayed in the Language bar icon. Applications that support IME include
elements of Silk Test Classic such as include files and script files, Outlook, and Internet Explorer.

Why Does This IME Look so Different from Other IMEs I Have Used

IMEs can look different, depending on the operating system you are using and the particular IME you have
accessed. For more information about IMEs, see Microsoft’s support site.

Using Autocomplete
This section describes how you can automatically complete functions, members, application states, and
data types.

Overview of AutoComplete
AutoComplete makes it easier to work with 4Test, significantly reducing scripting errors and decreasing the
need to type text into your 4Test files by automatically completing functions, members, application states,
and data types. There are four AutoComplete options:

Option Description

Function Tip Provides the function signature in a tooltip.

MemberList Displays window children, properties, methods, and variables available to your 4Test file.

AppStateList Displays a list of the currently defined application states.

DataTypeList Displays a list of built-in and user-defined data types.

AutoComplete works with both Silk Test Classic-defined and user-defined 4Test files.

If you create a new 4Test file, you must name and save it as either a .t , .g.t, or .inc file in order for
AutoComplete to work. After a 4Test file is saved, AutoComplete recognizes any changes you make to this
file in the 4Test Editor and includes files that you reference through a 4Test use statement or the Use Files
text box on the Runtime Options dialog box. When working with an existing 4Test file, you do not need to
save or compile in order to access newly defined functions, methods, or members.

AutoComplete only works with 4Test files, which are .t, .g.t, and .inc files, that use hierarchical object
recognition or dynamic object recognition with locator keywords.

AutoComplete does not work on comment lines or within plan, suite, or text files. AutoComplete does not
support global variables of type window. However, AutoComplete supports Unicode content.

AutoComplete does not distinguish between Silk Test Classic Agents. As a result, AutoComplete displays
all methods, properties, variables, and data types regardless of the Silk Test Classic Agent that you are
using. For example, if you are using the Open Agent, functions and data types that work only with the
Classic Agent are also displayed when you use AutoComplete. For details about which methods are

Using Advanced Techniques with the Classic Agent | 397

supported for each Silk Test Classic Agent, review the corresponding .inc file, such as the winclass.inc
file.

Customizing your MemberList
The members that you see in the MemberList depend on the MemberList options that you select. You can
specify which members display in your MemberList. The members are window children, methods,
properties, and variables. You can also determine how much detail is displayed in the MemberList by
specifying the inheritance level and deciding whether you want to view class, data type, and function return
type for methods in your MemberList.

All member options are enabled by default and the default inheritance level is below AnyWin class,
meaning that methods for any class derived from the AnyWin class display in the MemberList. For
additional information about the inheritance level, see the General Options Dialog Box.

Note: Methods that are defined in and above the AnyWin class, such as Click and Exist, which
are defined in the Winclass, will not display in the MemberList. You can type these methods into
your script, but they will not display in the MemberList unless you change the inheritance level to All.

To customize your MemberList:

1. Open Silk Test Classic and choose Options > General.

2. In the AutoComplete area of the General Options dialog box, make sure MemberList is selected.

3. In the MemberList Options area, select the members that you want to display in your MemberList. For
example, if you want to view only properties and variables, uncheck the Methods and Window
Children check boxes.

4. Select the appropriate Inheritance Level for the selected methods.

You can choose one of the following:

Below AnyWin
Class

Displays methods for any class derived from the AnyWin class. Below AnyWin
Class is the default.

All Displays the complete inheritance for members all the way up through AnyWin and
the control classes, including the Winclass.

None Displays only those members defined in the class of the current object and window
declaration.

5. If you want to view attributes for the selected members, such as the class for window children, the data
type for properties and variables, and the return type for method functions in your MemberList, check
the Member Type check box.

Member Type is not checked by default. The following is a sample MemberList with and without
Member Type checked.

Default MemberList MemberList with Member Type Selected

398 | Using Advanced Techniques with the Classic Agent

6. Click OK on the General Options dialog box to save your changes.

Frequently Asked Questions about AutoComplete

Why isn’t AutoComplete working?

AutoComplete only works with 4Test files with extension .t, .g.t, and .inc. If (untitled) is displayed in the title
bar of your 4Test file, the file has not been saved yet. Save the file as .t, .g.t, or .inc.

After a 4Test file is saved, AutoComplete recognizes any changes you make to this file in the 4Test Editor
and include files that you reference through a 4Test use statement or the Use Files text box on the
SilkTest Runtime Options dialog box. Once you save a new file as a .t, .g.t, or .inc, you do not need to
save or compile in order to access newly defined functions, methods, or members.

AutoComplete does not work on comment lines or within plan, suite, or text files.

Why doesn't a member display in my MemberList?

There a few reasons you may not see a member in your MemberList. Here's what you should do:

1. On the General Options dialog box, make sure that you chose to show members of this type in the
MemberList Options section. For additional information, see Customizing your MemberList.

2. Make sure the member you want to see is included in the inheritance level you selected. Below AnyWin
class is the default; you might need to change your inheritance level to All. For additional information,
see Customizing your MemberList.

3. Name and save your file with a .t, .g.t, or .inc extension.
4. Compile your file and fix any scripting errors. Anything following a compile error is not displayed in the

MemberList or FunctionTip.

What happens if there is a syntax error in the current file?

Everything, based on the AutoComplete options you have selected, prior to the syntax error will display in
your MemberList and/or FunctionTip. Anything following the syntax error will not display in your MemberList
and/or FunctionTip. For additional information, see Customizing your MemberList.

What if I type something and AutoComplete does not find a match?

AutoComplete might not find a match for a number of reasons, for example because of the AutoComplete
options you have specified or because of a compile error in your file. For information about fixing some of
these issues, see Customizing your MemberList and Turning AutoComplete Options Off.

When AutoComplete does not find a match in the MemberList, focus remains on the first item in the list.

Note: If you perform any of the selection methods, which means if you press Return, Tab, or click, the
item will be pasted to the Editor.

You can simply type any function, method, or member in your 4Test files; AutoComplete does not restrict
you in any way from typing in 4Test files.

Note: You must dismiss the MemberList or FunctionTip before you can type in the Editor.

If you plan to use AutoComplete extensively, we recommend that you rename your identifiers in your
window declarations. Knowing your identifier names helps, especially when working with long lists.

Why doesn’t list of record type display in the FunctionTip?

This is a known limitation. FunctionTip does not support list of record types.

Using Advanced Techniques with the Classic Agent | 399

Why does AutoComplete show methods that are not valid for a 4Test class?

When using AutoComplete, the member list occasionally may reveal methods that are not valid for the
4Test class. The compiler will not catch these usage problems, but at Runtime the following exception is
raised when the script is played back: Error: Function <invalid method> is not defined
for <window class>.

Why does AutoComplete show methods, properties, variables, and data types that are not
supported for the Silk Test Agent that I am using?

AutoComplete does not distinguish between Silk Test Agents. As a result, AutoComplete displays all
methods, properties, variables, and data types regardless of the Silk Test Agent that you are using. For
example, if you are using the Open Agent, functions and data types that work only with the Classic Agent
are also displayed when you use AutoComplete. For detailed information about which methods are
supported for each Silk Test Agent, review the corresponding .inc file, such as the winclass.inc file.

Turning AutoComplete Options Off
This topic contains instructions on how to disable AppStateList, DataTypeList, FunctionTip, and
MemberList.

To turn off AutoComplete options:

1. Open Silk Test Classic and click Options > General.

2. In the AutoComplete area of the General Options dialog box, uncheck the check box for each of the
AutoComplete options that you want to disable, and then click OK.

Using AppStateList
To display a list of currently defined application states:

1. Within your script, .t or .g.t, or within the include file, type your test case declaration, followed by the
keyword appstate and then press space.

For example testcase foo () appstate .

A list of currently defined application states displays. You can also type the keyword basedon followed
by a space. For example appstate MyAppState () basedon .

2. Use one of the following methods to select the appropriate member and paste it to the Editor.

• Type the first letter or the first few letters of the member and then press Enter or Tab.
• Use your arrow keys to locate the member and then press Enter or Tab.
• Scroll through the list and click on a member to select it.

Using DataTypeList
To display a list of built-in and user-defined data types:

1. Within your script, .t or .g.t, or include file, type array or varargs, as appropriate, followed by the of
keyword and a space.

For example, list of.

The current list of built-in and user-defined data types appears. You can also view the list of data types
by pressing F11.

2. Use one of the following methods to select the appropriate member and paste it to the Editor:

• Type the first letter or the first few letters of the member and then press Enter or Tab.
• Use your arrow keys to locate the member and then press Enter or Tab.

400 | Using Advanced Techniques with the Classic Agent

• Scroll through the list and click on a member to select it.

Using FunctionTip
To display the function signature for a function, test case, or method.

1. Within your script, .t or .g.t, or include file, type the function, test case, or method name, followed by an
open parenthesis " (".

For example SetUpMachine(. The function signature displays in a tooltip with the first argument, if
any, in bold text. The function signature includes the return argument type, pass-mode, data type, name
of the argument, and null and optional attributes, as they are defined.

2. Type the argument.

The FunctionTip containing the function signature remains on top and highlights the argument you are
expected to enter in bold text. As you enter each argument and then type a comma, the next argument
that you are expected to type is highlighted. The expected argument is always indicated with bold text; if
you backspace or delete an argument within your function, the expected argument is updated
accordingly in the FunctionTip. The FunctionTip disappears when you type the close parenthesis ") " to
complete the function call.

If you want to dismiss the FunctionTip, press Escape. FunctionTip is enabled by default. See Turning
AutoComplete Options Off if you want to disable FunctionTip.

Using MemberList
This topic contains instructions on how to use MemberList to view and select a list of members.

To view a list of members:

1. Customize the member list so that it displays the information you require.

You can choose to display any or all of the following members:

Member Description

Window
children

Displays all window objects of type WINDOW that are defined in window
declarations in the referenced .t, .g.t, and .inc files. Indicated in the MemberList with
a yellow icon.

Methods Displays all methods defined in the referenced .t, .g.t, and .inc files. Indicated in the
MemberList with a blue icon.

Properties Displays all properties defined in the referenced .t, .g.t, and .inc files. Indicated in
the MemberList with a red icon.

Variables Displays all defined variables in the referenced .t, .g.t, and .inc files, including native
data types, data, and records. Fields defined for records and nested records also
display in the list. Indicated in the MemberList with a red icon.

2. Within your script or include file, type the member name and then type a period (.).

For example Find..

The MemberList displays. Depending on the MemberList Options and the Inheritance Level you select,
the types of members that display in the MemberList will vary.

3. Use one of the following methods to select the appropriate member and paste it to the Editor:

• Type the first letter or the first few letters of the member and then press Enter or Tab.
• Use your arrow keys to locate the member and then press Enter or Tab.
• Scroll through the list and click on a member to select it.

The MemberList is case sensitive. If you type the correct case of the member, it is automatically highlighted
in the MemberList; press Enter or Tab once to paste it to the Editor. If you do not type the correct case, the

Using Advanced Techniques with the Classic Agent | 401

member has focus, but is not highlighted; press Enter or Tab twice to select the member and paste it to the
Editor. To dismiss the MemberList, press Escape.

Overview of the Library Browser
Click Help > Library Browser to access the Library Browser. It provides online documentation for:

• Built-in 4Test methods, properties, and functions: the Library Browser shows the name and class of
the method, one line of descriptive text, syntax, and a list of parameters, including a description.

• User-defined methods: the Library Browser shows the name and class of the method, syntax, and a
list of parameters. It displays User defined as the method description and displays the data type for
each parameter.

• User-defined Properties: As with user-defined methods, the description for user-defined properties by
default is User defined.

The Library Browser does not, by default, provide documentation for your user-defined functions. You can
add to the contents of the Library Browser to provide descriptive text for your user-defined methods,
properties, and functions.

Library Browser Source File
The core contents of the Library Browser are based on a standard Silk Test Classic text file, 4test.txt,
which contains information for the built-in methods, properties, and functions.

You can edit 4test.txt to include your user-defined information, or define your site-specific information in
one or more separate files, and then have Silk Test Classic compile the file (creating 4test.hlp) to make
it available to the Library Browser. Information about methods in 4test.hlp is also used in the Verify
Window dialog box for methods.

Silk Test Classic does not update 4test.txt with user-defined information; instead it populates the
Library Browser from information it receives when include files are compiled in memory. You modify
4test.txt to override the default information displayed for user-defined objects.

Simply looking through 4test.txt should give you all the help you need about how to structure the
information in the file. The following table lists all the keywords and describes how they are used in
4test.txt. You should edit a copy of 4test.txt to add the information you want.

Keywords

Keywords are followed by a colon and one or more spaces.

class Name of the class.

function Name of the function.

Specify the full syntax. If the function returns a value, specify: return_value =
function_name (parameters)

Otherwise, specify: function_name (parameters)

group Name of the function category.

method Description of the method.

Specify the full syntax. If the method returns a value, specify: return_value =
method_name (parameters)

Otherwise, specify: method_name (parameters)

402 | Using Advanced Techniques with the Classic Agent

notes Description of the method, property, or function, up to 240 characters. Do not split the
description into multiple notes fields, since only the first one is displayed.

parameter Name and description of a method or function parameter. Each parameter is listed on its own
line.

Specify the name, followed by a colon, followed by the description of the parameter.

property Name of the property.

returns Type and description of the return value of the method or function.

Specify the name, followed by a colon, followed by the description of the return value.

Comment.

Adding Information to the Library Browser
1. Make a backup copy of the default 4test.txt file, which is in the directory where you installed Silk

Test Classic, and store your backup copy in a different directory.

2. In an ASCII text editor, open 4test.txt in your Silk Test Classic installation directory and edit the file.
See examples for methods, properties, and functions, if necessary.

3. Quit Silk Test Classic.

4. Place your modified 4test.txt file in the Silk Test Classic installation directory.

5. Restart Silk Test Classic. Silk Test Classic sees that your source file is more recent than 4test.hlp
and automatically compiles 4test.txt, creating an updated 4test.hlp. If there are errors, Silk Test
Classic opens a window listing them and continues to use the previous 4test.hlp file for the Library
Browser. If there were errors, fix them in 4test.txt and restart Silk Test Classic. Your new definitions
are displayed in the Library Browser (assuming that the files containing the declarations for your
custom classes, methods, properties, and functions are loaded in memory).

There is another approach to updating the Library Browser: maintain information in different source files.

If the Library Browser isn’t displaying your user-defined objects, close the Library Browser, recompile
the include files that contain your user-defined objects, then reopen the Library Browser.

Add User-Defined Files to the Library Browser with Silk
Test Classic
1. Create a text file that includes information for all your custom classes and functions, using the formats

described in the Library Browser source file. If you have added methods or properties to built-in
classes, you should add that information in the appropriate places in 4test.txt, as described above.
Only document your custom classes and functions in your own help file.

2. Click Options > General and add your help file to the list in the Help Files For Library Browser field.
Separate the files in this list with commas.

3. Click OK. Silk Test Classic recompiles 4test.hlp to include the information in all the files listed in the
Help Files For Library Browser field. If there are errors, Silk Test Classic opens a window listing them
and continues to use the previous 4test.hlp file for the Library Browser. If you had errors, fix them
in your source file, then quit and restart Silk Test Classic. Silk Test Classic recompiles 4test.hlp
using your modified source file.

Viewing Functions in the Library Browser
To view information about built-in 4Test functions in the Library Browser:

Using Advanced Techniques with the Classic Agent | 403

1. Click Help > Library Browser, and then click the Functions tab.

2. Select the category of functions you want in the Groups list box. To see all built-in 4Test functions,
check the Include all check box.

Functions are listed in the Functions list box.

3. Select the function for which you want information.

Viewing Methods for a Class in the Library Browser
4Test classes have methods and properties. When you select the Methods or Properties tabs in the
Library Browser, you see a list of all the built-in and user-defined classes in hierarchical form.

To see the methods or properties for a class:

1. Click Help > Library Browser, and then click the Methods or Properties tab.

2. Select the class in the Classes list box.

Double-click a + box to expand the hierarchy. Double-click a – box to collapse the hierarchy. The
methods or properties for the selected class are displayed. By default, only those methods or properties
that are defined by the class are displayed. To see all methods or properties that are available to the
class (that is, methods or properties also defined by an ancestor of the class), select the Include
inherited check box. To see all methods or properties (even those not available to the selected class),
select the Include all check box.

3. Select a method or property. Information about the selected method or property is displayed.

If the Library Browser is not displaying your user-defined objects, close the Library Browser, recompile
the include files that contain your user-defined objects (Run > Compile), and then re-open the Library
Browser.

Examples of Documenting User-Defined Methods
This topic contains examples of adding user-defined methods, properties, and functions to the Library
Browser.
#**
class: DialogBox
...
#** custom method
method: VerifyNumChild (iExpectedNum)
parameter: iExpectedNum: The expected number of child objects (INTEGER).
notes: Verifies the number of child objects in a dialog box.

Documenting user-defined properties: Add the property descriptions to the
appropriate class section in 4test.txt, such as:
#***
class: DialogBox
...

#** custom property
property: iNumChild
notes: The number of child objects in the dialog box.

Documenting user-defined functions: Create a group called User-defined
functions and document your functions, such as:
group: User-defined functions

function: FileOpen (sFileName)
parameter: sFileName = "myFile": The name of the file to open.
notes: Opens a file from the application.

function: FileSave (sFileName)

404 | Using Advanced Techniques with the Classic Agent

parameter: sFileName = "myFile": The name of the file to save.
notes: Saves a file from the application.

Web Classes Not Displayed in Library Browser
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

The class hierarchy in the Library Browser does not include the Web classes, which are BrowserChild,
HtmlText, and so on.

Possible Causes and Solutions

No browser extension is
enabled.

Make sure that at least one browser extension is enabled.

Enhanced support for Visual
Basic is enabled.

Disable Visual Basic by un-checking the ActiveX check box for the
Visual Basic application in the Extension Enabler and Extensions
dialog boxes.

Library Browser
Use Library Browser to quickly look up documentation for built-in and user-defined 4Test methods,
properties, and functions.

Click Help > Library Browser.

Methods tab

Click the Methods tab to display information about the built in and user-defined 4test methods.

Classes list Click the class to display. A list of methods for the class is displayed.

Include all Check to view all the 4Test methods available for the selected class.

Methods list Click the method to display. Detailed information is displayed about the selected
method and class.

Include inherited Check to view the inherited 4Test methods available for the selected class.

Properties tab

Click the Properties tab to display information about the built-in and user-defined properties.

Classes list Click the class to display. A list of properties for the class is displayed.

Include all Check to view all of the 4Test properties available.

Properties list Click the property to display. Detailed information is displayed about the selected
property and class.

Include inherited Check to view the inherited 4Test properties available for the selected class.

Functions tab

Click the Functions tab to display information about the built-in and user-defined functions.

Groups list Click the group to display. A list of functions for the selected group is displayed.

Using Advanced Techniques with the Classic Agent | 405

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Include all Check to view all of the 4Test methods available.

Functions list Click the function to display. Detailed information is displayed about the selected group
and function.

Text Recognition Support
Text recognition methods enable you to conveniently interact with test applications that contain highly
customized controls, which cannot be identified using object recognition. You can use text clicks instead of
coordinate-based clicks to click on a specified text string within a control.

For example, you can simulate selecting the first cell in the second row of the following table:

Specifying the text of the cell results in the following code:

table.TextClick("Brian Miller")

Text recognition methods are supported for the following technology domains:

• Win32.
• WPF.
• Windows Forms.
• Java SWT and Eclipse.
• Java AWT/Swing.

Note: For Java Applets, and for Swing applications with Java versions prior to version 1.6.10, text
recognition is supported out-of-the-box. For Swing applications with Java version 1.6.10 or later,
which do not support Direct3D, you have to add the following command-line element when starting
the application:

-Dsun.java2d.d3d=false

For example:

javaw.exe -Dsun.java2d.d3d=false -jar mySwingApplication.jar

Text recognition is not supported for Java Applets and Swing applications that support Direct3D.
• Internet Explorer.
• WebDriver-based browsers.

Note: Text recognition does not work with controls that are not visible on the screen. For example, you
cannot use text recognition for a text that is scrolled out of view.

Note: Text recognition might not work if the font that is used in the target text is not installed on the
machine on which the test is executed.

WebDriver-based browsers

The text recognition methods can be applied to BrowserWindow and DomElement objects.

Note: Text recognition does not work for text that is drawn in <canvas> elements.

406 | Using Advanced Techniques with the Classic Agent

Note: Text recognition does not work for content added by CSS pseudo-elements like ::before
and ::after.

Text recognition methods

Silk Test Classic offers the following methods to drive testing through interacting with the text that the AUT
renders on the screen:

TextCapture Returns the text that is within a control. Also returns text from child controls.

TextClick Clicks on a specified text within a control. Waits until the text is found or the Object
resolve timeout, which you can define in the synchronization options, is over.

TextRectangle Returns the rectangle of a certain text within a control or a region of a control.

TextExists Determines whether a given text exists within a control or a region of a control.

The text recognition methods prefer whole word matches over partially matched words. Silk Test Classic
recognizes occurrences of whole words previously than partially matched words, even if the partially
matched words are displayed before the whole word matches on the screen. If there is no whole word
found, the partly matched words will be used in the order in which they are displayed on the screen.

The methods TextClick, TextRectangle, and TextExists internally use TextCapture to grab the
visible text from the application and allow for further processing of that text. The underlying TextCapture
method is implemented in two different ways. Silk Test Classic decides which implementation to use
depending on the type of the application under test.

• For native windows applications, including WPF, WinForms, and Java applications, but also Internet
Explorer, Silk Test Classic hooks into the text rendering functions of the Windows API to extract the text
that the application draws on the screen.

• For Google Chrome, Mozilla Firefox, Microsoft Edge, and Apple Safari, Silk Test Classic uses a
JavaScript-based approach to retrieve the text after it was rendered by the browser.

Note: Because of the different nature of these two implementations, Silk Test Classic might return
different text for the same web application, depending on which browser is used.

Example

The user interface displays the text the hostname is the name of the host. The following
code clicks on host instead of hostname, although hostname is displayed before host on
the screen:

control.TextClick("host")

The following code clicks on the substring host in the word hostname by specifying the
second occurrence:

control.TextClick("host", 2)

Using Advanced Techniques with the Classic Agent | 407

Running Tests and Interpreting Results
This section describes how you can run your tests and interpret the generated results.

Running Tests
This section describes how you can run your tests with Silk Test Classic.

Creating a Suite
After you have created a number of script files, you might want to collect them into a test suite. A suite is a
file that names any number of scripts. Instead of running each script individually, you run the suite, which
executes in turn each of your scripts and all the test cases they contain. Suite files have a .s extension.

1. Click File > New.
2. Select the Suite radio button and click OK. An untitled suite file is displayed.
3. Enter the names of the script files in the order you want them executed. For example, the following suite

file executes the find.t script first, the goto.t script second, and the open.t script third:

find.t
goto.t
open.t

4. Click File > Save to save the file.
5. If you are working within a project, you are prompted to add the file to the project. Click Yes if you want

to add the file to the open project, or No if you do not want to add this file to the project.

Passing Arguments to a Script
You can pass arguments to a script. For example, you might want to pass in the number of iterations to
perform or the name of a data file.

Arguments in 4Test are declared in the following two ways:

• Explicitly, as a list of arguments for a test case. Only the test case has access to an explicit argument,
not the entire script. For example:

testcase MyTest1(STRING arg1, STRING arg2)
 Print("{arg1} {arg2}")

• Implicitly, by using the GetArgs method inside a function or test case. GetArgs returns a list of strings
with each string being one of the passed arguments. All functions and test cases in the script have
access to these implicit arguments by calling GetArgs. For example:

testcase MyTest2()
 LIST OF STRING args = GetArgs()
 ListPrint(args)

All arguments are passed in as strings, separated by spaces, such as: Bob Emily Craig

If an argument is more than one word, enclose it with quotation marks. For example, the following passes
in three arguments: "Bob H" "Emily M" "Craig J"

You can specify arguments explicitly in one of the following ways:

• In the Arguments field in the Run Test Case dialog box.
• In Silk Central. Select the Properties tab of a Silk Test Classic test and specify the arguments by

adding the Test data property with the arguments to the Test Properties section.

408 | Running Tests and Interpreting Results

• When you invoke Silk Test Classic from the command line.

You can specify arguments implicitly in one of the following ways:

• In the Arguments field in the Runtime Options dialog box. To open the dialog box, click Options >
Runtime in the menu bar.

• After a script name in a suite file, for example find.t arg1 arg2.
• When you invoke Silk Test Classic from the command line.

Note: If you pass arguments in the command line, the arguments provided in the command line are
used and any arguments specified in the currently loaded options set are not used. To use the
arguments in the currently loaded options set, do not specify arguments in the command line.

Example: Implicitly passed arguments

The following test case prints a list of all the implicitly passed arguments:

testcase ProcessArgs ()
LIST OF STRING lsArgs
lsArgs = GetArgs ()
ListPrint (lsArgs)

//You can also process the arguments individually. The following test case
prints the second argument passed:
testcase ProcessSecondArg ()
LIST OF STRING lsArgs
lsArgs = GetArgs ()
Print (lsArgs[2])

//The following testcase adds the first two arguments:
testcase AddArgs ()
LIST OF STRING lsArgs
lsArgs = GetArgs ()
NUMBER nArgSum

nArgSum = Val (lsArgs[1]) + Val (lsArgs[2])
Print (nArgSum)

You can use the Val function to convert the arguments, which are always passed as strings, into numbers.

When the arguments script 10 20 30 are passed to the scr_args.t script, the test result is:

Script scr_args.t (10, 20, 30) - Passed
Passed: 1 test (100%)
Failed: 0 tests (0%)
Totals: 1 test, 0 errors, 0 warnings

Testcase AddArgs - Passed

30

Running a Test Case
When you run a test case, Silk Test Classic interacts with the application by executing all the actions you
specified in the test case and testing whether all the features of the application performed as expected.

Silk Test Classic always saves the suite, script, or test plan before running it if you made any changes to it
since the last time you saved it. By default, Silk Test Classic also saves all other open modified files
whenever you run a script, suite, or test plan. To prevent this automatic saving of other open modified files,
uncheck the Save Files Before Running check box in the General Options dialog box.

1. Make sure that the test case that you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.

Running Tests and Interpreting Results | 409

If the workflow bar is not visible, choose Workflows > Basic to enable it.

Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select a test case and specify arguments, if necessary, in the Arguments field.

Remember to separate multiple arguments with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

5. To view results using the TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

6. Click Run. Silk Test Classic runs the test case and generates a results file.

For the Classic Agent, multiple tags are supported. If you are running test cases using other agents, you
can run scripts that use declarations with multiple tags. To do this, check the Disable Multiple Tag
Feature check box in the Agent Options dialog box on the Compatibility tab. When you turn off
multiple-tag support, 4Test discards all segments of a multiple tag except the first one.

7. Optional: If necessary, you can press both Shift keys at the same time to stop the execution of the test.

Running a Test Plan
Before running a test plan, make sure that the window declarations file for the test plan is correctly
specified in the Runtime Options dialog box and that the test plan is in the active window.

• To run the entire test plan, click Run > Run All Tests. Silk Test Classic runs each test case in the plan
and generates a results file.

• To run only tests that are marked, click Run > Run Marked Tests. Silk Test Classic runs each marked
test and generates a results file.

You can also run a single test case without marking it.

If your test plan is structured as a master plan and associated sub-plans, Silk Test Classic automatically
opens any closed sub-plans before running. Silk Test Classic always saves the suite, script, or test plan
before running it if you made any changes to it since the last time you saved it. By default, Silk Test Classic
also saves all other open modified files whenever you run a script, suite, or test plan. To prevent this
automatic saving of other open modified files, uncheck the Save Files Before Running check box in the
General Options dialog box.

To stop the execution of a test plan, press both Shift keys at the same time.

410 | Running Tests and Interpreting Results

Running the Currently Active Script or Suite
1. Make sure the script or suite you want to run is in the active window.

2. Choose Run > Run.

Silk Test Classic runs all the test cases in the script or suite and generates a results file.

Stopping a Running Test Case Before it Completes
To stop running a test case before it completes:

• If your test application is on a target machine other than the host machine, click Run > Abort.
• If your test application is running on your host machine, press Shift+Shift.

Setting a Test Case to Use Animation Mode
To slow down a test case during playback so that it can be observed, set the test case to use animation
mode. For instance, if you want to demonstrate a test case to someone else, you might want to use
animation mode.

You can specify the animation mode when you run a test case, or you can specify the animation mode in
the Runtime Options dialog.

To specify the animation mode using the Runtime Options dialog:

1. From the main menu, click Options > Runtime.

2. In the Runtime Options dialog, check the Animated Run Mode (Slow-Motion) check box.

3. Click OK.

Run Application State Dialog Box
Use the Run Application State dialog box to run or debug an application state defined in your test frame
file or active script file.

Click Run > Application State.

Application state Displays the application states defined in the active frame or script file.

Run Runs the selected application state.

Debug Opens the file in which the application state resides and enters debugging mode.
Debugging mode makes all the debugging commands available on the Breakpoint,
Debug, and View menus.

Cancel Closes the dialog box.

Run Testcase Dialog Box
Use the Run Testcase dialog box to run or debug a test case accessible from the active script file. This
dialog box is only available when the active window contains either a test case or a results file in which the
current line is a test case or a data-driven test case. Data-driven test cases begin with "DD_". You cannot
run a test case with both arguments and rows.

Click Run > Testcase or Testplan > Detail > Specify Rows.

Testcase Displays all the test cases accessible from the current script.

Running Tests and Interpreting Results | 411

Arguments Allows you to enter arguments to pass to the selected test case.

Animated
Run Mode
(Slow-
Motion)

Check to wait one second after each interaction with the application under test is
executed. Typically, you will only use this check box if you want to watch the test case run.
For instance, if you want to demonstrate a test case to someone else, you might want to
check this check box. Executions of the default base state and functions that include one
of the following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

• Sleep

Use Sample
Data from
Script

Check to run the test case once using the sample record for each table used by the test
case. This is available only if the selected test case is a data-driven test case.

Enable
TrueLog

To view results using the TrueLog Explorer, check the Enable TrueLog check box. This
check box enables you to enable or disable TrueLog Explorer each time you run a test
case. You can also check this check box in the TrueLog Options dialog box. When you
enable or disable TrueLog Explorer in the Run Test Case dialog box, the same changes
are made in the TrueLog Options dialog box. Likewise, when you enable or disable
TrueLog Explorer in the TrueLog Options dialog box, the same changes are made in the
Run Testcase dialog box.

TrueLog
Options

Click to set the TrueLog options you want to record. By default, Silk Test Classic uses the
options that were most recently specified in the TrueLog Options dialog box. Check the
Enable TrueLog check box to enable this button.

Run Runs the selected test case. For data-driven test cases, the argument must be in the test
case record format. If the Arguments text box is empty, Run causes the test case to run
all combinations of all rows in all tables used by the test case.

Debug Opens the file in which the test case resides, enters debugging mode, and places a
breakpoint at the first line of the test case. Debugging mode makes available all the
debugging commands on the Breakpoint, Debug and View menus. If the Arguments list
is empty, Debug runs the data-driven test case using all rows, but in debug mode. Since
the default breakpoint is the testcase statement, by default the debugger skips
DefaultRunDataDrivenTestCase() and stops at the test case with the first set of
rows as input. The debugger acts as described for Debug in Run > Testcase, but with
data-driven test cases only sets of selected rows are passed to the test case.

Cancel Closes this dialog box.

Specify
Rows

Opens the Specify Rows dialog box where you can select the rows you want to run from
the tables for this data-driven test case. This is available only if you have selected Use
Sample Data from Script for a data-driven test case.

412 | Running Tests and Interpreting Results

Runtime Status Dialog Box
By default, this dialog box automatically appears on the partner machine while executing a test case, script
or test plan. To keep this status dialog box automatically hidden at runtime, click Options > Runtime and in
the Execution area clear the Show Detailed Status Window check box. This dialog box is for status
purposes only.

If you are running a script, test case or test plan on a target machine other than the host machine, you can
safely close the Runtime Status dialog box once execution begins. To reopen this dialog box after closing
it, or if it is hidden by default, click Run > Show Status. This menu option is available only if running a
script, test case, or test plan.

This dialog box is display only.

Program Lists the recent tasks the agent executed as defined in the script. As Silk Test Classic
executes the plan the list will change. Only the first item listed will remain constant. That
is, if a test plan is executed the name of that file will always appear at the top of the
Program list. If you are running a test plan that is a masterplan, which means it includes
other test plans, the masterplan name will always be the first item listed, not the sub-
plans.

Elapsed Lists how long it took to execute the corresponding task listed under Program. The first
item in the list is the current cumulative time elapsed for the entire execution.

Errors Lists how many errors occurred while executing the corresponding task listed in Program.
The first item in the list is the current cumulative number of errors for the entire execution.

Current
agent call

Displays the current function the agent is executing against the AUT.

Last error Displays the last error encountered.

Interpreting Results
This section describes how you can use the Difference Viewer, the results file, and the reports to interpret
the results of your tests.

Overview of the Results File
A results file provides information about the execution of the test case, script, suite, test plan, or keyword-
driven test. By default, the results file has the same name as the executed script, suite, test plan, or
keyword-driven test, but with a .res extension. For example, find.res.

Whenever you run tests, Silk Test Classic generates a results file, which indicates how many tests passed
and how many failed, describes why tests failed, and provides summary information. You can invoke
comparison tools from within the results file that pinpoint exactly how the runtime results differ from your
known baselines. Test-plan results files offer additional features, such as the ability to compare different
runs of the test plan. When Silk Test Classic displays a results file, on the menu bar it includes the Results
menu, which allows you to manipulate the results file and locate errors. The Results menu appears only
when the active window displays a results file.

TrueLog Explorer

Silk Test Classic also provides the TrueLog Explorer to help you analyze test results files. You must
configure Silk Test Classic to use the TrueLog Explorer and specify what you want to capture.

Running Tests and Interpreting Results | 413

Multiple User Environments

A .res file can be opened by multiple users, as long as no test is in process. This means you cannot have
two users run tests at the same time and write to the same results file. You can run a test on the machine
while the file is open on the other machine. However, you must not add comments to the file on the other
machine, or you will corrupt the .res file and will not be able to report the results of the test. If you add
comments to the file on both machines, the comments will be saved only for the file that is closed (and
therefore saved) first.

Default Settings

By default, the results file displays an overall summary at the top of the file, including the following:

• The name of the script, suite, test plan, or keyword-driven test.
• The machine on which the tests were executed.
• The amount of tests that were executed.
• The amount of errors and warnings that were generated during the execution.
• The actual errors that were generated.
• Timing information.

To hide the overall summary, click the summary and click Results > Hide Summary. For a script or suite
results file, the individual test summaries contain timing information and errors or warnings. For a test plan
results file, the individual test summaries contain the same information as in the overall summary plus the
name of the test case and script file.

While Silk Test Classic displays the most current version of the script, suite, or test plan, by default Silk Test
Classic saves the last five sets of results for each script, suite, or test plan executed. To change the default
number, use the Runtime Options dialog. As results files grow after repeated testing, a lot of unused
space can accumulate in the files. You can reduce the size of a results file with the Compact menu option.

The format for the rest of a test plan results file follows the hierarchy of test descriptions that were present
in the test plan. Test statements in the test plan that are preceded by a pound sign (#) as well as
comments, which are using the comment statement, are also printed in the results file, in context with the
test descriptions.
comment

To change the default name and directory of the results file, edit the Runtime Options dialog.

Note: If you provide a local or remote path when you specify the name of a results file in the
Directory/Field field on the Runtime Options dialog, the path cannot be validated until script
execution time.

Viewing Test Results
Whenever you run tests, a results file is generated which indicates how many tests passed and how many
failed, describes why tests failed, and provides summary information.

1. Click Explore Results on the Basic Workflow or the Data Driven Workflow bars.

2. On the Results Files dialog box, navigate to the file name that you want to review and click Open.

By default, the results file has the same name as the executed script, suite, or test plan. To review a file in
the TrueLog Explorer, open a .xlg file. To review a results file, open a .res file.

Errors And the Results File
You can expand the text of an error message or have Silk Test Classic find the error messages for you. To
navigate from a test plan test description in a results file to the actual test in the test plan, click the test
description and select Results > Goto Source.

414 | Running Tests and Interpreting Results

Navigating to errors in the script

There are several ways to move from the results file to the actual error in the script:

• Double-click in the margin next to an error line to go to the script file that contains the 4Test statement
that failed.

• Click an error message and select Results > Goto Source.
• Click an error message and press Enter.

What the box icon means

Some expanded error messages are preceded by a box icon and three asterisks.

If the error message relates to an application’s behavior, as in Verify selected text failed, Silk
Test Classic opens the Difference Viewer. The Difference Viewer compares actual and expected values
for a given test case.

Application appearance errors

When you click a box icon followed by a bitmap-related error message, the bitmap tool starts, reads in the
baseline and result bitmaps, and opens a Differences window and Zoom window.

Bitmap tool

In the Bitmap Tool:

• The baseline bitmap is the bitmap that is expected, which means the baseline for comparison.
• The results bitmap is the actual bitmap that is captured.
• The Differences window shows the differences between the baseline and result bitmap.

The Bitmap Tool supports several comparison commands, which let you closely inspect the differences
between the baseline and results bitmaps.

Finding application logic errors

To evaluate application logic errors, use the Difference Viewer, which you can open by clicking the box
icon following an error message relating to an application’s behavior.

The Difference viewer

Clicking the box icon opens the Difference Viewer’s double-pane display-only window. It lists every
expected (baseline) value in the left pane and the corresponding actual value in the right pane.

All occurrences are highlighted where expected and actual values differ. On color monitors, differences are
marked with red, blue, or green lines, which denote different types of differences, for example, deleted,
changed, and added items.

When you have more than one screen of values or are using a black-and-white monitor, use Results >
Next Result Difference to find the next difference. Use Update Expected Values, described next, to
resolve the differences.

Updating expected values

You might notice upon inspecting the Difference Viewer or an error message in a results file that the
expected values are not correct. For example, when the caption of a dialog changes and you forget to
update a script that verifies that caption, errors are logged when you run the test case. To have your test
case run cleanly the next time, you can modify the expected values with the Update Expected Value
command.

Note: The Update Expected Value command updates data within a test case, not data passed in
from the test plan.

Running Tests and Interpreting Results | 415

Debugging tools

You might need to use the debugger to explore and fix errors in your script. In the debugger, you can use
the special commands available on the Breakpoint, Debug, and View menus.

Marking failed test cases

When a test plan results file shows test case failures, you might choose to fix and then rerun them one at a
time. You might also choose to rerun the failed test cases at a slower pace, without debugging them, simply
to watch their execution more carefully.

To identify the failed test cases, make the results file active and select Results > Mark Failures in Plan.
All failed test cases are marked and test plan file is made the active file.

Viewing Differences
If a verification fails, because the actual value is different to the expected value, you can use the
Difference Viewer from the results file to compare the expected value with the actual value.

You can use Results > Next Result Difference to find the next difference and update the values using
Results > Update Expected Value.

Note: The Difference Viewer does not work for remote agent tests, because the compared values
must be available on the local machine.

1. Move the mouse cursor over the error in the results file.

2. Click Results > View Differences.

You can also click on the red square that precedes the error message in the results file.

The Difference Viewer appears, listing every expected (baseline) value in the left pane and the
corresponding actual value in the right pane. Differences are marked with red, blue, or green lines,
which denote different types of differences, for example deleted, changed, and added items.

3. Compare the values in the Expected value and Actual value fields.

4. If the error was caused by a wrong expected value, click Results > Update Expected Value to modify
the expected value in the test case.

5. Click Results > Next Result Difference in the menu to find the next difference.

Note: If the error message on which you click relates to the appearance of the application under test,
for example when bitmaps have different sizes, Silk Test Classic opens the Bitmap Tool to compare
the baseline and results bitmaps.

Merging Test Plan Results
You can use the Merge Results dialog box to merge another result into the active test-plan result file.

A results file consists of a series of results sets, one set for each test plan run. Merging such results sets is
useful when:

• Sections of the test plan are run separately, either by one person or by several people, and you need to
create a single report on the testing process. For example, let’s say that yesterday you ran a section of
the test plan consisting of 20 tests and today you ran a different section of the test plan consisting of 10
tests. The merged results set would have today's date and would consist of the results of 30 tests.

• A newer version of a test plan is updated with new tests or sub-plans and you want a single results set
to reflect the execution of the original test plan along with the additional tests or sub-plans. For example,
if yesterday you ran a test plan consisting of 20 tests and another test plan with 10 tests, and today you
added the second test plan to the first test plan as a sub-plan, the merged results set of yesterdays runs
would have yesterday's date and would consist of the results of 30 tests.

1. Click Results > Merge.

416 | Running Tests and Interpreting Results

Note: This command is only available in the menu when a results file produced by running a test-
plan is active in the editor.

The Merge Results dialog box appears.

2. Select the test plan result that you want to merge into the test plan results file. The selected result is
merged into the active test plan results file. The date and time of the altered results set reflect the more
recent test run.

Selecting which Results to Display
By default, Silk Test Classic saves the results of the last five executions of a script, suite, or test plan. You
can use the Select Results dialog box to select which of these results to display.

Click Results > Select.

Note: To change the default number of results that are saved, click Options > Runtime to open the
Runtime Options dialog box and edit the History Size option.

1. Click Results > Select.

Note: The Results menu is only available when the active window is a results window.

2. Select the result that you want to display from the Results to view list.

3. Optional: Add a comment to the selected result by typing the comment into the Comment field.

4. Click OK.

Export Results Dialog Box
Use the Export Results dialog box to export your results to a structured file that is suitable for further
processing by an application, such as a spreadsheet. This is only available when the active window is a
results window.

Click Results > Export.

Filename area Displays the path and name of the file to be created. The default path is based on the
current directory and the default file name is based on the name of the .res file. Click
Browse to open the Export Results File Name dialog box if you need help choosing a
new path or name.

Fields to export
area

Specifies all the fields available for export. Select the fields you want to export.

Export format
area

Specifies how the fields are delimited in the file. Select a built-in delimited style in the
Export Format list or select Custom and specify your own delimiters. If you select
custom specify your delimiters in the appropriate boxes: Delimiter, Quote, Escape
delimiter, and Escape quote. Default is Comma Delimited, Quoted Strings.

Write header If checked, the following header information is included in the file: name of the results
file, which fields were exported, and how the fields were delimited. Default is checked.

Write paths
relative to
results file

If checked, the name of the directory and file that stores the results file is included in
the file. Silk Test Classic always assigns the extension .res to all results files.

Results to
export area

Specifies which results to export. Click to select the results you want exported. To
select more than one set, press the Ctrl key, then click each file you want to export.
Default is the set currently displayed in the results window.

Running Tests and Interpreting Results | 417

View Options Dialog Box
Use the View Options dialog box to specify which information you want displayed in the results window.

Click Results > View Options.

You must check the Log elapsed time, thread, and machine for each output line check box in the
Runtime dialog box in order to use these options. Click Options > Runtime to set the option.

Display options area select the information you want to display in the results window. You can select
Elapsed time, Thread number, or Current machine.

Sort lines by area Select how you want the results sorted. You can specify Elapsed time, Thread
number, or Current machine.

When you click OK, the current results file displays the options that you specified.

Compare Two Results Dialog Box
Use to see results that have changed from a previous run of the testplan. Available only when a results file
produced by running a testplan is the active window.

Click Results > Compare Two Results.

Analyzing Results with the Silk TrueLog Explorer
This section describes how you can analyze results with the Silk TrueLog Explorer (TrueLog Explorer).

For additional information about TrueLog Explorer, refer to the Silk TrueLog Explorer User Guide, located in
(in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Documentation or (in Microsoft Windows
10) Start > Silk.

TrueLog Explorer
The TrueLog Explorer helps you analyze test results files and can capture screenshots before and after
each action, and when an error occurs. TrueLog Explorer writes the test result files and screenshots into a
TrueLog file.

You can additionally use the Difference Viewer to analyze results for test cases that use the Open Agent.

You can enable or disable TrueLog Explorer:

• For all test cases using the TrueLog Options dialog box.
• Each time you run a specific test case using the Run Testcase dialog box.
• At runtime using the test script.

When you enable or disable TrueLog Explorer in the Run Testcase dialog box, Silk Test Classic makes the
same change in the TrueLog Options dialog box. Likewise, when you enable or disable TrueLog Explorer
in the TrueLog Options dialog box, Silk Test Classic makes the same change in the Run Testcase dialog
box.

Note: By default, TrueLog Explorer is enabled when you are using the Open Agent, and disabled
when you are using the Classic Agent. When TrueLog Explorer is enabled, the default setting is that
screenshots are only created when an error occurs in the script and only test cases with errors are
logged.

For additional information about TrueLog Explorer, refer to the Silk TrueLog Explorer User Guide, located in
(in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Documentation or (in Microsoft Windows
10) Start > Silk.

418 | Running Tests and Interpreting Results

TrueLog Limitations and Prerequisites
When you are using TrueLog with Silk Test Classic, the following limitations and prerequisites apply:

Remote agents When you are using a remote agent, the TrueLog file is also written on the remote
machine.

Suites TrueLog is not supported when you are executing suites.

Mixed-agent
scripts

TrueLog is not supported when you are executing mixed-agent scripts, which are
scripts that are using both agents.

Multiple-agent
scripts

TrueLog is supported only for one local or remote agent in a script. When you are
using a remote agent, the TrueLog file is also written on the remote machine.

Open Agent
scripts

To use TrueLog Explorer with Open Agent scripts, set the default agent in the
toolbar to the Open Agent.

Classic Agent
scripts

To use TrueLog Explorer with Classic Agent scripts, set the default agent in the
toolbar to the Classic Agent.

Why is TrueLog Not Displaying Non-ASCII Characters Correctly?
TrueLog Explorer is a MBCS-based application, meaning that to be displayed correctly, every string must
be encoded in MBCS format. When TrueLog Explorer visualizes and customizes data, many string
conversion operations may be involved before the data is displayed.

Sometimes when testing UTF-8 encoded Web sites, data containing characters cannot be converted to the
active Windows system code page. In such cases, TrueLog Explorer will replace the non-convertible
characters, which are the non-ASCII characters, with a configurable replacement character, which usually
is '?'.

To enable TrueLog Explorer to accurately display non-ASCII characters, set the system code page to the
appropriate language, for example Japanese.

Opening the TrueLog Options Dialog Box
Use the TrueLog options to enable the TrueLog Explorer and to customize the test result information that
TrueLog collects.

• To open the TrueLog Options dialog box from the main menu, click Options > TrueLog.
• To open the TrueLog Options dialog box from a test case, click Run Testcase on the Basic Workflow

bar. If the workflow bar is not visible, click Workflows > Basic to enable it. In the Run Testcase dialog
box, check the Enable TrueLog check box and then click TrueLog Options.

Setting TrueLog Options
Use the TrueLog options to enable TrueLog and to customize the test result information that the TrueLog
collects.

Logging bitmaps and controls in a TrueLog may adversely affect performance. Because capturing bitmaps
and logging information can result in large TrueLog files, you may want to log test cases with errors only
and then adjust the TrueLog options for test cases where more information is needed.

Note: To reduce the size of TrueLog files with Silk Test 17.5 or later, the file format for TrueLog files
with the Open Agent has changed from .xlg to the compressed .tlz file format. Files with a .xlg
suffix are automatically appended with a .tlz suffix. To parse result data from a .tlz file, you can
unzip the .tlz file and parse the data from the included .xlg file. For the Classic Agent, the .xlg
file format is used.

Running Tests and Interpreting Results | 419

1. Click Options > TrueLog to open the TrueLog Options dialog box.

2. To capture TrueLog data and activate logging settings, check the Enable TrueLog check box and then
choose to capture data for:

All testcases Logs activity for all test cases, both successful and failed. This setting may
result in large TrueLog files.

Testcases with errors Logs activity only for test cases with errors. This is the default setting.

3. In the TrueLog location field, type the name of and optionally the path to the TrueLog file, or click
Browse and select the file.

The path is relative to the machine on which the agent is running. The default path is the path of the Silk
Test Classic project folder, and the default name is the name of the suite class, with a .tlz suffix. To
ensure that TrueLog files are not overwritten, for example when you perform parallel testing, you can
add placeholders to the TrueLog file name. These placeholders are replaced with the appropriate data
at execution time.

Note: The path is validated at execution time. Tests that are executed by Silk Central set this value
to the Silk Central results directory to enable the screenshots to be shown in the result view.

4. Only when you are using the Classic Agent, choose one of the following to set pre-determined logging
levels in the TrueLog Presets section:

Minimal Enables bitmap capture of desktop on error; does not log any actions.

Default Enables bitmap capture of window on error; logs data for Select and SetText actions;
enables bitmap capture for Select and SetText actions.

Full Logs all control information; logs all events for browsers except for MouseMove events;
enables bitmap capture of the window on error; captures bitmaps for all actions.

If you enable Full logs and encounter a Window Not Found error, you may need to manually edit your
script.

5. Only when you are using the Classic Agent, in the Log the following for controls section, specify the
types of information about the controls on the active window or page to log.

6. Only when you are using the Classic Agent, in the Log the following for browsers section, specify the
browser events that you want to capture.

7. Specify the amount of time you want to allow Windows to draw the application window before a bitmap
is taken.

• When you are using the Classic Agent, specify the delay in the TrueLog Delay field.
• When you are using the Open Agent, specify the delay in the Delay field in the Screenshot mode

section.

The delay can be used for browser testing. You can insert a Browser.WaitForReady call in your
script to ensure that the DocumentComplete events are seen and processed. If WindowActive nodes
are missing from the TrueLog, you need to add a Browser.WaitForReady call. You can also use the
delay to optimize script performance. Set the delay as small as possible to get the correct behavior and
have the smallest impact on script execution time. The default setting is 0.

8. To capture screenshots of the application under test:

• When you are using the Classic Agent, check the Enable Bitmap Capture check box and then
choose to capture bitmaps.

• When you are using the Open Agent, determine how Silk Test Classic captures screenshots in the
Screenshot mode section.

9. Only when you are using the Classic Agent, click the Action Settings tab to select the scripted actions
you want to include in the TrueLog.

When enabled, these actions appear as nodes in the Tree List view of the TrueLog.

420 | Running Tests and Interpreting Results

10.Only when you are using the Classic Agent, in the Select Actions to Log section, check the Enable
check box to include the corresponding 4Test action in the log. Each action corresponds to a 4Test
method, except for Click and Select.

11.Only when you are using the Classic Agent, in the Select Actions to Log section, from the Bitmap list
box, select the point in time that you want bitmaps to be captured.

12.Click OK.

Toggle TrueLog at Runtime Using a Script
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Toggle the TrueLog Explorer at runtime to analyze test results, capture screen-shots before and after each
action, and capture screen-shots when an error occurs.

Use the test script to toggle TrueLog Explorer multiple times during the execution of a test case. For
example, if you run a single test case to test multiple user interface menus, you can turn TrueLog on and
off several times during the script to capture bitmaps for only a portion of the menus.

1. Set the TrueLog Explorer options to define what you want the TrueLog Explorer to capture.

2. Create or open the script that you want to modify.

3. Navigate to the portion of the script that you want to turn on or off.

4. To turn TrueLog off, type: SetOption(OPT_PAUSE_TRUELOG, TRUE).

5. To turn TrueLog on, type: SetOption(OPT_PAUSE_TRUELOG, FALSE).

6. Click File > Save to save the script.

Viewing Results Using the TrueLog Explorer
Use the TrueLog Explorer to analyze test results files, capture screenshots before and after each action,
and capture screenshots upon error.

1. Set the TrueLog Explorer options.

2. Run a test case.

3. Choose one of the following:

• Click Results > Launch TrueLog Explorer.
• Click the Explore Results button on the Basic Workflow or the Data Driven Workflow bars.

4. On the Results Files dialog box navigate to the file name that you want to review and click Open.

By default, the results file has the same name as the executed script, suite, or test plan. To review a file in
the TrueLog Explorer, open a .tlz file. To review a Silk Test Classic results file in Silk Test Classic, open
a .res file.

Modifying Your Script to Resolve Window Not Found
Exceptions When Using TrueLog
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you run a script and get a Window 'name' was not found error, you can modify your script to
resolve the issue. Use this procedure if all of the following options are set in the TrueLog Options -
Classic Agent dialog box:

• The action PressKeys is enabled.

Running Tests and Interpreting Results | 421

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• Bitmaps are captured after or before and after the PressKeys action.
• PressKeys actions are logged.

The preceding settings are set by default if you select Full as the TrueLog preset.

To resolve this error, in your test case, use FlushEvents() after a PressKeys() and ReleaseKeys()
pair. Or, you can use TypeKeys() instead.

There is no need to add sleep() calls in the script or to change timeouts.

testcase one()
 Browser.SetActive()
 // Google.PressKeys("<ALT-T>")
 // Google.ReleaseKeys("<ALT-T>")
 Google.TypeKeys("<ALT-T>")
 Agent.FlushEvents ()
 Google.TypeKeys("O")
 Agent.FlushEvents ()

 //recording
 IE_Options.SetActive ()
 IE_Options.PageList.Select ("Security")
 IE_Options.Security.SecurityLevelIndicator.SetPosition (2)
 BrowserMessage.SetActive ()
 BrowserMessage.OK.Click ()
 IE_Options.SetActive ()
 IE_Options.OK.Click()

Analyzing Bitmaps
This section describes how you can analyze bitmaps with the Bitmap Tool.

Overview of the Bitmap Tool
This topic contains a brief overview of the Bitmap Tool. To access more information about the Bitmap
Tool, launch it and press F1 or choose Help > Help Topics.

The Bitmap Tool is an application that allows you to test and correct your Windows application’s
appearance by comparing two or more bitmaps and identifying the differences between them. It is
especially useful for testing inherently graphical applications, like drawing programs, but you can also
check the graphical elements of other applications. For example, you might want to compare the fonts you
expect to see in a dialog with the fonts actually displayed, or you might want to verify that the pictures in
toolbar buttons have not changed.

It can be used as a stand-alone product, in which you create and compare bitmaps of entire windows,
client areas, the desktop, or selected areas of the screen. More commonly, however, you use the tool in
conjunction with Silk Test Classic. Bitmaps captured can be opened in the Bitmap Tool where you can
compare them using the tool’s comparison features. Conversely, bitmaps captured by the bitmap tool can
be compared by Silk Test Classic bitmap functions.

You can compare a baseline bitmap captured in the Bitmap Tool with one captured in a Silk Test Classic
test case of your application.

• If you write test cases by hand, you can use Silk Test Classic built-in bitmap functions.
• If you prefer to record test cases through Record > Testcase, the Verify Window dialog box allows you

to record a bitmap-related verification statement.

The Bitmap Tool can only recognize an operating system's native windows. In the case of the Abstract
Windowing Toolkit (AWT), included with Sun Microsystems Java Development Kit (JDK), each control has
its own window, since AWT controls are native Microsoft windows. As a result, the Bitmap Tool will only
see the top level dialog box.

422 | Running Tests and Interpreting Results

When to use the Bitmap Tool
You might want to use the Bitmap Tool in these situations:

• To compare a baseline bitmap against a bitmap generated during testing.
• To compare two bitmaps from a failed test.

For example, suppose during your first round of testing you create a bitmap using one of Silk Test Classic’s
built-in bitmap functions, CaptureBItmap. Assume that a second round of testing generates another
bitmap, which your test script compares to the first. If the testcase fails, Silk Test Classic raises an
exception but cannot specifically identify the ways in which the two images differ. At this point, you can
open the Bitmap Tool from the results file to inspect both bitmaps.

Capturing Bitmaps with the Bitmap Tool
You can capture bitmaps by embedding bitmap functions and methods in a test case or by using the
Bitmap Tool. This section explains how to capture bitmaps in the Bitmap Tool.

Use the Capture menu to capture a bitmap for any of the following in your application:

• A window.
• The client area of a window, which means the working area, without borders or controls.
• A selected rectangular area of the screen. This is especially useful for capturing controls within a

window.
• The desktop.

Capturing a Bitmap with the Bitmap Tool
1. Start the application in which you want to capture bitmaps and set up the window or area to capture.

2. Start the Bitmap Tool.
3. If you want to change the current behavior of the tool window, click Capture > Hide Window on

Capture.

By default, the tool window is hidden during capture.

4. Choose a window or screen area to capture:

Window Choose Capture > Window. Click the window you want to capture.

Client area Choose Capture > Client Area. Click the client area you want to capture.

Selected
rectangular area

Choose Capture > Rectangle.

1. Move the mouse cursor to desired location to begin capture.
2. While pressing and holding the left mouse button, drag the mouse to outline a

rectangle, and then release the mouse button to capture it. During outlining,
the size of the rectangle is shown in pixels.

Desktop Click Capture > Desktop.

The Bitmap Tool creates a new MDI child window containing the newly captured bitmap. The title bar
reads Bitmap - (Untitled) and the status line at the bottom right of the window gives the dimensions of
the bitmap (height by width), and the number of colors.

5. Repeat steps 3 and 4 to capture another bitmap. Alternatively, open an existing bitmap file.

6. Save the bitmap.

Now you are ready to compare the two bitmaps or create a mask for the baseline bitmap.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps

Running Tests and Interpreting Results | 423

as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Capturing a Bitmap During Recording

1. Open the dialog box by pointing at the object you want to capture and pressing Ctrl+Alt.

2. Click the Bitmap tab.

3. Enter a file name in the Bitmap File Name field. Use the Browse button to select a directory name.

The default path is based on the current directory. The default file name for the first bitmap is
bitmap.bmp. Click Browse if you need help choosing a new path or name.

4. Choose whether to copy the Entire Window, Client Area of Window, or Portion of Window, and click
OK.

To capture a portion of the window, move the mouse cursor to the location where you want to begin.
While pressing the left mouse button, drag the mouse to outline a rectangle, and then release the
mouse button to capture the bitmap.

Silk Test Classic always adds a bitmap footer to the bitmap file. This means that the physical size of the
bitmap will be slightly bigger than if you capture the bitmap in the Bitmap Tool. The bitmap footer always
contains the window tag for a given bitmap.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Capturing All or Part of the Zoom Window in Scan Mode

1. Make sure the Capture > Hide Window is unchecked.

If necessary, select the item to uncheck the check mark.

2. Click Next or Previous until the Zoom window contains the difference you want to capture.

3. Perform one of the following actions to capture the desired part of the Zoom window:

Entire Zoom window Press Ctrl+W and select the Zoom window.

Client area of Zoom
window

Press Ctrl+A and select the Zoom window.

Selected area of Zoom
window

Press Ctrl+R. Move the mouse cursor to desired location to begin
capture. While pressing and holding the left mouse button, drag the mouse
to the screen location to end capture, and release the mouse button.

4. Optionally, you can fit the bitmap in its window, resize it, and save it.

Saving Captured Bitmaps
You can, if you want, save the bitmaps you have captured in the Bitmap Tool. You should adopt a naming
convention that helps you distinguish between the first bitmap in the comparison, called the baseline
bitmap, and the second bitmap, called the result bitmap. You can make the distinction in the file name itself,
for example, by appending or prefixing a b or r to the name and using the same file extension for all bitmap
files. Or you might use the same file name for both baseline and result bitmaps and add a unique file
extension.

424 | Running Tests and Interpreting Results

Example

You save baseline and result bitmaps of the Open dialog box as open.bmp and
open.rmp. Alternatively, you might name them openbase.bmp and openres.bmp,
respectively.

The following table lists the file extensions supported by the Bitmap Tool. We recommend that you
use .bmp for baseline bitmaps and .rmp for result bitmaps.

If you are saving And you want the file name to be Then use this extension

Baseline bitmap Identical to the result bitmap’s .bmp

Result bitmap Identical to the baseline bitmap’s .rmp

Either baseline or
result bitmap

Unique .bmp or .dib (Device Independent
Bitmap)

Note: Silk Test Classic uses .rmp for bitmaps that are captured within a test case and fail verification.

Comparing Bitmaps
The Bitmap Tool can create and graphically locate the differences between two bitmaps. You can use all
Windows functionality to resize, save, and otherwise manipulate bitmaps, in addition to the special
comparison features included in the tool.

Using the Bitmap Tool, you can:

• Show the areas of difference.
• Zoom in on the differences.
• Jump from one zoomed difference to the next.
• View on-line statistics about the bitmaps.
• Edit (copy and paste), print, and save bitmaps.
• Create masks.

The Bitmap Tool has the following major comparison commands:

Command Description

Show Creates a Differences window, which is a child window containing a black-and-white
bitmap. Black represents areas with no differences and white represents areas with
differences.

Zoom Creates a special, not sizable, Zoom window with three panes and resizes and stacks
the Baseline, Differences, and Result windows.

• The top pane of the Zoom window contains a zoomed portion of the Baseline
window.

• The middle pane shows a zoomed portion of the Differences window.
• The bottom pane shows a zoomed portion of the Result window.

All three zoomed portions show the same part of the bitmap. When you move the
mouse within any of the three windows, the Bitmap Tool generates a simultaneous and
synchronized real-time display in all three panes of the Zoom window.

While in scan mode, you can capture the Zoom window to examine a specific bitmap
difference.

Running Tests and Interpreting Results | 425

Command Description

Scan The tool indicates the location of the first difference it finds by placing a square in the
same relative location of the Baseline, Result, and Differences windows. The three
panes of the Zoom window also show the difference.

Comparison
Statistics

Provides statistics about the bitmaps.

You can also compare bitmaps by creating and applying masks.

Rules for Using Comparison Commands
You should be familiar with the following rules before using the commands:

• If you are comparing two new bitmaps captured in the tool, designate one bitmap as the baseline, the
other as the result bitmap.

• If you are comparing two existing, saved bitmaps, open first the bitmap that you consider the baseline.
The tool automatically designates the first bitmap you open as the baseline, and the second as the
result.

• The commands must be used in this order: Show, Zoom, and Scan.

Bitmap Functions
CaptureBitmap, SYS_CompareBitmap, WaitBitmap, and VerifyBitmap are built-in bitmap-related
4Test functions. In particular, VerifyBitmap is useful for comparing a screen image during the execution
of a test case to a baseline bitmap created in the Bitmap Tool. If the comparison fails, Silk Test Classic
saves the actual bitmap in a file. In the following example, the code compares the test case bitmap (the
baseline) against the bitmap of TestApp captured by VerifyBitmap:

TestApp.VerifyBitmap ("c:\sample\testbase.bmp")

Baseline and Result Bitmaps
To compare two bitmaps, you must designate one bitmap in the comparison as the baseline and the
second bitmap as the result. While you may have many bitmap files open in the Bitmap Tool, at any one
time only one bitmap can be set as the baseline and one as the result. If you want to set new baseline and
result bitmaps, you must first un-set the current assignments.

These designations are temporary and at any time you can set and reset a bitmap as a baseline, result, or
neither.

Designating a Bitmap as a Baseline
To designate a bitmap as a baseline:

In the Bitmap Tool, click Bitmap > Set Baseline. The Set Baseline menu item is checked. The title
bar of the child window changes to Baseline Bitmap -- filename.bmp.

Designating a Bitmap as a Results File
To designate a bitmap as a results file:

In the Bitmap Tool, click Bitmap > Set Result. The Set Result menu item is checked. The title bar of
the child window changes to Result Bitmap -- filename.rmp.

Un-Setting a Designated Bitmap
Uncheck the menu item. For example, to un-set a baseline bitmap, uncheck Bitmap > Set Baseline. The
check mark is removed.

426 | Running Tests and Interpreting Results

Uncheck the menu item.

For example, to un-set a baseline bitmap, uncheck Bitmap > Set Baseline.

The check mark is removed.

Zooming the Baseline Bitmap, Result Bitmap, and
Differences Window
Choose Differences > Show and then Differences > Zoom.

The tool arranges the Baseline Bitmap on top, the Result Bitmap on the bottom, and the Differences
window in the middle. To the right of these, the tool creates a Zoom window with three panes, arranged like
the bitmap windows

Looking at Statistics
The Differences > Comparison Statistics command displays information about the baseline and result
bitmaps, with respect to width, height, colors, bits per pixel, number of pixels, and the number and
percentage of differences (in pixels).

Viewing Statistics by Comparing the Baseline Bitmap and the Result
Bitmap
To view statistics by comparing the baseline bitmap and the result bitmap:

Click Differences > Comparison Statistics. The Bitmap Comparison Statistics window opens.

Note: The number of colors is derived from the following formula: number of colors = 2 ^ (bits per
pixel).

Exiting from Scan Mode
To exit from the scan mode:

Click Differences > Scan. Exiting scan leaves the tool in zoom mode.

Starting the Bitmap Tool
This section lists the locations from which you can start the Bitmap Tool.

Starting the Bitmap Tool from its Icon and Opening Bitmap Files

1. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test Bitmap Tool or
(in Microsoft Windows 10) Start > Silk > Silk Test Bitmap Tool. The Bitmap Tool window displays.

2. Do one of the following:

Open an existing bitmap
file

Click File > Open and specify a file in the Open dialog box. See
Overview of Comparing Bitmaps.

Capture a new bitmap See Capturing a Bitmap in the Bitmap Tool.

Starting the Bitmap Tool from the Results File
When the verification of a bitmap fails in a test case, Silk Test Classic saves the actual result in a bitmap
file with the same name as the baseline bitmap but with the extension .rmp. So, if the bitmap file
testbase.bmp fails the comparison, Silk Test Classic names the result bitmap file testbase.rmp. It also
logs an error message in the results file.

Running Tests and Interpreting Results | 427

Note: In some cases this error message does not reflect an actual error. In particular, when Silk Test
Classic compares a bitmap it captured with one captured in the Bitmap Tool, the comparison fails
because Silk Test Classic stores footer information in its bitmap. The bitmaps might in fact be identical
in all ways except for this information.

To compare the actual bitmap generated by the test case against the baseline bitmap generated by the
bitmap tool or one of Silk Test Classic’s built-in functions, click the box icon preceding the error message.

Silk Test Classic opens the bitmap tool, opens both the baseline bitmap, which is the expected bitmap as
a .bmp file, and the result bitmap, which is the actual bitmap as a .rmp file, creates a Results/View
Differences and places it in between the baseline bitmap and the result bitmap. The right portion of the
tool displays a three-paned Zoom window.

Starting the Bitmap Tool from the Run Dialog Box
1. Click Start > Run. The Run dialog box displays.

2. Type the pathname of the tool’s executable file and any parameters in the Command Line field and
click OK. The Bitmap Tool starts. Any bitmaps you specified on the command line are opened.

3. See Overview of Comparing bitmaps.

4. If you did not specify any files in the command line, go to the next step.
You can now open existing bitmaps created in Silk Test Classic or in the tool, or you can capture new
bitmaps.

5. Do one of the following:

Open an existing bitmap
file

Click File > Open and specify a file in the Open dialog box. See
Overview of Comparing Bitmaps.

Capture a new bitmap See Capturing a Bitmap in the Bitmap Tool.

Using Masks
A mask is a bitmap that you apply to the baseline and result bitmaps in order to exclude any part of a
bitmap from comparison by the Bitmap Tool. For example, if you are testing a custom object that is
painted on the screen and one part of the object is variable, you might want to create a mask to filter out
the variable part from the bitmap comparison.

You might consider masking any differences that you decide are insignificant or that you know will vary in
an effort to avoid test case failure. For example, suppose a test case fails because one bitmap includes a
flashing area of a dialog box. In the Bitmap Tool you can block the flashing area from the two bitmaps by
creating and applying a mask to them. Once a mask is applied and the masked bitmaps are saved, the
mask becomes a permanent part of the baseline bitmaps you are comparing. Masks can also be saved in
separate files and used in test cases.

You can create a mask in two ways:

• By converting the Differences window to a mask. A mask created this way filters out all differences.
• By opening a new mask window and specifying rectangular areas to mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Prerequisites for the Masking Feature
Before using the masking feature, you must:

428 | Running Tests and Interpreting Results

• Capture or open two bitmaps to compare. Set baselinesetbaseline and resultsetresult
bitmaps, if currently un-set.

• Determine which sections you need to mask. Use one or more comparison
featurescomparisoncmds, if necessary, to locate bitmap differences.

Applying a Mask

1. Open the mask bitmap file and click Bitmap > Set Mask.

2. Click Edit > Apply Mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Editing an Applied Mask
You can edit a mask after it has been applied:

• To add to the mask, place the mouse cursor in the baseline bitmap window at the position where you
want to begin adding to the mask. Click and drag the mouse cursor to outline a rectangle. Then release
the left mouse button.

• To delete part of the mask, place the mouse cursor in the baseline bitmap window at the position where
you want to begin deleting part of the mask. While pressing and holding the Shift key, drag the mouse
cursor over the area of the existing map that you want to delete, and then release the Shift key and the
left mouse button.

Creating and Applying a Mask that Excludes Some Differences or Just
Selected Areas

1. Click Edit > New Mask. The bitmap tool creates an empty Mask Bitmap child window that is the same
size as the baseline bitmap.

2. Using the Differences window to help you locate differences, place the mouse cursor in the baseline
bitmap window at the position where you want to begin creating the mask. As you press and hold the
left mouse button, drag the mouse cursor to outline a rectangle. Then release the left mouse button.
The rectangular outline in the baseline map changes to a filled-in rectangle. The mask bitmap window
also contains a like-sized rectangle in the same relative location.

3. Repeat step the previous step until you have completed the mask.

4. If you want to delete a portion of the mask, place the mouse cursor in the baseline bitmap window at the
position where you want to begin editing. While pressing the Shift key and then the left mouse button,
drag the mouse cursor over the area of the existing map that you want to delete, and then release the
Shift key and the left mouse button.

The area of the mask overlapped by the rectangle outline disappears in both the baseline and mask
bitmap window.

5. Choose Edit > Apply Mask. The bitmap tool applies the mask to the result bitmap and closes the
Differences window.

6. Choose one of the following actions:

Keep the baseline and result
bitmaps with the mask applied

Save the bitmap files. The mask is now a permanent part of the
bitmap files.

Unapply the mask Close the mask bitmap window. Saving is optional.

Running Tests and Interpreting Results | 429

Keep the mask as it is Save the mask file.

Edit the mask Choose File > Save and close the mask bitmap window. This
un-applies the mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Creating and Applying a Mask that Excludes All Differences

1. Click Differences > Show to open a Differences window, if one is not already open.

2. Click Differences > Convert to Mask. A message is displayed: Bitmaps are now identical on
screen.

3. Click OK.

The bitmap tool creates an untitled mask bitmap from the Differences window, swapping black and
white, and applies the mask to the baseline and result bitmaps.

4. Choose one of the following actions:

Keep the baseline and result
bitmaps with the mask applied

Save the bitmap files. The mask is now a permanent part of the
bitmap files.

Unapply the mask Close the mask bitmap window. Saving is optional.

Keep the mask as it is Save the mask file.

Edit the mask Choose File > Save and close the mask bitmap window. This
un-applies the mask.

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Saving a Mask
Masks can be saved in a file, applied to the baseline and result bitmaps for you to examine on screen only,
or applied to and saved in the baseline and result bitmap files. Once masks are applied and saved, they
become a permanent part of the baseline and result bitmaps. The advantage of saving the mask alone is
that later you can read in the mask file and apply it to the bitmap on screen, thus allowing you to keep the
bitmap in its original state.

You can supply the name of a mask bitmap file (as well as its associated baseline bitmap file) as an
argument to bitmap functions.

The Bitmap Tool supports the .msk file extension for mask files. Alternatively, you can designate a mask
in the file name and use the generic .bmp extension. We recommend, however, that you use the .msk
extension.

The following bitmap-related functions accept mask files as arguments:

• GetBitmapCRC

430 | Running Tests and Interpreting Results

• SYS_CompareBitmap

• VerifyBitmap

• WaitBitmap

The Open Agent and Classic Agent capture bitmaps in different color depths. By default, the Open Agent
captures bitmaps using the current desktop settings for color depth. The Classic Agent captures bitmaps
as 24-bit images. If you create a mask file for the captured bitmap using the Bitmap tool, the mask file is
saved as a 24-bit bitmap. If the bitmap mask file does not have the same color depth as the bitmap that you
capture, an error occurs. To ensure that VerifyBitmap functions do not fail due to different color-depth
settings between the captured image and the mask image, ensure that the bitmaps have the same color
depth.

Analyzing Bitmaps for Differences
This section describes how you can analyze bitmaps for differences.

Scanning Bitmap Differences
To scan the differences between the baseline and result bitmaps:

Click Differences > Scan or Differences > Next. The tool indicates the location of the first difference it
finds by placing a square in the same relative location of the Baseline, Result, and Differences
windows. The three panes of the Zoom window also show the difference.

Showing Areas of Difference
The Show command creates a Differences window which is a child window containing a black-and-white
bitmap. Black represents areas with no differences and white represents areas with differences.

Graphically Show Areas of Difference Between a Baseline and a Result
Bitmap
To graphically show the differences between a baseline and a result bitmap:

Click Differences > Show. The Bitmap Tool displays a Differences window along with the source
baseline and result bitmaps from which it was derived.

Moving to the Next or Previous Difference
You must first create a Differences window and a Zoom window using Differences > Show and
Differences > Zoom.

The Scan command on the Differences menu automates zoom mode and causes the bitmap tool to scan
for differences from left to right and top to bottom. When the first difference is found, a small square, 32 x
32 pixels, is shown in the Baseline Bitmap, Result Bitmap, and Differences Bitmap windows in the
same relative location. In addition, that location is shown in all three panes in the Zoom window.

Click Differences > Next or Differences > Previous.

Zooming in on the Differences
The Zoom command creates a special, not sizable, Zoom window with three panes and resizes and
stacks the Baseline, Differences, and Result windows.

• The top pane of the Zoom window contains a zoomed portion of the Baseline Bitmap window.
• The middle pane shows a zoomed portion of the Differences window.
• The bottom pane shows a zoomed portion of the Result Bitmap window.

Running Tests and Interpreting Results | 431

All three zoomed portions show the same part of the bitmap. When you move the mouse within any of the
three windows, the bitmap tool generates a simultaneous and synchronized real-time display in all three
panes of the Zoom window.

While in scan mode, you can capture the Zoom window to examine a specific bitmap difference.

Working with Result Files
This section describes how you can use result files to interpret the results of your tests.

Attaching a Comment to a Result Set
You can attach comments to individual result sets to record useful information about the test run:

1. Open the result file.

2. Click Results > Select to display the Select Results dialog.

3. Select the result set to which you want to attach a comment.

4. Type the comment in the Comment text field at the bottom of the dialog. The comment displays in the
Comment column in the Select Results dialog.

5. Click OK.

Silk Test Classic displays the comments in the various dialogs that list results sets, such as the Extract
Results and Delete Results dialogs.

Comparing Result Files
The Compare Two Results command allows you to quickly note only the results that have changed from a
prior run without having to look at the same errors over again. The command identifies differences based
on the following criteria:

• A test passes in one test plan run and fails in the other.
• A test fails in both runs but the error is different.
• A test is executed in one test plan run but not in the other.

Silk Test Classic uses the test descriptions as well as the test statements to identify and locate the various
cases in the test plan. Therefore, if you change the descriptions or statements between runs, Silk Test
Classic will not be able to find the test when you run Compare Two Results.

1. Open two results files.

2. Make the results set you want to compare to another results set the active window.

3. Choose Results > Compare Two Results.

4. On the Compare Two Results dialog, select a results set from the list box and click OK.

5. When the results set is displayed again, a colored arrow is positioned in the left margin for every test
that is different.

A red arrow indicates that the difference is due to the pass/fail state of the test changing.

A magenta arrow indicates that the difference is due to the addition or removal of the test in the
compared test run.

6. Click Results > Next Result Difference to search for the next difference or choose Results > Next
Error Difference to search for the next difference that is due to the change in a pass/fail state of a test.

Silk Test Classic uses the test descriptions as well as the script, testcase, and testdata statements to
identify and locate the various cases in the test plan and in the results set. When test results overlap in the
two results set that were merged, the more recent run is used. If you change a test description between

432 | Running Tests and Interpreting Results

runs or modify the statements, Silk Test Classic might be unable to find the test when you try to merge
results. Silk Test Classic places these orphaned tests at the top of the results set.

Customizing results
You can modify the way that results appear in the results file as follows:

• Change the colors of elements in the results file
• Change the default number of results sets
• Display a different set of results
• Remove the unused space in a results file

You can also view an individual summary.

Deleting Results
You can use the Delete Results dialog box to delete results.

1. Click Results > Delete.

Note: This menu is only available when a results file is active.

Silk Test Classic displays the Delete Results dialog box.

2. Select the result that you want to delete from the list.

The most current results set displayed first.

3. Click OK.

Change the default number of result sets
1. Click Options > Runtime. The Runtime Options dialog box displays.

2. In the History Size field, change the number to the number of results files you want.

Note: By default, five result sets are kept.

Changing the Colors of Elements In the Results File
1. In Silk Test Classic, click Options > Editor Colors to display the Editor Colors dialog.

2. Select an element from the Editor Item list box.

3. Select one of the 16 colors from the palette or modify the RGB values of the selected color. To modify
RGB value, select the color. Slide the bar to the left or right, click the spin buttons, or type specific RGB
values until you get the color you want.

4. When you are satisfied with the color, click OK.

To revert to the default colors, click Reset. By default, these results file elements are displayed in the
following colors:

Results file element Default color/icon

Error messages and
warnings

Red plus sign (bold on black-and-white monitor)

Warnings only Purple plus sign

Test descriptions of
executed tests

Dark blue

Running Tests and Interpreting Results | 433

Results file element Default color/icon

Test descriptions of
unexecuted tests

Grayed out

Other descriptive lines Black

Fix incorrect values in a script
1. Make the results file active.
2. Click Results > Update Expected Value.
3. Optionally, select Run > Testcase in order to run the test and confirm that it now passes. The expected

values in the script are replaced with the actual values found at runtime.

Marking Failed Test Cases
When a test plan results file shows test case failures, you might choose to fix and then rerun them one at a
time. You might also choose to rerun the failed test cases at a slower pace without debugging them to
watch their execution more carefully.

Make the results file active and click Results > Mark Failures in Plan.

All failed test cases are marked and the test plan is made the active file.

Merging Test Plan Results
You can use the Merge Results dialog box to merge another result into the active test-plan result file.

A results file consists of a series of results sets, one set for each test plan run. Merging such results sets is
useful when:

• Sections of the test plan are run separately, either by one person or by several people, and you need to
create a single report on the testing process. For example, let’s say that yesterday you ran a section of
the test plan consisting of 20 tests and today you ran a different section of the test plan consisting of 10
tests. The merged results set would have today's date and would consist of the results of 30 tests.

• A newer version of a test plan is updated with new tests or sub-plans and you want a single results set
to reflect the execution of the original test plan along with the additional tests or sub-plans. For example,
if yesterday you ran a test plan consisting of 20 tests and another test plan with 10 tests, and today you
added the second test plan to the first test plan as a sub-plan, the merged results set of yesterdays runs
would have yesterday's date and would consist of the results of 30 tests.

1. Click Results > Merge.

Note: This command is only available in the menu when a results file produced by running a test-
plan is active in the editor.

The Merge Results dialog box appears.
2. Select the test plan result that you want to merge into the test plan results file. The selected result is

merged into the active test plan results file. The date and time of the altered results set reflect the more
recent test run.

Navigating to errors
To find and expand the next error or warning message in the results file, choose Edit > Find Error. To skip
warning messages and find error messages only, in the Runtime Options dialog, uncheck the check box
labeled Find Error stops at warnings.

You can also use the Find, Find Next, and Go to Line commands on the Edit menu to navigate through a
results file.

434 | Running Tests and Interpreting Results

To expand an error message to reveal the cause of an error, click the red plus sign preceding the message.
In addition to the cause, you can see the call stack which is the list of 4Test functions executing at the time
the error occurred.

There are several ways to move from the results file to the actual error in the script:

• Double-click the margin next to an error line to go to the script file that contains the 4Test statement that
failed.

• Click an error message and choose Results > Goto Source.
• Click an error message and press Enter.

To navigate from a testplan test description in a results file to the actual test in the testplan, click the test
description and click Results > Goto Source.

Viewing an individual summary
1. Click a testcase line in a suite or script results file, or click a test description in a testplan results file.

2. Click Results > Show Summary.

Storing and Exporting Results
You can store and export results in the following ways:

• Store results in an unstructured ASCII format.
• Export results to a structured file for further manipulation.

Storing results
Silk Test Classic allows you to extract the information you want in an unstructured ASCII text format and
send it to a printer, store it in a file, or look at it in an editor window.

To store results in an unstructured ASCII format

1. Click Results > Extract.

2. In the Extract To group box on the Extract Results dialog, select the radio button for the destination of
the extracted output: Window (default), File, or Printer.

3. In the Include group box, check one or more check boxes indicating which optional text, if any, to
extract. (This optional text is in addition to the output selected in the Expand group box.) The choices
are:

4. Select a radio button in the Expand group box indicating which units to extract information about. Select
Scripts, Scripts and Testcases (default), or Anything with Errors.

5. Select one or more results sets from the Results to Extract group box.

6. Click OK.

Extracting Results
Use the Extract Results dialog box to extract results in an unstructured ASCII text format.

1. Click Results > Extract. This menu is only available if the active file is a results file.

2. Select the destination of the extracted output.

• To view the extracted results in a new editor window, select Window.
• To store the extracted results in a new file, select File.
• To send the extracted results to a printer, select Printer.

The default setting is Window.

Running Tests and Interpreting Results | 435

3. Select which information you want to extract.

• To extract only script information, select Scripts.
• To extract script and test case information, select Scripts and testcases.
• To extract all error information, select Anything with errors.

The default setting is Scripts and testcases.

4. Optional: Specify which optional text to extract.

• Check the Output text check box to extract the output of sprint statements.
• Check the Error text check box to extract text generated by the LogError and ExceptLog

functions.
• Check the Summary text check box to extract the description of which tests passed and failed and

the number of errors that were produced by failed tests.

5. Select the results that you want to extract from the Results to extract list.

To select more than one result, press Ctrl and click each file you want to extract. The default result is
the result that is currently displayed in the results window.

6. Click OK.

Exporting Results
You can use the Export Results dialog box to export your results to a structured file that is suitable for
further processing by an application, such as a spreadsheet.

Write header If checked, the following header information is included in the file: name of the results
file, which fields were exported, and how the fields were delimited. Default is checked.

Write paths
relative to
results file

If checked, the name of the directory and file that stores the results file is included in
the file. Silk Test Classic always assigns the extension .res to all results files.

Results to
export area

Specifies which results to export. Click to select the results you want exported. To
select more than one set, press the Ctrl key, then click each file you want to export.
Default is the set currently displayed in the results window.

1. Click Results > Export.
This menu is only available when the active window is a results window.

The Export Results dialog appears.

2. Specify the file name.

The default path is based on the current directory and the default file name is based on the name of
the .res file. To select a file, click Browse and navigate to the file in the Export Results File Name
dialog box.

3. Optional: Check the corresponding check boxes in the Fields to export area to specify the fields that
you want to export to the file.

4. Optional: In the Export format area, specify how you want the fields delimited in the file.

The default is to comma delimit the fields and to put quotation marks around strings. Select Custom to
specify your own delimiters.

5. Optional: To include header information in the file, check the Write header check box.

Header information contains the name of the results file, which fields were exported, and how the fields
were delimited.

6. Optional: To include the directory and file that stores the results file in the file, check the Write paths
relative to the results file check box.

7. Select the results that you want to export from the Results to export list.

By default, the results set that is currently displayed in the results window is extracted.

436 | Running Tests and Interpreting Results

8. Click OK. The information is saved in a delimited text file. You can import that file into an application that
can process delimited files, such as a spreadsheet.

Displaying a different set of results
1. Click Results > Select. Silk Test Classic displays the Select Results dialog with the most current

results set displayed first.

2. Select the set of results you want to see and click OK.

Removing the Unused Space from a Result File
1. Open a result file.

2. Click Results > Compact. The file size is reduced.

Logging Elapsed Time, Thread, and Machine
Information
Using the Runtime Options dialog box, you can specify that you want to log the elapsed time, the thread
number, and the current machine information during execution. This information is then written to the
results file where you can display and sort it. For example, if you encounter nested test cases in the results
files because you use multi-threading, check this check box to record thread number information in your
results file. Then, you can sort the lines in your results file by the thread numbers to better navigate within
the nested test cases.

1. Click Options > Runtime to open the Runtime Options dialog box.

2. In the Results area, check the log elapsed time, thread, and machine for each output line check
box.

3. Click OK.

Running Tests and Interpreting Results | 437

Debugging Test Scripts
Errors encountered during playback can be caused by a variety of factors, such as changes in the
application under test (AUT), improper test step flow, or environmental changes. Quickly diagnosing and
fixing these errors using debugging features minimizes test maintenance and allows a more efficient team
testing effort.

Silk Test Classic automatically raises an exception in response to many of errors or inconsistencies in your
scripts and your keyword-driven tests. However, some problems might cause a script or a keyword-driven
test to work in unexpected ways without generating an exception. To solve such problems, use the
debugger.

Debugging enables you to manage, examine, reset, or step through the actions in a script or keyword-
driven test. While debugging, you can specify breakpoints to stop the execution before or after a specific
action, and you can examine the values of any local and global variables. You can also enter expressions
to evaluate. This lets you identify exactly where an error might be occurring.

You can also use the debugger to find problems in your application under test (AUT). Use the debugging
facilities to step through the application and to determine the exact location where a problem occurs.

To start debugging, open the test script or the keyword-driven test script in the editor and click Run >
Debug in the Silk Test Classic menu. You can also click Debug in the toolbar.

The debugger enables you to view the results of your testing in the following ways:

• View the debugging transcript when you debug a script. For additional information, see Viewing the
Debugging Transcripts. Silk Test Classic records the error information and the output of any print
statements in the transcript instead of into a results file.

• Examine the debugging variables while you are debugging a test script. For additional information, see
Viewing Variables.

• View the call stack. The call stack is a description of all function calls that are currently active in the
script which you are debugging. By viewing the call stack, you can trace the flow of execution, which
might uncover errors generated by an erroneous flow of control in the script. To view the current call
stack, choose View > Call Stack in the Silk Test Classic menu. Silk Test Classic displays the call stack
in a new window. To return to the script being debugged, press F6 or choose View > Module and select
the script from the list.

You cannot use the debugger from plan (*.pln) files, however, you could call test cases from a main()
function and debug the test cases from there.

Note: You cannot modify files while you are using the debugger. To fix a problem in a file, stop the
debugger by clicking Debug > Exit in the Silk Test Classic menu.

Designing and Testing with Debugging in Mind
Designing and testing a script to facilitate debugging might significantly reduce test maintenance costs. The
following suggestions might help you create debuggable scripts:

• Plan for debugging and robustness when you are designing a script, by having your functions check for
valid input and output, and by performing operations in the script that inform you if a problem occurs.

• Test each function while you write it, by building it into a small script that calls the function with test
arguments and performs some functional validation. When you have finished the coding of a script, you
can use the debugger to step through the execution of each function in the script.

• To find errors in control loops, test each routine with the full range of valid data values, including the
highest and lowest valid values.

438 | Debugging Test Scripts

• Test each routine with invalid values to ensure that the routine rejects such values without crashing.
• Test each routine with null (empty) values. Depending on the purpose of the script, it might be useful to

provide default values if the input is incomplete.

Executing a Script in the Debugger
Once you have set one or more breakpoints in your test script or your keyword-driven test script, perform
the following actions to execute the script:

1. In the Silk Test Classic menu, click Debug > Run. Silk Test Classic executes the script until it reaches
the line in which the first breakpoint is located, until an error occurs, or until the script ends. A blue
arrow marks the line where Silk Test Classic stopped running the script.

2. Click Debug > Continue. Silk Test Classic executes the script until it reaches the line in which the first
breakpoint is located, until an error occurs, or until the script ends.

3. Perform the following actions as required:

• Click Debug > Step Into to execute the current line in the active script or in a file that is called by the
active script. This action is available only if the execution has stopped at a breakpoint. If the current
line contains a function call, control passes into the function and the execution stops at the first
statement in the function.

• Click Debug > Step Over to execute the current line of code in the active script or in a file that is
called by the active script, without stepping into any functions called by the current line. The
execution stops at the next statement. This action is available only if the execution has stopped at a
breakpoint.

• Click Debug > Run to Cursor to execute the script until the line containing the cursor.
• Click Debug > Finish Function to execute the script until the current function returns.

Debugging a Test Script
Start the debugger to debug your test scripts.

Note: You cannot modify files while you are using the debugger. To fix a problem in a file, stop the
debugger by clicking Debug > Exit in the Silk Test Classic menu.

1. To debug a script that is not currently active in the editor, click File > Debug.

• To debug the active script, click Run > Debug. Silk Test Classic enters the debugger and pauses
without setting a breakpoint.

• To debug a specific test case from the active script, click Run > Testcase. Then select a test a test
case from the Run Testcase dialog, and click Debug. Silk Test Classic enters the debugger and
sets a breakpoint at the first line of the test case.

• To debug an application state, click Run > Apllication State. Then select an application state from
the Run Application State dialog box, and click Debug. Silk Test Classic enters the debugger and
sets a breakpoint at the first line of the application state definition.

• To debug a plan file, call the test cases in the plan file from a main() function and debug the plan
file from there from there. You cannot use the debugger from plan files (*.pln).

2. If you want to debug a script that is not currently active in the editor, select the script file from the Debug
dialog box. Silk Test Classic enters the debugger and pauses without setting a breakpoint.

3. Click Open. Silk Test Classic performs the following actions:

• Opens the selected script file in debugging mode.
• Marks the current line, which is the next line to be executed, with a triangle.
• Changes the menu item from Run to Continue.

Debugging Test Scripts | 439

• When script execution completes, a message box displays indicating that the script has terminated.

During script execution, Silk Test Classic displays a transcript window, which is similar to the results
window. Unlike the results file, however, the output from debugging a script is not saved in a file, there are
no statistics, and all the information is expanded automatically. The transcript window contains the script
name, the test case names, and a list of the errors encountered and their line numbers. At the bottom of
the transcript window is a text field in which you can enter any statement to execute. The results of each
statement you execute appear in the transcript window.

Special debugging commands are available.

Debugger Menus
In debugging mode, the menu bar includes the following three additional menus:

• The commands in the Debug menu enable you to control the flow of the script.
• The commands in the Breakpoint menu enable you to add or remove breakpoints.
• The commands in the View menu enable you to view various elements of the running script, for

example local and global variables, the call stack, and breakpoints, and to evaluate expressions.

Stepping Into and Over Functions
To locate a bug in your code you can divide the script into discrete functions and debug each function
separately. One way to do this is with the following commands on the Debug menu:

Step Into Step through the function one line at a time, executing the current line in the active script or
in a file that is called by the active script. This action is available only if the execution has
stopped at a breakpoint. If the current line contains a function call, control passes into the
function and the execution stops at the first statement in the function.

Step Over Speed up debugging if you know a particular function is bug-free, executing the current line
of code in the active script or in a file that is called by the active script, without stepping into
any functions called by the current line. The execution stops at the next statement. This
action is available only if the execution has stopped at a breakpoint.

Finish
Function

Execute the script until the current function returns. Silk Test Classic sets the focus at the
line where the function returns. Try using Finish Function in combination with Step Into to
step into a function and then run it.

Working with Scripts During Debugging
To run the script you are
debugging

Click Debug > Run. The script runs until a breakpoint is hit, an error occurs,
or it terminates.

To reset a script Click Debug > Reset. This frees memory, frees all variables, and clears the
call stack. The focus will be at the first line of the script.

To stop execution of a
running script

Press Shift+Shift when running a script on the same machine or
choose Debug > Abort when running a script on a different machine.

Exiting the Debugger
You can leave the debugger whenever the execution is stopped.

To exit the debugger, click Debug > Exit in the Silk Test Classic menu.

440 | Debugging Test Scripts

Breakpoints
A breakpoint is a line in the script where execution stops so that you can check the script’s status. The
debugger lets you stop execution on any line by setting a breakpoint. A breakpoint is denoted as a large
red bullet.

One useful way to debug a script is to pause it with breakpoints, observe its behavior and check its state,
then restart it. This is useful when you are not sure what lines of code are causing a problem.

During debugging, you can:

• Set breakpoints on any executable line where you want to check the call stack.
• Examine the values in one or more variables.
• See what a script has done so far.

You cannot set breakpoints on blank lines or comment lines.

Setting Breakpoints
During debugging, you can set breakpoints on most lines in the script except for blank lines or comment
lines.

Setting a breakpoint on the first line of a function or test case

1. In the Silk Test Classic menu, click Breakpoint > Add.
2. Double-click a module name to list the functions, which are declared in the module, in the Function list.
3. Double-click a function name in the Function list to set a breakpoint on the first line of that function.

Setting a breakpoint on a line in a function or test case

Do one of the following:

• Double-click in the left margin of the line.
• Click on the line where you want to set a breakpoint, right-click, and select Toggle Breakpoint.
• Place the cursor on the line where you want to set a breakpoint and choose Breakpoint > Toggle in the

Silk Test Classic menu.

Setting a breakpoint on a specific line in a script

1. In the Silk Test Classic menu, click Breakpoint > Add.
2. In the Breakpoint field, type the number of the line on which you want to set a breakpoint. For example

entering 8 sets a breakpoint on the eighth line of the script.
3. Click OK.

Setting temporary breakpoints

Click Debug > Run To Cursor to set a temporary breakpoint, which is indicated by a hollow red circle in
the left margin of the line where the cursor is located. When the script is executed the next time in
debugging mode, the script execution stops at the marked line and the breakpoint is cleared.

Viewing Breakpoints
To view a list of all the breakpoints in a script, click View > Breakpoints.

Debugging Test Scripts | 441

Deleting Breakpoints
You can delete breakpoints in any of the following ways:

All breakpoints

1. Click Breakpoint > Delete All.
2. Click Yes.

An individual breakpoint

Place the cursor on the line where the breakpoint is set and click Breakpoint > Toggle .

or

Double-click in the left margin of the line

One or more breakpoints

1. Click Breakpoint > Delete.
2. Select one or more breakpoints from the list box and click OK.

Add Breakpoint Dialog Box
Use to add a breakpoint at any executable line of a function. This is available only in debugging mode.

Click Breakpoint > Add.

Breakpoint Type the name of a new breakpoint.

Module Displays all currently loaded scripts and include files. Click on an item from this list and a list
of the file’s functions and test cases display in the Function list.

Function Displays all functions and test cases from the module you selected at the Module field.
Select the function that you want to enter a breakpoint into.

Delete Breakpoint Dialog Box
Use the Delete Breakpoint dialog box to delete one or more breakpoints. This is available only in
debugging mode.

Click Breakpoint > Delete.

Breakpoints Lists all breakpoints from the current file by name. Select a breakpoint and then click OK to
delete it.

Breakpoint Dialog Box
Use to view breakpoints in the current script file. You must be in debug mode to access this option.

Click View > Breakpoints.

Viewing Variables
To view a list of all the local variables that are in scope (accessible) from the current line, including their
values, choose View > Local Variables.

442 | Debugging Test Scripts

To view a list of global variables, choose View > Global Variables. The variables and their values are listed
in a new window.

If a variable is uninitialized, it is labelled <unset>.

If a variable has a complex value, like an array, Silk Test Classic might need to display its result in collapsed
form. To expand or collapse the display, click View > Expand Data and View > Collapse Data in the Silk
Test Classic menu or double-click the plus (+) icon.

To return to the script being debugged, press F6 or choose View > Module and select the script from the
list.

Changing the Value of a Variable
To change the value of an active variable, select the variable and type its new value in the Set Value field.

While viewing variables, you can also change their values to test various scenarios.

When you resume execution, Silk Test Classic uses the new values.

Globals Dialog Box
Use to view all global variables that are in scope (accessible) from the current source line and their current
values. This is available only while Silk Test Classic is in debugging mode.

Click View > Global Variables.

Set Value Type a new value for the selected variable. A script must be running for the value to be
set.

List of
variables

Appears in alphabetical order. If a variable is uninitialized, Silk Test Classic labels it
<unset>. If a variable has a complex value, like an array, Silk Test Classic may display
its result in collapsed form.

Click View > Expand Data or View > Collapse Data to manipulate the display or double-
click on the plus/minus symbols.

Locals Dialog Box
Use the Locals window to view all local variables that are in scope (accessible) in the current function
declaration and their current values.

Click View > Local Variables.

You can set a new value for the variable in the Set Variable text field. This is available only while Silk Test
Classic is in debugging mode.

If a variable is uninitialized, it is labeled <unset>. If a variable has a complex value, like an array, its result
is displayed in collapsed form. Use View > Expand Data or View > Collapse Data to manipulate the
display, or double-click on the plus (+) and minus (-) symbols.

Expressions
If you type an identifier name, the result is the value which that variable currently has in the running script.
If you type a function name, the result is the value that the function returns. Any function that you specify
must return a value, and must be in scope at the current line.

Debugging Test Scripts | 443

Properties and methods for a class are valid in expressions, as long as the declaration for the class they
belong to is included in one of the modules used by the script being debugged.

If an expression evaluates to a complex value, like an array, Silk Test Classic might display its result in
collapsed form. To expand or collapse the display, click View > Expand Data and View > Collapse Data in
the Silk Test Classic menu or double-click the plus (+) icon.

When a script reaches a breakpoint, you can evaluate expressions.

Evaluating Expressions
You can use the Expressions window to evaluate an expression during debugging and to check the result.
A script must be running in order for the evaluation to occur.

1. Click View > Expression.

The View menu item is available only while Silk Test Classic is in debugging mode.

2. Type an expression into the input field in the top of the window.

• If you type an expression into the input field, the result is the value of that expression.
• If you type an variable name into the input field, the result is the value that the variable currently has

in the running script.
• If you type a function name into the input field, the result is the value that the function returns. Any

function that you specify must return a value, and must be in scope at the current line.

Properties and methods for a class are valid in expressions, as long as the declaration for the class they
belong to is included in one of the modules used by the script being debugged.

3. Press Enter. The Expression window displays the result of the evaluation directly beneath the
expression.

If an expression evaluates to a complex value, like an array, Silk Test Classic might display its result in
collapsed form. To expand or collapse the display, click View > Expand Data and View > Collapse Data in
the Silk Test Classic menu or double-click the plus (+) icon.

Enabling View Trace Listing
When you run a script, Silk Test Classic can record all the methods that the script invoked into a transcript.
Each entry in the transcript includes the method name and the arguments passed into the method. You can
use this information to debug the script, because you can see exactly which functions were actually called
by the running script.

1. Click Options > Runtime to display the Runtime Options dialog box.

2. Check the Print Agent Calls and the Print Tags with Agent Calls check boxes.

3. Run the script.

The transcript contains error information and the output from print statements, and additionally lists all
methods that are called by the script.

4. To check the agent trace during debugging, when execution pauses, click View > Transcript.

Viewing a List of Modules
1. Click View > Module. Silk Test Classic displays a list of modules in the View Module dialog. The list

includes all the modules loaded at startup, which means all modules which are loaded by
startup.inc, including winclass.inc, so that you can set breakpoints in functions, window class
declarations, and so on.

444 | Debugging Test Scripts

2. Double-click the name of a module to view the module in a debug window.

View Module Dialog Box
Use the View Module dialog box to view the modules used by the script being debugged. This is available
only while in debugging mode.

Click View > Modules.

Double-click on a module name to view it in a debugging window. The list includes all the modules that
loaded by startup.inc, so you can set breakpoints in GUI functions, classes, and so forth.

Viewing the Debugging Transcripts
To see the error information in the debugging transcripts during debugging:

1. Wait until the execution is stopped.
2. In the Silk Test Classic menu, click View > Transcript. Silk Test Classic displays the transcript in a new

window.
3. To save the contents of the transcript to a text file, choose File > Save.
4. To send commands to the application under test, use the Execute field in the Transcript window. Type

a valid command into the field and click Execute.
For example, you might want to print the value of a variable or the contents of a window.

Transcript Dialog Box
Use the Transcript dialog box to view the debugging transcript. This dialog contains the script name and
the test case names and lists error information, output from print commands, and all methods called by the
script. You must be in debug mode to access this option. The contents of the transcript window are not
written to disk. To save its contents to a text file, choose File > Save.

Click View > Transcript.

At the bottom of the transcript window is a text field in which you can enter any statement to execute. The
results of each statement you execute appear in the transcript window.

Call Stack Dialog Box
Use to view the current call stack. This is available only in debugging mode.

Click View > Call Stack.

Debugging Tips
This section provides tips that might help you in debugging your tests.

Checking the Precedence of Operators
The order in which 4Test applies operators when it evaluates an expression may not be what you expect.
To ensure that an expression works as expected, use parentheses or break the expression down into
intermediate steps. To evaluate an expression and to check the result of the expression, click View >
Expression in the Silk Test Classic menu.

Debugging Test Scripts | 445

Checking for Code that Never Executes
To check for code that never executes, step through the script with Debug > Step Into. For additional
information, see Stepping Into and Over Functions.

Global and Local Variables with the Same Name
It is usually not a good programming practice to give different variables the same names. If a global and a
local variable with the same name are in scope, which means accessible, at the same time, your code can
access only the local variable.

To check for identical names, click View > Local Variables and View > Global Variables in the Silk Test
Classic menu to see if two variables with the same name are in scope simultaneously.

Handling Global Variables with Unexpected Values
When you write a function that uses global variables, ensure that each variable has an appropriate value
when the function exits. If another function uses the same variable later, and the variable has an
unexpected value on entry to the function, an error could occur.

During debugging, to check that a variable has a reasonable value on entry to a function, set a breakpoint
on the line that calls the function and click View > Global Variables in the Silk Test Classic menu to check
the value of the variable.

Incorrect Usage of Break Statements
A break statement transfers control of the script out of the innermost nested for, for each, while,
switch, or select statement only. Break exits from a single loop level, not from multiple levels. To
ensure that the flow of control works as you expect, click Debug > Step Into in the Silk Test Classic menu
to step through the script one line at a time. For additional information, see Stepping Into and Over
Functions.

Incorrect Values for Loop Variables
When you write a for loop or a while loop, be sure that the initial, final, and step values for the variable
that controls the loop are correct. Incrementing a loop variable one time more or less than you really want
is a common source of errors.

To ensure that a control loop works as you expect, click Debug > Step Into in the Silk Test Classic menu to
step through the execution of the loop one statement at a time, and watch how the value of the loop
variable changes using View > Local Variables. See Stepping Into and Over Functions.

Infinite loops
To check for infinite loops, click Debug > Step Into in the Silk Test Classic menu to step through the script
one line at a time. For additional information, see Stepping Into and Over Functions.

Typographical Errors
It is easy to make typographical errors that the 4Test compiler cannot catch. If a line of code does nothing,
a typographical error might be the problem.

446 | Debugging Test Scripts

Uninitialized Variables
Silk Test Classic does not initialize variables for you. So if you have not initialized a variable on entry to a
function, it will have the value <unset>. It is better to explicitly give a value to a variable than to trust that
another function has already initialized it for you. Also, 4Test does not keep local variables after a function
exits. The next time the function is called, the local variables could be uninitialized.

If you are in doubt about whether a variable has a reasonable value at a particular point, set a breakpoint
there and click View > Global Variables or ViewLocal Variables in the Silk Test Classic menu to check
the value of the variable.

Debugging Test Scripts | 447

Setting Silk Test Classic Options
This section describes the Silk Test Classic options.

Setting General Options
You can use the general options to configure aspects of the general system behavior, such as the editor
and your workspace. Options that you set in the General Options dialog box are written to the
partner.ini file.

1. Click Options > General. The General Options dialog box appears.

2. Check the Create backups check box to create a backup file each time you save a file.

The backup file has an underscore _ appended to the extension. By default, this check box is checked.

3. Check the Show full path check box to see the full path of files in Silk Test Classic.

This option is useful if you have a complex directory structure, or if you work from both local and
network copies. By default, this check box is checked.

4. Check the Save files before running check box so that all open modified files are written to disk before
executing a script, suite, or test plan.

By default, this check box is checked. If you uncheck the check box, only the modified script, suite, or
test plan is written to disk before running it.

5. From the Save outline list, select in which state outline files are saved.

Outline files include .pln, .inc, .t, and .g.t files.

6. In the Width of tabs field, specify the number of spaces in a tab stop.

The default is 4 spaces.

7. Check the Show toolbar check box to display the toolbar.

By default, this check box is checked.

8. Check the Show toolbar tips check box to display a on-screen description of a toolbar button (ToolTip)
when you place the mouse cursor over the button.

Silk Test Classic uses the standard Windows mechanism for displaying ToolTips. You can customize the
appearance of the ToolTips by using the standard Windows Display Properties dialog box. By default,
this check box is checked.

9. In the Project history size field, specify the number of recent projects to display on the File menu.

You can specify an integer from 0 to 4. The default size is 4.

10.In the File history size field, specify the number of recent file actions to display on the File menu.

You can specify an integer from 0 to 9. The default size is 9.

11.Specify the extensions for include files in the Include file extensions field.

Separate the extensions with a space. Files with other extensions are treated like text files, and are
displayed in the text editor only. The default include file extensions are inc, lib, and opt.

12.Check the Prefer Locator check box to use locators to resolve the window declaration, whenever both
locators and tags are present.

By default, this check box is checked.

13.In the Data file for attributes and queries field, specify the default path for the test-plan initialization
file.

Specify the full path and file name. The file extension is arbitrary. The default test-plan initialization file is
testplan.ini.

448 | Setting Silk Test Classic Options

Note: You can only specify one data file for attributes and queries at a time.

14.In the Help files for library browser field, specify the files that Silk Test Classic should use to compile
its help file (4test.hlp) for the Library Browser. Separate the entries with a comma. The default file
is 4test.txt, which includes information for all the built-in classes and functions.

15.To disable saving object files during compilation, uncheck all check boxes in the Auto-Complete area
as well as the Save object files during compilation check box on the Runtime Options dialog box.

a) Check the Function tip check box to display the function signature in a tooltip whenever you type an
open parenthesis (after a function, test case, or method in a 4Test file.

The function signature includes the return argument type, the pass-mode, the data type, the names
of any arguments, and any optional attributes that are defined. The first argument is highlighted in
bold text. As you enter each argument and then type a comma, the next argument that you are
expected to type is highlighted. The expected argument is always indicated with bold text; for
example, if you backspace or delete an argument within your function, the expected argument is
updated accordingly in the function tip.

b) Check the Member list check box to display the members from which you can select when you type
a period "." after a member name in a 4Test file.

The members that you see in the MemberList are dependant upon the MemberList Options that
you have selected.

c) Check the Datatype list check box to display the list of the built-in and user-defined non-winclass
types whenever you type the keyword of after a list, an array [], or a varargs; for example, list
of.

d) Check the Appstate list check box to display a list of the currently defined application states when
you type the keyword appstate as part of a test case declaration; for example testcase foo ()
appstate.

16.Specify how much detail appears in your MemberList by selecting the inheritance level from the
Inheritance Level list.

• Select Below AnyWin Class to display methods for any class derived from the AnyWin class. This
is the default inheritance level.

Note: Methods that are defined in and above the AnyWin class, such as Click and Exist,
which are defined in the Winclass, are not displayed in the MemberList.

• Select All to display the complete inheritance for members all the way up through AnyWin and the
control classes, including the Winclass.

• Select None to display only the members that are defined in the class of the current object and
window declaration.

17.Specify which members are displayed in your MemberList by checking the corresponding check boxes.

a) Check the Show methods check box to display all methods that are defined in the referenced .t,
and .inc files.

Methods are indicated in the Memberlist with a red icon.
b) Check the Show window children check box to display all window objects of type WINDOW that

are defined in window declarations in the referenced .t and .inc files.

Works with the parent statement, the with statement, and the this keyword. Window children are
indicated in the Memberlist with a yellow icon.

c) Check the Show properties check box to display all properties that are defined in the
referenced .t, and .inc files.

Properties are indicated in the Memberlist with a blue icon.
d) Check the Show variables check box to display all variables that are defined in the referenced .t

and .inc files, including native data types, data, and records.

Fields defined for records and nested records are also displayed. Variables and fields are indicated
in the Memberlist with a red icon.

Setting Silk Test Classic Options | 449

e) Check the Show membertype check box to display attributes for the selected members, such as the
class for window children, the data type for properties and variables, and the return type for method
functions.

By default, this check box is unchecked.

18.Click OK.

Setting the Editor Font
You can use the Editor Font dialog box to select a screen font in the family, size, and style of your choice.

1. Click Options > Editor Font. The Editor Font dialog box appears.

2. Select a font family from the Font list.

The default font is Courier.

3. Select a style for the selected font from the Font style list.

The default font style is Regular.

4. Select a point size for the selected font from the Size list.

5. Click OK. Silk Test Classic changes the font family, size, and style for all open windows.

While you make your selections, the Sample displays a line of text in the selected font family, style, and
point size.

Setting the Editor Colors
You can use the Editor Colors dialog box to set the screen colors for various elements of 4Test code,
results information, and the test plan, if available. You can select any of the provided screen colors or
create your own color by modifying the RGB values of these colors.

Reset Click to revert to the default colors.

Text background Enables you to set the background color for all editor windows (.inc, .pln, .res, .t,). The
default value for Text background is white.

1. Click Options > Editor Colors. The Editor Colors dialog box appears.

2. Select the editor item, the color of which you want to change, from the Editor item list.

You can change the colors of the following items:

• 4Test strings
• 4Test numbers
• 4Test keywords
• 4Test comments
• 4Test other
• Results summary
• Results output
• Results errors
• Results warnings
• Results not executed
• Results other
• Testplan test description
• Testplan statements
• Testplan comments
• Testplan other

450 | Setting Silk Test Classic Options

• Difference text changed
• Difference text added
• Difference text deleted
• Difference text other
• Text background

3. Select the new color for the item.

4. To change the RGB values of the selected color, slide the corresponding bars to the left or right, click
the corresponding spin buttons, or type the value into the corresponding fields.

5. Optional: Click Reset to revert to the default colors.

6. Click OK.

Runtime Options Dialog Box
Use this dialog box to specify settings that Silk Test Classic uses when it runs a script.

Click Options > Runtime.

4Test area

Agent name Specifies the name of the agent on the target machine, that is, the machine on which you
want to run a script or suite. Specify a value only if you want to run your script on a
machine other than the host machine.

Network If you are testing applications across a network, select either TCP/IP or NetBIOS as the
networking protocol to use. If you choose the Open Agent as the default agent, only
TCP/IP is available.

Default Agent Specifies which agent, the Classic Agent or the Open Agent, to use by default. For
example, if your test cases target an Apache Flex environment, specify the Open Agent
as the default agent. For projects created prior to Silk Test Classic 2008, the Classic
Agent is selected by default. You can change the agent if necessary.

Arguments Specifies the arguments, if any, that you want to pass to the script at runtime. Separate
multiple arguments with spaces. For example, suppose your script takes two arguments:
the number of iterations to perform and the name of a test data file. In this case, you
would enter 5 test1.dat.

Use path Specifies one or more paths along which Silk Test Classic searches for include files.
Include files can be named in the Use files field or in a script’s use statement. If you
specify a path, Silk Test Classic searches the current directory and then each of the
directories in the path named here. If you do not specify a search path, Silk Test Classic
searches the current directory only. The syntax for a path is the same as that used by the
native operating system. By default, the Use path is set to c:\Program Files\Silk
\<SilkTest install directory>. Click Browse to select an additional include
path. The Use path field contains a maximum of 1024 characters. Silk Test Classic
displays the first 256 characters of a directory. The 257th character is truncated.

Use files Specifies the names of one or more include files for Silk Test Classic to automatically
load at startup. Do not specify files in this field if you intend to include a use statement for
the files in a script. Type the file names as you would type any other operating system
path. You can use an absolute path or a relative path. However, it is recommended that
you use a relative path. For example, to include the Java SWT extensions for the Open
Agent, the relative path is extend\JavaSWT\JavaSWT.inc. Click Browse to select an
additional include file. The Use files field contains a maximum of 1024 characters. Silk
Test Classic displays the first 256 characters of a directory. The 257th character is

Setting Silk Test Classic Options | 451

truncated. When you enable extensions or configure an application, Silk Test Classic
adds an include file based on the technology or browser type that you enable to the Use
files box. For extensions that use the Open Agent, Silk Test Classic names the include
file <technology_type>.inc. For instance, if you configure an Apache Flex
application, a file named flex.inc is added. If you configure a Web application for a
Internet Explorer browser, Silk Test Classic adds the explorer.inc file. Extensions
that use technologies on the Classic Agent are located in the directory C:\Users
\<Current user>\Documents\Silk Test Classic Projects\<Project
name>\extend\. Technology domains that use the Open Agent are located in the
directory C:\Users\<Current user>\Documents\Silk Test Classic
Projects\<Project name>\extend\<technology type>.

Object
filepath

Specifies the location from which Silk Test Classic reads and writes object files. Leave
the field empty if you want to store object files in the same directory as their
corresponding source files, specify an absolute path if you want to store all object files in
the same directory, or specify a relative path if you want object files to be stored in a
directory relative to the directory containing the source files.

GUI targets Specifies the platforms for which you want to compile your scripts and include files (using
conditional compilation). You can specify as many GUI targets as you want; separate
each GUI specifier with a comma. You use this field when doing distributed testing with
multiple platforms; if networking is disabled, then the field is ignored. Silk Test Classic
implicitly includes the local host GUI type.

Default
Browser

Specifies the Web browser to use when testing Web applications. Make sure the
extension with which you are testing appears in the Default Browser field.

Save object
files during
compilation

Creates an object file from a script or include file when it is compiled. (An object file is
always created for a script or include file when it is saved.) The default is checked.
Checking this option will minimize compilation time for features such as Auto-Complete
and Projects, which rely on frequent compilation.

To disable saving object files during compilation, the Auto-Complete options on the
General Options dialog box as well as this option need to be unchecked.

Compiler
constants

Opens the Compiler Constants dialog box, where you can define constants and assign
values to them. You can use the defined constants in scripts and include files anywhere
you can specify an expression. Constants are evaluated and replaced with their values at
compile time. To define a constant, specify its name in the Constant Name field and its
value in the Value field, then click Add. You can edit or delete an existing constant by
selecting it and clicking Edit or Remove.

Results area

Directory/File Specifies the name of the directory, or the name of the directory and file that stores the
results of script runs. Silk Test Classic always assigns the extension .res to all results
files. If you supply a different extension, Silk Test Classic will override it. If you leave the
field empty (the default), Silk Test Classic gives the results file the same name as the
script and stores it in the same directory as the script. If you supply only a directory
name, Silk Test Classic gives the results file the same name as the script and stores it
in the directory you specify.

Note: If you provide a local or remote path in this field, the path cannot be
validated until script execution time. Silk Test Classic can only validate the path
when the script is executing.

History size Specifies an integer representing how many sets of results to keep for a script. Once
this number is reached, Silk Test Classic automatically deletes the oldest set of results
each time it generates new results. A value of 0 saves all results files. Default is 5.

452 | Setting Silk Test Classic Options

Write to disk
after each line

If checked, writes the results file to disk whenever the script generates output, as in the
case of a print statement. Selecting this option ensures that in the event of system
failure, Silk Test Classic will produce a results file containing output up to the time of
system failure. The disadvantage of selecting this option is that file I/O slows down
script execution. By default, this check box is checked.

Find Error
stops at
warning

If checked, the Edit > Find Error menu option locates error messages and warnings in
results files. Otherwise, the command locates error messages only. By default, this
check box is checked.

Show overall
summary

If checked, displays the summary of results for the entire script, suite, or test plan,
including the start and elapsed time of execution, and the total number of errors and
warnings. By default, this check box is checked.

Log elapsed
time, thread,
and machine
for each output
line

If checked, records this information in the results file for each line that is written. Default
is unchecked. To view this information, make the results file active, then choose
Results > View Options and check Elapsed time, Thread number, or Current
machine.

Execution area

Minimize while
running

If checked, Silk Test Classic runs minimized while you run a script, suite, or test plan. By
default, this check box is unchecked.

Show detailed
status window

If checked, Silk Test Classic displays the Runtime Status window while you are running
a script or suite when Silk Test Classic is not minimized. By default, this check box is
checked.

Save status
window
position

If checked, Silk Test Classic remembers the position and size of the Runtime Status
window if you change it during script execution. The next time you run a script, the
Runtime Status window appears in the new position and/or the new size. Default is
unchecked, in which case the Runtime Status window always comes up in the same
location and as the default size.

Animated Run
Mode (Slow-
Motion)

If checked, Silk Test Classic waits one second after each interaction with the application
under test is executed. Typically, you will only use this check box if you want to watch the
test case run. For instance, if you want to demonstrate a test case to someone else, you
might want to check this check box. You can set this check box in the Run Testcase
dialog box also, which enables you to enable or disable animated run mode each time
you run a test case. When you enable or disable Animated Run Mode in the Run
Testcase dialog box, Silk Test Classic makes the same change in the Runtime Options
dialog box. Likewise, when you enable or disable animated run mode in the Runtime
Options dialog box, Silk Test Classic makes the same change in the Run Testcase
dialog box. Executions of the default base state and functions that include one of the
following strings are not delayed:

• BaseStateExecutionFinished

• Connecting

• Verify

• Exists

• Is

• Get

• Set

• Print

• ForceActiveXEnum

• Wait

Setting Silk Test Classic Options | 453

• Sleep

Debugging area

Print agent
calls

If checked, specifies whether or not you want the results file for each test run to include a
list of all method calls made by your script. Each entry includes the method name and the
arguments passed to it. This is a useful feature for debugging because it tells you exactly
which methods were actually called by the running program. By default, this check box is
unchecked.

Print tags
with agent
calls

If checked and Print agent calls is also checked, includes tags with the method calls in
your results files. By default, this check box is unchecked.

Compiler Constants Dialog Box
Use to define constants and assign values to them. You can use the defined constants in scripts and
include files anywhere you can specify an expression. Constants are evaluated and replaced with their
values at compile time.

Click Options > Runtime Options and then click Compiler Constants.

Constant Name
and Value

Displays the list of defined constants and the values associated with them.

Constant Name Type the name of the constant you want to add to the list.

Value Type the value of the constant you specified in the Constant Name box.

Edit Click to modify the constant you selected from the Constant Name and Value box.
You must select a constant from the list before the Edit button is available.

Remove Click to delete the constant you selected from the Constant Name and Value box. You
must select a constant from the list before the Remove button is available.

Add Specify a Constant Name and Value in the appropriate boxes and then click Add to
add the new constant to the list.

Agent Options Dialog Box
Use to set global options for how the agent interacts with the application under test. Options you specify
within the tabs are saved in the partner.ini file. If you work on multiple projects, you might want to have
a custom set of agent options for each project. To do this, save your options in a file with a name other than
partner.ini.

Click Options > Agent.

Any option you set in the Agent Options dialog box can be changed by the same option set to a different
value within a script.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

454 | Setting Silk Test Classic Options

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option, and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click Copy to Clipboard to copy the statement to the clipboard.

Timing Tab
The Timing tab is available on the Agent Options dialog box and contains the following options:

Window timeout
(seconds)

Specifies the number of seconds Silk Test Classic waits for a window to appear and be
in the correct state. If a window does not appear in the correct state within the
specified timeout, Silk Test Classic raises an exception. The correct state of the
window depends on how you set the options on the Verification tab, which determine
whether Silk Test Classic checks whether a window is enabled, active, exposed, or
unique. Default is 5 seconds, unless you have enabled enhanced support for Visual
Basic, in which case the default is 20 seconds for 32-bit applications.

Window retry
interval
(seconds)

Specifies the number of seconds Silk Test Classic waits between attempts to verify a
window, if the window does not exist or is in the incorrect state. Silk Test Classic
continues trying to find the window until the time specified by the Window timeout
option is reached. The correct state of the window depends on how you set the options
on the Verification tab, which determine whether or not Silk Test Classic checks
whether a window is enabled, active, exposed, or unique. Default is 0.06 seconds.

Keyboard event
delay (seconds)

Specifies the delay used before each keystroke in a script. Default is 0.02 seconds.
You can specify a number in increments of .001 from .001 to 999.999 seconds,
inclusive.

Setting a keyboard event delay is necessary only if objects seem not to be recognized.
This often appears as a win.SetActive() being executed before the action to
display the window or the wrong window may be made active. The amount you may
need to adjust the timing depends upon the speed of the machine you are working on
and the application that you are testing. We recommend starting with a delay of .001
and incrementing only by .001 if necessary.

Setting this value to .001 is necessary only for client/server application testing – if you
are testing a Web application, a setting of .001 radically slows down the browser.
However, setting this to 0 (zero) may cause basic application testing to fail.

Mouse event
delay (seconds)

Specifies the delay used after each mouse event (when the mouse is moved to an
object) in a script. The delay affects moving the mouse, pressing buttons, and
releasing buttons. Default is 0.02 seconds.

Application
ready timeout
(seconds)

Specifies the number of seconds that the agent waits for an application to become
ready. If the application is not ready within the specified timeout, Silk Test Classic
raises an exception. Default is 10 seconds. This option applies only if the application or
extension knows how to communicate to the agent that it is ready. To find out whether
the extension has this capability, see the documentation that comes with the extension.
To require the agent to confirm the ready state of an application, select the Verify That
an Application is Ready (Requires an Extension) check box on the Verification tab.

Application
ready retry
interval
(seconds)

Specifies the number of seconds Silk Test Classic waits between attempts to verify
that an application is ready. Silk Test Classic continues to test the application for
readiness if it is not ready until the time specified by the Application ready timeout
option is reached. Default is 0.1 seconds.

Timeout to wait
for active

This functionality is supported only if you are using the Classic Agent. For additional
information, refer to the Silk Test Classic Classic Agent Help.

Setting Silk Test Classic Options | 455

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

window
(seconds)

Enter the maximum time, in seconds, to wait for a window to become active.

Retry interval to
wait for active
window
(seconds)

This functionality is supported only if you are using the Classic Agent. For additional
information, refer to the Silk Test Classic Classic Agent Help.

Enter the maximum time, in seconds, to wait for a window to become active before
trying to verify the object again.

Timeout to wait
for an enabled
window
(seconds)

Enter the maximum time, in seconds, to wait for a window to become enabled.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Verification Tab
The Verification tab is available on the Agent Options dialog box and contains the following options:

Verify that windows are
active

If checked, verifies that windows are active before interacting with them.
Default is checked.

Verify that windows are
enabled

If checked, verifies that windows are enabled before interacting with them.
Default is checked.

Verify that windows are
exposed

If checked, verifies that windows are exposed (that is, not covered, obscured,
or logically hidden by another window) before interacting with them. Default is
checked.

Verify that a tag
uniquely identifies a
window

If checked, verifies that each tag used by the script matches only one window.
Default is checked.

Verify that coordinates
passed to a method are
inside the window

If checked, verifies that the coordinates, passed to a method, are inside the
window before the mouse is pressed. If checked and coordinates fall outside
the window, Silk Test Classic raises the E_COORD_OUTSIDE_WINDOW
exception. Typically, you use the checking feature unless you need to be able
to pass coordinates outside of the window, such as negative coordinates.

Note: The MoveMouse, PressMouse, and ReleaseMouse methods
never verify their coordinates. Default is checked.

Verify the class tag for
methods of class
Control

If checked, verifies that objects are of the specified type before interacting with
them. This option is unchecked and disabled.

456 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Verify that an
application is ready
(requires an extension)

If checked, synchronizes the agent with the application under test. Calls made
to the agent will not proceed until the application is ready. This option applies
only if you have an extension enabled in the Extensions dialog box. Default is
checked.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Close Tab
The Close tab is available from the Agent Options dialog box and contains the following options:

List of buttons used
to close a window

Specifies a list of strings representing the list of buttons used to close windows
closed with the Close, CloseWindows, and Exit methods. The preferred way
to specify these buttons is with the lsCloseWindowButtons variable in the
object’s declaration. Default is Cancel, Close, Exit, Done. If the UI of the
application is localized, you need to replace the strings with the localized strings.

Keystrokes used to
close a dialog box
window

Specifies a list of strings representing the keystroke sequence used to close
dialog boxes (used by Close, CloseWindows, and Exit). The preferred way
to specify this keystroke sequence is with the lsCloseDialogKeys variable in the
object’s declaration. Default is <Esc>.

List of menus used to
close a window

Specifies a list of strings representing the list of menu items used to close
windows with Close, CloseWindows, and Exit. The preferred way to specify
these menu items is with the lsCloseWindowMenus variable in the object’s
declaration. Default is File/Exit*, File/Quit*.

List of buttons used
to close a
confirmation window

Specifies a list of strings representing the list of buttons used to close
confirmation dialog boxes, which means dialog boxes or message boxes that
appear when closing windows with the Close, CloseWindows, and Exit
methods. The preferred way to specify these buttons is with the
lsCloseConfirmButtons variable in the object’s declaration. Default is No.

Name of Close item
on system menu

Specifies a list of strings representing the list of menu items on the system menu
used to close windows with the Close, CloseWindows, and Exit methods.
Default is Close.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

Setting Silk Test Classic Options | 457

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Bitmap Tab
The Bitmap tab is available from the Agent Options dialog box and contains the following options:

Bitmap
match count

Specifies an integer representing the number of consecutive snapshots that must be the
same for the bitmap to be considered stable. Snapshots are taken up to the number of
seconds specified by the Bitmap match timeout option, with a pause specified by Bitmap
match interval occurring between each snapshot. This option affects the
CaptureBitmap, GetBitmapCRC, VerifyBitmap, and WaitBitmap methods. Default
is 5.

Bitmap
match
interval
(seconds)

Specifies a number representing the time interval between snapshots to use for ensuring
the stability of the bitmap image. The snapshots are taken up to the time specified by the
Bitmap match timeout option. This option affects the CaptureBitmap, GetBitmapCRC,
VerifyBitmap, and WaitBitmap methods. Default is 0.1 seconds.

Bitmap
match
timeout
(seconds)

Specifies a number representing the total time allowed for a bitmap image to become
stable. During the time period, Silk Test Classic takes multiple snapshots of the image,
waiting the number of seconds specified by the Bitmap match interval option between
snapshots. If the timeout period is reached before the number of bitmaps specified by the
match count option, Silk Test Classic stops taking snapshots and raises the exception
E_BITMAP_NOT_STABLE. This option affects the CaptureBitmap, GetBitmapCRC,
VerifyBitmap, and WaitBitmap methods. Default is 5 seconds.

Bitmap
compare
tolerance
(pixels)

Specifies an integer representing the number of pixels of difference below which two
bitmaps are considered to match. If the number of pixels that are different is smaller than
the number specified with this option, the bitmaps are considered identical. The maximum
tolerance is 32,767 pixels. The bitmap pixel tolerance is used by the VerifyBitmap and
WaitBitmap methods, as well as the SYS_ CompareBitmap function. Default is 0
pixels.

You can also get and set bitmap options using the GetOption and SetOption methods.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

458 | Setting Silk Test Classic Options

Bitmap Agent Options
The following table lists the agent options which determine the behavior of bitmap verification.

Option Description

opt_bitmap_match_count The number of successive snapshots that must be the same for the bitmap to be
considered stable.

opt_bitmap_match_interv
al

The time interval between snapshots to use for ensuring the stability of the image.

opt_bitmap_match_timeo
ut

The total time allowed for a bitmap to become stable.

opt:bitmap_pixel_toleran
ce

The number of pixels that is allowed to be different for two bitmaps to be considered
equivalent.

To set these options globally for a group of scripts, use the Agent Options dialog box. To set these options
locally within a script or test case, use the SetOption method. For example:

Agent.SetOption (OPT_BITMAP_MATCH_COUNT, 3)

Synchronization Tab
This functionality is supported only if you are using the Open Agent.

The Synchronization tab is available on the Agent Options dialog box contains the following options:

Synchronization
mode

Select the synchronization algorithm for the ready state of a Web application. The
synchronization algorithm configures the waiting period for the ready state of an
invoke call.

HTML
mode

Using the HTML mode ensures that all HTML documents are in an
interactive state. With this mode, you can test simple web pages. If
more complex scenarios with Java script are used, it might be
necessary to manually script synchronization functions.

AJAX
mode

Using the AJAX mode eliminates the need to manually script
synchronization functions (such as wait for objects to appear or
disappear, wait for a specific property value, and so on), which eases
the script creation process dramatically. This automatic synchronization
is also the base for a successful record and replay approach without
manual script adoptions.

Synchronization
timeout (seconds)

Enter the maximum time, in seconds, to wait for an object to be ready.

Synchronization
exclude list

Type the entire URL or a fragment of the URL for any service or Web page that you
want to exclude.

Some AJAX frameworks or browser applications use special HTTP requests, which
are permanently open in order to retrieve asynchronous data from the server. These
requests may let the synchronization hang until the specified synchronization
timeout expires. To prevent this situation, either use the HTML synchronization
mode or specify the URL of the problematic request in the Synchronization exclude
list setting.

For example, if your web application uses a widget that displays the server time by
polling data from the client, permanent traffic is sent to the server for this widget. To

Setting Silk Test Classic Options | 459

exclude this service from the synchronization, determine what the service URL is
and enter it in the exclusion list.

For example, you might type:

http://example.com/syncsample/timeService
timeService
UICallBackServiceHandler

Separate multiple entries with a comma.

If your application uses only one service, and you want to disable that service for
testing, you must use the HTML synchronization mode rather than adding the
service URL to the exclusion list.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Setting Advanced Options
Set advanced options to enable fallback support, to specify whether locator attribute names should be case
sensitive, and so on.

1. Click Options > Agent. The Agent Options dialog box opens.

2. Click the Advanced tab. The Advanced Options page displays.

3. To test an embedded Chrome application, specify the executable and the port as a value pair in the
Enable embedded Chrome support field.
For example, myApp.exe=9222.

To specify multiple embedded Chrome applications, separate the value pairs with a comma.

4. Enable Fallback support for web views on Android and iOS to enable the mobile native fallback
support for hybrid mobile applications that are not testable with the default browser support.

5. Enable Microsoft Accessibility to enable Microsoft Accessibility in addition to the normal Win32
control recognition.

6. Enable Remove focus on capture text to remove the focus from the window before capturing a text.

A text capture is performed during recording and replay by the following methods:

• TextClick

• TextCapture

• TextExists

• TextRect

7. Enable Match locator attribute values case sensitive to set locator attribute names to be case
sensitive. The names of locator attributes for mobile web applications are always case insensitive, and
this option is ignored when recording or replaying mobile web applications.

460 | Setting Silk Test Classic Options

8. Click OK.

Other Tab
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The Other tab is available on the Agent Options dialog box and contains the following options:

Tolerance to use
when sizing
windows (pixels)

Specifies an integer representing the number of pixels allowed for a tolerance
when a resized window does not end at the specified size. For some windows
and GUIs, you can’t always resize the window to the particular size specified. If
the ending size is not exactly what was specified and the difference between the
expected and actual sizes is greater than the tolerance, Silk Test Classic raises
an exception. Windows cannot be sized smaller than will fit comfortably with the
title bar. Default is 0 pixels.

Tolerance to use
when moving
windows (pixels)

Specifies an integer representing the number of pixels allowed for a tolerance
when a moved window does not end up at the specified position. For some
windows and GUIs, you can’t always move the window to the particular pixel
specified. If the ending position is not exactly what was specified and the
difference between the expected and actual positions is greater than the
tolerance, Silk Test Classic raises an exception.

The tolerance can be set through the Control Panel, by setting the desktop
window granularity option. If the granularity is zero, you can place a window at
any pixel location. If the granularity is greater than zero, the desktop is split into a
grid of the specified pixels in width, determining where a window can be placed.
In general, the tolerance should be greater than or equal to the granularity.
Default is 0 pixels.

Events used to
invoke popup menus

Specifies a string, which is the command (keystrokes or mouse buttons) used to
display pop-up menus. To use mouse buttons, specify <button1>,
<button2>, or <button3> in the command sequence. Default is
<Button2><Up><Down>. If you are testing Java applications or applets, we
recommended that you set this options to <Button2>.

Pick menus before
getting menu item
information

If checked, picks the menu before checking whether an item on it exists, is
enabled, or is checked. You might see menus pop up on the screen even though
your script does not explicitly call the Pick method. Default is unchecked.

Pick dropdowns
before getting item
information

If checked, drops down the combo box before trying to access the contents. This
is usually not needed, but some combo boxes only get populated after they are
dropped down. Check this option if you are having problems getting the contents
of a combo box, such as the Location combo box in Internet Explorer. Default is
unchecked.

Consider case when
matching items in
controls

Check this option to consider case when looking for an item in a control. Default
is unchecked.

Show windows
which are out of
view

If checked, allows controls that are not currently scrolled into view to be seen by
the agent. This option is useful for testing Web applications. If unchecked,
controls not currently in view are invisible. Default is checked.

Automatically scroll
windows into view

If checked, scrolls a control into view before recording events against it or
capturing its bitmap. This option is useful for testing web applications. This option
applies only if Show windows which are out of view is enabled. This option is

Setting Silk Test Classic Options | 461

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

useful for testing web applications in which a dialog contains a scroll bar. Default
is unchecked.

Enable
communication with
SilkBean

If checked, enables communication with the SilkBean for all scripts in a test
session. The SilkBean is a utility that allows you to perform cross-platform testing
of 100% pure Java controls in standalone Java applications. This option applies
only if you enable Java support on Silk Test Classic. Default is unchecked.

We strongly recommend that you keep the default settings for Show windows which are out of view and
Automatically scroll windows into view. If you do change the values, save them in a custom options set.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Compatibility Tab
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The Compatibility tab is available from the Agent Options dialog box. Use the following options only if
you are upgrading from a previous release of Silk Test Classic and want to use functionality that matches
the previous release.

Don't group
radio buttons
into a list

If unchecked, treats radio buttons as a group of class RadioList. Otherwise, uses
the Release 1.x method of treating radio buttons as individual objects. Default is
unchecked.

Use release 1.x
version of the
class library

If checked, uses QA Partner Release 1 versions of GetChildren, GetClass, and
GetParent. Otherwise, uses Release 2 and later versions. Default is unchecked.

Use release 1.x
window tags

If checked, generates and operates on tags compatible with Silk Test Classic releases
earlier than QA Partner Release 2. Otherwise, uses Release 2 or later tags. Default is
unchecked. The Release 2 algorithm affects tags that use index numbers and some
tags that use captions. In general, Release 2 tags are more portable, while the earlier
algorithm generates more platform-dependent tags. Use this option only if you must
run old scripts without any changes.

Don't trim
spaces when
getting items in
controls

If checked, leading and trailing spaces are not trimmed from items on windows.
Default is unchecked.

Add ‘Window
tags’ to the
Record menu

If checked, includes the Record Window Tags menu item on the Record menu.
Selecting the Record Window Tags menu item opens the Record Window Tags
dialog. Use the Record Window Tags dialog to capture and paste window tags for

462 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

individual objects into your script or test frame. This dialog is equivalent to the QA
Partner Release 1.x Paste Window dialog box, allowing you to paste Release 1.x
style window tags into your script. Default is unchecked.

Only use Agent-
based clicks
(not API-based
clicks)

If checked, use API-based clicks when available. An API click is generated internally
by the browser, instead of by the agent. API clicks are more reliable than agent clicks,
which can click the wrong location of an object. API-based clicks are for browsers only.
If cleared, use agent-based clicks even when API-based clicks are available. Default is
unchecked.

Use ANSI call If checked, converts all string parameters (return type, string arguments, strings in
record structures that are used as arguments) from W (wide-character, Unicode) to A
(ANSI) character format before calling the DLL function internally. Return values and
pass-mode variables set to inout that are strings or contain strings within record
structures get converted back from A (ANSI) format to W (wide-character) format after
calling the DLL. Using this check box makes an ANSI call transparent, as the
conversion is done internally. Default is unchecked.

The DLL calling stack does not support return values that are pointers to a record
structure. To determine if the function succeeded, use the inout or out pass-mode
variable and use the return-type variable as a flag.

Important: If you use DLL functions where you specify string sizes in bytes, remember that W (wide-
character) strings are assigned 2 bytes per character, and A (ANSI) strings are assigned 1 byte per
character. If you pass a buffer of 1000 characters via an ANSI call, you use 1000 bytes of space, not
2000 bytes. But if you return a string of 1000 characters from a DLL, the W (wide-character) buffer will
have 2000 bytes.

4Test statement which sets the selected option

When you set an option, this field displays the 4Test statement that represents the selected option. For
example, if you set the Window timeout to 5 seconds on the Timing tab, the following 4Test statement
displays:

Agent.SetOption(OPT_WINDOW_TIMEOUT,5)

The statement uses the SetOption method to operate on the agent object. OPT_WINDOW_TIMEOUT is the
internal 4Test name of the Window Timeout option and 5 is the current, default value of the option, five
seconds.

This code is useful if you want to set a local value for a given agent. You can type or change the code
yourself, then click the Copy to Clipboard button to copy the statement to the clipboard.

Copy to Clipboard Copies the 4Test statement which sets the option to the clipboard.

Extensions Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use to enable extensions for applications under test.

Click Options > Extensions.

The Extensions dialog box displays the runtime environments for all extensions that you have installed, or
that work with the Classic Agent. The environments listed in the dialog box are used for running the
applications that you want to test. The extensions enable Silk Test Classic to recognize the non-standard
controls in your environment. If you are using a project, the information you specify in the Extensions
dialog box is stored in the partner.ini file. If you are not using a project, the information you specify in
the Extensions dialog box is stored in the extend.ini file.

Setting Silk Test Classic Options | 463

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Application
Column

Displays the browser and runtime environments that the installation program installed and
recognizes automatically. For applications and runtime environments that do not use
standard names, or for stand-alone applications, you must use the New button to manually
add the name of the executable or DLL file to the Extensions dialog box. If the executable
name contains spaces, you must enclose the name in quotation marks.

Primary
Extension
Column

For each application listed in the Application column, the Primary Extension column
displays the currently selected primary extension, or Disabled or None, if applicable. To
change a primary extension, click in the Primary Extension column, then use the
embedded list box to select one of the available options.

Keep in mind that you cannot enable more than one primary extension for an application.
Primary extensions are the ones listed in the list boxes of the Extensions dialog box, such
as DOM and .NET. Secondary extensions, which are checked with the check boxes in the
Extensions dialog box, Java, ActiveX, and Accessibility, are the only ones that can co-
exist with another extension. Thus, for example, an embedded browser in a .NET
application is not allowed, since both IE DOM and .NET are primary extensions.

Also, remember that not all of the Primary Extensions in the list box can be applied to a
new application. Only IE DOM, which has superseded the IE4 OCX extension for
embedded browser applications, or .NET extensions make sense for new applications.

Other
Extensions

You can use the check boxes in the Other Extensions columns to enable other
extensions required for testing each application that is launched in the runtime
environment listed in the Application column. When a check box in the Other Extensions
column is checked, the corresponding button in the Options area is enabled.

Java Enables Java support for an application running on the host machine or
an applet running in a browser. When the Java check box is checked,
the Java button in the Options area is enabled. Click the Java button to
display the Extension Options dialog box for Java and select Java
extension options for the currently selected application.

ActiveX Enables ActiveX and Visual Basic support for an application running on
the host machine. When the ActiveX check box is checked, the ActiveX
button in the Options area is enabled. Click the ActiveX button to
display the Extension Options dialog box for ActiveX and select
ActiveX extension options for the currently selected application.

Accessibility Enables Windows Accessibility. When the Accessibility check box is
checked, the Accessibility button in the Options area is enabled. Click
the Accessibility button to display the Windows Accessibility dialog
box.

.NET Enables .NET support for an application running on the host machine.

Options
area

The buttons in the Options area are disabled until a corresponding extension is enabled
for the currently selected application.

Extension Enabled only when a browser is enabled in the Primary Extension
column for the currently selected application. Click Extension to display
the DOM Extensions dialog box and specify options for the DOM
extension.

Java Enabled only when a Java check box is checked in the Other
Extensions column for the currently selected application. Click Java to
display the Extension Options dialog box for Java and redirect output
from the Java console to a local file. This allows you to scroll and copy
text more easily.

464 | Setting Silk Test Classic Options

ActiveX Enabled only when an ActiveX check box is checked in the Other
Extensions column for the currently selected application. Click ActiveX
to display the Extension Options dialog box for ActiveX and select
ActiveX and Visual Basic options.

Accessibility Enabled only when an Accessibility check box is checked in the Other
Extensions column for the currently selected application. Click
Accessibility to display the Windows Accessibility dialog box.

New Displays the Extension application dialog box where you can add one
or more runtime environments to the Extensions dialog box for testing
applications.

Duplicate Active only when you select a runtime environment in the Application
column that you entered manually. You cannot duplicate runtime
environments that are installed by default. Click Duplicate to add a new
application that has all the same settings, primary and other extensions
and other options, as the selected application, but with a different name.

Remove Active only when you select a runtime environment in the Application
column that you entered manually. You cannot remove runtime
environments that are installed by default. Click Remove to delete a
runtime environment from the dialog box.

Details Active only when you select a runtime environment with an enabled
Primary Extension. Click Details to display detailed information about
the runtime environment, including version, help text, and executable
modules.

Extension Details Dialog Box
Use the Extension Details dialog box to view more information about the selected extension. Access this
dialog box by clicking Options > Extensions, enabling and selecting the extension for which you want to
view details, and then clicking Details.

This dialog box contains:

File Displays the file name associated with the selected extension.

Version Displays the version of the file associated with the selected extension.

Include Displays the name of the include file associated with the selected extension, if applicable.

Help text Displays the file name of the help text associated with the selected extension, if applicable.

Prop set Displays the name of the property set associated with the selected extension.

Modules Displays the name of modules associated with the selected extension, if applicable.

Setting Recording Options for the Open Agent
This functionality is supported only if you are using the Open Agent.

You can set the recording options to optimize recording with the Open Agent in the following two ways:

• In the Recording Options dialog box.
• Within a script, by using the SetOption method.

Setting Silk Test Classic Options | 465

Using SetOption overrides the value specified for the option in the Recording Options dialog box. If you
do not set an option with SetOption, the value specified in the Recording Options dialog box is the
default.

To set the recording options in the Recording Options dialog box, perform the following actions:

1. Click Options > Recorder. The Recording Options dialog box appears.

2. To set Ctrl+Shift as the shortcut key combination to use to pause recording, check the
OPT_ALTERNATE_RECORD_BREAK check box.

By default, Ctrl+Alt is the shortcut key combination.

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination.

3. To record absolute values for scroll events, check the OPT_RECORD_SCROLLBAR_ABSOLUT check
box.

4. To record mouse move actions for web applications, Win32 applications, and Windows Forms
applications, check the OPT_RECORD_MOUSEMOVES check box. You cannot record mouse move
actions for child technology domains of the xBrowser technology domain, for example Apache Flex and
Swing.

5. If you record mouse move actions, in the OPT_RECORD_MOUSEMOVE_DELAY text box, specify how
many milliseconds the mouse has to be motionless before a MouseMove is recorded.

By default this value is set to 200.

6. To record text clicks instead of clicks, check the OPT_RECORD_TEXT_CLICK check box.

Recording text clicks is enabled by default, and is the fallback mechanism when testing applications
which display texts. Micro Focus recommends to leave this check box checked.

7. To resize the application under test (AUT) when a recording session starts, check the
OPT_RESIZE_APPLICATION_BEFORE_RECORDING check box.

This check box is checked by default, enabling the Silk Recorder to display next to the AUT. When this
check box is unchecked, the AUT and the Silk Recorder might overlap.

8. Define custom attributes for recording.

a) Select the Custom Attributes tab.
b) Select the technology domain of the application that you are testing.

For example, to set custom attributes for a web application, select xBrowser.
c) Add the attributes that you want to use to the list.

Separate attribute names with a comma.

Using a custom attribute is more reliable than other attributes like caption or index, since a caption
will change when you translate the application into another language, and the index might change
when another object is added. If custom attributes are available, the locator generator uses these
attributes before any other attribute. The order of the list also represents the priority in which the
attributes are used by the locator generator. If the attributes that you specify are not available for the
objects that you select, Silk Test Classic uses the default attributes for the application that you are
testing.

Note: You cannot set custom attributes for Apache Flex applications.

9. Set the classes that you want to ignore during recording and replay.

a) Select the Transparent Classes tab.
b) Add the names of any classes that you want to ignore to the list.

Separate class names with a comma.

10.Specify recording options for web applications.

a) Select the Browser tab.
b) Add names of attributes that you want to ignore during recording to the Locator attribute name

exclude list.

466 | Setting Silk Test Classic Options

For example, if you do not want to record attributes named height, add height to the list. Separate
attribute names with a comma.

c) Add values of attributes that you want to ignore during recording to the Locator attribute value
exclude list.
For example, if you do not want to record attributes that have the value x-auto, add x-auto to the list.

d) Check the OPT_XBROWSER_LOWLEVEL check box to record native user input instead of DOM
functions.

For example to record Click instead of DomClick and TypeKeys instead of SetText.

If your application uses a plug-in or AJAX, use native user input. If your application does not use a
plug-in or AJAX, Micro Focus recommends using high-level DOM functions, which do not require the
browser to be focused or active during playback. As a result, tests that use DOM functions are faster
and more reliable.

e) Specify the maximum length for locator attribute values in the
OPT_XBROWSER_LOCATOR_MAX_ATTRIBUTE_VALUE_LENGTH field.

f) Check the OPT_XBROWSER_ENABLE_SMART_CLICK_POSITION check box to automatically
search for a free click spot on the object.
If disabled, the click is always made in the center of the object, and might possibly be performed an
object layered over the target.

g) To force Mozilla Firefox to open external links in a new tab instead of a new window, check
OPT_FIREFOX_SINGLE_WINDOW_MODE.

Note: This option only works with Mozilla Firefox 52 or later.

h) To disable iframe and frame support for browsers, uncheck
OPT_XBROWSER_ENABLE_IFRAME_SUPPORT.
If you are not interested in the content of the iframes in a web application, disabling the iframe
support might improve replay performance. For example, disabling the iframe support might
significantly improve replay performance for web pages with many adds and when testing in a mobile
browser. This option is ignored by Internet Explorer. This option is enabled by default.

i) In the Whitelist for iframe support, specify attributes of iframes and frames that should be
considered during testing.
Every entry in the list defines an attribute name and the corresponding value. All iframes and frames
that do not match at least one of the entries are excluded. Wildcards are allowed, for example the
entry "name:*form" would include <IFRAME name="user-form" src=…>. This option is ignored by
Internet Explorer. If the list is empty, all iframes and frames are considered during testing. Separate
multiple entries with a comma.

11.In the Blacklist for iframe support, specify attributes of iframes and frames that should be excluded
during testing.
Every entry in the list defines an attribute name and the corresponding value. All iframes and frames
that do not match at least one of the entries are considered during testing. Wildcards are allowed, for
example the entry "src:*advertising*" would exclude <IFRAME src=http://my.domain/advertising-
banner.html>. This option is ignored by Internet Explorer. If the list is empty, all iframes and frames are
considered during testing. Separate multiple entries with a comma.

12.Specify recording options for WPF applications.
a) Check the OPT_WPF_PREFILL_ITEMS check box to pre-fill items in a WPFItemsControl, for

example a WPFComboBox or WPFListBox, during recording and playback.
b) Add the names of custom classes that you want to expose during recording and playback to the

Custom WPF class names list.

13.Specify whether to use Microsoft UI Automation support instead of the normal Win32 control
recognition.
a) Click the UI Automation tab.
b) Set Enable Microsoft UI Automation Support to True to enable Microsoft UI Automation support

instead of the normal Win32 control recognition.

Setting Silk Test Classic Options | 467

Note: The UI Automation support overrides the standard technology-domain-specific support.
When you are finished interacting with the controls that require UI Automation support, disable
the UI Automation support again to resume working with standard controls.

c) In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.
For example, if you do not want to record attributes named height, add the height attribute name
to the grid.

Separate attribute names with a comma.
d) In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.

For example, if you do not want to record attributes assigned the value of x-auto, add x-auto to
the grid.

Separate attribute values with a comma.

14.Click OK.

Setting Recording Options for the Classic Agent
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can set the recording options to optimize recording with the Classic Agent in the following two ways:

• In the Recorder Options dialog box.
• Within a script, by using the SetOption method.

Using SetOption overrides the value specified for the option in the Recorder Options dialog box. If you
do not set an option with SetOption, the value specified in the Recorder Options dialog box is the
default.

To set the recording options in the Recorder Options dialog box, perform the following actions:

1. Click Options > Recorder. The Recorder Options dialog box opens.

2. To set Ctrl+Shift as the shortcut key combination to use to pause recording, check the Change hotkey
to Ctrl+Shift check box.

By default, Ctrl+Alt is the shortcut key combination.

3. To record the tags that are specified in the Record Window Declarations Options dialog box, check
the Record multiple tags check box.

If checked, Silk Test Classic records multiple tags whenever recording. If this check box is disabled, see
the description of the multiple tags agent option.

Note: If you change the setting for Record Multiple Tags here, the check box on the Record
Window Declarations Options dialog box is automatically updated.

4. To add new declarations to the INC file during recording, check the Auto Declaration check box.

5. To verify the test application using properties instead of attributes, check the Verify using properties
check box.

This option is checked automatically if you have enabled enhanced support for Visual Basic. This
feature requires properties for verification. You cannot uncheck the Verify using properties check box
without disabling enhanced support for Visual Basic.

6. Specify the file that contains the definitions for the used property sets in the Data file for property sets
field.

7. To record events at a lower level for selected controls, check the corresponding check boxes in the
Recorded Events list.

For example, you might want to record a click in a check box, instead of recording an actual selection. If
you specify that you want to record only low-level events in check boxes, Silk Test Classic records
something like the following when you select a check box: Find.CaseSensitive.Click (1, 41,

468 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

10). If you are using a high-level event, Silk Test Classic records something like the following:
Find.CaseSensitive.Check ().

8. Uncheck the Ignore mouse move events check box to record mouse movements.
If this check box is unchecked, Silk Test Classic records mouse movements that cannot be built into
higher-level actions and that occur while a mouse button is pressed. Leave this check box checked
unless you are testing an application, such as a drawing application, where mouse movements
themselves are significant.

9. To record mouse movements that cannot be built into higher-level actions and that occur while a mouse
button is pressed when you select the Record Testcase and Record Actions commands, uncheck the
Ignore mouse move events check box.
Leave the check box checked unless you are testing an application where mouse movements
themselves are significant.

10.Uncheck the Don't record BeginDrag/EndDrag check box to record BeginDrag and EndDrag
methods when you press a mouse button on an object and do a drag operation on a listview, treeview,
or list box.

11.Click OK.

Setting Replay Options for the Open Agent
This functionality is supported only if you are using the Open Agent.

You can set the replay options to optimize replaying tests with the Open Agent.

1. Click Options > Agent. The Agent Options dialog box appears.

2. Click the Replay tab.

3. Select a Replay mode from the list.

• Default: Use this mode for the most reliable results. Each control uses the best method for the
control type, by using either the mouse and keyboard (low level) mode or the API (high level) mode.

• High level: Use this mode to replay each control using the API.
• Low level: Use this mode to replay each control using the mouse and keyboard.

4. To ensure that the window is active before a call is executed, check the Ensure window is active check
box.

5. Click OK.

Defining which Custom Locator Attributes to Use for
Recognition

The Open Agent includes a sophisticated locator generator mechanism that guarantees locators are
unique at the time of recording and are easy to maintain. Depending on your application and the
frameworks that you use, you might want to modify the default settings to achieve the best results and
stable recognition of the controls in your application. You can use any property that is available in the
respective technology as a custom attribute, given that the property is either a number, like an integer or a
double, a string, an item identifier, or an enumeration value.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

In xBrowser, WPF, Java SWT, and Swing applications, you can also retrieve arbitrary properties, such as a
WPFButton that defines myCustomProperty, and then use those properties as custom attributes. To
achieve optimal results, the application developers can add a custom automation ID to the controls that you

Setting Silk Test Classic Options | 469

want to interact with in your test. In Web applications, the application developers can add an attribute to
controls that you want to interact with, such as <div myAutomationId=”my unique element
name” />. This approach can eliminate the maintenance associated with locator changes. Or, in Java
SWT, the UI developer can define a custom attribute, for example testAutomationId, for a widget that
uniquely identifies the widget in the application. You can then add that attribute to the list of custom
attributes, in this case testAutomationId, and you can then identify controls by that unique ID. This
approach can eliminate the maintenance associated with locator changes.

If more than one objects have the same custom attribute value assigned, all the objects with that value will
be returned when you call the custom attribute. For example, if you assign the unique ID loginName to
two different text boxes, both text boxes will be returned when you call the loginName attribute.

To define which custom attributes of a locator should be used for the recognition of the controls in your
AUT:

1. Click Options > Recorder and then click the Custom Attributes tab.

2. From the Select a tech domain list box, select the technology domain for the application that you are
testing.

Note: You cannot set custom attributes for Flex or Windows API-based client/server (Win32)
applications.

3. Add the attributes that you want to use to the list.

If custom attributes are available, the locator generator uses these attributes before any other attribute.
The order of the list also represents the priority in which the attributes are used by the locator generator.
If the attributes that you specify are not available for the objects that you select, Silk Test Classic uses
the default attributes for the application that you are testing. Separate attribute names with a comma.

4. Click OK. You can now record or manually create a test case.

Setting Classes to Ignore
To specify the names of any classes that you want to ignore during recording and replay:

1. Click Options > Recorder. The Recording Options dialog box opens.

2. Click the Transparent Classes tab.

3. In the Transparent classes grid, type the name of the class that you want to ignore during recording
and replay.

Separate class names with a comma.

4. Click OK.

Custom Controls Dialog Box
This functionality is supported only if you are using the Open Agent.

Options > Manage Custom Controls.

Silk Test Classic supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

In the Frame file for custom class declarations, define the frame file into which the new custom classes
should be generated.

470 | Setting Silk Test Classic Options

When you map a custom control class to a standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. The following Custom Controls options are
available:

Option Description

Silk Test base class Select an existing base class to use that your class will derive from. This class
should be the closest match to your type of custom control.

Silk Test class Enter the name to use to refer to the class. This is what will be seen in locators.

Custom control class
name

Enter the fully qualified class name of the class that is being mapped. You can
use the wildcards ? and * in the class name.

Use class
declaration

This option is available only for Win32 applications. By default False, which
means the name of the custom control class is mapped to the name of the
standard Silk Test class. Set this setting to True to additionally use the class
declaration of the custom control class.

Note: After you add a valid class, it will become available in the Silk Test base class list. You can
then reuse it as a base class.

Example: Setting the options for the UltraGrid Infragistics control

To support the UltraGrid Infragistics control, use the following values:

Option Value

Silk Test base class Control

Silk Test class UltraGrid

Custom control class name Infragistics.Win.UltraWi
nGrid.UltraGrid

Property Sets Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Property Sets dialog box to view existing property sets and create, modify, combine, and delete
property sets. Property sets are used to verify properties in test cases.

To open the Property Sets dialog box, click Options > Property Sets.

The Property Sets dialog box includes the following items:

Item Description

Property Sets Displays the list of available property sets.

New Click to access the New Property Set dialog box where you can create new property
sets.

Combine Click to access the Combine Property Sets dialog box where you can combine existing
property sets into a new property set.

Edit Click to access the Edit Property Set dialog box where you can modify and delete
property sets.

Setting Silk Test Classic Options | 471

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Item Description

Remove Click to delete the selected property set. Select the property set that you want to remove,
click Remove, and then click Yes to delete the selected property set.

New Property Set Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the New Property Set dialog box to create property sets, which are used to verify properties in test
cases. Use the Edit Property Set dialog box to modify and delete property sets.

To access the New Property Set dialog box, click Options > Property Sets > New or click Define on the
Verify Window dialog box.

To access the Edit Property Set dialog box, click Options > Property Sets > Edit.

The dialog boxes contain the following items:

Name Type the name of the property set you want to create. Property set names are not case
sensitive and they can be any length and consist of any combination of alphanumeric
characters and underscore characters.

List of property
sets

Displays existing property sets. This list changes, depending on whether you are
adding new property sets or editing them.

Class Type the name of the property set’s class. The name of the class is not validated, so be
sure to type carefully. Invalid names are ignored at runtime.

Property Type the property of the class you have just identified.

Add Click to add the class/property pair to the list.

Edit Click after selecting a class/property set you want to edit.

Remove Click after selecting a class/property set you want to delete.

Combine Property Sets Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Combine Property Sets dialog box to combine existing property sets.

To open the dialog box, click Options > Property Sets > Combine. You must select an existing property
set before Combine is enabled.

The Combine Property Sets dialog box includes the following items:

Name Specify a name for the property set you are creating.

Property sets to
combine

From this list, select at least two property sets that you want to combine into a new
property set.

Note: If any of the existing property sets are modified, the combined property
set will be modified as well.

DOM Extensions Dialog Box
Use to set object and table recognition options for the DOM extension.

472 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Click Options > Extensions, enable a primary extension in the Primary Extension column, and then click
Extension in the Options area.

Note: The primary extension must be enabled before you can click Extension.

The information that you enter on this dialog box is saved in the domex.ini file in your <SilkTest
installation directory>\Extend directory. To avoid any confusion, we recommend that you do not
have the domex.ini file open while you are working with the DOM Extensions dialog box.

There are several DOM extension options that are not available through the DOM Extensions dialog box.

Show the following components area

Borderless
Table

Check the Table check box and set a value for borderless table recognition. .76 is the
threshold where Silk Test Classic starts to recognize more objects within tables, such as
images, hidden text, check boxes, textfields, and buttons.

Meta If checked, the DOM extension records Meta objects. Default is checked. Uncheck this
check box if you do not want the DOM extension to record Meta objects.

Hidden If checked, the DOM extension records Hidden objects. Default is checked. Uncheck this
check box if you do not want the DOM extension to record Hidden objects.

XML If checked, the DOM extension records XML objects. Default is unchecked. Check this
check box if you want the DOM extension to record XML objects.

Invisible If checked, the DOM extension records invisible objects. Default is checked. Uncheck this
check box if you do not want the DOM extension to record invisible objects. If your
browser-based application consists of pages that contain many invisible objects that you
do not need to test, then you can improve performance by un-checking this check box in
order to ignore all invisible objects.

Form If checked, the DOM extension records Form objects. Default is unchecked. Check this
check box if you want the DOM extension to record Form objects.

Text If checked, the DOM extension records Text objects. Default is checked. Uncheck this
check box if you do not want the DOM extension to record Text objects. If you are testing a
transaction type page with a lot of text, consider un-checking the Text check box. This
prevents Silk Test Classic from recording many text objects, which helps your declarations
to be clean. If, on the other hand, you're looking for formatting and styles of text objects,
you'll want to select this option.

BodyText If checked, the DOM extension records BodyText objects, which is text that is not contained
within an HTML tag. (In previous releases, body text appeared as HtmlText.) Default is
unchecked. We suggest keeping this option unchecked for improved performance,
particularly when recording window declarations on large pages. Should you need to
record body text, check this check box. Silk Test Classic sometimes treats body text
differently from HTML text that is in an HTML tag. For example, GetChildren() will not
return body text. Also, Record Window Declarations will not highlight the window
declaration of a body text object when the cursor is moved over it, and other recorders
such as Record Window Identifiers will not detect it. IsVisible() returns FALSE for body text.

List Item If checked, the DOM extension shows the text contained within HtmlList controls in your
browser. Default is checked. If mouse events are associated with your list items, check this
check box so Silk Test Classic can interact with the list items. This setting is global.
However, if you want to set this option for only certain points in your script, use
BrowserPage.SetUserOption() as described in SetUserOption().

Setting Silk Test Classic Options | 473

Object recognition options area

Use
Browser
nearest
text

Determines how the DOM extension finds the closest static text for HtmlTable, HtmlLink-
text, HtmlColumn, HtmlLink-image, HtmlImage, HtmlHeading, HtmlText,
HtmlRadioList, and HtmlPushbutton. Check this check box if you want Silk Test
Classic to use the DOM extension to find the closest static text for the objects listed above.
This does not apply to invisible objects such as XML, Meta, and Hidden; those objects do
not rely on any text on a page and so it would be meaningless to try to associate them with
any objects. Uncheck this check box if you want to use the Agent to determine closest static
text for the objects listed above.

Use virtual
column

Affects how the DOM extension records asymmetric tables. These are tables that use either
column span or row span attributes, or tables whose rows don't have the same number of
columns. An example of an asymmetric table is a typical calendar page that has the month
of January written across the top row and the seven days of the week in seven columns
across the 2nd row.

We highly recommend that you check this box if you are working with tables that have
asymmetrical rows.

Check this check box if you want to create virtual columns for any row in a table. In the
example above, it causes the top row to contain one real column for "January", followed by 6
virtual columns which are blank and align with Mon, Tues, etc. These virtual columns appear
where there are none in order to complete the table and they are named virtual1, virtual2,
and so on. These virtual columns cause the table to be symmetrical.

Uncheck this check box to avoid creating virtual columns. This causes Silk Test Classic to
record the top row as the name for first column. This occurs because there is no 2nd column
in the top row; Mon is promoted to the name of the second column, and so on.

Search
whole
DOM tree

Determines how windows declarations are found. To search the entire DOM tree when you
record windows declarations, check the Search whole DOM tree check box.

Extension Application Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Extension Application dialog box to add one or more runtime environments to the Extensions
dialog box for testing applications.

Click Options > Extensions and then click New.

Enter name(s) of
executable or DLL
file

Type the name of the executable or DLL that you want to add, separated by
commas. If the executable name contains spaces, enclose the name in quotation
marks. Note that after enabling a new application, you may need to run the
Extension Enabler on the target machine and restart any applications affected by
these changes.

Browse button Click to browse to the executable you want to add.

Extension Options (ActiveX) Dialog Box
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use to specify options for the currently selected extension.

474 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Click Options > Extensions, select the appropriate extension, enable ActiveX in the Other Extensions
column, and then click ActiveX.

Ignore VB
and SS
Frames

Check this check box to allow scripts created prior to Silk Test Classic 5.0 to run properly.
When this option is selected, the frame is essentially ignored and objects in VB and SS
(Sheridan OCX) frames are treated as children of the main window rather than child objects
of the containing frame. If you do not select this option for scripts created prior to Silk Test
Classic 5.0, you will need to re-record window declarations in the current release and edit
your scripts.

Note: If the controls inside the VB and SS frames are windowless, then this option will
not work properly. In this case, you can use this option successfully only if you change
the controls so that they have windows.

Do not select this option for window declarations recorded In Silk Test Classic 5.0 or later,
which treats objects in these frames as children of the frame and grandchildren of the main
window. The window declarations file reflects this deeper nesting.

Note: This change brings Silk Test Classic into conformance with current MS
Windows architecture.

Extension Options Dialog Box (Java)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use the Extension Options dialog box for Java to specify options for the currently selected extension.

Click Options > Extensions, select the appropriate extension, and then click Java.

Java console
filename

Type the path to the file to which you want to redirect Java console output.

Redirect Java
console output

Check this check box if you want to redirect output from the Java console to a local
file where you can easily scroll and copy the text. When testing with the SilkBean,
you cannot redirect console output using this option.

TrueLog Options - Classic Agent Dialog Box
Use the TrueLog Options - Classic Agent dialog box to enable TrueLog for the Classic Agent and to
customize the information that the TrueLog collects for Silk Test Classic.

Click Options > TrueLog.

Logging bitmaps and controls in TrueLog may adversely affect the performance of Silk Test Classic.
Because capturing bitmaps and logging information can result in large TrueLog files, you may want to log
test cases with errors only and then adjust the TrueLog options for test cases where more information is
needed.

Note: By default, TrueLog Explorer is enabled when you are using the Open Agent, and disabled
when you are using the Classic Agent. When TrueLog Explorer is enabled, the default setting is that
screenshots are only created when an error occurs in the script and only test cases with errors are
logged.

For additional information about TrueLog Explorer, refer to the Silk TrueLog Explorer User Guide, located in
(in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Documentation or (in Microsoft Windows
10) Start > Silk.

Setting Silk Test Classic Options | 475

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Logging Settings tab

Enables the TrueLog capture and configures the TrueLog.

Enable
TrueLog

Captures TrueLog data and activates logging settings. You can also enable or disable
TrueLog each time you run a test case by checking this check box in the Run Testcase
dialog box. When you enable or disable TrueLog in the Run Testcase dialog box, Silk
Test Classic makes the same change in the TrueLog Options dialog box. Likewise,
when you enable or disable TrueLog in the TrueLog Options dialog box, Silk Test
Classic makes the same change in the Run Testcase dialog box.

All testcases Logs activity for all test cases, both successful and failed.

Testcases with errors Logs activity for only those test cases with errors.

TrueLog file Designates the location and name of the TrueLog file. This path is relative to the machine
on which the agent is running. The name defaults to the name used for the results file,
with an .xlg extension. The location defaults to the same folder as the test case .res
file.

Note: If you provide a local or remote path in this field, the path cannot be
validated until script execution time.

Log the
following for
controls

Logs certain types of information about the controls on the active window or page.

Control
information

Logs the GUI control’s hierarchy, name, type, and other attributes for the active window
or page. This information appears on the Controls tab of the Information window in
TrueLog Explorer. This is selected by default when you enable TrueLog. If you choose to
log control information, you may optionally decide to log:

Control
creation/
deletion

Tracks the creation and/or deletion of controls on the active window
or page. TrueLog updates the control hierarchy after each action.
Choosing this option may adversely affect performance.

Include static
text controls

Includes the static text controls in the logged hierarchy. To keep
TrueLogs small, leave this option turned off for browser testing.

Track low level
events

Logs keyboard and mouse events. For each mouse click and key
press a new Action node is created on the Tree List in the TrueLog.
Use caution when selecting this option for browser applications, as
you can significantly impact performance.

Log the
following for
browsers

Identifies the browser events you want to capture.

Download events Captures all events that trigger page downloads. Selected by
default.

Navigate events Captures all events that cause new pages to appear. Selected
by default.

Terminate events Captures all events that cause a browser to close. Selected by
default.

New window
events

Captures all events that cause a new browser window to appear.
Selected by default.

MouseMove calls Logs all scripted MouseMove calls. This is useful for tracking
JavaScript MouseOver events. By including this information in

476 | Setting Silk Test Classic Options

TrueLogs, you may significantly affect performance. This
information appears as an Action node in the Tree List.

TrueLog
delay

Allows Windows time to draw the application window before a bitmap is taken. The delay
can be used for browser testing. You can insert a Browser.WaitForReady call in your
script to ensure that the DocumentComplete events are seen and processed. If
WindowActive nodes are missing from the TrueLog, you need to add a
Browser.WaitForReady call. You can also use TrueLog Delay to optimize script
performance. Set the delay as small as possible to get the correct behavior and have the
smallest impact on script execution time. The default setting is 0.

Enable
bitmap
capture

Controls when TrueLog captures screenshots of the application under test. Bitmap files
are included in TrueLog (.xlg) files. Selected by default.

As specified on
action settings tab

Enables the capture of bitmaps for each action type you select
on the Action Settings tab. This setting also causes a bitmap
capture each time a window becomes active in your
application.

On error Captures a bitmap when an error occurs in your test case.

Window only Saves the bitmaps for the active window.

Desktop Saves a bitmap of the entire desktop.

Before error bitmap Captures the bitmap before the error occurred.

TrueLog
Presets

Sets pre-determined logging levels.

Minimal Logs test cases with errors; enables bitmap capture of desktop on error;
does not log any actions.

Default Logs test cases with errors; enables bitmap capture of window on error; logs
data for Select and SetText actions; enables bitmap capture for Select
and SetText actions.

Full Logs all test cases; logs all control information; logs all events for browsers
except for MouseMove events; enables bitmap capture of the window on
error; captures bitmaps for all actions.

If you enable Full logs and encounter a Window Not Found error, you may
need to manually edit your script.

Action Settings tab

The Action Settings tab on the TrueLog Options - Classic Agent dialog box selects the scripted actions
you want to include in the TrueLog. When enabled, these actions appear as nodes in the Tree List view of
the TrueLog.

Select
actions to
log

Enable Selects the action to log. Each action corresponds to a 4Test method, except for
Click and Select.

Click Records mouse clicks on many controls, such as PushButton,
ScrollBar, TextField, and HtmlLink. To record Click
methods on a CheckBox, choose Select, not Click.

Setting Silk Test Classic Options | 477

Select Records actions on multiple methods of multiple types of controls,
including ListBox, TreeView, ComboBox, RadioButton, and
CheckBox. Here is a partial list of what Select records:

• Select (ListBox, TreeView, ComboBox, RadioButton)
• DoubleSelect, SelectList, SelectRange (ListBox, TreeView)
• Click (ListBox, TreeView, ComboBox, RadioButton,

CheckBox)
• Check, Uncheck, Toggle, SetState (CheckBox)

Bitmap Selects the point in time you want bitmaps to be captured:

None Never captures bitmaps.

Before Captures bitmaps before errors occur.

After Captures bitmaps after errors occur.

Both Capture bitmaps both before and after errors occur.

Setting TrueLog Options
You can enable TrueLog reports and HTML reports to capture bitmaps and to log information for test runs
with Silk Test Classic.

Logging bitmaps and controls might adversely affect the performance of Silk Test Classic. Because
capturing bitmaps and logging information can result in large TrueLog files, you may want to log test cases
with errors only and then adjust the TrueLog options for test cases where more information is needed.

The results of test runs can be examined in the TrueLog Explorer, in the case of TrueLog reports, or in a
browser, in the case of HTML reports. For additional information on the TrueLog Explorer, refer to the Silk
TrueLog Explorer Help for Silk Test.

Note: To reduce the size of TrueLog files with Silk Test 17.5 or later, the file format for TrueLog files
has changed from .xlg to the compressed .tlz file format. Files with a .xlg suffix are
automatically appended with a .tlz suffix. To parse result data from a .tlz file, you can unzip
the .tlz file and parse the data from the included .xlg file.

To enable creating result data and to customize the information that Silk Test Classic collects, perform the
following steps:

1. Click Options > TrueLog. The TrueLog Options dialog box opens.
2. In the Basic Settings area, check the Enable TrueLog check box.

• Click All testcases to log activity for all test cases, both successful and failed. This is the default
setting.

• Click Testcases with errors to log activity for only those test cases with errors.
3. Select the result format:

• Select TrueLog Report (.tlz) to generate visual execution logs that can be viewed in TrueLog
Explorer.

• Select HTML Report to generate an HTML-based report that can be viewed in a browser.
• Select Both to generate both a TrueLog report and an HTML-based report.

4. In the TrueLog location field, type the name of and optionally the path to the TrueLog file, or click
Browse and select the file.
The path is relative to the machine on which the agent is running. The default path is the path of the Silk
Test Classic project folder, and the default name is the name of the suite class, with a .tlz suffix. To

478 | Setting Silk Test Classic Options

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-truelogexplorer-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-truelogexplorer-en.pdf

ensure that TrueLog files are not overwritten, for example when you perform parallel testing, you can
add placeholders to the TrueLog file name. These placeholders are replaced with the appropriate data
at execution time.

Note: The path is validated at execution time. Tests that are executed by Silk Central set this value
to the Silk Central results directory to enable the screenshots to be shown in the result view.

5. Select the Screenshot mode.

Default is On Error.

6. Optional: Set the Delay.

This delay gives the operating system time to draw the application window before a bitmap is taken. You
can try to add a delay if your application is not drawn properly in the captured bitmaps.

7. Click OK.

Setting Silk Test Classic Options | 479

Troubleshooting the Classic Agent
This section provides information and workarounds for working with the Classic Agent.

ActiveX and Visual Basic Applications
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This section provides help and troubleshooting information for working with ActiveX and Visual Basic
applications.

What Happens When You Enable ActiveX/Visual Basic?
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you enable ActiveX/Visual Basic, Silk Test Classic updates to use the appropriate Visual Basic/
ActiveX include file and to merge the Visual Basic/ActiveX property sets and the Help text for the Library
Browser.

Silk Test Classic Does Not Display the Appropriate
Visual Basic Properties
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Check your property set initialization file if Silk Test Classic does not display the appropriate Visual Basic
properties, when you try to verify these properties. The property set initialization file is called
vbprpset.ini and is located in the Silk Test Classic installation directory. When you open this file in an
editor, you should see familiar Visual Basic properties. If you do not see the Visual Basic properties,
reinstall Silk Test Classic with enhanced Visual Basic and ActiveX support.

Silk Test Classic Does Not Recognize ActiveX Controls
in a Web Application
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you notice that Silk Test Classic does not recognize the ActiveX controls in your Web application, when
you are recording or playing back tests, make sure that the ActiveX/Visual Basic support is enabled for your
browser.

Silk Test Classic Displays an Error When Playing Back
a Click on a Sheridan Command Button
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

480 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

If you record a click against a Sheridan command button, which is handled by the OLESSCommand class in
4Test, Silk Test Classic does not play back the click and records an error in the results file for the test.

The cause of this behavior is that the OLESSCommand should be a windowless control.

To record the click, edit the class declaration for the OLESSCommand class in the VBclass.inc file, to
have the class inherit from the WindowlessControl class instead of the Pushbutton class.

Silk Test Classic Displays Native Visual Basic Objects
as Custom Windows
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The following two reasons might prevent Silk Test Classic from recording declarations for native Visual
Basic objects, and instead recording them as custom windows (CustomWin):

• You did not follow the procedure for recording classes.
• The extension is not loaded properly into the application.

Record Class Finds no Properties or Methods for a
Visual Basic Object
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If record class finds no properties or methods for an object, perform the following tasks:

• Make sure the extension is loaded and enabled properly.
• Verify that the object, whose class you are recording, is an ActiveX control or a native Visual Basic

control.
• If the ActiveX control was created in Visual Basic 5, it must expose its properties and methods. For

additional information on exposing properties and methods, refer to the Visual Basic 5 documentation.

Inconsistent Recognition of ActiveX Controls
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic might recognize ActiveX controls, which often have a native class beginning with OLE, as
having the native class ATL:<variable hex #>, or Silk Test Classic might recognize the ActiveX
controls as children of an ATL:<variable hex #> control. In other cases, the parent control of an
ActiveX control might seem to disappear on occasion. In such a case, the following settings in the
extend.ini and axext.ini files might help.

• If the inconsistent recognition problem involves ATL controls, then first try setting DontIgnore=ATL in
the [VBOptions] section.

• If the recognition problem occurs when Silk Test Classic invokes the application under test (AUT)
especially if the AUT seems slow to render completely, then try to kill the agent while leaving the
application running, and then restart the agent. If Silk Test Classic recognizes the control properly, then
you should be able to correct the problem without having to kill the agent by setting AxextDelay=<n>
in the [VBOptions] section, where <n> is the number of seconds that the application should require
to start up completely.

Note: The amount of time that Silk Test Classic requires to recognize the application when it is
invoked is extended by AxextDelay seconds, so you should not make the number too large. In

Troubleshooting the Classic Agent | 481

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

addition, if the application contains frame classes such as AfxFrameOrView42 or
AfxMDIFrame42, then you should try class-mapping them to Ignore. Ignoring those windows
may eliminate some unnecessary layers and also make the Silk Test Classic recognition of the
window hierarchy more consistent.

Test Failures During Visual Basic Application
Configuration
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If the following suggestions do not address the problem you are having, you can enable your extension
manually. The configuration of your Visual Basic application might fail for one of the following reasons:

Reason Solution

The application might not
be ready to test

To enable your application for testing:

1. Click Enable Extensions on the Basic Workflow bar.
2. On the Enable Extensions dialog box, select the application for which

you want to enable extensions.
3. Close and restart your application. Make sure the application has

finished loading, and then click Test.

You might have another
configured Visual Basic
application open

You must close all configured Visual Basic applications before you can
configure another Visual Basic application.

Application Environment
This section provides help and troubleshooting info for your application environment.

Dr. Watson when Running from Batch File
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you get a Dr. Watson error when trying to record window declarations for a Java application launched
through a batch file, the classpath set in the batch file is overriding the global classpath. Make sure the
classpath in the batch file points to the appropriate Silk Test Classic .jar file.

Silk Test Classic does not Launch my Java Web Start
Application
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Sometimes the default base state does not launch your Java Web Start application. If your application
requires Java Web Start to launch, then you must manually edit the constant sCmdLine in your declaration
for the main application window, which is designated as the wMainWindow.

Create New Test Frame detects the Windows command line that directly invoked the main window, so it
will set sCmdLine to the JRE command line launched by Java Web Start. However, since you want to start
Java Web Start instead of directly starting the JRE, you must edit sCmdLine to launch the Java Web Start
executable, javaws.exe, with the .jnlp file for your application.

482 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Example

const sCmdLine = "C:\Program Files\Java Web Start\javaws.exe C:
\MyAppDir\MyJWSApp.jnlp"

Which JAR File do I Use with JDK/JRE?
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

For JDK/JRE 1.3 or higher, use SilkTest_Java3.jar.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Sample Declarations and Script for Testing JFC Popup
Menus
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you record Pick() for a Java popup menu item, make sure that the recorder window shows the
proper menu item. If the recorder seems to stick on the wrong menu item, move the mouse off of the popup
menu and then back on to it. That should force the recorder to update.

Troubleshooting the Classic Agent | 483

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Sample test frame:

484 | Troubleshooting the Classic Agent

Sample test script:

Java Extension Loses Injection when Using Virtual
Network Computing (VNC)
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The Java extension can periodically stop recognizing Java objects on JFC (Swing) applications if the Agent
machine, where the Java application is running, is being "viewed" remotely through Virtual Network
Computing (VNC), a popular tool that lets you view and control a remote machine.

Symptoms of this problem include the following:

• The main window is viewed as a JavaDialogBox.
• An *** Error: Window '[JavaMainWin]<window name>' was not found message box

displays.
• JavaJFCMenu items are not seen, resulting in an error such as *** Error: Window JavaJFCMenu

<menu name>' was not found.

Avoid using VNC to view the automation which is running.

Troubleshooting Basic Workflow Issues with the Classic
Agent

The following troubleshooting tips might help you with the basic workflow:

I restarted my application, but the Test button is not enabled

In order to enable the Test button on the Test Extensions dialog box, you must restart your application.
Do not restart Silk Test Classic; restart the application that you selected on the Enable Extensions dialog
box.

You must restart the application in the same manner. For example, if you are testing:

• A standalone Java application that you opened through a Command Prompt, make sure that you close
and restart both the Java application and the Command Prompt window .

Troubleshooting the Classic Agent | 485

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• A browser application or applet, make sure you return to the page that you selected on the Enable
Extensions dialog box.

• An AOL browser application, make sure that you do not change the state of the application, for example
resizing, or you may have issues with playback.

You can configure only one Visual Basic application at a time.

The test of my enabled Extension failed – what should I do?

If the test of your application fails, see Troubleshooting Configuration Test Failures for general information.

Browsers
This section provides help and troubleshooting information for working with browsers.

I Am not Testing Applets but Browser is Launched
During Playback
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you enable a browser extension in Silk Test Classic, the recovery system automatically launches the
enabled browser when returning to DefaultBaseState. During sessions when you are testing only
standalone Java applications, we recommend that you set Default browser to none in the Runtime
Options dialog box.

Playback is Slow when I Test Applications Launched
from a Browser
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you test applications, not applets, launched from a browser, the recovery system performs several
functions that might impact performance, including the following:

• Closes the Java application when exiting each test case.
• Loads the URL of the launch site and relaunches the Java application when entering each test case.

To avoid opening and closing the Java application for each test case, you can add the following code to
your test frame:

1. Add an Invoke() method inside the JavaMainWin definition that will launch the Java application.

2. Inside the wMainWindow definition of your test frame, assign the constant lwLeaveOpen to the main
window of the Java application.

3. Add TestCaseEnter() and TestCaseExit() methods at the top of the test frame.

Library Browser does Not Display Web Browser
Classes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

486 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Problem

The Library Browser does not display any of the classes for Web browsers.

This problem can be caused by either of two conditions:

• The extensions for the Web browser you are testing have not been enabled.
• Silk Test Classic was not able to successfully compile the files that populate the Library Browser with

the browser classes.
• Successful compilation incorporates the information in the Silk Test Classic browser include file, for

example the extend\firefox.inc file. The browser include file pulls in the appropriate help file
(.ht) to populate the Library Browser with the additional classes (extend\firefox.ht).

Solution

1. Make sure that the browser extensions are enabled on the target and host computers.

• On the target computer, from the Silk Test Classic program group, choose Extension Enabler.
Check the Primary Extension for the browser to make sure it says Enabled.

• On the host computer, from Silk Test Classic, choose Options > Extensions. Check the Primary
Extension for the browser to make sure it says Enabled.

2. Check the Silk Test Classic Runtime Options dialog box. In Silk Test Classic, click Options >
Runtime. Make sure the Use Files field contains the browser include file, for example firefox.inc.

3. Exit Silk Test Classic and restart it.
4. This action causes Silk Test Classic to recompile the include files.

Error Messages
This section provides help and troubleshooting information for error messages.

Agent not responding

Problem

You get the following error message:

Error: Agent not responding

This error can occur for a number of reasons.

Solution

Try any or all of the following:

• Restart the application that you are testing.
• Restart Silk Test Classic.
• Restart the Host machine.

If you are recording declarations on a very large page and get this error, consider increasing the
AgentTimeout.

BrowserChild MainWindow Not Found When Using
Internet Explorer 7.x
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Troubleshooting the Classic Agent | 487

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Problem

My scripts are failing in Internet Explorer 7.x with the following error [BrowserChild] MainWindow
not found.

Solution

When recording a new frame file using Set Recovery System, by default Silk Test does not explicitly state
that the parent of the window is a browser. To resolve this issue, the "parent Browser" line must be added
to the frame file. For example:

[-] window BrowserChild Google
[] tag "Google"
[] parent Browser

Cannot find file agent.exe
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

Running a script gives the following error:

Cannot find file agent.exe [or one of its components]. Check to ensure the
path and filename are correct and that all required libraries are available.

Solution

1. Exit Silk Test Classic (this automatically shuts down the agent).
2. Explicitly start the agent by itself.
3. Restart Silk Test Classic.

Control is not responding

Problem

You run a script and get the following error: Error: Control is not responding

This is a catch-all error message. It usually occurs in a Select() statement when Silk Test Classic is
trying to select an item from a ListBox, TreeView, ListView, or similar control.

The error can occur after the actual selection has occurred, or it can occur without the selection being
completed. In general the error means that the object is not responding to the messages Silk Test Classic
is sending in the manner in which it expects.

Solution

Try these things to eliminate the error message:

• If the line of code is inside a Recording block, remove the Recording keyword.
• Set the following option just before the line causing the error:

Agent.SetOption(OPT_VERIFY_RESPONDING, FALSE).

• If the selection is successful, but you still get the error, try using the Do . . . except feature.

Functionality Not Supported on the Open Agent
If you use Classic Agent functionality in an Open Agent script, an error message displays, stating that the
functionality is not supported on the Open Agent.

488 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Example

For example, if you try to call the ClearTrap function of the Classic Agent on a
MainWin object in an Open Agent script, the following error message displays:

The Open Agent does not support the function
'MainWin::ClearTrap'#

Unable to Connect to Agent

Problem

You get the following error message: Error: Unable to connect to agent

This error can occur for a number of reasons.

Solution

Connect to the
default agent

Click Tools > Connect to Default Agent.

The command starts the Classic Agent or the Open Agent on the local machine
depending on which agent is specified as the default in the Runtime Options dialog. If
the agent does not start within 30 seconds, a message is displayed. If the default agent
is configured to run on a remote machine, you must connect to it manually.

Restart the
agent that you
require for
testing

Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test
Open Agent or (in Microsoft Windows 10) Start > Silk > Silk Test Open Agent or (in
Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test Classic
Agent or (in Microsoft Windows 10) Start > Silk > Silk Test Classic Agent.

Unable to Delete File
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

While you are using the Basic Workflow to configure a Java application, Silk Test Classic is unable
to delete the JVM files

You may have another application running that uses the same JVM as the application being configured or
an application may be slow to release the JVM.

Close all applications that use the JVM (if any) and click Retry. That should give the application enough
time to release the JVM.

If the suggestion above does not solve the problem, you can enable your extension manually.

Unable to Start Internet Explorer
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

While trying to record or run a test case you get the following message: Error: Unable to start
Internet Explorer #

This error occurs because the extensions enabled in the Extensions Enabler and Options > Extensions
do not match the default browser.

Troubleshooting the Classic Agent | 489

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Solution

Review the settings for your default browser and make them consistent with the settings for the host
machine in Options > Extensions and for the target machine in the Extension Enabler.

Variable Browser not defined
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

If you are encountering the following message: Error: Variable Browser is not defined.

This error occurs because no browser extensions have been enabled.

Solution

Enable at least one browser extension.

Window Browser does not define a tag
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

While trying to run or record test cases you get the following message: Error: Window Browser does
not define a tag for <Operating System>.

This error occurs because no default browser has been specified.

Solution

You need to set a default browser. Whenever you record and run test cases, you need to have a default
browser set so Silk Test Classic knows which browser to use.

Window is not active

Problem

You run a script and get the following error: Error: Window 'name' is not active.

This error means that the object Silk Test Classic is trying to act on is not active. This message applies to
top-level windows (MainWin, DialogBox, ChildWin).

Solution

You can correct the error by doing one of the following:

1. Edit the script and add an explicit SetActive() statement to the window you are trying to act on just
above the line where the error is occurring. An easy way to do this is to double-click the error in the
results file. You will be brought to the line in the script. Insert a new line above it and add a line ending
with the SetActive() method.

2. Tell Silk Test Classic not to verify that windows are active. There are two ways to do this:

To turn off the verification globally, uncheck the Verify that windows are active option on the
Verification tab in the Agent Options dialog (Options > Agent).

490 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

To turn off the option in your script on a case by case basis, add the following statement to the script,
just before the line causing the error: Agent.SetOption(OPT_VERIFY_EXPOSED, FALSE).

3. Then add the following line just after the line causing the error:
Agent.SetOption(OPT_VERIFY_EXPOSED, TRUE).

This means Silk Test Classic will execute the action regardless of whether the window is active.
4. Extend the window time out to be greater than 10 by inserting the Agent - Window Timeout to >= 10

into your partner.ini.

Window is not enabled

Problem

You run a script and get the following error: Error: Window 'name' is not enabled.

This error means that the object that Silk Test Classic is trying to act on is not enabled. This message
applies to controls inside top-level windows (such as PushButton and CheckBox).

Solution

You can correct this problem in one of two ways.

• If the object is indeed disabled, edit the script and add the actions that will enable the object.
• If the object is in fact enabled and you want the script to perform the action, tell Silk Test Classic not to

verify that a window is enabled:

To turn off the verification globally, uncheck the Verify that windows are enabled option on the
Verification tab in the Agent Options dialog box (Options > Agent).

To turn off the option in your script on a case-by-case basis, add the following statement to the script, just
before the line causing the error: Agent.SetOption(OPT_VERIFY_ENABLED, FALSE)

Then add the following line just after the line causing the error:
Agent.SetOption(OPT_VERIFY_ENABLED, TRUE).

This means Silk Test Classic will execute the action regardless of whether the window is enabled.

Window is not exposed

Problem

You run a script and get the following error: Error: Window 'name' is not exposed.

Sometimes, applications are written such that windows are hidden to the operating system, even though
they are fully exposed to the user. A running script might generate an error such as Window not
exposed, even though you can see the window as the script runs.

Solution

While it might be tempting to simply turn off the checks for these verifications from the Agent Options >
Verification dialog box, the best course of action is to take such errors on a case by case basis, and only
turn off the verification in cases where the window is genuinely viewable, but Silk Test Classic is getting
information from the operating system saying the object is not visible.

1. Add the following statement to the script, just before the line causing the error:
Agent.SetOption(OPT_VERIFY_EXPOSED, FALSE).

2. Then add the following line just after the line causing the error:
Agent.SetOption(OPT_VERIFY_EXPOSED, TRUE).

This means Silk Test Classic will execute the action regardless of whether it thinks the window is exposed.

Troubleshooting the Classic Agent | 491

Window not found

Problem

You run a script and get the following error: Error: Window 'name' was not found.

Resolution

This error occurs in the following situations:

When the window that Silk Test
Classic is trying to perform the
action on is not on the desktop.

If you are watching the script run, and at the time the error occurs
you can see the window on the screen, it usually means the tag that
was generated is not a correct tag. This could happen if the
application changed from the time the script or include file was
originally created.

To resolve this issue, enable view trace listing in your script.

The window is taking more than
the number of seconds specified
for the window timeout to open.

To resolve this issue, set the Window Timeout value to prevent
Window Not Found exceptions

Only if you are using the Classic
Agent, in the TrueLog Options -
Classic Agent dialog box, if all of
the following options are set

• The action PressKeys is enabled.
• Bitmaps are captured after or before and after the PressKeys

action.
• PressKeys actions are logged.

The preceding settings are set by default if you select Full as
the TrueLog preset.

To resolve this issue, modify your test case.

Functions and Methods
This section provides help and troubleshooting information for functions and methods.

Class not Loaded Error
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You should not simply add the .jar file containing the Java class referenced in the InvokeJava() call to the
directory containing the .jar files used by your application. InvokeJava() will be able to load your Java
class only if it can be loaded by one of the following class loaders. If you receive a Class Not Loaded
error when calling InvokeJava():

1. By default, InvokeJava() uses the ext class loader. To use this loader, the .jar file containing the Java
class referenced in the InvokeJava() call should reside in the JVM's lib\ext directory with
SilkTest's .jar file, which is SilkTest_Java3.jar.

The class should be in the root directory of the .jar file, so that there is no path information in the .jar file.

2. Alternatively, InvokeJava() can use the application class loader. To use this loader, the .jar file
containing the Java class referenced in the InvokeJava() call should be part of the application's
classpath.

492 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Exists Method Returns False when Object Exists
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

There is a timing issue in Java that causes a delay when Java applications or applets render objects. To
ensure that the Exists method detects Java objects, call it with a timeout parameter. You might need to
experiment with different timeout values to find the one that works best for your system configuration, and
application or applet.

For example Verify (JavaAwtPushButton.Exists(1), TRUE).

How can I Determine the Exact Class of a
java.lang.Object Returned by a Method
This functionality is available only for projects or scripts that use the Classic Agent.

Many Java methods return values of type java.lang.Object. In order to call such methods in Silk Test
Classic, you must use invokeMethods() to call a method on the return object. Eventually, you must call a
method that returns a 4Test-compatible value. However, you need to know the exact class of the
java.lang.Object in order to know which methods are available for that object. Otherwise, you can only
call java.lang.Object methods, which is a fairly limited list.

If your method returns a java.lang.Object value, you can use the following invokeMethods() call to
return the name of the class of the return object:

STRING sClass = wObj.invokeMethods({"<method that returns java.lang.Object>",
 "getClass", "getName"}, {{<parameter list for the method of interest>}, {},
{}})

The above statement will call the following 3 Java methods:

<method that returns
java.lang.Object>
(<parameter list for the
method of interest>)

This is the method of interest. It returns a value of type java.lang.Object,
which is not 4Test-compatible and therefore must be used to call a new
method. Record Class only lists this method if you check Show all methods.
The method displays in the commented list below the declaration of
wObj.invokeMethods().

getClass() This java.lang.Object method returns a value of type java.lang.Class,
which is not 4Test-compatible and therefore must be used to call a new
method.

getName() This java.lang.Object method returns a value of type
java.lang.String, which is 4Test-compatible.

Once you know the name of the class, you can call methods specific to that class. Preferably those
methods will return a 4Test-compatible type. Otherwise, you will need to chain additional methods in the
wObj.invokeMethods() call.

Expanding on the previous example:

STRING sClass = wObj.invokeMethods({"<method that returns java.lang.Object>",
 "getClass", "getName"}, {{<parameter list for the method of interest>}, {},
{}})
 ANYTYPE aProp1
 ANYTYPE aProp2
 switch sClass
 case "ClassA"
 aProp1 = wObj.invokeMethods({"<method that returns java.lang.Object>",
 "getClassAProperty1"}, {{<parameter list for the method of
interest>}, {}})

Troubleshooting the Classic Agent | 493

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

 aProp2 = wObj.invokeMethods({"<method that returns java.lang.Object>",
 "getClassAProperty2"}, {{<parameter list for the method of
interest>}, {}})
 case "ClassB"
 aProp1 = wObj.invokeMethods({"<method that returns java.lang.Object>",
 "getClassBProperty1"}, {{<parameter list for the method of
interest>}, {}})
 aProp2=wObj.invokeMethods({"<method that returns java.lang.Object>",
 "getClassBProperty2"}, {{<parameter list for the method of
interest>}, {}})
 default
 RaiseError (E_UNSUPPORTED, "java.lang.Object is of an unknown class:
{sClass}")

toString() is a useful general method. It is a java.lang.Object method that returns a value of type
java.lang.String and which translates to 4Test type STRING. You may be able to use toString() to
return a value when you do not really understand what the previous method does. However, toString()
may return a blank string, or the value may not make sense.

How to Define lwLeaveOpen
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Add the constant lwLeaveOpen inside the wMainWindow declaration to instruct the recovery system to
leave the Java application open when returning to base state. You must assign this constant to the identifier
of the main window of the Java application.

Example

The declaration for the main window of the Java application looks like the following:

window JavaMainWin TestApp

Following is the constant lwLeaveOpen inserted in the header section of the
wMainWindow declaration.

Note: The constant lwLeaveOpen is assigned to TestApp, the
identifier of the main window of the Java application.

window BrowserChild JavaAWTTestApplet
 tag "Java 1.1 AWT TestApplet"

 // The URL of this page
 const sLocation = "…"

 // The login user name
 // const sUserName = ?

 // The login password
 // const sPassword = ?

 // The size of the browser window
 // const POINT BrowserSize = {600, 400}

 // Sets the browser font settings to the default
 // const bDefaultFont = TRUE

 const lwLeaveOpen = {TestApp}

494 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Defining TestCaseEnter and TestCaseExit Methods
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Add one TestCaseEnter and one TestCaseExit method at the top of your test frame to ensure that the
Java application is not opened and closed unnecessarily. TestCaseEnter calls the Invoke method you
defined earlier to launch the Java application only if it is not already running.

Note: DefaultTestCaseEnter and DefaultTestCaseExit are also called to retain the benefits
of the recovery system in resetting the application to a base state.

Example

The following code sample shows how the TestCaseEnter and TestCaseExit
methods are inserted at the top of a test frame:

TestCaseEnter()
DefaultTestCaseEnter()
if (! TestApp.Exists())
 TestApp.Invoke()
TestApp.SetActive()
TestCaseExit(BOOLEAN bTRUE)
 Browser.SetActive()
DefaultTestCaseExit(bTRUE)

const wMainWindow = JavaAWTTestApplet
 window BrowserChild JavaAWTTestApplet
 window JavaMainWin TestApp
…

How to Write the Invoke Method
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Add an invoke method inside the JavaMainWin definition. This method should interact with the
appropriate controls on the HTML page to launch the Java application from the browser. You can code this
method by hand or click Record > Method to use the dialog box.

Example

An HTML page uses a pushbutton inside an applet to launch a standalone Java
application from the browser.

The declaration for the wMainWindow looks like the following:

window BrowserChild JavaAWTTestApplet

The declaration for the pushbutton inside the applet looks like the following:

JavaApplet StartTheTestApplicationIn2
 tag "Start the Test Application in a"
JavaAwtPushButton StartTestApplication
tag
"Start Test Application"

The following is a sample Invoke method highlighted in blue and declared inside the
declaration for the main window of the Java application.

Troubleshooting the Classic Agent | 495

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Note: The method clicks on the pushbutton that launches the
Java application.

window JavaMainWin TestApp
 tag "Test Application"
 Menu File
 Menu Control
 Menu Menu
 Menu DisabledMenu

 void OpenWindows (STRING sMenuItem)
 void Invoke()

JavaAWTTestApplet.StartTheTestApplicationIn2.StartTestApplicatio
n.Click()

I cannot Verify $Name Property during Playback
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you do not explicitly set the native $Name property of a Java control, Java (AWT) assigns a different
default name to each instance of the control. As a result, you will not be able to verify the $Name property
of the control because it will have a different name each time you run your test, and each time you close
and reopen it during one test run.

When you want to verify the $Name property of a Java control, explicitly name the control by adding a call
to the native method setName in your script before each call to VerifyProperties.

If you do not want to verify the name of a Java control, make sure you uncheck the $Name property in the
Verify Window dialog box.

Example

VerifyProperties will fail in the following script because the JavaAwtCheckbox
TheCheckBox is assigned a different $Name during playback than when the test case
was recorded:

testcase Test1 () appstate none
 recording
 TestApplication.SetActive ()
 TestApplication.Control.CheckBox.Pick ()
 xCheckBox.TheCheckBox.VerifyProperties ({...})
 ""
 {...}
 {"$Name", "checkbox0"}
 xCheckBox.SetActive ()
 xCheckBox.Exit.Click ()

We can make the test run successfully by explicitly setting the name of TheCheckBox
before verifying properties, as shown in the following script:

testcase Test1 () appstate none
 recording
 TestApplication.SetActive ()
 TestApplication.Control.CheckBox.Pick ()
 xCheckBox.TheCheckBox.setName("checkbox0")
 xCheckBox.TheCheckBox.VerifyProperties ({...})
 ""
 {...}
 {"$Name", "checkbox0"}

496 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

 xCheckBox.SetActive ()
 xCheckBox.Exit.Click ()

Errors when calling nested methods
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You won't be able to call nested methods when any of the intermediate return objects are not 4Test-
compatible. To work around this problem, add the method invokeMethods by hand to your test script.
This method allows you to call nested methods inside Java.

Methods Return Incorrect Indexed Values in My Scripts
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

There is an incompatibility in indexing between 4Test methods and native Java methods for classes such
as ListBox, PopupList, and ScrollBar. 4Test methods are 1-based; Java native methods are 0-
based. If you mix 4Test methods and native methods in a test script where you retrieve indexed values, you
must compensate for the difference in indexing schemes to maintain the integrity of your test results.

We recommend that you do not mix methods in test scripts if at all possible. A good rule is that when both
types of methods are available for all controls in your applications, use the 4Test methods only.

In situations where 4Test methods are not available for some of your classes and you must mix in native
methods, use the following precautions when writing code to get indexed values:

• Do not pass an index of 0 to a 4Test method.
• Adjust indexes accordingly.

For ListBox Lb, the native Java AWT list method call Lb.getItem(n) retrieves the same value as the
4Test list method call Lb.GetItemText(n+1), but not the same value as Lb.GetItemText(n).

Handling Exceptions
This section provides help and troubleshooting information for handling exceptions.

Default Error Handling
If a test case fails, for example if the expected value doesn’t match the actual value in a verification
statement, by default Silk Test Classic calls its built-in recovery system, which:

• Terminates the test case.
• Logs the error in the results file.
• Restores your application to its default base state in preparation for the next test case.

These runtime errors are called exceptions. They indicate that something did not go as expected in a
script. They can be generated automatically by Silk Test Classic, such as when a verification fails, when
there is a division by zero in a script, or when an invalid function is called.

You can also generate exceptions explicitly in a script.

However, if you do not want Silk Test Classic to transfer control to the recovery system when an exception
is generated, but instead want to trap the exception and handle it yourself, use the 4Test do...except
statement.

Troubleshooting the Classic Agent | 497

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Custom Error Handling
You can also use do ... except to perform some custom error handling, then use the re-raise
statement to pass control to the recovery system as usual.

Example: do ... except

The Text Editor application displays a message box if a user searches for text that does
not exist in the document. You can create a data-driven test case that verifies that the
message box appears and that it displays the correct message. Suppose you want to
determine if the Text Editor application is finding false matches, that is, if it is selecting
text in the document before displaying the message box. That means that you want to
do some testing after the exception is raised, instead of immediately passing control to
the recovery system. The following code sample shows how you can use do ...
except to keep the control inside the test case:

testcase Negative (SEARCHINFO Data)
 STRING sMatch
 TextEditor.File.New.Pick ()
 DocumentWindow.Document.TypeKeys (Data.sText + Data.sPos)
 TextEditor.Search.Find.Pick ()
 Find.FindWhat.SetText (Data.sPattern)
 Find.CaseSensitive.SetState (Data.bCase)
 Find.Direction.Select (Data.sDirection)
 Find.FindNext.Click ()

 do
 MessageBox.Message.VerifyValue (Data.sMessage)
 except
 sMatch = DocumentWindow.Document.GetSelText ()

 if (sMatch != "")
 Print ("Found " + sMatch + " not " + Data.sPattern)
 reraise
 MessageBox.OK.Click ()

 Find.Cancel.Click ()
 TextEditor.File.Close.Pick ()
 MessageBox.No.Click ()

This following tasks are performed in the example:

• A test is performed after an exception is raised.
• A statement is printed to the results file if text was selected.
• The recovery system is called.
• The recovery system terminates the test case, logs the error, and restores the test

application to its default base state.

As the example shows, following the do keyword is the verification statement, and
following the except keyword are the 4Test statements that handle the exception. The
exception-handling statements in this example perform the following tasks:

• Call the GetSelText method to determine what text, if any, is currently selected in
the document.

• If the return value from the GetSelText method is not an empty string, it means
that the application found a false match.

• If the application found a false match, print the false match and the search string to
the results file.

• Re-raise the exception to transfer control to the recovery system.

498 | Troubleshooting the Classic Agent

• Terminate the test case.

The reraise statement raises the most recent exception again and passes control to the
next exception handler. In the preceding example, the reraise statement passes control
to the built-in recovery system. The reraise statement is used in the example because if
the exception-handling code does not explicitly re-raise the exception, the flow of control
passes to the next statement in the test case.

Trapping the exception number
Each built-in exception has a name and a number (they are defined as an enumerated data type,
EXCEPTION). For example, the exception generated when a verify fails is E_VERIFY (13700), and the
exception generated when there is a division by zero is E_DIVIDE_BY_ZERO (11500).

All exceptions are defined in 4test.inc, in the directory where you installed Silk Test Classic.

You can use the ExceptNum function to test for which exception has been generated and, perhaps, take
different actions based on the exception. You would capture the exception in a do...except statement
then check for the exception using ExceptNum.

For example, if you want to ignore the exception E_WINDOW_SIZE_ INVALID, which is generated when a
window is too big for the screen, you could do something like this:

do
Open.Invoke ()
except
if (ExceptNum () != E_WINDOW_SIZE_INVALID)
 reraise

If the exception is not E_WINDOW_SIZE_INVALID, the exception is reraised (and passed to the recovery
system for processing). If the exception is E_ WINDOW_SIZE_INVALID, it is ignored.

Defining Your Own Exceptions
In addition to using built-in exceptions, you can define your own exceptions and generate them using the
raise statement.

Consider the following test case:

testcase raiseExample ()
 STRING sTestValue = "xxx"
 STRING sExpected = "yyy"
 TestVerification (sExpected, sTestValue)

TestVerification (STRING sExpected, STRING sTestValue)
 if (sExpected == sTestValue)
 Print ("Success!")
 else
 do
 raise 1, "{sExpected} is different than {sTestValue}"
 except
print ("Exception number is {ExceptNum()}")
 reraise

The TestVerification function tests two strings. If they are not the same, they raise a user-defined
exception using the raise statement.

Raise Statement

The raise statement takes one required argument, which is the exception number. All built-in exceptions
have negative numbers, so you should use positive numbers for your user-defined exceptions. raise can

Troubleshooting the Classic Agent | 499

also take an optional second argument, which provides information about the exception; that information is
logged in the results file by the built-in recovery system or if you call ExceptLog.

In the preceding test case, raise is in a do...except statement, so control passes to the except clause,
where the exception number is printed, then the exception is reraised and passed to the recovery system,
which handles it the same way it handles built-in exceptions.

Here is the result of the test case:

Testcase raiseExample - 1 error
Exception number is 1
yyy is different than xxx
Occurred in TestVerification at except.t(31)
Called from raiseExample at except.t(25)

Note that since the error was re-raised, the test case failed.

Using do...except Statements to Trap and Handle
Exceptions
Using do...except you can handle exceptions locally, instead of passing control to the built-in error
handler, which is part of the recovery system of Silk Test Classic. The do...except statement has the
following syntax:

do
<statements>
except
<statements>

If an exception is raised in the do clause of the statement, control is immediately passed to the except
clause, instead of to the recovery system.

If no exception is raised in the do clause of the statement, control is passed to the line after the except
clause. The statements in the except clause are not executed.

Consider this simple test case:

testcase except1 (STRING sExpectedVal, STRING sActualVal)

do
 Verify (sExpectedVal, sActualVal)
 Print ("Verification succeeded")
except
 Print ("Verification failed")

This test case uses the built-in function Verify, which generates an exception if its two arguments are not
equivalent. In this test case, if sExpectedVal equals sActualVal, no exception is raised,
Verification succeeded is printed, and the test case terminates. If the two values are not equal,
Verify raises an exception, control immediately passes to the except clause, the first Print statement
is not executed, and Verification failed is printed.

Here is the result if the two values "one" and "two" are passed to the test case:

Testcase except1 ("one", "two") - Passed
Verification failed

The test case passes and the recovery system is not called because you handled the error yourself.

You handle the error in the except clause. You can include any 4Test statements, so you could, for
example, choose to ignore the error, write information to a separate log file, and log the error in the results
file.

500 | Troubleshooting the Classic Agent

Programmatically Logging an Error
Test cases can pass, even though an error has occurred, because they used their own error handler and
did not specify to log the error. If you want to handle errors locally and generate an error (that is, log an
error in the results file), you can do any of the following:

• After you have handled the error, re-raise it using the reraise statement and let the default recovery
system handle it.

• Call any of the following functions in your script:

LogError
(string, [cmd-
line])

Writes string to the results file as an error (displays in red or italics, depending
on platform) and increments the error counter.

This function is called automatically if you don’t handle the error yourself.

cmd-line is an optional string expression that contains a command line.

LogWarning
(string)

Same as LogError, except it logs a warning, not an error.

ExceptLog () Calls LogError with the data from the most recent exception.

Performing More than One Verification in a Test Case
If the verification fails in a test case with only one verification statement, usually an exception is raised and
the test case is terminated. However, if you want to perform more than one verification in a test case,
before the test case terminates, this approach would not work.

Classic Agent Example

For example, see the following sample test case:

testcase MultiVerify ()
 TextEditor.Search.Find.Pick ()
 Find.VerifyCaption ("Find")
 Find.VerifyFocus (Find.FindWhat)
 Find.VerifyEnabled (TRUE)
 Find.Cancel.Click ()

The test case contains three verification statements. However, if the first verification,
VerifyCaption, fails, an exception is raised and the test case terminates. The second
and the third verification are not executed.

To perform more than one verification in a test case, you can trap all verifications except
the last one in a do...except statement, like the following sample for the Classic
Agent shows:

testcase MultiVerify2 ()
 TextEditor.Search.Find.Pick ()
 do
 Find.VerifyCaption ("Find")
 except
 ExceptLog ()
 do
 Find.VerifyFocus (Find.FindWhat)
 except
 ExceptLog ()
 Find.VerifyEnabled (TRUE)
 Find.Cancel.Click ()

All the verifications in this example are executed each time that the test case is run. If
one of the first two verifications fails, the 4Test function ExceptLog is called. The

Troubleshooting the Classic Agent | 501

ExceptLog function logs the error information in the results file, then continues the
execution of the script.

Open Agent Example

For example, you might want to print the text associated with the exception as well as
the function calls that generated the exception. The following test case illustrates this:

testcase VerifyTest ()
 STRING sTestValue = "xxx"
 STRING sExpectedValue = "yyy"
 CompValues (sExpectedValue, sTestValue)

CompValues (STRING sExpectedValue, STRING sTestValue)
 do
 Verify (sExpectedValue, sTestValue)
 except
 ErrorHandler ()

ErrorHandler ()
 CALL Call
 LIST OF CALL lCall
 lCall = ExceptCalls ()
 Print (ExceptData ())
 for each Call in lCall
 Print("Module: {Call.sModule}",
 "Function: {Call.sFunction}",
 "Line: {Call.iLine}")

• The test case calls the user-defined function CompValues, passing two arguments.
• CompValues uses Verify to compare its arguments. If they are not equal, an

exception is automatically raised.
• If an exception is raised, CompValues calls a user-defined function,

ErrorHandler, which handles the error. This is a general function that can be used
throughout your scripts to process errors the way you want.

• ErrorHandler uses two built-in exception functions, ExceptData and
ExceptCalls.

Except Data All built-in exceptions have message text
associated with them. ExceptData returns that
text.

ExceptCalls Returns a list of the function calls that
generated the exception. You can see from
ErrorHandler above, that ExceptCalls
returns a LIST OF CALL. CALL is a built-in
data type that is a record with three elements:

• sFunction

• sModule

• iLine

ErrorHandler processes each of the calls
and prints them in the results file.

• Silk Test Classic also provides the function ExceptPrint, which combines the
features of ExceptCalls, ExceptData, and ExceptNum.

Testcase VerifyTest - Passed
*** Error: Verify value failed - got "yyy", expected "xxx"
Module: Function: Verify Line: 0

502 | Troubleshooting the Classic Agent

Module: except.t Function: CompValues Line: 121
Module: except.t Function: VerifyTest Line: 112

The second line is the result of printing the information from ExceptData. The rest
of the lines show the processing of the information from ExceptCalls.

This test case passes because the error was handled locally and not re-raised.

Writing an Error-Handling Function
If you want to customize your error processing, you will probably want to write your own error-handling
function, which you can reuse in many scripts.

Open Agent Example

For example, you might want to print the text associated with the exception as well as
the function calls that generated the exception. The following test case illustrates this:

testcase VerifyTest ()
 STRING sTestValue = "xxx"
 STRING sExpectedValue = "yyy"
 CompValues (sExpectedValue, sTestValue)

CompValues (STRING sExpectedValue, STRING sTestValue)
 do
 Verify (sExpectedValue, sTestValue)
 except
 ErrorHandler ()

ErrorHandler ()
 CALL Call
 LIST OF CALL lCall
 lCall = ExceptCalls ()
 Print (ExceptData ())
 for each Call in lCall
 Print("Module: {Call.sModule}",
 "Function: {Call.sFunction}",
 "Line: {Call.iLine}")

• The test case calls the user-defined function CompValues, passing two arguments.
• CompValues uses Verify to compare its arguments. If they are not equal, an

exception is automatically raised.
• If an exception is raised, CompValues calls a user-defined function,

ErrorHandler, which handles the error. This is a general function that can be used
throughout your scripts to process errors the way you want.

• ErrorHandler uses two built-in exception functions, ExceptData and
ExceptCalls.

Except Data All built-in exceptions have message text
associated with them. ExceptData returns that
text.

ExceptCalls Returns a list of the function calls that
generated the exception. You can see from
ErrorHandler above, that ExceptCalls
returns a LIST OF CALL. CALL is a built-in
data type that is a record with three elements:

• sFunction

• sModule

Troubleshooting the Classic Agent | 503

• iLine

ErrorHandler processes each of the calls
and prints them in the results file.

• Silk Test Classic also provides the function ExceptPrint, which combines the
features of ExceptCalls, ExceptData, and ExceptNum.

Testcase VerifyTest - Passed
*** Error: Verify value failed - got "yyy", expected "xxx"
Module: Function: Verify Line: 0
Module: except.t Function: CompValues Line: 121
Module: except.t Function: VerifyTest Line: 112

The second line is the result of printing the information from ExceptData. The rest
of the lines show the processing of the information from ExceptCalls.

This test case passes because the error was handled locally and not re-raised.

Exception Values
This section describes the exceptions that are generated by Silk Test Classic under specific error
conditions.

Exception value Description

E_ABORT Script aborted by user.

E_APP_NOT_READY The application is not ready.

E_APP_NOT_RESPONDING The application is not responding to input.

E_APPID_INVALID The specified application ID is not a valid application.

E_BITMAP_NOT_STABLE The bitmap timeout period set with
OPT_BITMAP_MATCH_TIMEOUT
was reached before the image stabilized.

E_BITMAP_REGION_INVALID The specified region was off the screen.

E_BITMAPS_DIFFERENT The comparison failed when comparing two bitmaps.

E_CANT_CLEAR_SELECTION The selection cannot be cleared.

E_CANT_CLOSE_WINDOW The window cannot be closed (often resulting when a
confirmation dialog box pops up).

E_CANT_COMPARE_BITMAP Silk Test Classic ran out of a system resource (such as
memory) needed to compare the bitmaps.

E_CANT_CONVERT_RESOURCE The specified resource cannot be handled by
GetResource, although it is a valid resource for the
widget.

E_CANT_EXIT_APP Silk Test Classic was unable to close the application.

E_CANT_EXTEND_SELECTION The list box selection can not be extended because
nothing is selected.

E_CANT_MAXIMIZE_WINDOW The window can not be maximized.

E_CANT_MINIMIZE_WINDOW The window can not be minimized.

E_CANT_MOVE_WINDOW The window can not be moved.

504 | Troubleshooting the Classic Agent

Exception value Description

E_CANT_RESTORE_WINDOW The window size can not be restored.

E_CANT_SET_ACTIVE The window can not be set active.

E_CANT_SET_FOCUS The window can not be given the input focus.

E_CANT_SIZE_WINDOW The window can not be resized.

E_CANT_START_APP The application cannot be started.

E_COL_COUNT_INVALID The specified value is not a valid character count.

E_COL_NUM_INVALID The specified value is not a valid character position.

E_COL_START_EXCEEDS_END The starting character exceeds the end character
position.

E_COLUMN_INDEX_INVALID The specified index is not a valid column index. All
DataGrid methods that use DataGridCell,
DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_COLUMN_NAME_INVALID The specified index is not a valid column index. All
DataGrid methods that use DataGridCell,
DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_CONTROL_NOT_RESPONDING The control is not responding. Raised after checking
whether a specified action took place.

E_COORD_OFF_SCREEN The specified mouse coordinate is off the screen.

E_COORD_OUTSIDE_WINDOW The specified coordinate is outside the window. This
exception is never raised if the OPT_VERIFY_COORD
option is set to FALSE.

E_CURSOR_TIMEOUT The cursor timeout period was reached before the correct
cursor appeared.

E_DELAY_INVALID The specified delay is not valid.

E_FUNCTION_NOT_REGISTERED The function called is a user-defined function that hasn't
been registered by the application.

E_GRID_HAS_NO_COL_HDR The specified DataGrid has no column header. All
DataGrid methods that use DataGridCell,
DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_GUIFUNC_ID_INVALID The specified function is not a valid function.

E_INTERNAL Internal Silk Test Classic error.

E_INVALID_REQUEST Invalid argument count or argument, or wrong number of
arguments.

E_ITEM_INDEX_INVALID The specified index is not a valid item index.

E_ITEM_NOT_FOUND The specified item was not found.

E_ITEM_NOT_VISIBLE The specified item is not visible.

E_KEY_COUNT_INVALID The repeat count used in the key specification is not a
valid number.

Troubleshooting the Classic Agent | 505

Exception value Description

E_KEY_NAME_INVALID The specified key name is not valid.

E_KEY_SYNTAX_ERROR The syntax used in the key specification is not valid.

E_LINE_COUNT_INVALID The specified line count is not valid.

E_LINE_NUM_INVALID The specified line number is not valid.

E_LINE_START_EXCEEDS_END The specified start line exceeds the end line number.

E_MOUSE_BUTTON_INVALID The specified mouse button is not valid

E_NO_ACTIVE_WINDOW No window is active.

E_NO_COLUMN GuptaTable exception.

E_NO_DEFAULT_PUSHBUTTON The dialog box does not have a default button.

E_NO_FOCUS_WINDOW No window has the input focus.

E_NO_SETFOCUS_CELL GuptaTable exception.

E_NO_SETFOCUS_COLUMN GuptaTable exception.

E_NO_SETTEXT_CELL GuptaTable exception.

E_NOFOCUS_CELL No cell in the Gupta table has input focus.

E_NOFOCUS_COLUMN No column in the Gupta table has input focus.

E_NOFOCUS_ROW No row in the Gupta table has input focus.

E_NOT_A_TABLEWINDOW The specified window is not a Gupta table.

E_OPTION_CLASS_MAP_INVALID The mapping specified with the OPT_CLASS_MAP
option is not valid.

E_OPTION_EVTSTR_LENGTH The length of the event string given in
OPT_MENU_INVOKE_POPUP was too long.

E_OPTION_NAME_INVALID The specified agent option does not exist.

E_OPTION_TOO_MANY_TAGS The maximum number of tags was exceeded when
specifying buttons and menu items using one or more of
these options:

• OPT_CLOSE_CONFIRM_BUTTONS

• OPT_CLOSE_WINDOW_BUTTONS

• OPT_CLOSE_WINDOW_MENUS

E_OPTION_TYPE_MISMATCH Mismatch between type of agent option and type of
specified value.

E_OPTION_VALUE_INVALID The specified agent option is not valid.

E_OUT_OF_MEMORY The system has run out of memory.

E_POS_INVALID The specified position is not valid.

E_POS_NOT_REACHABLE The specified position cannot be reached. It is out of
range of the object.

E_RESOURCE_NOT_FOUND The widget does not contain the specified resource.

E_ROW_INDEX_INVALID The specified index is not a valid row index. All
DataGrid methods that use DataGridCell,

506 | Troubleshooting the Classic Agent

Exception value Description

DataGridRow, or DataGridCol as a parameter may see
this exception raised.

E_SBAR_HAS_NO_THUMB The scroll bar thumb can not be clicked to scroll a page
because the scroll bar does not have a thumb.

E_SQLW_BAD_COLUMN_NAME A bad column name was specified for the Gupta table.

E_SQLW_BAD_COLUMN_NUMBER A bad column number was specified for the Gupta table.

E_SQLW_BAD_ROW_NUMBER A bad row number was specified for the Gupta table.

E_SQLW_CANT_ENTER_TEXT GuptaTable exception.

E_SQLW_INCORRECT_LIST GuptaTable exception.

E_SQLW_NO_EDIT_WINDOW GuptaTable exception.

E_SQLW_TABLE_WINDOW_HIDDEN GuptaTable exception.

E_SQLW_TOO_BIG_LIST GuptaTable exception.

E_SYSTEM A system operation has failed.

E_TAG_SYNTAX_ERROR The tag syntax is not valid: invalid coordinate or index,
multiple indices specified, the window part is not the last
part of the tag, or the tilde (~) is not followed by a child
window.

E_TIMER The specified timer operation is redundant. For example,
a pause operation specified for a stopped timer.

E_TRAP_NOT_SET Attempted to clear a trap that was not set.

E_UNSUPPORTED The specified method is not supported on the current
platform.

E_VAR_EXPECTED A function or method call has not passed a variable for a
required parameter or an expression failed to specify a
variable required by an operator.

E_VERIFY User-specified verification failed.

E_WINDOW_INDEX_INVALID The tag uses an invalid index number.

E_WINDOW_NOT_ACTIVE The specified window is not active.

E_WINDOW_NOT_ENABLED The specified window is not enabled.

E_WINDOW_NOT_EXPOSED The specified window is not exposed.

E_WINDOW_NOT_FOUND The specified window is not found. Raised by any method
that operates on a window, except Exists.

E_WINDOW_NOT_UNIQUE The specified identifier does not represent a unique
window. Raised by any method that operates on a
window. Affected by the value set with the
OPT_VERIFY_UNIQUE option.

If you receive this exception, you might try using a slightly
modified tag syntax to refer to a window with a non-
unique tag. You can either include an index number after
the object, as in Dbox ("Cancel[2]"), or you can
specify the window by including the text of a child that

Troubleshooting the Classic Agent | 507

Exception value Description

uniquely identifies the window, such as Dbox/
uniqueText/..., where the unique text is the tag of
a child of that window.

E_WINDOW_SIZE_INVALID The window size is too big for the screen or it is negative.

E_WINDOW_TYPE_MISMATCH The specified window is not valid for this method. Raised
when the type of window used is not the type the method
accepts.

Troubleshooting Java Applications
This section provides solutions for common reasons that might lead to a failure of the test of your
standalone Java application or applet. If these do not solve the specific problem that you are having, you
can enable your extension manually.

The test of your standalone Java application or applet may fail if the application or applet was not ready to
test, the Java plug-in was not enabled properly, if there is a Java recognition issue, or if the Java applet
does not contain any Java controls within the JavaMainWin.

Why Is My Java Application Not Ready To Test?
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If your Java application is not ready to test, enable the extension for the application and restart the
application.

1. On the Basic Workflow bar, click Enable Extensions. The Enable Extensions dialog box opens.

2. On the Enable Extensions dialog box, select the Java application for which you want to enable
extensions.

3. Click OK. The Enable Extensions dialog box closes.

4. Close and restart the Java application.

5. When the application has finished loading, click Test.

Why Can I Not Test a Java Application Which Is Started
Through a Command Prompt?
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you are starting your standalone Java application through a Command Prompt window, close and re-
open the Command Prompt window when you restart your application.

If you have forgotten to close and re-open the Command Prompt window, use the Basic Workflow bar to
enable the extension again, making sure that you close and re-open both your Java application and the
Command Prompt window before you click Test on the Test Extension Settings dialog box.

1. On the Basic Workflow bar, click Enable Extensions. The Enable Extensions dialog box opens.

2. On the Enable Extensions dialog box, select the Java application for which you want to enable
extensions.

3. On the Extension Settings dialog box, click OK.

508 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

4. Close your Java application and the Command Prompt window.

5. Open a Command Prompt and restart your application.

6. When the application has finished loading, click Test.

What Can I Do If My Java Application Not Contain Any
Controls Below JavaMainWin?
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If your Java application (or applet) does not contain any Java children within JavaMainWin, your tests
against the application will fail. However, you might configure the Java extension to prevent this kind of
failure. Record against Java controls to make sure that the extension is enabled. For example, record a
push button as a JavaAWTPushButton or a JavaJFCPushButton.

How Can I Enable a Java Plug-In?
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If the browser that you are using has a plug-in enabled, or if the applet uses a plug-in, you must check the
Java Plug-in check box on the Extension Settings dialog box. In all other cases, uncheck the Java Plug-
in check box.

In Internet Explorer, click Tools > Internet Options and then click the Advanced tab, to determine if
Internet Explorer has a plug-in enabled. Scan the Settings list to see if a third party plug-in, such as Java
(Sun), has been enabled.

What Can I Do If the Java Plug-In Check Box Is Not
Checked?
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If a plug-in is enabled for the browser, and the applet is using a plug-in, but you did not check the Java
Plug-In check box, check the Java Plug-In check box and enable the extension again.

1. On the Basic Workflow bar, click Enable Extensions. The Enable Extensions dialog box opens.

2. On the Extension Settings dialog box, make sure DOM is the Primary Extension.

3. Check the Java Plug-in check box.

4. Click OK.

5. Close and restart your Java application.

6. When the application has finished loading, click Test.

What Can I Do When I Am Testing an Applet That Does
Not Use a Plug-In, But the Browser Has a Plug-In
Loaded?
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you are testing an applet that does not use a plug-in, but the browser has a plug-in loaded, disable
the plug-in and enable the extension again.

Troubleshooting the Classic Agent | 509

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

1. In the browser that you are using, disable all plug-ins.
2. In the Basic Workflow bar, click Enable Extensions and enable the extension for the applet again.
3. In the Extension Settings dialog box, uncheck the Java Plug-in check box.

What Can I Do If the Silk Test Java File Is Not Included
in a Plug-In?
If the SilkTest_Java3.jar file is not included in the lib/ext directory of the plug-in that you are
using:

1. Locate the lib/ext directory of the plug-in that you are using and check if the SilkTest_Java3.jar
file is included in this folder.

2. If the SilkTest_Java3.jar file is not included in the folder, copy the file from the javaex folder of
the Silk Test installation directory into thelib\ext directory of the plug-in.

What Can I Do If Java Controls In an Applet Are Not
Recognized?
Silk Test Classic cannot recognize any Java children within an applet if your applet contains only custom
classes, which are Java classes that are not recognized by default, for example a frame containing only an
image. For information about mapping custom classes to standard classes, see Mapping Custom Classes
to Standard Classes. Additionally, you have to set the Java security privileges that are required by Silk Test
Classic.

Multiple Machines Testing
This section provides help and troubleshooting information for testing on multiple machines.

Remote Testing and Default Browser
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic uses the registry to determine which version of IE is installed on your machine; this means
that the correct default browser is selected when you choose Internet Explorer 6 or Internet Explorer 7.

If you are doing remote testing, you will have to set up your default browser for your target test machine
yourself. The reason this is because both versions of Internet Explorer use the same domex.dll and
therefore Silk Test Classic does not select the default browser at all.

Setting Up the Recovery System for Multiple Local
Applications
Problem

By default, the recovery system will only work for the single application assigned to the const
wMainWindow. With distributed testing, you can get recovery on multiple applications by using
multitestcase instead of testcase.

You might ask whether you can get the recovery system to work on multiple applications that are running
locally using multitestcase locally. The answer is no; multitestcase is for distributed testing only.

But you can use the following solution instead, using testcase.

510 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Solution

To get recovery for multiple local applications, set up your frame file to do the following:

1. Get standard wMainWindow declarations for each application. The easiest way is to select File > New
> Test Frame for each application, then combine the wMainWindow declarations into a single frame file
or include them with use.

2. Make the global wMainWindow a variable of type WINDOW, rather than a constant.
3. Assign one of the windows to wMainWindow as a starting point.
4. Create a LIST OF WINDOW and assign the wMainWindow identifier for each application you are

dealing with to it.
5. Define a TestcaseEnter function so that you reassign the wMainWindow variable and call

SetAppState on each MainWin in turn.
6. Define a TestcaseExit function so that you reassign the wMainWindow variable and call

SetBaseState on each MainWin in turn.
7. Then use DefaultBaseState, or your own base state if you want, with each of your test cases. In

your test case, use SetActive each time you switch from one application to the other.

Example

The example consists of two sample files. The sample files are for the Classic Agent. If
you want to use the example with the Open Agent, you have to change the sample
code. For the sample script file, see two_apps.t. For the sample include file, see
two_apps.inc. The example uses two demo applications shipped with Silk Test
Classic, the Text Editor and the Test Application. To see that the recovery system is
working for both applications, turn on the two debugging options in Runtime Options
and look at the transcript after running the test script.

The first test case has an intentional error in its last statement to demonstrate the
recovery system. The test case also demonstrates how to move data from one
application to another with Clipboard.GetText and Clipboard.SetText.

Because the recovery system is on, the DefaultBaseState will take care of invoking
each application if it is not already running and will return to the DefaultBaseState after
each test case, even if the test case fails.

You can print the sample files out or copy them to the Clipboard, then paste them into
Silk Test Classic. You might have to do some cleanup where the indentation of lines is
incorrect in the pasted file.

two_apps.t
The following sample script file for the Classic Agent shows how you can locally test multiple applications.
To use the sample with the Open Agent, you have to change the sample code, for example you have to
replace all tags with locators.

testcase Test1 () appstate DefaultBaseState
 //SetActive each time you switch apps
 TestApplication.SetActive()
 TestApplication.File.New.Pick ()
 MDIChildWindow1.TextField1.SetPosition (1, 1)
 MDIChildWindow1.TextField1.TypeKeys ("In Test Application MDI Child Window
#1.")
 //SetActive each time you switch apps
 TextEditor.SetActive ()
 TextEditor.File.New.Pick ()
 TextEditor.ChildWin("(untitled)[1]").TextField("#1")
 .TypeKeys ("In Text Editor untitled Document window.<Enter>")
 //SetActive each time you switch apps

Troubleshooting the Classic Agent | 511

 TestApplication.SetActive()
 LIST OF STRING lsTempStrings
 lsTempStrings = MDIChildWindow1.TextField1.GetMultiText()
 Clipboard.SetText([LIST OF STRING]lsTempStrings)
 //SetActive each time you switch apps
 TextEditor.SetActive()
 TextEditor.ChildWin("(untitled)
[1]").TextField("#1").SetMultiText(Clipboard.GetText(),2)
 TextEditor.VerifyCaption("FooBar")

testcase Test2 () appstate DefaultBaseState
 wMainWindow = TestApplication
 TestApplication.SetActive()
 TestApplication.File.New.Pick ()
 MDIChildWindow1.TextField1.SetPosition (1, 1)
 MDIChildWindow1.TextField1.TypeKeys ("In Test Application MDI Child Window
#1.")
 wMainWindow = TextEditor
 TextEditor.SetActive ()
 TextEditor.File.New.Pick ()
 TextEditor.ChildWin("(untitled)[1]").TextField("#1")
 .TypeKeys ("In Text Editor untitled Document window.<Enter>")
 wMainWindow = TestApplication
 TestApplication.SetActive()
 LIST OF STRING lsTempStrings
 lsTempStrings = MDIChildWindow1.TextField1.GetMultiText()
 Clipboard.SetText([LIST OF STRING]lsTempStrings)
 wMainWindow = TextEditor
 TextEditor.SetActive()
 TextEditor.ChildWin("(untitled)
[1]").TextField("#1").SetMultiText(Clipboard.GetText(),2)

two_apps.inc
The following sample include file for the Classic Agent shows how you can locally test multiple applications.
To use the sample with the Open Agent, you have to change the sample code, for example you have to
replace all tags with locators.

// two_apps.inc
// define wMainWindow as a window global var
// and assign one of the apps (your pick) as a starting point.
window wMainWindow = TextEditor
const wMainWindow = TextEditor //replace default def

// Create a list of app MainWins
list of window lwApps = {...}
TextEditor
TestApplication
// Define your own TestCaseEnter.
TestCaseEnter ()
 window wCurrentApp
 for each wCurrentApp in lwApps
 wMainWindow = wCurrentApp
 SetAppState()

// Define your own TestCaseExit.
TestCaseExit (BOOLEAN bException)
 if bException
 ExceptLog()
 window wCurrentApp
 for each wCurrentApp in lwApps
 wMainWindow = wCurrentApp
 if (wCurrentApp.Exists())

512 | Troubleshooting the Classic Agent

 SetBaseState()

window MainWin TextEditor
 tag "Text Editor"

// The working directory of the application when it is invoked
const sDir = "C:\QAP40"
// The command line used to invoke the application
const sCmdLine = "C:\PROGRAMFILES\<SilkTest install directory>\\SILKTEST
\TEXTEDIT.EXE"

// The first window to appear when the application is invoked
// const wStartup = ?

// The list of windows the recovery system is to leave open
// const lwLeaveOpen = {?}
Menu File
 tag "File"
 MenuItem New
 tag "New"
 MenuItem Open
 tag "Open"
 MenuItem Close
 tag "Close"
 MenuItem Save
 tag "Save"
 MenuItem SaveAs
 tag "Save As"
 MenuItem Print
 tag "Print"
 MenuItem PrinterSetup
 tag "Printer Setup"
 MenuItem Exit
 tag "Exit"
 Menu Edit
 tag "Edit"
 MenuItem Undo
 tag "Undo"
 MenuItem Cut
 tag "Cut"
 MenuItem Copy
 tag "Copy"
 MenuItem Paste
 tag "Paste"
 MenuItem Delete
 tag "Delete"
 Menu Search
 tag "Search"
 MenuItem Find
 tag "Find"
 MenuItem FindNext
 tag "Find Next"
 MenuItem Replace
 tag "Replace"
 MenuItem GotoLine
 tag "Goto Line"
 Menu Options
 tag "Options"
 MenuItem Font
 tag "Font"
 MenuItem Tabs
 tag "Tabs"
 MenuItem AutomaticIndent
 tag "Automatic indent"

Troubleshooting the Classic Agent | 513

 MenuItem CreateBackups
 tag "Create backups"
 Menu xWindow
 tag "Window"
 MenuItem TileVertically
 tag "Tile Vertically"
 MenuItem TileHorizontally
 tag "Tile Horizontally"
 MenuItem Cascade
 tag "Cascade"
 MenuItem ArrangeIcons
 tag "Arrange Icons"
 MenuItem CloseAll
 tag "Close All"
 MenuItem Next
 tag "Next"
 Menu Help
 tag "Help"
 MenuItem About
 tag "About"

window MessageBoxClass MessageBox
 tag "~ActiveApp/[DialogBox]$MessageBox"
 PushButton OK
 tag "OK"
 PushButton Cancel
 tag "Cancel"
 PushButton Yes
 tag "Yes"
 PushButton No
 tag "No"
 StaticText Message
 mswnt tag "#2"
 tag "#1"

window ChildWin Untitled
 tag "(untitled)"
 parent TextEditor
 TextField TextField1
 tag "#1"

window DialogBox Open
 tag "Open"
 parent TextEditor
 StaticText FileNameText
 tag "File Name:"
 TextField FileName1
 tag "File Name:"
 ListBox FileName2
 tag "File Name:"
 StaticText DirectoriesText
 tag "Directories:"
 StaticText CQap40Text
 tag "c:\qap40"
 ListBox CQap40
 tag "c:\qap40"
 StaticText ListFilesOfTypeText
 tag "List Files of Type:"
 PopupList ListFilesOfType
 tag "List Files of Type:"
 StaticText DrivesText
 tag "Drives:"
 PopupList Drives
 tag "Drives:"

514 | Troubleshooting the Classic Agent

 PushButton OK
 tag "OK"
 PushButton Cancel
 tag "Cancel"
 PushButton Network
 tag "Network"

window MainWin TestApplication
 tag "Test Application"
// The working directory of the application when it is invoked
const sDir = "C:\QAP40"

// The command line used to invoke the application
const sCmdLine = "C:\QAP40\TESTAPP.EXE"

// The first window to appear when the application is invoked
// const wStartup = ?

// The list of windows the recovery system is to leave open
// const lwLeaveOpen = {?}
Menu File
 tag "File"
 MenuItem New
 tag "New"
 MenuItem Close
 tag "Close"
 MenuItem Exit
 tag "Exit"
 MenuItem About
 tag "About"
Menu Control
 tag "Control"
 MenuItem CheckBox
 tag "Check box"
 MenuItem ComboBox
 tag "Combo box"
 MenuItem ListBox
 tag "List box"
 MenuItem PopupList
 tag "Popup list"
 MenuItem PushButton
 tag "Push button"
 MenuItem RadioButton
 tag "Radio button"
 MenuItem StaticText
 tag "Static text"
 MenuItem Scrollbar
 tag "Scrollbar"
 MenuItem Textfield
 tag "Textfield"
 MenuItem DrawingArea
 tag "Drawing area"
 MenuItem KeyboardEvents
 tag "Keyboard events"
 MenuItem Cursors
 tag "Cursors"
 MenuItem ListView
 tag "List view"
 MenuItem PageList
 tag "Page list"
 MenuItem StatusBar
 tag "Status bar"
 MenuItem ToolBar
 tag "Tool bar"

Troubleshooting the Classic Agent | 515

 MenuItem TrackBar
 tag "Track bar"
 MenuItem TreeView
 tag "Tree view"
 MenuItem UpDown
 tag "Up-Down"
Menu Menu
 tag "Menu"
 MenuItem TheItem
 tag "The item"
 MenuItem TheAcceleratorItem
 tag "The accelerator item"
 Menu TheCascadeItem
 tag "The cascade item"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 MenuItem Check
 tag "Check"
 MenuItem Uncheck
 tag "Uncheck"
 MenuItem TheCheckItem
 tag "The check item"
 MenuItem Enable
 tag "Enable"
 MenuItem Disable
 tag "Disable"
 MenuItem TheEnableItem
 tag "The enable item"
 Menu Submenu1
 tag "Submenu1"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 Menu Submenu2
 tag "Submenu2"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 Menu Submenu3
 tag "Submenu3"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 MenuItem ThePopupMenu
 tag "The popup menu"
 MenuItem Check
 tag "Check"
 MenuItem Uncheck
 tag "Uncheck"
 MenuItem TheCheckItem
 tag "The check item"
 MenuItem Enable
 tag "Enable"
 MenuItem Disable
 tag "Disable"
 MenuItem TheEnableItem
 tag "The enable item"
 MenuItem AddMenu
 tag "Add menu"

516 | Troubleshooting the Classic Agent

 MenuItem ClearMenus
 tag "Clear menus"
 Menu DisabledMenu
 tag "DisabledMenu"
 MenuItem Item1
 tag "Item1"
 MenuItem Item2
 tag "Item2"
 Menu Menu5
 tag "#5"
 MenuItem MenuItem1
 tag "#1"
 MenuItem MenuItem2
 tag "#2"
 Menu xWindow
 tag "Window"
 MenuItem Cascade
 tag "Cascade"
 MenuItem Tile
 tag "Tile"
 MenuItem ArrangeIcons
 tag "Arrange Icons"
 MenuItem CloseAll
 tag "Close All"
 MenuItem ChangeCaption
 tag "Change Caption"
 MenuItem SysModal1
 tag "SysModal 1"
 MenuItem SysModal2
 tag "SysModal 2"
 MenuItem SysModal3
 tag "SysModal 3"
 MenuItem N1MDIChildWindow1
 tag "1 MDI Child Window #1"

window ChildWin MDIChildWindow1
 tag "MDI Child Window #1"
 parent TestApplication
 TextField TextField1
 tag "#1"

Objects
This section provides help and troubleshooting information for objects.

Does Silk Test Classic Support Oracle Forms?

Open Agent

If you are using the Open Agent, Silk Test Classic provides built-in support for testing applications that are
based on Oracle Forms with a Java version up to Java 1.7 update 60. For additional information, see
Oracle Forms Support.

Classic Agent

If you are using the Classic Agent, Silk Test Classic handles Oracle Forms applications as any Java applet
that consists of custom classes.

All children of the applet are seen as CustomWins, with native class names such as oracle.ewt.* and
oracle.forms.*. You need to declare winclasses for any classes that you plan to use, and you can only

Troubleshooting the Classic Agent | 517

interact with classes through scripting. For more efficient declaration of classes, use the
CaptureAllClasses function instead of clicking Record > Class to record each class separately.

As with any application consisting of custom classes, if there are objects that Silk Test Classic does not
see, check Show All Classes to see if that exposes the ignored objects. If so, then you should add those
classes to the [ClassList] section of extend\JavaEx.ini. Uncheck Show All Classes before
recording window classes or declarations.

To get started, take a look at our guidelines for when and how to record classes.

If you do not want to record classes for these CustomWin objects, you can click Record > Class and then
uncheck the Show All Classes check box in the lower left corner of the dialog box.

Mouse Clicks Fail on Certain JFC and Visual Café
Objects
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Because of timing issues between the Agent and the application under test, you might experience
problems with menu picks on Java Foundation Class (JFC) or Symantec Visual Café objects. As a
workaround, try setting keyboard and mouse delays. Use the values specified below as good starting
points, and then experiment with different delays as needed until you find the timing that works best for
your system configuration and application.

For … Set …

Java Foundation Class
objects

keyboard delay = 0.01 second

mouse delay = 0.01 second

Visual Café objects keyboard delay = 0.03 second

mouse delay = 0.03 second

My Sub-Menus of a Java Menu are being Recorded as
JavaDialogBoxes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Occasionally, a sub-menu of a Java menu exceeds the boundaries of its application so that part of the sub-
menu extends beyond the borders of the application. In this situation, Silk Test Classic records these very
large sub-menus as JavaDialogBoxes, not as part of the menu.

Try dragging the JavaMainWin to a larger size before recording or maximizing the application.

Other Problems
This section provides help and troubleshooting information for problems that are not covered by another
section.

Adding a Property to the Recorder
1. Write a method.
2. Add a property to the class.
3. Add the property to the list of property names.

518 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

For example, if you have a text field that is ReadOnly and you want to add that property to the recorder
you can do the following:

1. Write the method Boolean IsReadOnly() for the TextField class.
2. Add the property, bReadOnly to the class.
3. Add bReadOnly to the list of property names.
4. Compile. bReadOnly will appear in the Recorder after you compile.

Winclass TextField : TextFieldBOOLEAN IsReadOnly()
STRING sOriginalText = this.GetText()
STRING sNewText = "xxx"
this.SetText(sNewText)
if this.GetText()==sOriginalText
return TRUE
else
return FALSE
property bReadOnly
BOOLEAN Get()
return this.IsReadOnly()
LIST OF STRING IsPropertyNames = {…}
"bReadOnly"

Application Hangs When Playing Back a Menu Item
Pick
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

Your application under test (AUT) hangs when playing back a Pick() method call against a menu item or
menu.

Solution

Try setting the agent option OPT_PLAY_MODE to Win32:

Agent.SetOption (OPT_PLAY_MODE, "Win32")

This option is not part of the Agent Options dialog box, so you must set it by scripting. To set it globally,
create a TestCaseEnter() function and set it there.

Cannot Access Some of the Silk Test Classic Menu
Commands
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

You cannot use several of the menus/menu commands.

Solution

You may be using Silk Test Runtime, a stripped down version of Silk Test Classic. To check what version
you are using, click Help > About.

Troubleshooting the Classic Agent | 519

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Cannot Double-Click a Silk Test Classic File and Open
Silk Test Classic

Problem

Silk Test Classic does not open automatically when you double-click
a .t, .inc, .s, .g.t, .pln, .res, .stp, or .vtp file.

Cause

During the install process, Silk Test Classic is associated with these file types. However if these file type
associations have been changed after Silk Test Classic setup, these file types may not be opened with Silk
Test Classic when double-clicking such a file.

Note: File type associations are only available for Microsoft Windows platforms.

Solution

You can either manually associate these file types with Silk Test Classic in Windows, under Start >
Settings > Control Panel > Folder Options, or reinstall Silk Test Classic.

Cannot Extend AnyWin, Control, or MoveableWin
Classes
The AnyWin, Control, and MoveableWin classes are logical (virtual) classes that do not correspond to
any actual GUI objects, but instead define methods common to the classes that derive from them. This
means that Silk Test Classic never records a declaration that has one of these classes.

Furthermore, you cannot extend or override logical classes. If you try to extend a logical class, by adding a
method, property or data member to it, that method, property, or data member is not inherited by classes
derived from the class. You will get a compilation error saying that the method, property, or data member is
not defined for the window that tries to call it.

You can also not override the class, by rewriting existing methods, properties, or data members. Your
modifications are not inherited by classes derived from the class.

Cannot Find the Quick Start Wizard
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

You cannot find the Quick Start Wizard.

Solution

Beginning with Silk Test Classic 6.0, the Quick Start Wizard is turned off by default. You can turn the
Wizard back on by opening partner.ini and replacing these two lines:

[Wizard]
AutoInitWizard=FALSE

520 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

With the following:

[Wizard]
AutoInitWizard=TRUE
WizardEnabled=TRUE

Restart Silk Test Classic. The Wizard is available when you click File > New > Testframe.

Cannot open results file

Problem

Silk Test Classic crashes while running a script and reports the error Can't open results file.

Solution

While Silk Test Classic is running a script, it temporarily stores results in a journal file (.jou) which is
converted to a .res file when the script finishes running.

To solve this issue, delete all .jou files in the same directory as the script. You do not have to delete your
results files.

Then restart Silk Test Classic and run your script again.

Cannot Play Back Picks of Cascaded Sub-Menus for an
AWT Application
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

For AWT, Silk Test Classic can pick cascaded menu items only up to the third level, for example:

TestApplication.Menu.TheCascadeItem.Su\menu1.Item2

It cannot pick deeper sub-menus, such as the following:

TestApplication.Menu.TheCascadeItem.Su\menu1.Submenu2.Item2

For JVM 1.1.x, Silk Test Classic may only be able to pick menu items up to the 2nd level, for example:

TestApplication.Menu.TheCascadeItem.It\m2

Cannot Record Second Window
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When Silk Test Classic records a popup list or list box select that causes an OnMouseDown event to spawn
a second window, it cannot record that second window. This is usually due to the Javascript that launches
a second window and changes the underlying value of the popup list or list box.

You must edit the recorded scripts in order for play back to run correctly.

Common DLL Problems
Here are some issues that could come up if you are calling DLL functions in a script.

Difficulty creating DLLs to use with Silk Test

Only specific data types are compatible with 4Test. These data types are listed in C data types for DLL
functions.

Troubleshooting the Classic Agent | 521

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

If your DLL calls have data types not supported by 4Test, then the functions must be wrapped such that
only compatible data types are used for the return type and arguments of the function. Any data types can
be used inside the DLL function.

Error after compile: dll not found

In the DLL declaration, use the fully qualified path of the DLL, not just the file name.

Error executing 'CallDllFunction'

When the communication timeout between the Open Agent and the application under test is too small, the
CallDllFunction might generate the error message Error executing 'CallDllFunction'.
Communication timeout between agent and application.

To solve this issue, increase the timeout.

1. Stop the Open Agent.
2. Open the file %OPEN_AGENT_HOME%/agent/openAgent.ini.
3. Append the following code to the file:

-DDefaultCommTimeout=300000

This code sets the timeout to 300000 milliseconds, which means 5 minutes. To specify no timeout, set
the value to -1.

4. Restart the Open Agent.

Error in results file: dll could not be loaded

Make sure the directory containing the DLL is on the path.

Error in results file: dll not found

This usually means that your path does not include the directory containing the DLL. If you are running
remotely, make sure that the path on the machine running the agent includes the DLL directory.

Error in results file: function <name> not found in dll

The most likely scenario is that the DLL is a C++ library and the function name has been mangled. To use
functions in a C++ library, you need to wrap the functions with the C wrapper and recompile. Then Silk Test
Classic can access the function in the library.

If this is not the problem, there might be a typo in the function name in the DLL.

Warning in results file: String buffer size was increased from x to 256
characters

If the user calls a DLL function with an output string buffer that is less then the minimum size of 256
characters, the original string buffer is resized to 256 characters and a warning is printed. This warning,
String buffer size was increased from x to 256 characters (where x is the length of the
given string plus one) alerts the user to a potential problem where the buffer used might be shorter than
necessary.

Common Scripting Problems
Here are some common problems that occur with scripts.

Typographical errors

It is very easy to make typographical errors that the 4Test compiler cannot catch. If a line of code does
nothing, this might be the problem.

522 | Troubleshooting the Classic Agent

Global variables with unexpected values

When you write a function that uses global variables, make sure that each variable has an appropriate
value when the function exits. If another function uses the same variable later, and it has an unexpected
value on entry to the function, an error could occur.

To check that a variable has a reasonable value on entry to a function, set a breakpoint on the line that
calls the function and use the command View > Global Variables to check the variable's value.

Uninitialized variables

Silk Test Classic does not initialize variables for you. So if you have not initialized a variable on entry to a
function, it will have the value <unset>. It is better to explicitly give a value to a variable than to trust that
another function has already initialized it for you. Also, remember that 4Test does not keep local variables
around after a function exits; the next time the function is called, its local variables could be uninitialized.

If you are in doubt about whether a variable has a reasonable value at a particular point, set a breakpoint
there and use View > Global Variables or View > Local Variables to check the variable's value.

Global and local variables with the same name

It is usually not good programming practice to give different variables the same names. If a global and local
variable with the same name are in scope (accessible) at the same time, your code can only access the
local variable.

To check for repeated names, use View > Local Variables and View > Global Variables to see if two
variables with the same name are in scope simultaneously.

Incorrect values for loop variables

When you write a for loop or a while loop, be sure that the initial, final, and step values for the variable that
controls the loop are correct. Incrementing a loop variable one time more or less than you really want is a
common source of errors.

To make sure a control loop works as you expect, use Debug > Step Into to step through the execution of
the loop one statement at a time, and watch how the value of the loop variable changes using View >
Local Variables.

Checking the precedence of operators

The order in which 4Test applies operators when it evaluates an expression may not be what you expect.
Use parentheses, or break an expression down into intermediate steps, to make sure it works as expected.
You can use View/Expression to evaluate an expression and check the result.

Incorrect uses of break statements

A break statement transfers control of the script out of the innermost nested for, for each, while, switch, or
select statement only. In other words, break exits from a single loop level, not from multiple levels. Use
Debug > Step Into to step through the script one line at a time and ensure that the flow of control works as
you expect.

Infinite loops

To check for infinite loops, step through the script with Debug > Step Into.

Code that never executes

To check for code that never executes, step through the script with Debug > Step Into.

Troubleshooting the Classic Agent | 523

Conflict with Virus Detectors

Problem

Silk Test Classic will occasionally have problems on machines running virus detectors that use heuristic or
algorithmic virus detection in addition to the standard pattern recognition. What happens is that while Silk
Test Classic is running, the virus detector identifies Silk Test Classic as displaying "virus-like" behavior, and
kills or otherwise disables the agent. This leads to unpredictable and inconsistent behavior in Silk Test
Classic, including loss of communications with the agent and inconsistent test results or object recognition.

Solution

To avoid this problem the only solution is to temporarily disable the virus detector while Silk Test Classic is
running.

Displaying the Euro Symbol

Problem

You want to display the Euro (€) symbol.

Solution

Download a Euro-enabled font from Microsoft. Double check that you can see the Euro symbol by opening
Notepad on the machine where you installed the font and entering the ASCII code for the Euro symbol. As
long as you see the symbol in notepad, you should be able to see it within Silk Test Classic.

In Silk Test Classic, click Options > Editor Font and be sure that your font is set to Arial, Courier New, or
Times New Roman.

Do I Need Administrator Privileges to Run Silk Test
Classic?
You require the following privileges to install or run Silk Test Classic:

• To install Silk Test Classic, you must have local administrator privileges.
• To install Silk Test Classic on a Windows server, you must have domain-level administrator privileges.
• To run Silk Test Classic with the Classic Agent, you must have administrator privileges.
• If you have installed Silk Test Classic into the Program Files folder, you must have administrator

privileges to run Silk Test Classic with the Open Agent.
• If you have installed Silk Test Classic into a different location than the Program Files folder, you do

not need to have administrator privileges to run Silk Test Classic with the Open Agent.
• To run Silk Test Classic, you require full access rights to the following folders, including all subfolders:

• C:\ProgramData\Silk\SilkTest.
• %APPDATA%\Roaming\Silk\SilkTest.
• %APPDATA%\Local\Silk\SilkTest.
• %TEMP%.

Note: If User Account Control (UAC) is activated on your system, Micro Focus recommends that you
install Silk Test Classic into a different location than the Program Files folder.

524 | Troubleshooting the Classic Agent

General Protection Faults

Problem

When recording or running tests, you get a General Protection Fault (GPF) or Invalid Page
Fault (IPF) in agent.exe or partner.exe.

Solution

It can be very difficult to pin down the cause of these problems. It might involve a combination of your
machine's configuration, other applications that are running, and the network's configuration. The best
approach is to gather the diagnostic information described below and send it to Technical Support with a
detailed description of what scenario led to the error.

Capture the
system
diagnostics

When the system error message displays, chose the option to capture detailed
information on the error. Write the information down.

Capture a
debug.log file

1. Ensure that no Silk Test Classic or Agent processes are running.
2. Open a DOS prompt window.
3. Change your working directory to your Silk Test Classic installation directory.
4. Delete or rename c:\debug.log if the file exists.
5. Set the following environment variable: set QAP_DEBUG_AGENT=1.
6. Start the Agent manually: start .\agent.
7. Start Silk Test Classic manually: start .\partner.
8. Go through the scenario to reproduce the problem.
9. The file c:\debug.log file will be created.
10.Send this file as an attachment to your email to Technical Support.

Monitor CPU and
RAM usage

When reproducing this error to gather the diagnostics above, also run a system
resource monitor to check on CPU and RAM usage. Note whether CPU or RAM is
being exhausted.

Note your system
configuration

When sending in these diagnostics, note the version of Silk Test Classic, the
operating system and version, and the machine configuration (CPU, RAM, disk
space).

Running Global Variables from a Test Plan Versus
Running Them from a Script

Problem

When running from a test plan, global variables don’t keep their value from one test case to another.

When test cases are run from a script, global variables are initialized once at the beginning and do not get
reset while the script is being run. On the other hand, when you run test cases from a test plan, all global
variables get re-initialized after each test case. This is because the Agent reinitializes itself before running
each test case. Consequently, you may find that global variables are not as useful when running from a test
plan.

Troubleshooting the Classic Agent | 525

Solution

A workaround is to use the FileWriteLine or FileWriteValue function to write the values of the
global variables out to a file, then use the FileReadLine or FileReadValue function to read the value
back into each variable in each test case.

Ignoring a Java Class
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you are using the Java extension and you want to ignore a class, you must edit your javaex.ini file.
Add the following line to your javaex.ini file:

myclass=FALSE

where myclass is the full class name of the class to be ignored.

Use the value FALSE and not the value IGNORE.

Include File or Script Compiles but Changes are Not
Picked Up

Problem

You compile an include file or script, but changes that you made are not used when you run the script.

Solutions

Did you change
the wrong
include file?

Make sure that the include file you are compiling is the same as the file that is being
used by the script. Just because you have an include file open and have just compiled
it does not mean that it is being used by the script. The include file that the script will
use is either specified in Runtime Options (Use Files field) or by a use statement in the
script.

Is there a time-
stamp
problem?

If the time stamp for the file on disk is later than the machine time when you do Run >
Compile, then the compile does not actually happen and no message is given. This
can happen if two machines are sharing a file system where the files are being written
out and the time on the machines is not synchronized.

By default, Silk Test Classic only compiles files that need compiling, based on the date
of the existing object files and the system clock. This way, you don't have to wait to
recompile all files each time a change is made to one file.

If you need to, you can force Silk Test Classic to compile all files by selecting Run >
Compile All. Run > Compile All compiles the script or suite and all dependent
include files, even if they have not changed since they were last compiled. It also
compiles files listed in the Use Files field in the Runtime Options dialog and the
compiler constants declared in the Runtime Options dialog. Finally, it compiles the
include files loaded at startup, if needed.

Are your object
files corrupted?

Sometimes a Silk Test Classic object (.ino or .to) file can become corrupted.
Sometimes a corrupted object file can cause Silk Test Classic to assume that the
existing compile is up to date and to skip the recompile without any message.

To work around this, delete all .ino and .to files in the directories containing
the .inc and .t files you are trying to compile, then compile again.

526 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Library Browser Not Displaying User-Defined Methods

Problem

You add a description for a user-defined method and a user-defined function to 4test.txt. After
restarting Silk Test Classic, the new description for the function displays in the Library Browser, but not the
description for the method. So you know that the modified 4test.txt file is being used, but your user-
defined method is not being displayed in the Library Browser.

Solutions

Only methods defined in a class definition (that is, in your include file where your class is defined) will
display in the Library Browser. For example, MyAccept will be displayed.

winclass DialogBox:DialogBox
Boolean MyAccept()
...

Methods you define for an individual object are not displayed in the Library Browser. For example,
MyDialogAccept will not display.

DialogBox MyDialog
tag "My Dialog"
Boolean MyDialogAccept()
...

In order to display in the Library Browser, the description in your 4test.txt file must have a return type
that matches the return type in your include file declaration. If the 4test.txt description has no returns
statement, then the declaration must be for a return type of void (either specified explicitly or by defaulting
to type void). Otherwise, the description will not display in the Library Browser.

For more information about adding information to the Library Browser, see Adding to the Library Browser.

Maximum Size of Silk Test Classic Files
The following size limits apply:

• The limit for .inc, .t, and .pln files (and their associated backup files, .*_) is 64K lines.
• The size limit for the corresponding object files (.*o) depends on the amount of available system

memory.
• The Silk Test Classic editor limits lines to 1024 characters.
• The maximum size of a single entry in a .res file is 64K.
• Test case names can have a maximum of 127 characters. When you create a data-driven test case, Silk

Test Classic truncates any test case name that is greater than 124 characters.

Playing Back Mouse Actions
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Under 32-bit Windows, the following methods take an optional BOOLEAN argument, bRawEvent, that
specifies how mouse actions are played back:

AnyWin methods • Click
• DoubleClick
• MoveMouse
• MultiClick

Troubleshooting the Classic Agent | 527

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

• PressMouse
• ReleaseMouse

Pushbutton method • Click

By default, bRawEvent is FALSE. When FALSE, Silk Test Classic uses the standard Windows messaging
mechanism (journal playback) to perform actions. Usually this works fine. If your test plays back correctly,
use the default.

There are times, however, when this doesn't work and your test won't play back correctly. In such
situations, set bRawEvent to TRUE. When TRUE, Silk Test Classic uses a low-level mechanism to perform
the actions. Operations involving mouse dragging are more likely to work correctly using the low-level
mechanism. But this mechanism hasn't been tested as thoroughly as journal playback, so you should use it
only when the default fails.

You can have all playback use the low-level mechanism by setting OPT_PLAY_MODE to Win32:

Agent.SetOption (OPT_PLAY_MODE, "Win32")

To turn this off, set OPT_PLAY_MODE to Normal:

Agent.SetOption (OPT_PLAY_MODE, "Normal")

Recorder Does Not Capture All Actions

Problem

While recording, the Silk Test Recorder does not capture all actions in your application under test, though
you complete the actions.

Cause

The application under test may be "going too fast" and the Silk Test Recorder may not be able to keep up.

Solution

Slow down the interactions with your application while recording. Record a test case at the speed of the
Silk Test Recorder.

Recording two SetText () Statements
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

While using the Record Actions dialog box, you capture entering John into a text field. Silk Test Classic
may record the following statements:

<identifier>.SetText ("J")
<identifier>.SetText ("John")

This is not an error. The recorder may capture several SetText statements without impacting playback.

528 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Relationship between Exceptions Defined in 4test.inc
and Messages Sent To the Result File
Silk Test Classic calls LogError automatically when it raises an exception that you have not handled. By
reading 4test.inc you can find that Silk Test Classic has a list of exceptions like:

E_ABORT = -10100,
E_TBL_HAS_NO_ROW_HDR = -30100,
E_WINDOW_NOT_FOUND = -27800

Since exception numbers can apply to more than one exception, it can be helpful to query on a particular
exception number via ExceptNum() to decide how to handle an error. If you need to query on a specific
exception message, you can use ExceptData(). We recommend using MatchStr() with
ExceptData().

To find the E_... constant for any 4Test exception, you can use:

[-] do
 <code that causes exception>
[-] except
[] LogWarning ("Exception number: {[EXCEPTION]ExceptNum ()}")
[] reraise

This will print out the exception constant in the warning.

Be sure to remove the LogWarning do..except block after you have found the E_... constant.

The 4Test Editor Does Not Display Enough Characters

Problem

While you can edit 4Test files outside of Silk Test Classic and create lines with more than 1024 characters,
the Silk Test 4Test Editor (4Test Editor) does not let you edit or extend these lines.

The line limit of the 4Test Editor is 1024 characters.

Solution

Use the <Shift+Enter> continuation character to break the line into smaller lines.

Silk Test Classic Support of Delphi Applications
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

While there is no support for Delphi controls "out of the box", virtually all of the Delphi objects can be class
mapped to standard controls.

The following code sample shows the class mapping for the Classic Agent classes:

[ClassMap]
DialogBox,0x50000044,0x50000044=Ignore
TBitBtn=PushButton
TButton=PushButton
TCheckBox=CheckBox
TComboBox=ComboBox
TDBCheckBox=CheckBox
TDBComboBox=ComboBox
TDBEdit=TextField
TDBListBox=ListBox
TDBLookupComboBox=ComboBox

Troubleshooting the Classic Agent | 529

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

TDBLookupListBox=ListBox
TDBMemo=TextField
TDBRadioGroup=Ignore
TEdit=TextField
TFlyingPanel=Toolbar
TGroupBox=StaticText
TGroupButton=RadioButton
TListBox=ListBox
TListView=ListView
TMaskEdit=TextField
TMemo=TextField
TPageControl=PageList
TPanel=Ignore
TRadioButton=RadioButton
TRadioGroup=Ignore
TRichEdit=TextField
TRicherEdit=TextField
TScrollBar=ScrollBar
TStatusBar=StatusBar
TTabControl=PageList
TTreeView=TreeView
TUpDown=UpDown

Notes

Silk Test Classic can work with Delphi objects in a variety of ways. The amount of functionality you achieve
depends on how deep you want to get involved. You can even create an extension (external) for Delphi
objects. Delphi supports DLL calling, and you can use DLL's created in C/C++ in your Delphi application.
Class mapping will work in many instances, but not with every object.

If class mapping doesn't work, you can try any of the following workarounds:

1. Using SendMessage with the Clipboard.

• Delphi is built with VCL. The VCL (Visual Component Library) is similar to MFC in that all of the
classes of objects that Delphi can create are in this library. Instead of C++ it is written in Object
Pascal. The VCL source code is shipped with the Delphi product. In the VCL source, you can go to
the definition of the object class that you want to support for and add message handlers (windows
API messages) for various messages that you define.

• For example, add a message handler that says that if any object of this class receives a message
called QAP_GetValue, get the contents of the listbox, send a message back to the process that
sent the message, and send it the value. On the Silk Test Classic side of things you define a new
class to support the object and add a method that sends/receives the message to the supported
object.

• For example, here is sample code of a message handler on the Delphi side:

procedure QAP_GetValue (var Msg: TMessageRecord);
var
ValueToReturn : string;
begin
CopyToClipBoard;
Msg.Result := true;
end;

• Here is sample code for the Window class on the 4Test side:

winclass DelphObj : Control
LIST OF STRING GetContents ()
if (SendMessage (this.hWnd, QAP_GetListContents, NULL, NULL))
return Clipboard.GetText ()
else
RaiseError (1, "Couldn't get the contents of {this},
SendMessageEvent not processed correctly")

530 | Troubleshooting the Classic Agent

2. Using the Extension Kit, create a DLL that does the same thing as above, except passing values directly
from application to application rather than relying on the clipboard. This method is preferred over the
above because of speed and data type stability.

3. Use low level 4Test events relying on coordinates to create methods. Silk Test Classic low-level
recording should only be used when you want to use recording rather than hand scripting.

Open Agent

To test Delphi applications with the Open Agent you could use the custom control support. For additional
information, see Custom Controls (Open Agent).

Stopping a Test Plan

Problem

You want to abort a test plan programmatically without using exit. Calling exit just aborts the script and
continues on to the next test case.

Solution

You can call

[] @("$StopRunning") ()

from a test case or a recovery system function such as ScriptExit(), which is called for each test case
in the test plan, or TestCaseExit().

This call will stop everything without even invoking the recovery system. Calling it will generate the
following exception message, with no call stack: Exception -200000

A Text Field Is Not Allowing Input
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

A text field does not accept input from TypeKeys and SetText or allow a paste from the Clipboard.

For example, in the following script, the Password text field does not get any text set in it:

EnterNetworkPassword.SetActive ()
EnterNetworkPassword.Password.SetText ("mypassword")
EnterNetworkPassword.OK.Click ()

Solution

Make a DLL call to SendMessage, which is declared in msw32.inc, in the following way:

use "msw32.inc"
...
Clipboard.SetText ({"mypassword"})
EnterNetworkPassword.Password.DoubleClick ()
SendMessage (EnterNetworkPassword.Password.hWnd,WM_PASTE, 0,0)

By using the API message WM_PASTE in a SendMessage call, the text field will get populated with the text
that is on the Clipboard.

Troubleshooting the Classic Agent | 531

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Using a Property Instead of a Data Member
Data members are resolved (assigned values) during compilation. If the expression for the data member
includes variables that will change at run-time, then you must use a property instead of that data member.

Using File Functions to Add Information to the
Beginning of a File
In Silk Test Classic 5.5 SP1 or later, there is no file open mode that allows you to insert information into the
beginning of a file. If you use FM_UPDATE, you can read in part of your file before writing, but any write
function calls will overwrite the rest of the file.

If you are writing strings rather than structured data, you can use ListRead() and ListWrite() to
insert information at the beginning or any other point of a file. Use ListRead() to read the contents of the
file into a list, insert the new information at the head or any other point of the list, and use ListWrite() to
write it back out.

[-] LIST OF STRING lsNewInfo = {...}
[] "*New line one*"
[] "*New line two*"
[] "*New line three*"
[] LIST OF STRING lsFile
[] INTEGER i
[]
[] ListRead (lsFile, "{GetProgramDir ()}\Sample.txt")
[-] for i = 1 to ListCount (lsNewInfo)
[] ListInsert (lsFile, i, lsNewInfo[i])
[] ListWrite (lsFile, "{GetProgramDir ()}\Sample.txt")
[]

Sample.txt before the write:

Line 1
Line 2
Line 3
Line 4
Line 5

Sample.txt after:

New line one
New line two
New line three
Line 1
Line 2
Line 3
Line 4
Line 5

Why Does the Str Function Not Round Correctly?
Any decimal/float number has an internal binary representation. Unfortunately, you can never be sure if a
decimal value has an exact representation in its binary pendant. If an exact binary representation is not
possible (mathematical constraint), the nearest value is used and this leads to the issue where it seems the
str function is not rounding correctly. You can workaround this issue. Use the following code to see the
internal representation:

[] printf("%.a20e\n", 32.495)
[] printf("%.a20e\n", 31.495)

532 | Troubleshooting the Classic Agent

Troubleshooting Projects
This section provides solutions to common problems that you might encounter when you are working with
projects in Silk Test Classic.

Files Not Found When Opening Project
If, when opening your project, Silk Test Classic cannot find a file in the location referenced in the project
file, which is a .vtp file, an error message displays noting the file that cannot be found.

Silk Test Classic may not be able to find files that have been moved or renamed outside of Silk Test
Classic, for example in Windows Explorer, or files that are located on a shared network folder that is no
longer accessible.

• If Silk Test Classic cannot find a file in your project, we suggest that you note the name of missing file,
and click OK. Silk Test Classic will open the project and remove the file that it cannot find from the
project list. You can then add the missing file to your project.

• If Silk Test Classic cannot open multiple files in your project, we suggest you click Cancel and
determine why the files cannot be found. For example a directory might have been moved. Depending
upon the problem, you can determine how to make the files accessible to the project. You may need to
add the files from their new location.

Silk Test Classic Cannot Load My Project File
If Silk Test Classic cannot load your project file, the contents of your .vtp file might have changed or
your .ini file might have been moved.

If you remove or incorrectly edit the ProjectIni= line in the ProjectProfile section of your
<projectname>.vtp file, or if you have moved your <projectname>.ini file and the ProjectIni=
line no longer points to the correct location of the .ini file, Silk Test Classic is not able to load your
project.

To avoid this, make sure that the ProjectProfile section exists in your .vtp file and that the section
refers to the correct name and location of your .ini file. Additionally, the <projectname>.ini file and
the <projectname>.vtp file refer to each other, so ensure that these references are correct in both files.
Perform these changes in a text editor outside of Silk Test Classic.

Example

The following code sample shows a sample ProjectProfile section in a
<projectname>.vtp file:

[ProjectProfile]
ProjectIni=C:\Program Files\<Silk Test install directory>
\SilkTest\Projects\<projectname>.ini

Silk Test Classic Cannot Save Files to My Project
You cannot add or remove files from a read-only project. If you attempt to make any changes to a read-only
project, a message box displays indicating that your changes will not be saved to the project.

For example, Unable to save changes to the current project. The project file has
read-only attributes.

Troubleshooting the Classic Agent | 533

When you click OK on the error message box, Silk Test Classic adds or removes the file from the project
temporarily for that session, but when you close the project, the message box displays again. When you re-
open the project, you will see your files have not been added or removed.

Additionally, if you are using Microsoft Windows 7 or later, you might need to run Silk Test Classic as an
administrator. To run Silk Test Classic as an administrator, right-click the Silk Test Classic icon in the Start
Menu and click Run as administrator.

Silk Test Classic Does Not Run
The following table describes what you can do if Silk Test Classic does not start.

If Silk Test Classic does not run because it is looking
for the following:

You can do the following:

Project files that are moved or corrupted. Open the SilkTestClassic.ini file in a text editor
and remove the CurrentProject= line from the
ProjectState section. Silk Test Classic should then
start, however your project will not open. You can
examine your <projectname>.ini and
<projectname>.vtp files to determine and correct
the problem.

The following code example shows the ProjectState
section in a sample partner.ini file:

[ProjectState]
CurrentProject=C:\Program Files
\<SilkTest install directory>
 \SilkTest\Examples\ProjectName.vtp

A testplan.ini file that is corrupted. Delete or rename the corrupted testplan.ini file,
and then restart Silk Test Classic.

My Files No Longer Display In the Recent Files List
After you open or create a project, files that you had recently opened outside of the project do no longer
display in the Recent Files list.

Cannot Find Items In Classic 4Test
If you are working with Classic 4Test, objects display in the correct nodes on the Global tab, however when
you double-click an object, the file opens and the cursor displays at the top of the file, instead of in the line
in which the object is defined.

Editing the Project Files
You require good knowledge of your files and how the partner and <projectname>.ini files work before
attempting to edit these files. Be cautious when editing the <projectname>.vtp and
<projectname>.ini files.

To edit the <projectname>.vtp and <projectname>.ini files:

1. Update the references to the source location of your files. If the location of your projectname.vtp
and projectname.ini files has changed, make sure you update that as well. Each file refers to the
other.

The ProjectProfile section in the projectname.vtp file is required. Silk Test Classic will not be able to
load your project if this section does not exist.

534 | Troubleshooting the Classic Agent

1. Ensure that your project is closed and that all the files referenced by the project exist.

2. Open the <projectname>.vtp and <projectname>.ini files in a text editor outside of Silk Test
Classic.

Note: Do not edit the projectname.vtp and projectname.ini files in the 4Test Editor.

3. Update the references to the source location of your files.

4. The <projectname>.vtp and <projectname>.ini files refer to each other. If the relative location
of these files has changed, update the location in the files.

The ProjectProfile section in the <projectname>.vtp file is required. Silk Test Classic is not able to
load your project if this section does not exist.

Recognition Issues
This section provides help and troubleshooting information for recognition issues.

How Can the Application Developers Make
Applications Ready for Automated Testing?
The attributes available for a specific control in the application under test (AUT) might not be sufficient to
guarantee that Silk Test Classic always recognizes the control during automated testing. In such a case the
application developer can add custom attributes to the control, which can then be used as locator attributes
for the control. The following examples describe how an application developer can include custom
attributes in different application types:

• To include custom attributes in a Web application, add them to the html tag. Type <input
type='button' bcauid='abc' value='click me' /> to add an attribute called bcauid.

• To include custom attributes in a Java SWT application, use the
org.swt.widgets.Widget.setData(String <varname>key</varname>, Object <varname>value</
varname>) method.

• To include custom attributes in a Swing application, use the putClientProperty("propertyName",
"propertyValue") method.

I Cannot See all Objects in my Application even after
Enabling Show All Classes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If some of the objects in your application are derived from the AWT Object class, instead of the AWT
Component Class, Silk Test Classic will not be able to find them. In this situation, we recommend using the
invokeJava method to manipulate these objects.

java.lang.UnsatisfiedLinkError
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When recording window declarations, the following error displays:

SilkTest Java extension loaded, running under JDK version x
java.lang.UnsatisfiedLinkError: no qapjarex in java.library.path

Troubleshooting the Classic Agent | 535

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Copy the qapjarex.dll from the System32 directory into the lib\ext directory of the JRE installed by
the application.

JavaMainWin is Not Recognized
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If Silk Test Classic sees the main window of your Java application or applet as MainWin instead of
JavaMainWin, or recognizes the main window, but none of its child controls, you can run a Java status
utility to help you or Technical Support diagnose the problem.

One common cause is that Silk Test Classic is not properly configured to test Java.

If you are running an applet using the plug-in for JVM 1.4+, Silk Test Classic may recognize the main
window as class DialogBox, not JavaMainWin, and will not see any child objects. The solution is to
class-map the top-level class of the applet to JavaMainWin. For example:

microfocus.com.appclass=JavaMainWin

None of My Java Controls are Recognized
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you notice that Silk Test Classic does not recognize any of your Java controls, which means that Silk Test
Classic sees them all as CustomWin objects, make sure you have set up your test environment correctly
by:

1. Ensuring that you have configured Silk Test Classic support for Java correctly.
2. Ensuring that you have enabled the Java extension correctly, based on the runtime environment your

Java application invokes, as explained in the following table:

If your application invokes: Enable Java support by:

• java.exe (Java Development Kit)

• jre.exe (Java Runtime Environment, standard
version that invokes a console window)

• jrew.exe (Java Runtime Environment, version
that does not invoke a console window)

• vcafe.exe (Symantec Visual Café 2.0)

• appletviewer.exe

Enabling the Java extension for Java Application in the
Extension Options dialog box.

Any other runtime environment that uses a different
executable or dll.

Adding the .exe or .dll file as an application in the
Extension Enabler and Extension Options dialog
box.

Enabling the Java extension for this application in the
Extension Enabler and Extension Options dialog
box.

Only JavaMainWin is Recognized
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If during recording of a window declaration, Silk Test Classic sees the main window as a JavaMainWin or
JavaDialogBox, but does not see any child objects, make sure that your classpath references the correct
Silk Test Classic .jar file.

536 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

If your application sets the Java library path using the JVM launcher directive
Djava.library.path=<path>, you must copy qapjarex.dll from the System32 directory into the
location pointed to by the JVM launcher directive. Silk Test Classic should then recognize child objects.

Only Applet Seen
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If only the Java applet is seen during the recording of a window declaration, and no other objects are
recognized, check the following:

• The Java extension is enabled.
• Your classpath references the correct .jar file.

Silk Test Classic Does not Record Click() Actions
Against Custom Controls in Java Applets
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Security restrictions may prevent Silk Test Classic from recording Click() actions against custom controls
in Java applets. This may happen if the applet is from an untrusted source.

Verify that you have the correct security permissions set up for your AUT. The following steps show how
you can verify the settings for the test applet, installed in the <Silk Test installation
directory>/javaex/jfc11 directory:

1. Locate the plug-in used to run the Applet. If you have multiple plug-ins installed, you may find the used
plug-in with the java console running(use the plug-in setting Show Console). To display the system
properties with java.home pointing to the directory of used plug-in, type "s" while the console is active.

This is usually located in the program files/java/jre_name directory. If you have multiple plug-ins
installed, you may find the used plug-in with the java console running. Use the plug-in setting Show
Console. To display the system properties with java.home pointing to the directory of used plug-in,
type s while the console is active.

2. Locate the lib/security directory located under the plug-in directory.

3. Open the java.policy file. Verify that the following fragment is in the file, or add it to the file, if it is
not.

This assumes that you have installed Silk Test Classic into the default installation directory, C:
\program files\Silk\silktest; if you installed Silk Test Classic into a different directory, you
must change the fragment accordingly.

grant codeBase "file:C:/program files/silk/silktest/javaex/jfc11/*"
{
 permission java.security.AllPermission;
};

Note: The file protocol is used here because the applet is located on the host machine. If the applet
was downloaded from a URL instead, then you must substitute the appropriate http://url_name
instead.

Silk Test Classic Does not Recognize a Popup Dialog
Box caused by an AWT Applet in a Browser
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Troubleshooting the Classic Agent | 537

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

If an AWT applet in a browser causes a popup dialog box to appear, Silk Test Classic does not see it as a
JavaDialogBox and does not see any of the controls within the dialog box.

Click OptionsClass Map to map the AppletPopup custom class to the JavaDialogBox class.

Silk Test Classic is Not Recognizing Updates on
Internet Explorer Page Containing JavaScript
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

.

If Silk Test Classic does not recognize updates made to an Internet Explorer page containing JavaScript,
Silk Test Classic does not know that the page changed because the existing objects change, but nothing
gets created or destroyed.

In such a case, call BrowserPage.FlushCache() in between the update methods. The FlushCache
method is useful when a JavaScript event causes an update to existing objects on the page, but does not
cause any objects to be created or removed.

Java Controls are Not Recognized
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

By default, objects that are usually not relevant for testing (containers and panels) are ignored. This is done
to promote efficient recording. In some situations, however, user-defined objects or third-party JavaBeans
might also be ignored inadvertently.

You can access these objects for testing by recording classes for ignored objects in standalone Java
applications or in Java applets.

Verify Properties does not Capture Window Properties
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If Verify Properties does not capture window properties for a stand-alone Java application, do not position
the cursor in title bar to verify properties.

In order to use Verify Properties against a stand-alone Java application, position your cursor at a point
within the client area of the window. Do not position the cursor in the title bar because that may prevent
capturing the window properties.

Tips
This section provides general troubleshooting tips.

Owner-Draw List Boxes and Combo Boxes
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

An owner-draw list/combo box is a list/combo box that has the owner-draw style bit set. This is distinct from
a custom object that looks like a standard list/combo box, but is not.

538 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

The following procedure describes how developers can modify an application so that Silk Test Classic can
access the text of a standard list/combo box that is owner-draw and that does not have the HasStrings
style bit turned on. (If the HasStrings style bit of the owner-draw list/combo box is turned on, then you do
not need to make the modifications described here.) The procedure entails modifying each owner-draw list/
combo box’s parent window procedure so that Silk Test Classic can query the parent about what is in the
list/combo box.

To turn on the HasStrings style bit of the owner-draw list/combo box:

1. Include owndraw.h, which is supplied with Silk Test Classic, in your source files.
2. For each owner-draw list/combo box, add a message handler for each of the messages in owndraw.h

(ODA_HASTEXT, ODA_GETITEMTEXT, ODA_GETITEMTEXTSIZE). Base the message handlers on the
'switch' statement cases below. If writing in C, add code, such as that shown below, to its parent s
WndProc.

LONG FAR PASCAL ListParentWndProc (HWND hWnd, UINT uiMsg,WPARAM wParam,
LPARAM lParam)
{
 //Use a static for the registered message number
 static UINT uiMsgGetItem Text = 0;

 LPGETITEMTEXTSTRUCT LpGetItemText;
 USHORT usItem;
 PSZ pszItemText;

 //Register the QAP_GETITEMTEXT message if it is not registered
 if (uiMsgGetItem Text == 0)
 uiMsgGetItemText = RegisterWindowMessage("QAP_GETITEMTEXT");

 switch (uiMsg)
 {
 ...
 default;
 //Process the QAP_GETITEMTEXT message
 if (uiMsg == uiMsgGetItemText)
 {
 //lParam points to a LPGETITEMTEXTSTRUCT structure
 lpGetItemText = (LPGETITEMTEXTSTRUCT) lParam;

 //Perform the requested action
 switch (lpGetItemText->Action)
 {
 case ODA_HASTEXT:
 //Tell the QAP driver if your list box contains text
 if (your list box has text)
 lpGetItemText->bSuccess = TRUE;
 else
 lpGetItemText->bSuccess = FALSE;
 break;

 case ODA_GETITEMTEXT:
 //Return the text for the requested list item
 //(lpGetItemText->itemID is the index of the item in the
 //list/combo box -- the same number passed to LB_GETITEMDATA
 (for a list box) or CB_ GETITEMDATA (for a combo box))
 usItem = UINT (lpGetItemText->itemID);
 pszItemText = <pointer to text of item[usItem]>;
 strncpy (lpGetItemText->lpstrItemText, pszItemText,
 lpGetItemText->nMaxItemText);
 lpGetItemText->lpstrItemText[lpGetItemText->nMaxItemText-1]
 = ‘\0’;
 lpGetItemText->bSuccess = TRUE;
 break;

Troubleshooting the Classic Agent | 539

 case ODA_GETITEMTEXTSIZE:
 //Return the length of the requested list item
 usItem = UINT (lpGetItemText->itemID);
 lpGetItemText->nMaxItemText = <length of item[usItem]> + 1;
 lpGetItemText->bSuccess = TRUE;
 break;
 ...
 }
 }
 }
}

Options for Legacy Scripts
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

OldStartupFunction

You can change the way a script is initialized when it is opened, by setting the OldStartupFunction in
the [Runtime] section of your partner.ini file. By setting the option to FALSE, you can have variables,
windows, and other structures initialized in the order in which they are declared. When
OldStartupFunction is set to TRUE, the default, windows are initialized before global variables.
Therefore, you cannot initialize a window member from a global variable, regardless of how they were
declared, but you can initialize a global variable from a window member.

AutoGuiTarget and WinvarInitCorrectly

If you have legacy scripts that run in distributed environments or on multiple platforms and that do not
compile in this release, consider the two runtime options AutoGuiTarget and WinvarInitCorrectly. They
deal with problems caused by the interaction of distributed testing and GUI-specific variable initialization.
Set these options in the [Runtime] section of your partner.ini file.

You may find it useful to read about the GUI Targets field that appears on the Runtime Options dialog.

The following code produces a runtime error, because it is not possible to initialize the GUI-specific window
member abc.ghi so that its value is correct for both the Windows 32 and Windows 9.x platforms:

Example 1
window abc
msw32STRING def = "1"
mws9x STRING def = "2"
msw32, msw9x STRING ghi = def

To avert this problem, the runtime option AutoGuiTarget was added. If set to TRUE, the default value, and
when networking is not enabled, the GUI target is automatically set to the platform the test is running on. If
it is FALSE or if the network is enabled, and if the GUI target includes both msw32 and msw9x, the code
will continue to produce an error because no assumptions can be made about the GUI target.

If you are running in a distributed environment, where you might simultaneously connect to msw32 and
msw9x, you must modify your code so that the variable (in the above example, abc.ghi) is defined for
each individual platform.

In some cases, however, setting AutoGuiTarget to TRUE causes a problem. Consider the following code,
which produces a compile-time error on Windows, because the GUI-specific window member abc.TF is
defined only for msw32.

Example 2
window abc
msw32 TextField TF

540 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

main ()
BOOLEAN bmsw32 = (GetGuiType () == msw32) ? TRUE : FALSE

if (bmsw32)
abc.TF.SetText ("some value")

When the GUI target excludes msw32, a compile-time error will result, because the variable abc.TF is
defined only for msw32. When the GUI target includes msw32, the reference to abc.TF is never executed,
and so a runtime error does not occur. However, when AutoGuiTarget is set to TRUE, the GUI target
excludes msw32, and so the code will not compile. For this reason, WinvarInitCorrectly was added.

When WinvarInitCorrectly is set to TRUE, the default, window variables are initialized to allow correct
operation in a distributed environment. When WinvarInitCorrectly is FALSE, window variables are
initialized as if the only GUI that will ever be used is the one connected to when your script starts running.
Any subsequent connections to other GUIs may see window variables that are initialized incorrectly or not
at all.

Summary

Here are some guidelines regarding legacy scripts:

• We recommend that you rewrite scripts running on multiple platforms so that window variables can
resolve correctly. In this case, the default settings of both options are fine.

• Scripts similar to Example 2 will work well in a distributed environment. However, if the network is
disabled, you will need to set AutoGuiTarget to FALSE.

In a nondistributed environment set AutoGuiTarget to TRUE in order to run scripts resembling Example 1.
However, if you have legacy scripts with code similar to both examples, set both options to FALSE, thereby
restoring initialization behavior supported in earlier releases.

Declaring an Object for which the Class can Vary
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This topic describes how you can declare an object for which the class can vary. For example, you may
have text on an HTML page that is a link under certain conditions.

If the class of an object varies, then you need to choose a class for the window identifier, and include both
classes in the tag. The class of the window identifier for the object determines which methods and
properties you can call for the object. Therefore you should choose the class that includes the wider set of
methods and properties. However, keep in mind that when the object has the other class, you should only
call those methods and properties that apply to that other class.

The tag of the object should be a multitag with a tag segment for each class. The class tag should be
included in square brackets in each segment. You can either use the 'multitag' statement, or you can use
the 'tag' statement with pipes (|) between segments.

Example

Assume that you have text on an HTML page that is a link only under certain conditions.
The caption of the text is Inactive Text, but when it becomes a link, the caption
changes to Active Text.

Choose HtmlLink as the class of the window identifier because HtmlLink includes all
of the HtmlText methods, and also includes additional methods such as
GetLocation(). Of course, GetLocation() will not return a meaningful value if you
call it when the object is really just HtmlText.

Troubleshooting the Classic Agent | 541

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

The declaration for the object would be:

HtmlLink TextOrLink
// recorded as 'InactiveText', since it was recorded when it
// was HtmlText
multitag "[HtmlText]InactiveText"
 "[HtmlLink]ActiveText"

or

HtmlLink TextOrLink
// recorded as 'InactiveText', since it was recorded
// when it was HtmlText
tag "[HtmlText]InactiveText|[HtmlLink]ActiveText"

Drag and Drop Operations
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Silk Test Classic supports drag-and-drop operations on Windows. Drag-and-drop operations have three
distinct parts:

• Selecting an item by pressing a mouse button.
• Moving, or dragging, the item.
• Releasing the mouse button, thereby dropping the item at a target location.

The target location can be a logical location, that is, an identifiable object in a listview, treeview, or list box,
or it can be a physical location specified by x, y coordinates in a window.

Five methods support drag-and-drop operations:

• BeginDrag

• BeginDragAt

• EndDrag

• EndDragAt

• DragMouse

BeginDragAt and EndDragAt are general methods that work for any window. They move an item to a
physical target location and operate between windows of the same application or a different application.
We recommend that you use care when recording drag-and-drop operations. Do the testcase setup
carefully, and while recording, avoid extraneous movements.

EndDrag and BeginDrag apply only to list box, listview, and treeview controls. They move an item to a
logical target location and operate between windows of the same application or a different application.

DragMouse combines the functionality of the begin and end drag methods. However, DragMouse
operates only within a single window.

Example Test Cases for the Find Dialog Box
If you want to test the Find dialog box, each test case would need to perform the following tasks:

1. Open a new document file.
2. Type text into the document.
3. Position the insertion point at the top of the file.
4. Select Find from the Search menu.
5. Select the forward (down) direction for the search.
6. Make the search case sensitive.

542 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Non-Data-Driven Test Case for the Classic Agent

testcase FindTest ()
TextEditor.File.New.Pick ()
DocumentWindow.Document.TypeKeys ("Test Case<HOME>")
TextEditor.Search.Find.Pick ()
Find.FindWhat.SetText ("Case")
Find.CaseSensitive.Check ()
Find.Direction.Select ("Down")
Find.FindNext.Click ()
Find.Cancel.Click ()
DocumentWindow.Document.VerifySelText (<text>)
Case
TextEditor.File.Close.Pick ()
MessageBox.No.Click ()

The major disadvantage of this kind of test case is that it tests only one out of the many
possible sets of input data to the Find dialog box. To adequately test the Find dialog
box, you must record or hand-write a separate test case for each possible combination
of input data that needs to be tested. In even a small application, this creates a huge
number of test cases, each of which must be maintained as the application changes.

Non-Data-Driven Test Case for the Open Agent

testcase Find ()
 recording
 UntitledNotepad.SetActive()
 UntitledNotepad.New.Pick()
 UntitledNotepad.TextField.TypeKeys("Test Case
<LessThan>Home")
 UntitledNotepad.TextField.PressKeys("<Left Shift>")
 UntitledNotepad.TextField.TypeKeys("<GreaterThan>")
 UntitledNotepad.Find.Pick()
 UntitledNotepad.FindDialog.FindWhat.SetText("Case")
 UntitledNotepad.FindDialog.Down.Select("Down")
 Tmp_findNotepad.Find.MatchCase.Check()
 UntitledNotepad.FindDialog.FindNext.Click()
 Tmp_findNotepad.Find.Cancel.Click()
 Tmp_findNotepad.Find.Close()

Declaring an Object for which the Class can Vary
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This topic describes how you can declare an object for which the class can vary. For example, you may
have text on an HTML page that is a link under certain conditions.

If the class of an object varies, then you need to choose a class for the window identifier, and include both
classes in the tag. The class of the window identifier for the object determines which methods and
properties you can call for the object. Therefore you should choose the class that includes the wider set of
methods and properties. However, keep in mind that when the object has the other class, you should only
call those methods and properties that apply to that other class.

The tag of the object should be a multitag with a tag segment for each class. The class tag should be
included in square brackets in each segment. You can either use the 'multitag' statement, or you can use
the 'tag' statement with pipes (|) between segments.

Troubleshooting the Classic Agent | 543

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Example

Assume that you have text on an HTML page that is a link only under certain conditions.
The caption of the text is Inactive Text, but when it becomes a link, the caption
changes to Active Text.

Choose HtmlLink as the class of the window identifier because HtmlLink includes all
of the HtmlText methods, and also includes additional methods such as
GetLocation(). Of course, GetLocation() will not return a meaningful value if you
call it when the object is really just HtmlText.

The declaration for the object would be:

HtmlLink TextOrLink
// recorded as 'InactiveText', since it was recorded when it
// was HtmlText
multitag "[HtmlText]InactiveText"
 "[HtmlLink]ActiveText"

or

HtmlLink TextOrLink
// recorded as 'InactiveText', since it was recorded
// when it was HtmlText
tag "[HtmlText]InactiveText|[HtmlLink]ActiveText"

When to use the Bitmap Tool
You might want to use the Bitmap Tool in these situations:

• To compare a baseline bitmap against a bitmap generated during testing.
• To compare two bitmaps from a failed test.

For example, suppose during your first round of testing you create a bitmap using one of Silk Test Classic’s
built-in bitmap functions, CaptureBItmap. Assume that a second round of testing generates another
bitmap, which your test script compares to the first. If the testcase fails, Silk Test Classic raises an
exception but cannot specifically identify the ways in which the two images differ. At this point, you can
open the Bitmap Tool from the results file to inspect both bitmaps.

Troubleshooting Web Applications
The test of your browser application may have failed for one of the reasons described in this section. If the
suggested solutions do not address the problem you are having, you can enable your extension manually.

Why Is My Web Application Not Ready To Test?
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If your Web application is not ready to test, enable the extension for the Web application and restart the
Web application.

1. On the Basic Workflow bar, click Enable Extensions. The Enable Extensions dialog box opens.

2. On the Enable Extensions dialog box, select the Web application for which you want to enable
extensions.

3. Click OK. The Enable Extensions dialog box closes.

4. Close and restart the Web application.

544 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

5. When the application has finished loading, click Test.

What Can I Do If the Page I Have Selected Is Empty?
If the page you are testing is empty or does not contain any HTML elements, you might receive a Could
not recognize any HTML classes in your browser application message. Your
configuration might be correct, however, the automated configuration test does not support testing of blank
pages or pages that do not contain HTML elements. You can manually verify that your extensions are set
properly, open your application, and then record window declarations. If you can record against HTML
classes, the extension is configured correctly and you are ready to set up the recovery system using the
Basic Workflow bar.

Why Do I Get an Error Message When I Set the
Accessibility Extension?
If you are using Internet Explorer to test a Web application and you have set the Accessibility extension,
you might get an error message when the start page of the browser is "about:blank". To avoid getting the
error message, set the start page of the browser to a different page.

HtmlPopupList Causes the Browser to Crash when
Using IE DOM Extension
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

Recording or playing back selections against an HtmlPopupList causes the browser to crash when using
the IE DOM extension.

The problem occurs on browser pages that contain JavaScript. It seems to occur more quickly when
recording than when playing back.

Solution

Check the UseDocumentEvents option in extend\domex.ini and make sure it is set to FALSE.

This setting lets you specify whether Silk Test Classic captures OnChange events for an HtmlPopupList in
order to determine which item was selected. The default is FALSE.

Silk Test Classic Does Not Recognize Links
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

Silk Test Classic is not seeing your links as HtmlLink objects.

Cause

You have configured your browser not to underline links. To recognize a link, Silk Test Classic requires the
link to be underlined.

Troubleshooting the Classic Agent | 545

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Solution

Reconfigure your browser to display links underlined.

Mouse Coordinate (x, y) is Off the Screen
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

While running the DOM extension, you may receive an error message during playback saying Mouse
Coordinate (x,y) is off the screen.

Resolution

Clear the following options on the Verification tab of the Options > Agent Options window:

• Verify that windows are exposed
• Verify that coordinates passed to a method are inside the window

This error message may also indicate that the DOM extension was unable to scroll an object into view, for
example as part of a MoveMouse() call. If that is the case, then set the DOM extension option
UseScrollIntoView to TRUE.

Recording a Declaration for a Browser Page Containing
Many Child Objects
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When trying to record a declaration for a browser page containing many child objects, CPU usage stays at
100% and Silk Test Classic seems to lock up.

If you add the Partner.ini setting:

[Runtime]
AgentTimeout=<value in milliseconds>

and set it very large, for example 600000 (10 minutes), then eventually Silk Test Classic will return a
declaration. The default is 240000 milliseconds (240 seconds or 4 min).

The setting must be put into Partner.ini, not into an option set.

For large pages, recording will be very slow, and the CPU will max out while the browser extension initially
gathers the page information, and again when it transfers the information to the Agent. If you refrain from
moving the mouse around and wait long enough, though, the system will eventually free up.

Recording VerifyProperties() Detects BrowserPage
Properties and Children
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

When you record VerifyProperties() against the BrowserChild, the recorder misses user-defined
properties, and records dynamically instantiated window identifiers of child windows instead of recording
the declared window identifiers.

546 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Note: The Record Actions status line detects the window identifier of the BrowserChild. The
problem only affects the body of the VerifyProperties() method that is recorded.

Solution

If you plan to record VerifyProperties() against a declared BrowserChild, then you must include the
window declaration for the BrowserChild in a frame (.inc) file that is referenced in the Use Files field of
the Runtime Options dialog box, before extend\explorer.inc.

Silk Test Classic Cannot See Any Children in My
Browser Page
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

Silk Test Classic does not recognize any children in your Web application running on Internet Explorer 6.

Solution

If you are using Internet Explorer 6 and only see a BrowserChild with no child objects within it, enable
the third-party browser extensions:

1. In Internet Explorer, click Tools > Internet Options.
2. On the Internet Options dialog box, click the Advanced tab and scroll to the Browsing section.
3. Check Enable third-party browser extensions.
4. Restart your computer.

This Internet Explorer option is disabled by default in Internet Explorer 6.0.3, which ships with Microsoft
Windows Server 2003. If you are using Internet Explorer 6.0.3, you are likely to run into this problem.

Silk Test Classic Cannot Verify Browser Extension
Settings
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

Silk Test Classic is not able to verify extension settings for a Web application running in Internet Explorer.

Cause

Your browser’s third-party extensions are not enabled.

Solution

1. In Internet Explorer, click Tools > Internet Options.
2. On the Internet Options dialog box, click the Advanced tab and scroll to the Browsing section.
3. Check Enable third-party browser extensions.
4. Restart your computer.

Troubleshooting the Classic Agent | 547

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Silk Test Classic Cannot Find the Web Page of the
Application
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

A test you have successfully run on one browser fails on a different browser because Silk Test Classic
cannot find the Web page of the application on the second browser.

Cause

Web browsers truncate Web page titles if they are too long. Each browser truncates long titles in a different
way. Silk Test Classic derives the tag for a page from the page’s title. When you replay the test, the browser
which was used to record the page declaration will recognize the tag for the page title. Other browsers
might not.

The following example shows how Mozilla Firefox and Internet Explorer truncate the title of the same page.

For the Web page entitled "Heretoday Com Information:

Internet Explorer tag "http:??www.heretoday.com? . . . ?information.htm

Mozilla Firefox tag "http:??www.heretoday . . . valuable?information.htm

Solution

Use a wildcard character (*) to abbreviate the tag unambiguously. For example:

tag "*information.htm"

Silk Test Classic Cannot Recognize Web Objects with
the Classic Agent
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

When you are recording or playing back tests with the Classic Agent, Silk Test Classic does not see the
objects in your web application. Instead, it sees custom windows.

Possible Causes and Solutions

Cause Solution

The browser extension is not enabled. Enable the browser extension.

The browser extension is enabled, but the
default browser is not correct. For example,
you might have extensions enabled for
Internet Explorer and Mozilla Firefox, but the
default browser is Internet Explorer and you
are testing Mozilla Firefox.

Change the browser type. You can change it in the
Runtime Options dialog box or you can specify it in a
script using the SetBrowserType function.

You are using an older version of the browser. Upgrade your browser.

548 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

Cause Solution

For information about new features, supported
platforms, and tested versions, refer to the Release
Notes.

Silk Test Classic Recognizes Static HTML Text But
Does Not Recognize Text
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

While using Internet Explorer, Silk Test Classic recognizes static HTML text and tables on a page, but does
not recognize text such as HTML fields or HTML buttons.

Cause

You might have nested <form> tags improperly, like the following sample shows:

<table>
...
<form>
</table>
<table>
...
</table>
</form>

In the example above, Silk Test Classic does not recognize the second table.

Solution

There are two options:

Check that your HTML tags are
properly nested

<table>
...
</table>
<form>
<table>
...
</table>
</form>

or

<form>
<table>
...
</table>
<table>
</table>
</form>

Set the table recognition value
to 0

This means that Silk Test Classic ignores the table and cell, but it will
recognize the other input elements.

Troubleshooting the Classic Agent | 549

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

A Test Frame Which Contains HTML Frame
Declarations Does Not Compile
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

When you try to compile a test frame that contains several HTML frame declarations, you get one or more
Window is already defined errors.

Cause

The parent window of your HTML frames is declared more than once.

Solution

For information about recording HTML frame declarations, see Streamlining HTML Frame Declarations.

Web Property Sets Are Not Displayed During
Verification
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Problem

The Verify Window dialog box is not displaying the property sets for the browser extensions. The property
sets are the following:

• Color

• Font

• Values

• Location

Possible Causes and Solutions

No browser extension is
enabled.

Make sure that at least one browser extension is enabled.

Enhanced support for Visual
Basic is enabled.

Disable Visual Basic by un-checking the ActiveX check box for the Visual
Basic application in the Extension Enabler dialog box and the
Extensions dialog box.

Why Does the Recorder Generate so Many
MoveMouse() Calls?
This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

If you are recording against a Web page that contains DHTML popup menus or other elements with
JavaScript mouse movement event handlers, such as onmouseover, many MoveMouse() calls are
generated. The MoveMouse() calls are recorded in order to improve reliability of playback against DHTML
popup menus by ensuring that Silk Test Classic exposes the menus as it navigates through them. This

550 | Troubleshooting the Classic Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktestclassic-195-classicagent-en.pdf

behavior was added in Silk Test 7.1 as a replacement for the previous requirement of holding down the
Shift key while recording against DHTML popup menus, since that requirement would not have been easily
known to users. There is no straightforward way for Silk Test Classic to know whether or not a mouse
movement event handler belongs to an element, such as a popup menu, that requires exposure. Therefore
a MoveMouse() is recorded for any such element to ensure that the event handlers are triggered during
playback.

There is no setting that directs the Recorder to exclude the MoveMouse() calls. The extra calls should not
cause problems or slow playback, but you can manually delete the calls from the scripts, as long as the
target elements do not require exposure.

Troubleshooting the Classic Agent | 551

Using the Runtime Version of Silk Test
Classic

The Silk Test Classic Runtime (Runtime) provides a subset of the functionality of Silk Test Classic.
Specifically, it allows you to perform all of the tasks associated with executing tests and analyzing results.
You are prohibited from editing existing automation or creating new automation. The Runtime is intended to
run previously compiled files. If you update a shared file while the Runtime is open, you must close the
Runtime and reopen it in order to use the updated file.

Silk Test Classic Runtime is an installation option. For additional information, refer to the Silk Test
Installation Guide.

The Silk Test Classic Runtime Help includes the topics that are available from the full version of Silk Test
Classic, and additional product-specific information.

Installing the Runtime Version
Silk Test Classic Runtime is an installation option. For additional information, refer to the Silk Test
Installation Guide.

We strongly recommend that you do not install Silk Test Classic Runtime on the same machine as Silk Test
Classic. Silk Test Classic runtime shares files with this product and will overwrite any other installation you
already have on your machine.

Note: Silk Test Classic Runtime is sold and licensed separately from standard Silk Test Classic.

Starting the Runtime Version
You can start Silk Test Classic Runtime from the following locations:

• The command-line prompt in a DOS window. Enter runtime.exe. The same syntax applies as with
starting Silk Test Classic from the command line.

• The Silk Test Classic GUI. You must have selected the Silk Test Classic Runtime option during
installation.

When you start the Runtime, it displays minimized as an icon only; click the icon to maximize the window.

Comparing Silk Test Classic and Silk Test Classic
Runtime Menus and Commands

The table below lists the menus and commands that are available for each agent in Silk Test Classic and
those that are available in Silk Test Classic Runtime:

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Breakpoint Toggle Classic Agent

Open Agent

No

552 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Add Classic Agent

Open Agent

No

Delete Classic Agent

Open Agent

No

Delete All Classic Agent

Open Agent

No

Debug Abort Classic Agent

Open Agent

No

Exit Classic Agent

Open Agent

No

Finish Function Classic Agent

Open Agent

No

Reset Classic Agent

Open Agent

No

Run and Debug/Continue Classic Agent

Open Agent

No

Run to Cursor Classic Agent

Open Agent

No

Step Into Classic Agent

Open Agent

No

Step Over Classic Agent

Open Agent

No

Edit Undo Classic Agent

Open Agent

No

Redo Classic Agent

Open Agent

No

Cut Classic Agent

Open Agent

No

Copy Classic Agent

Open Agent

Yes

Select All Classic Agent

Open Agent

Yes

Paste Classic Agent No

Using the Runtime Version of Silk Test Classic | 553

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Delete Classic Agent

Open Agent

No

Find Classic Agent

Open Agent

Yes

Find Next Classic Agent

Open Agent

Yes

Replace Classic Agent

Open Agent

No

Go to Line Classic Agent

Open Agent

Yes

Go to Definition Classic Agent

Open Agent

Yes

Find Error Classic Agent

Open Agent

Yes

Data Driven Classic Agent

Open Agent

No

Visual 4Test Classic Agent

Open Agent

Yes

File New Classic Agent

Open Agent

No

Open Classic Agent

Open Agent

Yes

Close Classic Agent

Open Agent

Yes

Save Classic Agent

Open Agent

No

Save Object File Classic Agent

Open Agent

No

Save As Classic Agent

Open Agent

No

Save All Classic Agent

Open Agent

No

554 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

New Project Classic Agent

Open Agent

No

Open Project Classic Agent

Open Agent

Yes

Close Project Classic Agent

Open Agent

Yes

Export Project Classic Agent

Open Agent

No

Email Project Classic Agent

Open Agent

No

Run Classic Agent

Open Agent

Yes

Debug Classic Agent

Open Agent

No

Check out Classic Agent

Open Agent

No

Check in Classic Agent

Open Agent

No

Print Classic Agent

Open Agent

Yes

Printer Setup Classic Agent

Open Agent

Yes

Recent Files and Recent
Projects

Classic Agent

Open Agent

Yes

Exit Classic Agent

Open Agent

Yes

Help Help Topics Classic Agent

Open Agent

Yes

Library Browser Classic Agent

Open Agent

Yes

Tutorials Classic Agent

Open Agent

Yes

About Silk Test Classic Classic Agent Yes

Using the Runtime Version of Silk Test Classic | 555

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Include Open Classic Agent

Open Agent

Yes

Open All Classic Agent

Open Agent

Yes

Close Classic Agent

Open Agent

Yes

Close All Classic Agent

Open Agent

Yes

Save Classic Agent

Open Agent

No

Acquire Lock Classic Agent

Open Agent

No

Release Lock Classic Agent

Open Agent

No

Options General Classic Agent

Open Agent

Yes

Editor Font Classic Agent

Open Agent

Yes

Editor Colors Classic Agent

Open Agent

Yes

Runtime Classic Agent

Open Agent

Yes

Agent Classic Agent

Open Agent

Yes

Extensions Classic Agent Yes

Application Configurations Open Agent Yes

Recorder Classic Agent

Open Agent

No

Class Map Classic Agent Yes

Class Attributes Classic Agent Yes

Property Sets Classic Agent

Open Agent

Yes

556 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

TrueLog Classic Agent

Open Agent

Yes

Silk Central URLs Classic Agent

Open Agent

Yes

Open Options Set Classic Agent

Open Agent

Yes

Save New Options Set Classic Agent

Open Agent

No

Close Options Set Classic Agent

Open Agent

Yes

Recent Options Sets Classic Agent

Open Agent

Yes

Outline Move Left Classic Agent

Open Agent

No

Move Right Classic Agent

Open Agent

No

Transpose Up Classic Agent

Open Agent

No

Transpose Down Classic Agent

Open Agent

No

Expand Classic Agent

Open Agent

Yes

Expand All Classic Agent

Open Agent

Yes

Collapse Classic Agent

Open Agent

Yes

Collapse All Classic Agent

Open Agent

Yes

Comment Classic Agent

Open Agent

No

Uncomment Classic Agent

Open Agent

No

Project View Explorer Classic Agent Yes

Using the Runtime Version of Silk Test Classic | 557

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Align Classic Agent

Open Agent

Yes

Project Description Classic Agent

Open Agent

No

Add File Classic Agent

Open Agent

No

Remove File Classic Agent

Open Agent

No

Record Window Declarations Classic Agent No

Application State Classic Agent

Open Agent

No

Testcase Classic Agent

Open Agent

No

Method Classic Agent

Open Agent

No

Actions Classic Agent No

Class Classic Agent No

Window Identifiers Classic Agent No

Window Locations Classic Agent

Open Agent

No

Defined Window Classic Agent No

Window Tags Classic Agent No

Results Select Classic Agent

Open Agent

Yes

Merge Classic Agent

Open Agent

Yes

Delete Classic Agent

Open Agent

Yes

Extract Classic Agent

Open Agent

Yes

Export Classic Agent Yes

558 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Launch TrueLog Explorer Classic Agent

Open Agent

Yes

Convert to Plan Classic Agent

Open Agent

No

Compact Classic Agent

Open Agent

Yes

Show Summary Classic Agent

Open Agent

Yes

Hide Summary Classic Agent

Open Agent

Yes

View Options Classic Agent

Open Agent

Yes

Go to Source Classic Agent

Open Agent

Yes

View Differences Classic Agent

Open Agent

Yes

Update Expected Value Classic Agent

Open Agent

No

Mark Failures in Plan Classic Agent

Open Agent

Yes

Compare Two Results Classic Agent

Open Agent

Yes

Next Result Difference Classic Agent

Open Agent

Yes

Next Error Difference Classic Agent

Open Agent

Yes

Run Compile Classic Agent

Open Agent

No

Compile all Classic Agent

Open Agent

No

Run Classic Agent

Open Agent

Yes

Using the Runtime Version of Silk Test Classic | 559

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Debug Classic Agent

Open Agent

No

Application State Classic Agent

Open Agent

Yes

Testcase Classic Agent

Open Agent

Yes

Show Status Classic Agent

Open Agent

Yes

Abort Classic Agent

Open Agent

Yes

Testplan Go to Script Classic Agent

Open Agent

Yes

Detail Classic Agent

Open Agent

No

Insert Template Classic Agent

Open Agent

No

Completion Report Classic Agent

Open Agent

Yes

Mark Classic Agent

Open Agent

Yes

Mark All Classic Agent

Open Agent

Yes

Unmark Classic Agent

Open Agent

Yes

Unmark All Classic Agent

Open Agent

Yes

Mark by Query Classic Agent

Open Agent

Yes

Mark by Named Query Classic Agent

Open Agent

Yes

Find Next Mark Classic Agent

Open Agent

Yes

Define Attributes Classic Agent Yes

560 | Using the Runtime Version of Silk Test Classic

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Open Agent

Run Manual Tests Classic Agent

Open Agent

No

Tools Start Silk Performer Classic Agent

Open Agent

No

Connect to Default Agent Classic Agent

Open Agent

Yes

Data Drive Testcase Classic Agent No

Enable Extensions Classic Agent No

Open Silk Central Classic Agent

Open Agent

Yes

View/Transcript Expression Classic Agent

Open Agent

No

Global Variables Classic Agent

Open Agent

No

Local Variables Classic Agent

Open Agent

No

Expand Data Classic Agent

Open Agent

No

Collapse Data Classic Agent

Open Agent

No

Module Classic Agent

Open Agent

No

Breakpoints Classic Agent

Open Agent

No

Call Stack Classic Agent

Open Agent

No

Transcript Classic Agent

Open Agent

No

Window Tile Vertically Classic Agent

Open Agent

Yes

Tile Horizontally Classic Agent

Open Agent

Yes

Using the Runtime Version of Silk Test Classic | 561

Menu Name Command Available in Silk Test
Classic

Available in Silk Test
Classic Runtime

Cascade Classic Agent

Open Agent

Yes

Arrange Icons Classic Agent

Open Agent

Yes

Close All Classic Agent

Open Agent

Yes

Next Classic Agent

Open Agent

Yes

Previous Classic Agent

Open Agent

Yes

filename-filepath Classic Agent

Open Agent

Yes

Workflows Basic Classic Agent

Open Agent

No

Data Driven Classic Agent

Open Agent

No

562 | Using the Runtime Version of Silk Test Classic

Working with Files
This section describes how you can use files in Silk Test Classic.

Creating a New File
Use the New File dialog box to create a new file.

1. Click File > New. The New File dialog box appears.

2. Select the file type.

Silk Test Classic supports the following file types:

• Test frame
• Test plan
• 4Test script
• 4Test include file
• Keyword-driven test
• Keyword sequence
• Suite
• Text

3. Click OK.

• If you have selected any file type except test frame, a new editing window opens. The title bar of the
new editing window displays the file type you have chosen and untitled.

• If you have selected to create a new test frame file, and you are using the Open Agent, the Select
Application dialog box displays, allowing you to create a test frame file for a specific application.

• If you have selected to create a new test frame file, and you are using the Classic Agent, the New Test
Frame dialog box displays, allowing you to create a test frame file for an open application. For additional
information, see Creating a New Test Frame.

Searching for a String in a File
Use the Find dialog box to find a string in a file.

1. Click Edit > Find. The Find dialog box appears.

2. Type the text that you want to search for the active window into the Find what field.

The default string is the last string you searched for.

3. Check the Wrap Search check box to begin and end the search for the specified text at the current
location of the cursor.

When the check box is checked, the search continues past the end or beginning of the document back
to the current location of the cursor.

4. Check the Case sensitive check box to make the search sensitive to the case of the text string.

The default is to search with case sensitivity off.

5. Set the direction for the search.

• Select Up to have the search go from the current location of the cursor towards the top, or beginning,
of the file.

Working with Files | 563

• Select Down to have the search go from the current location of the cursor towards the bottom, or
end, of the file. This is the default direction.

6. Click Find Next to locate the next occurrence of the text string. If the search is successful, the first
occurrence of the text string in the file is highlighted. If the search is not successful, an informational
message displays.

Replacing a String in a File
Use the Replace dialog box to replace a string in a file with another string.

1. Click Edit > Replace. The Replace dialog box appears.

2. Type the text that you want to replace into the Find what field.

The default string is the last string you searched for.

3. Type the text with which you want to replace the text in the Find what field into the Replace with field.

4. Check the Case sensitive check box to make the search sensitive to the case of the text string.

The default is to search with case sensitivity off.

5. Set the direction for the search.

• Select Up to have the search go from the current location of the cursor towards the top, or beginning,
of the file.

• Select Down to have the search go from the current location of the cursor towards the bottom, or
end, of the file. This is the default direction.

6. Click Find Next to locate the next occurrence of the text in the Find What field. If the search is
successful, the first occurrence of the text string in the file is highlighted. If the search is not successful,
an informational message displays.

7. Click Replace to replace the next occurrence of the text in the Find What field with the text in the
Replace with field.

8. Click Replace All to replace every instance of the text in the Find What field with the text in the
Replace with field.

4Test Editor
The 4Test Editor, also called test plan editor or the outline, lets you edit a file. When you are in the 4Test
Editor, there are a variety of text editing commands available through the Outline menu and the toolbar.
You can also AutoComplete to automatically complete functions, members, application states, and data
types in your script or include files.

If you have a data driven file open, which is a file with the extension .g.t, a special 4Test Editor is
displayed with additional items.

Find values of type

Lets you specify what types of values you want to search for in the file. The default is to search the test
case for all types of values, text, numbers, and true/false (booleans). You can uncheck or check the boxes
to indicate the values you need to look for.

Next Click to search down from the cursor’s current location.

Prev click to search up from the cursor’s current location.

Replace value with

Lets you specify the table and column you are using to replace the highlighted value.

564 | Working with Files

Table Populated when you first create the .g.t file, or whenever you open the Find/Replace Values
dialog box, or when you click the list box arrow. The text that displays depends on the names
already saved in your data source. For example, if you are using a Microsoft Excel file as your
data source, a list of worksheets and named ranges displays here. Select the table that
contains the values you want to use to replace the highlighted value.

Column Blank when the 4Test Editor is opened with a .g.t file. The text that displays here depends on
the names already saved in your data source. Select the column that contains the values you
want to replace the highlighted value.

Replace Click after you have selected a value to replace, and the table and column that contains the
values you want to use as replacements.

Setting Up a Printer
Use the Printer Setup dialog box to set up a printer.

Options Click to display the printer’s options dialog box.

Network Click to display the Connect to Printer dialog box where you can select another printer to use.

1. Click File > Printer Setup.

2. Select the printer.

• To use the default printer, click Default Printer.
• To use a different printer than the default, click Specific Printer.

3. Select the printer format.

• Click Portrait to print the current document in portrait format (8.5 x 11).
• Click Landscape to print the current document in landscape format (11 x 8.5 inches).

4. Select the size of the paper that you are using to print from the Size list.

5. Select the paper source that the printer should use from the Source list.

6. Click Options to display specific options for the selected printer.

7. Click Network to select a network printer.

Printing the Contents of the Active Window
Use the Print dialog box to print all or part of the contents of the active editor or results window.

1. Click File > Print. The Print dialog box appears.

2. Select All lines to print the entire file or Selected lines only to print only lines that you have
highlighted.

3. Enter values for the left, right, top, and bottom margins. The default value for any margin is 0.50 inch.

4. Type literal text, variables, or a combination of both into the Header and Footer fields.

You can also enter the following into the fields:

• &f to print the file name.
• &p to print the page number.

For example, if you type Script: &f in the Header field of a file named testapp.t, the printed
header will be: Script: testapp.t.

5. Select the output resolution from the Print Quality list.

6. Check the Print Fully Expanded check box to print the entire contents of the file. Uncheck the check
box to print the file as it is shown on the screen.

Working with Files | 565

7. Check the Print Icons check box to print icons.

8. Click Font to change the font family, the font size, and the style of the text.

9. Click Setup to display the Printer Setup dialog box where you can reconfigure the printer options.

Confirm Test Description Identifier Dialog Box
This dialog box is displayed when cut-and-paste editing operations lead to unresolved test description
identifiers. For example, this dialog appears if you cut a test description and then pasted it back into the
same place. Outwardly, nothing has changed, but the act of cutting and pasting causes a confirmation as to
whether you want to retain the original test ID or not.

566 | Working with Files

Contacting Micro Focus
Micro Focus is committed to providing world-class technical support and consulting services. Micro Focus
provides worldwide support, delivering timely, reliable service to ensure every customer's business
success.

All customers who are under a maintenance and support contract, as well as prospective customers who
are evaluating products, are eligible for customer support. Our highly trained staff respond to your requests
as quickly and professionally as possible.

Visit http://supportline.microfocus.com/assistedservices.asp to communicate directly with Micro Focus
SupportLine to resolve your issues, or email supportline@microfocus.com.

Visit Micro Focus SupportLine at http://supportline.microfocus.com for up-to-date support news and access
to other support information. First time users may be required to register to the site.

Information Needed by Micro Focus SupportLine
When contacting Micro Focus SupportLine, please include the following information if possible. The more
information you can give, the better Micro Focus SupportLine can help you.

• The name and version number of all products that you think might be causing an issue.
• Your computer make and model.
• System information such as operating system name and version, processors, and memory details.
• Any detailed description of the issue, including steps to reproduce the issue.
• Exact wording of any error messages involved.
• Your serial number.

To find out these numbers, look in the subject line and body of your Electronic Product Delivery Notice
email that you received from Micro Focus.

Contacting Micro Focus | 567

http://supportline.microfocus.com/assistedservices.asp
http://supportline.microfocus.com

Glossary
This section provides an alphabetical list of terms that are related to Silk Test Classic and their
descriptions.

4Test Classes
Classes are the core of object-oriented languages such as Visual Basic or 4Test. Each GUI object is an
instance of a class of objects. The class defines the actions, or methods, that can be performed on all
objects of a given type. For example, in 4Test the PushButton class defines the methods that can be
performed on all pushbuttons in your application. The methods defined for pushbuttons work only on
pushbuttons, not on radio lists.

The class also defines the data, or properties, of an object. In 4Test and Visual Basic, you can set or
retrieve the value of a property directly using the dot operator and a syntax similar to standard Visual
Basic.

4Test-Compatible Information or Methods
Information or methods that can be passed by value in 4Test prototypes.

Abstract Windowing Toolkit
The Abstract Windowing Toolkit (AWT) is a library of Java GUI object classes that is included with the Java
Development Kit from Sun Microsystems. The AWT handles common interface elements for windowing
environments including Windows.

The AWT contains the following set of GUI components:

• Button
• CheckBox
• CheckBox Group (RadioList)
• Choice (PopupList)
• Label (StaticText)
• List (ListBox)
• Scroll Bar
• Text Component (TextField)
• Menu

accented character
A character that has a diacritic attached to it.

agent
The agent is the software process that translates the commands in your scripts into GUI-specific
commands. It is the agent that actually drives and monitors the application you are testing.

568 | Glossary

applet
A Java program designed to run inside a Java-compatible Web browser, such as Netscape Navigator.

application state
The state you expect your application to be in at the beginning of a test case. This is in addition to the
conditions required for the base state.

attributes
In the test plan editor, attributes are site-specific characteristics that you can define for your test plan and
assign to test descriptions and group descriptions. Each attribute has a set of values. For example, you
define the Developer attribute and assign it the values of Kate, Ned, Paul, and Susan, the names of the
QA engineers in your department.

Attributes are useful for grouping tests, in that you can run or report on parts of the test plan that have a
given attribute value. For example, all tests that were developed by Bob can be executed as a group.

In Silk Test Classic, an attribute is a characteristic of an application that you verify in a test case. Attributes
are used in the Verify Window dialog box, which is available only for projects or scripts that use the
Classic Agent.

Band (.NET)
Each level in the grid hierarchy has one band object created to represent it.

base state
The known, stable state you expect the application to be in at the start of each test case.

bidirectional text
A mixture of characters that are read from left to right and characters that are read from right to left. Most
Arabic and Hebrew characters, for example, are read from right to left, but numbers and quoted western
terms within Arabic or Hebrew text are read from left to right.

Bytecode
The form of Java code that the Java Virtual Machine reads. Other compiled languages use compilers to
translate their code into native code, also called machine code, that runs on a particular operating system.
By contrast, Java compilers translate Java programs into bytecode, an intermediate form of code that is
slower than compiled code, but that can theoretically run on any hardware equipped with a Java Virtual
Machine.

Glossary | 569

call stack
A call stack is a listing of all the function calls that have been called to reach the current function in the
script you are debugging.

In debugging mode, a list of functions and test cases which were executing at the time at which an error
occurred in a script. The functions and test cases are listed in reverse order, from the last one executed
back to the first.

child object
Subordinate object in the GUI hierarchy. A child object is either logically associated with, or physically
contained by, its parent object. For example, the File menu, as well as all other menus, are physically
contained by the main window.

class
GUI object type. The class determines which methods can operate on an object. Each object in the
application is an instance of a GUI class.

class library
A collection of related classes that solve specific programming problems. The Java Abstract Windowing
Toolkit (AWT) and Java Foundation Class (JFC) are examples of Java class libraries.

class mapping
Association of nonstandard custom objects with standard objects understood by Silk Test Classic.

Classic 4Test
Classic 4Test is a test scripting language that was supported with Silk Test Classic 16.0 or prior. With Silk
Test Classic 16.5 or later, Silk Test Classic supports only Visual 4Test.

Note: With Silk Test Classic 16.0 or prior, you can easily convert your Classic 4Test scripts into Visual
4Test scripts by selecting Edit > Visual 4Test from the Silk Test Classic menu. With Silk Test Classic
16.5 or later, you can no longer convert your Classic 4Test scripts into Visual 4Test scripts. You can
use an older version of Silk Test Classic to convert the scripts, or you can contact support.

client area
The internal area of a window not including scroll bars, title bar, or borders.

custom object
Nonstandard object that Silk Test Classic does not know how to interact with.

570 | Glossary

data-driven test case
A special kind of test case that receives many combinations of data from 4Test functions/test plan.

data member
Variable defined within a class or window declaration. The value of a data member can be an expression,
but it is important to keep in mind that data members are resolved (assigned values) during compilation. If
the expression for the data member includes variables that will change at run-time, then you must use a
property instead of that data member.

declarations
See Window Declarations.

DefaultBaseState
Built-in application state function that returns your application to its base state. By default, the built-in
DefaultBaseState ensures that the application is running and is not minimized, the main window of the
application is open, and all other windows, for example dialog boxes and message boxes, are closed.

diacritic
1. Any mark placed over, under, or through a Latin-based character, usually to indicate a change in

phonetic value from the unmarked state.
2. A character that is attached to or overlays a preceding base character.

Most diacritics are non-spacing characters that don't increase the width of the base character.

Difference Viewer
Dual-paned display-only window that lists every expected value in a test case and its corresponding actual
value. Highlights all occurrences where expected and actual values differ. You display the Difference
Viewer by selecting the box icon in the results file.

double-byte character set (DBCS)
A double-byte character set, which is a specific type of multibyte character set, includes some characters
that consist of 1 byte and some characters that consist of 2 bytes.

dynamic instantiation
This special syntax is called a dynamic instantiation and is composed of the class and tag or locator of the
object. For example, if there is not a declaration for the Find dialog box of the Text Editor application, the
syntax required to identify the object looks like the following:

Glossary | 571

• Classic Agent:

MainWin("Text Editor|$D:\PROGRAM FILES
 \<SilkTest install directory>\SILKTEST\TEXTEDIT.EXE").DialogBox("Find")

• Open Agent:

/MainWin[@caption='Untitled - Text Editor']//DialogBox[@caption='Find']

The general syntax of this kind of identifier is:

• Classic Agent:

class("tag").class("tag"). ...

• Open Agent:

class('locator').class('locator'). ...

With the Classic Agent, the recorder uses the multiple-tag settings that are stored in the Record Window
Declarations dialog box to create the dynamic tag. In the Classic Agent example shown above, the tag for
the Text Editor contains its caption as well as its window ID. For additional information, see About Tags.

dynamic link library (DLL)
A library of reusable functions that allow code, data, and resources to be shared among programs using
the module. Programs are linked to the module dynamically at runtime.

enabling
Altering program code to handle input, display, and editing of bidirectional or double-byte languages, such
as Arabic and Japanese.

exception
Signal that something did not work as expected in a script. Logs the error in the results file.

frame file
See test frame file.

fully qualified object name
Name that uniquely identifies a GUI object. The actual format depends on whether or not a window
declaration has been previously recorded for the object and its ancestors.

group description
In the test plan editor, one or more lines in an outline that describe a group of tests, not a single test. Group
descriptions by default are displayed in black.

572 | Glossary

handles
A handle is an identification code provided for certain types of object so that you can pass it to a function
that needs to know which object to manipulate.

hierarchy of GUI objects
Parent-child relationships between GUI objects.

host machine
A host machine is a system that runs the Silk Test Classic software process in which you develop, edit,
compile, run, and debug 4Test scripts and test plans.

Host machines are always Windows systems.

hotkey
The following table lists the available hotkeys and accelerator keys for each menu:

Menu Name Command with Hotkey Hotkey Accelerator Key

Breakpoint Toggle Alt+B+T F5

Add Alt+B+A -

Delete Alt+B+D -

Delete All Alt+B+E -

Debug Abort Alt+D+A -

Exit Alt+D+X -

Finish Function Alt+D+F -

Reset Alt+D+E -

Run and Debug/Continue Alt+D+R F9

Run to Cursor Alt+D+C Shift+F9

Step Into Alt+D+I F7

Step Over Alt+D+S F8

Edit Undo Alt+E+U Ctrl+Z

Redo Alt+E+R Ctrl+Y

Cut Alt+E+T Ctrl+X

Copy Alt+E+C Ctrl+C

Paste Alt+E+P Ctrl+V

Delete Alt+E+D Del

Find Alt+E+F Ctrl+F

Glossary | 573

Menu Name Command with Hotkey Hotkey Accelerator Key

Find Next Alt+E+N F3

Replace Alt+E+E Ctrl+R

GoTo Line Alt+E+G Ctrl+G

GoTo Definition Alt+E+O F12

Find Error Alt+E+I F4

Data Driven - -

File New Alt+F+N Ctrl+N

Open Alt+F+O Ctrl+O

Save Alt+F+S Ctrl+S

Save As Alt+F+A -

Save All Alt+F+L -

New Project Alt+F+W -

Open Project Alt+F+E -

Close Project Alt+F+J -

Run Alt+F+R -

Debug Alt+F+D -

Check out Alt+F+T Ctrl+T

Check in Alt+F+K Ctrl+K

Print Alt+F+P Ctrl+P

Printer Setup Alt+F+I -

operation file-name Alt+F+# Alt+F+#

Exit Alt+F+X Alt+F4

Help Help Topics Alt+H+H -

Library Browser Alt+H+L -

Tutorials Alt+H+T -

About Silk Test Classic Alt+H+A -

Include Open Alt+I+O -

Open All Alt+I+P -

Close Alt+I+C -

Close All Alt+I+L -

Save Alt+I+S -

Acquire Lock Alt+I+A -

Release Lock Alt+I+R -

Options General Alt+O+G -

Editor Font Alt+O+D -

Editor Colors Alt+O+E -

574 | Glossary

Menu Name Command with Hotkey Hotkey Accelerator Key

Runtime Alt+O+T -

Agent Alt+O+A -

Extensions Alt+O+X -

Recorder Alt+O+R -

Class Map Alt+O+M -

Property Sets Alt+O+P -

Silk Central URLs Alt+O+U -

Open Options Set Alt+O+O -

Save Options Set Alt+O+S -

Close Options Set Alt+O+C -

option-file-name Alt+O+# -

Outline Move Left Alt+L+V Alt+Left Arrow

Move Right Alt+L+R Alt+Right Arrow

Transpose Up Alt+L+A Alt+Up Arrow

Transpose Down Alt+L+S Alt+Down Arrow

Expand Alt+L+E Ctrl++

Expand All Alt+L+X Ctrl+*

Collapse Alt+L+O Ctrl+-

Collapse All Alt+L+L Ctrl+/

Comment Alt+L+M Alt+M

Uncomment Alt+L+N Alt+N

Project View Explorer Alt+P+V -

Align Alt+P+A -

&Left Alt+P+L -

&Right Alt+P+R -

Project Description Alt+P+O -

Add File Alt+P+D -

Remove File Alt+P+R -

Record Window Declarations Alt+R+W Ctrl+W

Application State Alt+R+S -

Testcase Alt+R+ Ctrl+E

Method Alt+R+T -

Actions Alt+R+A -

Class Alt+R+C -

Window Identifiers Alt+R+I Ctrl+I

Window Locations Alt+R+L -

Glossary | 575

Menu Name Command with Hotkey Hotkey Accelerator Key

Results Select Alt+T+S -

Merge Alt+T+M -

Delete Alt+T+D -

Extract Alt+T+E -

Export Alt+T+X -

Convert to Plan Alt+T+C -

Compact - -

Show Summary Alt+T+H -

Hide Summary Alt+T+I -

View Options Alt+T+V -

Goto Source Alt+T+G -

View Differences Alt+T+W -

Update Expected Value Alt+T+U -

Mark Failures in Plan Alt+T+F -

Compare Two Results Alt+T+O -

Next Result Difference Alt+T+N -

Next Error Difference Alt+T+r -

Run Compile Alt+U+C Alt+F9

Compile all - -

Run All Tests Alt+U+R F9

Debug Alt+U+D Ctrl+F9

Application State Alt+U+A Alt+A

Testcase Alt+U+T Alt+T

Show Status Alt+U+S -

Abort Alt+U+B LShift+RShift

Testplan Goto Script Alt+T+G -

Detail Alt+T+D -

Insert Template Alt+T+I -

Completion Report Alt+T+C -

Mark Alt+T+M -

Mark All Alt+T+A -

Unmark Alt+T+U -

Unmark All Alt+T+N -

Mark by Query Alt+T+Q -

Mary by Named Query Alt+T+R -

Find Next Mark Alt+T+F -

576 | Glossary

Menu Name Command with Hotkey Hotkey Accelerator Key

Define Attributes Alt+T+E -

Manual tests Alt+T+T -

Tools Link Tester Alt+S+L -

Start Silk Performer Alt+S+P -

Data Drive Testcase Alt+S+D -

Enable Extensions Alt+S+E -

Silk Central Test Manager Alt+S+H

View/Transcript Expression Alt+V+E -

Global Variables Alt+V+G -

Local Variables Alt+V+L -

Expand Data Alt+V+X -

Collapse Data Alt+V+C -

Module Alt+V+M -

Breakpoints Alt+V+B -

Call Stack Alt+V+L -

Transcript Alt+V+T -

Window Tile Vertically Alt+W+T -

Tile Horizontally Alt+W+H -

Cascade Alt+W+C -

Arrange Icons Alt+W+E -

Close All Alt+W+L -

Next Alt+W+N F6

Previous Alt+W+P Shift+F6

file-file-name Alt+W+# -

Workflows Basic Alt+K+B -

Data Driven Alt+K+D -

Hungarian notation
Naming convention in which a variable’s name begins with one or more lowercase letters indicating its data
type. For example, the variable name sCommandLine indicates that the data type of the variable is
STRING.

identifier
Name used in test scripts to refer to an object in the application. Logical, GUI-independent name. Identifier
is mapped to the tag in a window declaration.

Glossary | 577

include file
File that contains window declarations and can contain constant, variable, and other declarations.

internationalization or globalization
The process of developing a program core whose feature design and code design don't make assumptions
based on a single language or locale and whose source code base simplifies the creation of different
language editions of a program.

Java Database Connectivity (JDBC)
Java API that enables Java programs to execute SQL statements and interact with any SQL-compliant
database. Often abbreviated as JDBC.

Java Development Kit (JDK)
A free tool for building Java applets and full-scale applications. This is an environment which contains
development and debugging tools, and documentation. Often abbreviated as JDK.

Java Foundation Classes (JFC)
Sun Microsystem's and Netscape's class library designed for building visual applications in Java. Often
abbreviated as JFC.

JFC consists of a set of GUI components named Swing that adopt the native look and feel of the platforms
they run on.

Java Runtime Environment (JRE)
Sun Microsystem's execution-only subset of its Java Development Kit. The Java Runtime Environment
(JRE) consists of the Java Virtual Machine, Java Core Classes, and supporting files, but contains no
compiler, no debugger, and no tools.

The JRE provides two virtual machines: JRE.EXE and JREW.EXE. The only difference is that JREW does
not have a console window.

Java Virtual Machine (JVM)
Software that interprets Java code for a computer’s operating system. A single Java applet or application
can run unmodified on any operating system that has a virtual machine, or VM.

JavaBeans
Reusable software components written in Java that perform a single function. JavaBeans can be mixed and
matched to build complex applications because they can identify each other and exchange information.

578 | Glossary

JavaBeans are similar to ActiveX controls and can communicate with ActiveX controls. Unlike ActiveX,
JavaBeans are platform-independent.

Latin script
The set of 26 characters (A through Z) inherited from the Roman Empire that, together with later character
additions, is used to write languages throughout Africa, the Americas, parts of Asia, Europe, and Oceania.
The Windows 3.1 Latin 1 character set covers Western European languages and languages that use the
same alphabet. The Latin 2 character set covers Central and Eastern European languages.

layout
The order and spacing of displayed text.

levels of localization
The amount of translation and customization necessary to create different language editions. The levels,
which are determined by balancing risk and return, range from translating nothing to shipping a completely
translated product with customized features.

load testing
Testing that determines the actual, which means not simulated, impact of multi-machine operations on an
application, the server, the network, and all related elements.

localization
The process of adapting a program for a specific international market, which includes translating the user
interface, resizing dialog boxes, customizing features if necessary, and testing results to ensure that the
program still works.

localize an application
To make an application suitable for a specific locale: for example, to include foreign language strings for an
international site.

locator
This functionality is supported only if you are using the Open Agent.

The locator is the actual name of an object, to which Silk Test Classic maps the identifier for a GUI object.
You can use locator keywords to create scripts that use dynamic object recognition and window
declarations.

Glossary | 579

logical hierarchy
The hierarchy that is implied from the visible organization of windows as they display to the user.

manual test
In the testplan editor, a manual test is a test that is documented but cannot be automated and, therefore,
cannot be run within the test plan. You might chose to include manual tests in your test plan in order to
centralize the testing process. To indicate that a test description is implemented manually, you use the
keyword value manual in the testcase statement.

mark
In the testplan editor, a mark is a technique used to work with one or more tests as a group. A mark is
denoted by a black stripe in the margin bar of the test plan. Marks are temporary and last only as long as
the current work session. Tests that are marked can be run or reported on independently as a subset of the
total plan.

master plan
In the testplan editor, that portion of a test plan that contains only the top few levels of group descriptions.
You can expand, which means display, the sub-plans of the master plan, which contain the remaining levels
of group description and test description. The master plan/sub-plan approach allows multi-user access to a
test plan, while at the same time maintaining a single point of control for the entire project. A master plan
file has a .pln extension.

message box
Dialog box that has only static text and pushbuttons. Typically, message boxes are used to prompt a user to
verify an action, such as Save changes before closing?, or to alert a user to an error.

method
Operation, or action, to perform on a GUI object. Each class defines its own set of methods. Methods are
also inherited from the class’s ancestors.

minus (-) sign
In a file, an icon that indicates that all information is displayed. Click on the minus sign to hide the
information. The minus sign becomes a plus sign.

modal
A dialog box that presents a task that must be completed before continuing with the application. No other
part of the application can be accessed until the dialog box is closed. Often used for error messages.

580 | Glossary

modeless
A dialog box that presents a simple or ongoing task. May be left open while accessing other features of the
application, for example, a search dialog box.

Multibyte Character Set (MBCS)
A mixed-width character set, in which some characters consist of more than 1 byte.

Multiple Application Domains (.NET)
The .NET Framework supports multiple application domains. A new application domain loads its own
copies of the common language runtime DLLs, data structure, and memory pools. Multiple application
domains can exist in one operation system process.

negative testing
Tests that deliberately introduce an error to check an application’s behavior and robustness. For example,
erroneous data may be entered, or attempts made to force the application to perform an operation that it
should not be able to complete. Generally a message box is generated to inform the user of the problem.

nested declarations
Indented declarations that denote the hierarchical relationships of GUI objects in an application.

No-Touch (.NET)
No-Touch deployment allows Windows Forms applications, which are applications built using Windows
Forms classes of the .NET Framework, to be downloaded, installed, and run directly on the machines of
the user, without any alteration of the registry or shared system components.

object
The principal building block of object-oriented programs. Each object is a programming unit consisting of
data and functionality. Objects inherit their methods and properties from the classes to which they belong.

outline
In the test plan editor, a structured, usually hierarchical model that describes the requirements of a test
plan and contains the statements that implement the requirements. The outline supports automatic,
context-sensitive coloring of test plan elements.

In Silk Test Classic, the outline is a 4Test editor mode that supports automatic, context-sensitive coloring
and indenting of 4Test elements.

Glossary | 581

Overloaded method
A method that you call with different sets of parameter lists. Overloaded methods cause naming conflicts
which must be resolved to avoid runtime errors when testing Java applications.

Example of an overloaded method How Java support resolves the naming conflict

setBounds(int i1, int i2, int i3, int i4) setBounds(int i1, int i2, int i3, int i4)

setBounds(RECT r1) setBounds_2(RECT r1)

parent object
Superior object in the GUI hierarchy. A parent object is either logically associated with or physically
contains a subordinate object, the child. For example, the main window physically contains the File menu
as well as all other menus.

performance testing
Testing to verify that an operation in an application performs within a specified, acceptable period of time.
Alternately, testing to verify that space consumption of an application stays within specified limits.

physical hierarchy (.NET)
The window handle hierarchy as implemented by the application developer.

plus (+) sign
In a file, an icon that indicates that there is hidden information. You can show the information by clicking on
the plus sign. The plus sign becomes a minus sign.

polymorphism
Different classes or objects performing the same named task, but with different execution logic.

project
Silk Test Classic projects organize all the resources associated with a test set and present them visually in
the Project Explorer, making it easy to see, manage, and work within your test environment.

Silk Test Classic projects store relevant information about your project, including references to all the
resources associated with a test set, such as plans, scripts, data, option sets, .ini files, results, and frame/
include files, as well as configuration information, Editor settings, and data files for attributes and queries.
All of this information is stored at the project level, meaning that once you add the appropriate files to your
project and configure it once, you may never need to do it again. Switching among projects is easy - since
you need to configure the project only once, you can simply open the project and run your tests.

582 | Glossary

properties
Characteristics, values, or information associated with an object, such as its state or current value.

query
User-selected set of characteristics that are compared to the attributes, symbols, or execution
characteristics in a test plan. When the set of characteristics matches a test, the test is marked. This is
called marking by query. For example, you might run a query in order to mark all tests that are defined in
the find.t script and that were created by the developer named Bob.

recovery system
A built-in, automatic mechanism to ensure the application is in a known state. If the application is not in the
expected state, a message is logged to the results file and the problem is corrected. The recovery system
is invoked before and after each test case is executed.

regression testing
A set of baseline tests that are run against each new build of an application to determine if the current build
has regressed in quality from the previous one.

results file
A file that lists information about the scripts and test cases that you ran. In the testplan editor, a results file
also lists information about the test plan that you ran; the format of a results file mimics the outline format
of the test plan it derives from. The name of the results file is script-name.res or testplan-
name.res.

script
A collection of related 4Test test cases and functions that reside in a script file.

script file
A file that contains one or more related test cases. A script file has a .t extension, such as find.t.

side-by-side (.NET)
Side-by-side execution is the ability to install multiple versions of code so that an application can choose
which version of the common language runtime or of a component it uses.

Glossary | 583

Simplified Chinese
The Chinese alphabet that consists of several thousand ideographic characters that are simplified versions
of traditional Chinese characters.

Single-Byte Character Set (SBCS)
A character encoding in which each character is represented by 1 byte. Single byte character sets are
mathematically limited to 256 characters.

smoke test
Tests that constitute a quick set of acceptance tests. They are often used to verify a minimum level of
functionality before either accepting a new build into source control or continuing QA with more in-depth,
time-consuming testing.

Standard Widget Toolkit (SWT)
The Standard Widget Toolkit (SWT) is a graphical widget toolkit for the Java platform. SWT is an alternative
to the AWT and Swing Java GUI toolkits provided by Sun Microsystems. SWT was originally developed by
IBM and is maintained by the Eclipse Foundation in tandem with the Eclipse IDE.

statement
In the testplan editor, lines that implement the requirements of a test plan. The testplan editor has the
following statements:

• testcase
• script
• testdata
• include
• attribute

Statements consist of one of the preceding keywords followed by a colon and a value.

In Silk Test Classic, a statement is a method or function call or 4Test flow-of control command, such as
if..then, that is used within a 4Test test case.

status line
Area at the bottom of the window that displays the status of the current script, the line and column of the
active window (if any), and the name of the script that is currently running. When the cursor is positioned
over the toolbar, it displays a brief description of the item.

stress testing
Tests that exercise an application by repeating the same commands or operation a large number of times.

584 | Glossary

subplan
Test plan that is referenced by another test plan, normally the master test plan, by using an include
statement. Portion of a test plan that resides in a separate file but can be expanded inline within its master
plan. A subplan may contain the levels of group description and test description not covered in the master
plan. A subplan can inherit information from its master plan. You add a subplan by inserting an include
statement in the master plan. A subplan file has a .pln extension, as in subplan-name.pln.

suite
A file that names any number of 4Test test script files. Instead of running each script individually, you run
the suite, which executes in turn each of your scripts and all the test cases it contains.

Swing
A set of GUI components implemented in Java that are based on the Lightweight UI Framework. Swing
components include:

• Java versions of the existing Abstract Windowing Toolkit (AWT) components, such as Button, Scrollbar,
and List.

• A set of high-level Java components, such as tree-view, list-box, and tabbed-pane components.

The Swing tool set lets you create a set of GUI components that automatically implements the appearance
and behavior of components designed for any OS platform, but without requiring window-system-specific
code.

Swing components are part of the Java Foundation Class library beginning with version 1.1.

symbols
In the testplan editor, used in a test plan to pass data to 4Test test cases. A symbol can be defined at a
level in the test plan where it can be shared by a group of tests. Its values are actually assigned at either
the group or test description level, depending on whether the values are shared by many tests or are
unique to a single test. Similar to a 4Test identifier, except that its name begins with a $ character.

tag
This functionality is available only for projects or scripts that use the Classic Agent.

The actual name or index of the object as it is displayed in the GUI. The name by which Silk Test Classic
locates and identifies objects in the application.

target machine
A target machine is a system (or systems) that runs the 4Test Agent, which is the software process that
translates the commands in your scripts into GUI-specific commands, in essence, driving and monitoring
your applications under test.

One Agent process can run locally on the host machine, but in a networked environment, the host machine
can connect to any number of remote Agents simultaneously or sequentially.

Glossary | 585

Target machines can be Windows systems.

template
A hierarchical outline in the testplan editor that you can use as a guide when creating a new test plan.
Based on the window declarations in the frame file.

test description
In the testplan editor, a terminal point in an outline that specifies a test case to be executed. Test
descriptions by default are displayed in blue.

test frame file
Contains all the data structures that support your scripts:

• window declarations
• user-defined classes
• utility functions
• constants
• variables
• other include files

test case
In a script file, an automated test that ideally addresses one test requirement. Specifically, a 4Test function
that begins with the testcase keyword and contains a sequence of 4Test statements. It drives an
application to the state to be tested, verifies that the application works as expected, and returns the
application to its base state.

In a test plan, a testcase is a keyword whose value is the name of a test case defined in a script file. Used
in an assignment statement to link a test description in a test plan with a 4Test test case defined in a script
file.

Test case names can have a maximum of 127 characters. When you create a data driven test case, Silk
Test Classic truncates any test case name that is greater than 124 characters.

test plan
In general, a document that describes test requirements. In the testplan editor, a test plan is displayed in an
easy-to-read outline format, which lists the test requirements in high-level prose descriptions. The structure
can be flat or many levels deep. Indentation indicates the level of detail. A test plan also contains
statements, which are keywords and values that implement the test descriptions by linking them to 4Test
test cases. Large test plans can be divided into a master plan and one or more sub plans. A test plan file
has a .pln extension, such as find.pln.

TotalMemory parameter
Total amount of memory available to the Java interpreter. This is the value returned from the
java.lang.Runtime.totalMemory() method.

586 | Glossary

Traditional Chinese
The set of Chinese characters, used in such countries or regions as Hong Kong SAR, China Singapore,
and Taiwan, that is consistent with the original form of Chinese ideographs that are several thousand years
old.

variable
A named location in which you can store a piece of information. Analogous to a labeled drawer in a file
cabinet.

verification statement
4Test code that checks that an application is working by comparing an actual result against an expected
(baseline) result.

Visual 4Test
Visual 4Test is the test scripting language used by Silk Test Classic.

window declarations
Descriptions of all the objects in the application’s graphical user interface, such as menus and dialog
boxes. Declarations are stored in an include file which has a .inc extension, typically the frame.inc file.

window part
Predefined identifiers for referring to parts of the window. Associated with common parts of MoveableWin
and Control classes, such as LeftEdge, MenuBar, ScrollBar.

XPath
The XML Path Language (XPath) models an XML document as a tree of nodes and enables you to
address parts of the XML document. XPath uses a path notation to navigate through the hierarchical
structure of the XML document. Dynamic object recognition uses a Find or FindAll function and an
XPath query to locate the objects that you want to test.

Glossary | 587

Index
.NET, Classic Agent

configuring 250
editing configuration files 250
editing configurations with the control panel 251
enabling support for Windows Forms applications 243
Infragistics .dll files 249
Infragistics controls 249
installing Segue.SilkTest.Net.Shared.dll 248
no-touch Windows Forms application prerequisites 245
no-touch Windows Forms application support 244
recording actions on DataGrid 246
recording actions on Infragistics toolbars 252
recording new classes 245
setting machine zone security 247
setting machine zone security using command prompt

247
setting machine zone security using control panel 247
testing applications 243
tips 243

operator
testplan editor 120

+ and - operators
rules 131

0-based arrays
about 233

4Test
versus native Java controls 261

4Test classes
definition 568

4Test code
marking as GUI specific 371

4Test components
recording overview 152

4Test Editor
about 564
compatible information or methods 568
not enough characters displayed 529

4Test language
Web application classes (Classic Agent) 315

4Test methods
comparing to ActiveX methods 234
comparing with native methods 291
resolving naming conflicts with native methods 272

4test.inc
relationship with messages sent to the result file 529

A

Abstract Windowing Toolkit
overview 568

accented characters
definition 568

Accessibility
accex.ini file 164
adding classes 346

enabling 460
enabling for the Classic Agent 346
improving object recognition 345
improving object recognition (Classic Agent) 346
removing classes 347

Accessibility classes
recording 160
removing 347

accessing
files in projects 65

accessing data
member-of operator 336

accessing methods
controls 234

accessing native methods
for predefined Java classes 287

accessing properties
controls 234

accex.ini file
Windows Accessibility 164

acquiring locks
test plans 118

actions
recording 157

active object
highlight during recording 143

active script
running 411

active suite
running 411

ActiveX
controls not recognized 480
testing 229
troubleshooting 480

ActiveX controls
recognized inconsistently 481

ActiveX methods
comparing to 4Test methods 234

ActiveX support
overview 229

ActiveX/Visual Basic
0-based arrays 233
disabling support 237
enabling support 230
exception values 235
ignoring classes 237
loading class definition files 236
predefined controls 231
prerequisites 235
setting extension options 237
setup for testing in the browser 238

ActiveX/Visual Basic controls
predefined classes 230
recording new classes 236

Add Breakpoint
dialog box 442

adding classes
Accessibility 346

588 | Index

adding comments
test plan editor 120

adding files
projects 71

adding folders
projects 72

adding information to the beginning of a file
using file functions 532

adding method to TextField class
example 362

adding properties
recorder 518

adding Tab method to DialogBox class
example 362

admin rights
installing 524
running 524

advanced
options 460

advanced techniques
Classic Agent 323

agent
definition 568

agent not responding
error message 487

agent options
differences 54
Open Agent 24
setting for Web testing 91
setting window timeout 47

Agent Options
dialog box 454

Agent Options dialog box
bitmap agent options 459
bitmap options 458
close options 457
compatibility options 462
other options 461
replay options 469
synchronization options 459
timing options 455
verification options 456

agent-based clicks
compared to API-based clicks 293

AgentClass class
classes for non-window objects 353

agents
assigning to window declarations 24
comparison, classes 57
connecting to default 45
differences, classes 57
differences, object recognition 55
differences, options 54
driving associated applications simultaneously 201
enabling networking 201
options 24
parameter comparison 61
parameters 61
record functionality 46
setting default 44
setting default, Runtime Options 45
setting default, toolbar 45

supported methods 62
supported SYS functions 62
unable to connect 489
using both agents 45

animation mode
test cases 411

AnyWin class
cannot extend class 520

API-based clicks
compared to agent-based clicks 293

appearance
verifying by using a bitmap 169

appending test cases
data-driven scripts 187

applet
definition 569

applets
Click() actions against custom controls are not

recognized 537
controls not recognized 267, 510
identifying custom controls 289

application behavior differences
supporting 366

application environment
troubleshooting 482

application hangs
playing back a menu item pick 519

application state
definition 569

application states
behavior of based on NONE 150
overview 149
recording 156
testing 157

applications
local and single 199
preparing for automated testing 535
single and remote 199

applications with invalid data
testing 176

applying masks
exclude all differences 430
excluding differences 429
excluding selected areas 429

AppStateList
using 400

array indexing
indexed values in test scripts 261

assigning agents
window declarations 24

assigning attributes
Testplan Detail dialog box 132

attaching
comments, result sets 432

attribute definitions
modifying 132

attribute values
defining 131

attributes
assigning to test plans 131
Define Attributes dialog box 139
defining 131

Index | 589

defining for existing classes 357
definition 357, 569
modifying definition 132
New Attribute dialog box 140
syntax 358
test plans 129
verification 357
verifying 357

attributes tag
notation 342

autocomplete
using 397

AutoComplete
AppStateList 400
customizing MemberList 398
DataTypeList 400
FAQs 399
FunctionTip 401
MemberList 401
overview 397
turning off 400

automated testing
making locators easier to recognize 535

automatically generated code
data-driven test cases 174

AWT
not all objects are visible in application 535
overview 568
popup dialog box is not recognized 537
predefined classes 268
recording menus 291

AWT applications
cannot play back picks of cascaded sub-menus 521

AWT classes
predefined 268

B

band (.NET)
definition 569

base state
about 98
definition 569

based on NONE
application state behavior 150

baseline bitmaps
result bitmaps, graphical differences 431

basic workflow
Classic Agent 49
troubleshooting issues, Classic Agent 53, 485

basic workflow issues
troubleshooting, Classic Agent 53, 485

Beans
definition 578

bi-directional languages
support 391

BiDi text
definition 569

bidirectional text
definition 569

bitmap comparison
excluding parts of the bitmap 428

rules 426
bitmap differences

scanning 431
bitmap options

agent options 459
Agent Options dialog box 458

Bitmap Tool
applying a mask 429
baseline and result bitmaps 426
capturing a bitmap 423
capturing bitmaps 423
comparing bitmaps 425
designate bitmap as baseline 426
designating a bitmap as a results file 426
editing masks 429
exiting from scan mode 427
mask prerequisites 428
moving to the next or previous difference 431
opening bitmap files 427
overview 422
saving captured bitmaps 424
starting 427
starting from icon 427
starting from the results file 427
starting from the Run dialog box 428
un-setting a designated bitmap 426
using masks 428
zooming windows 427

bitmaps
agent options 459
analyzing 422
analyzing for differences 431
baseline 426
baseline vs result, graphical differences 431
Bitmap Tool overview 422
capturing during recording 424
capturing Zoom window in scan mode 424
comparing baseline and result bitmaps 427
comparison command rules 426
designate as baseline 426
designate as results file 426
exiting from scan mode 427
functions 426
options 458
result 426
saving captured bitmaps 424
saving masks 430
scanning differences 431
showing areas of difference 431
starting the Bitmap Tool 427
statistics 427
un-setting designated bitmaps 426
verifying 168
verifying appearance 169
viewing statistics 427
when to use the Bitmap Tool 423, 544
zooming in on differences 431

BOOLEAN values
converting 234

borderless tables
guidelines for recognizing 311
input elements 311

590 | Index

levels of recognition 312
setting options for ShowBorderlessTables 313
testing 310

both agents
creating script 45

break statements
incorrect usage 446

Breakpoint dialog box 442
breakpoints

about 441
Add Breakpoint dialog box 442
Delete Breakpoint dialog box 442
deleting 442
setting 441
setting temporary 441
viewing 441

browser based Java applications
testing 261

browser extensions
disabling 89

browser is launched
when not testing applets 486

browser object recognition
tips 310

browser pop-up windows
handling in tests that use the Classic Agent 105

browser recognized
as client/server application 242

browser size
specifying for test frames 298

browser specifiers
web applications 302

browser support
localized 393
resetting to default 394

browser test failure
troubleshooting 544

BrowserChild MainWindow not found when using Internet
Explorer 7.x 487

browsers
configuring 90
playback is slow when testing applications 486
troubleshooting 486

building queries
tables 183

bytecode
definition 569

C

call stack
definition 570

Call Stack dialog box 445
calling DLLs

within 4Test scripts 348
calling nested methods

InvokeJava method 289
calling Windows DLLs from 4Test

overview 348
cannot double-click

file to open Silk Test Classic 520
cannot extend

classes 520
cannot find file agent.exe 488
cannot find items

Classic 4Test 80, 534
cannot open Silk Test Classic

by double-clicking a file 520
cannot play back picks

AWT applications 521
cannot save files

projects 79, 533
cannot start

Silk Test Classic 80, 534
captions

GUI-specific 372
objects 339

CaptureAllClasses
example result file 278
sample scripts 277

CaptureObjectClass
example result file 277
sample scripts 276

capturing a bitmap
Bitmap Tool 423

capturing bitmaps
during recording 424
Bitmap Tool 423

categorizing test plans
overview 123

CEF
testing 318

changes not applied
include files or scripts 526

changing element colors
result files 433

changing tags
recorded by default 336

changing text recognition level
HtmlList controls 313

checking precedence
operators 445

child object
definition 570

Chromium Embedded Framework
testing 318

class
definition 570

class attribute recording
enabling 342

class attributes
adding new 343
attributes tag notation 342
deleting 344
enabling recording 342
overview 342
recording 343

class declaration filter
turning off 281
turning on 281

class declarations
declaring objects with varying classes 541, 543

class definition file
Java 262

Index | 591

predefined for Visual Basic 230
class definition files

loading 236, 274
class hierarchy

4Test (Classic Agent) 356
class library

definition 570
Class Map

dialog box 379
class mapping

definition 570
filtering custom classes 380
style-bits 381
style-bits overview 381

class mapping example
using style-bits 382

class methods
viewing in Library Browser 404

class not loaded error 492
class properties

NumChildren alternative 358
class-property pairs

specifying 192
classes

4Test 352
agent comparison 57
attributes 342
declarations 369
defining attributes 357
defining properties 355
defining with Classic Agent 353
hierarchy (Classic Agent) 356
logical 355
not loaded error 492
overview 352
recording, Accessibility 160
recording, scripted 159

classes for non-window objects
AgentClass 353
ClipboardClass 353
CursorClass 353

Classic 4Test
cannot find items 80, 534
definition 570

Classic Agent
adding tests to the DefaultBaseState 99
assigning name 200
assigning port 200
comparison to Open Agent, classes 57
migrating to the Open Agent 54
overview 24
recording options, setting 144, 468
setting the recovery system 50, 97
starting from command line 325

Classic Agent parameters
comparison to Open Agent 61

CLASSPATH
disabling when Java is installed 290

cleanup state
recording and pasting the recording 154

Click method

actions against custom controls in Java applets are not
recognized 537

client area
definition 570

client/server applications
overview 238

client/server testing
challenges 239
code for template.t 225
concurrency testing 241
configuration testing 241
configurations 195
functional testing 241
multi_cs.t script 208
multi-application testing 216
multi-testcase code template 208
parallel template 208
parallel.t script 208
serially 214
template.t explained 226
testing databases 214
types of testing 241
verifying tables 239

clients
testing concurrently 212

Clipboard methods
4Test 380
code sample 380

ClipboardClass class
classes for non-window objects 353

close options
Agent Options dialog box 457

closing windows
recovery system 101
specifying buttons 107
specifying keys 107
specifying menus 107

collection
objects 233

colors
setting 450

columns
testing in Web applications 307

Combine Property Sets
dialog box 472

Combine Testplan Queries dialog box 136
combo boxes

owner-draw 538
command line

starting Classic Agent 325
starting from 323
starting from, Silk Test Classic 323

comments
attaching, result sets 432

Compare Two Results dialog box 418
comparing

result files 432
comparing bitmaps

Bitmap Tool 425
compatibility options

Agent Options dialog box 462
compile errors

592 | Index

Unicode content 396
Compiler Constants

dialog box 454
compiling

conditional compilation 370
compiling code

conditionally 370
completion reports

generating for test plans 118
concurrency

processing 201
concurrency testing

code example 218
explanation of code example 219
overview 241

concurrent programming
threads 203

concurrently testing
clients 212

conditional compilation
result 371

conditionally compiling code
outcome 371

configuration files, Classic Agent
editing 250

configuration test failures
troubleshooting 242

configuration testing
client/server testing 241
overview 241

configurations, Classic Agent
editing with control panel 251

configuring
deciding between machine and application 251
network of computers 199

configuring applications
custom 317
Java 256
standard 317

configuring SilkBean support
host machines when testing multiple applications 321

configuring, Classic Agent
.NET 250

Confirm Test Description Identifier dialog box 566
connecting

default agent 45
contact information 567
containers

invisible 382
Control class

cannot extend class 520
control classes

not recognized 377
control is not responding 488
controls

access similar to Visual Basic 234
recognized as custom controls 374
testing for Web applications 307
verifying that no longer displayed 172

controls not recognized
ActiveX 480

Convert Results to Plan

dialog box 112
converting

test sets to projects 69
coordinates

adding to declarations 376
Create Session dialog box 137
create test case

basic workflow for the Classic Agent 49
creating

file 563
projects 49, 67
suites 408

creating classes
mapped to several classes 363

creating data-driven scripts
Specify Data Driven Script dialog box 187

creating data-driven test cases
workflow 173

creating masks
exclude all differences 430
excluding differences 429
excluding selected areas 429

creating new queries
combining queries 133

creating script
both agents 45

cross-platform methods
using in scripts 369

cs.inc
overview 228

CursorClass class
classes for non-window objects 353

custom applications
configuring 317

custom attributes
setting to use in locators 469

custom classes
filtering 380
mapping (Classic Agent) 375
mapping to standard classes (Classic Agent) 375

custom controls
Classic Agent 375
dialog box 470
identifying in applets 289
identifying in Java applications 289
Java 253
non-graphical 375
supporting 373

custom exceptions
custom 499

custom Java controls
recording classes 274
recording from scripts 275
recording using the Recorder 274

custom list boxes
support 379

custom object
definition 570

custom verification properties
defining 361

Customer Care 567
customizing results 433

Index | 593

CustomWin
large number of objects 290

D

data member
definition 571

data members
using properties instead 532

data source
configuring DSN 178

data sources
setting up 178
setting up for data-driven 177

data-driven
workflow 173

data-driven scripts
appending test cases, dialog box 187
creating, dialog box 187
overwriting, dialog box 187
specifying, dialog box 187

data-driven test case
definition 571

data-driven test cases
adding to test plans 183
automatically generated code 174
creating 179
data sources 177
overview 172
passing data to 183
running 182
running, using sample records 182
selecting test case 179
setting up data sources 178
specifying 187
tips and tricks 175
working with 173

data-driven testing
finding values 179
replacing values 179
select test cases to data-drive 190

data-driving test cases
Oracle 179

databases
manipulating from test cases 214
testing 214

DataTypeList
using 400

DB Tester
using with Unicode content 388

DBCS
definition 571

debuggability
scripts 438

debugger
about 438
executing scripts 439
exiting 440
menus 440
starting 439

debugging
break statements, incorrect usage 446

changing variable values 443
designing debuggable scripts 438
enabling transcript 444
evaluating expressions 444
executing scripts 439
exit debugger 440
expressions 443
global variables, unexpected values 446
infinite loops 446
keyword-driven tests 438
loop variables, incorrect values 446
menus 440
never executing code 446
overview 438
setting breakpoints 441
starting debugger 439
step into 440
step over 440
test scripts 438, 439
tips 445
typographical errors 446
uninitialized handles 447
viewing modules 444
viewing transcripts 445
viewing variables 442
working with scripts 440

debugging transcripts
viewing 445

declaration tags
adding location suffices 377

declarations
adding location suffices to tags 377
adding x,y coordinates 376
definition 571
dialog boxes 329
generic message box 328
main window 330
menu 330
modified 380
modifying in the Record Window Declarations dialog

box 335
overview 328
windows 332

default agent
connecting 45
setting 44
setting, Runtime Options 45
setting, toolbar 45

default browser
remote testing 510
specifying 92

default error handling 497
default Java application

enabling extensions 259
default Java executable

enabling extensions 259
DefaultBaseState

adding tests that use Classic Agent 99
definition 571
function 98
keeping DOS window open 281
wMainWindow 99

594 | Index

defaults.inc
overview 227

DefaultScriptEnter method
overriding 102

DefaultScriptExit method
overriding 102

DefaultTestCaseEnter method
overriding 102

DefaultTestCaseExit method
overriding 102

DefaultTestPlanEnter method
overriding 102

DefaultTestPlanExit method
overriding 102

Define Attributes
dialog box 139

define values
attributes 131

defined windows
recording 160

defining
custom verification properties 361
exceptions, custom 499
new window 334

defining a custom verification property
example 362

defining attributes
classes 357
with values 131

defining classes
Classic Agent 353

defining custom verification properties
overview 358

defining method example
adding method to TextField class 362

defining methods
examples 362
overview 358
single GUI objects 359

defining properties
classes 355

defining symbols
Testplan detail dialog box 128

Delete Breakpoint dialog box 442
Delete Results

dialog box 433
deleting

class attributes 344
results 433

Delphi
applications support 529

dependent
objects 233

deriving methods
from existing methods 361

designing and recording test cases
test cases 145

DesktopWin class
using 355

determining class
java.lang.object 493

determining where values are defined

large test plans 116
DHTML

recording popup menus 294
testing popup menus 294

diacritic
definition 571

dialog box declarations
overview 329

dialog boxes
Convert Results to Plan 112
declarations 329
Define Attributes 139
displaying double-byte characters 393
Edit Testplan Query 136
Find/Replace Values 179
Go to Testcase 190
Mark By Named Query 125
Mark by Query 124
New Testplan Query 136
Record Application State 156
Record Testcase 164
Run Testcase 411
Select Data Source 186
Select Testcase 190
Specify Data Driven Script 187
Specify Data Driven Testcase 187
specifying how to invoke 342
Testplan Completion Report 119
Testplan Detail 137
Testplan Detail - Testcase 139
Update Manual Tests 140

DialogBox class
adding Tab method example 362

Difference Viewer
about 416
definition 571
dialog box 416

differences
agent options 54
agents, object recognition 55
moving to next or previous 431

disabling extensions
browser 89

disabling support
ActiveX/Visual Basic 237

display issues
Unicode content 395

distributed testing
Classic Agent 194
client/server testing configurations 195
configuring, Classic Agent 194
parallel processing 201
reporting distributed results 211
running tests on one remote target 209
running tests serially on multiple targets 210
setting-up extensions 229
specifying a network protocol, Classic Agent 194
specifying target machine driven by a thread 210
statement types 206
supported networking protocols for the Classic Agent

198
troubleshooting 228

Index | 595

using templates 208
dividing test plans

master plan and sub-plans 116
DLL calling conventions

stdcall 348
dlls

aliasing names 348
calling from within 4Test scripts 348
common problems 521
definition 572
passing arguments to functions 350
using support files 351

DLLs
calling 348

do...except
statements 372

do...except statements
handling exceptions 500

do...except to handle exceptions 185
Document Object Model

Classic Agent 304
useful information 304

documenting manual tests
test plans 114

documenting user-defined methods
examples 404

DOM
Classic Agent 304
useful information 304

DOM extension
HtmlPopupList crashes browser 545

DOM extensions
comparison to VO 303
setting options 299

DOM Extensions
dialog box 472

double-byte character set
definition 571

double-byte characters
displaying 393
displaying in dialog boxes 393
displaying in the Editor 393
issues 388

double-byte files
reusing single-byte 389

downloads 567
Dr .Watson error

running, batch file 482
drag and drop 542
DSN

configuring for data-driven test cases 178
duplicate test descriptions dialog box 141
Dynamic HTML

recording popup menus 294
testing popup menus 294

dynamic instantiation
definition 571
recording without window declarations 149

dynamic link library
definition 572

dynamic tables
about 306

dynamically windowed controls
working with 233

E
Edit Class Attributes

dialog box 344
Edit Property Set

dialog box 472
Edit Testplan Query

dialog box 136
editing

options sets 69
editor

pasting recordings 154
editor colors

setting 450
Editor Colors

dialog box 450
editor font

setting 450
Editor Font

dialog box 450
elapsed time

logging 437
embedded browser applications

enabling extensions (Classic Agent) 86
embedded Chrome

testing 318
Enable Extensions dialog box

Classic Agent 92
enabling

definition 572
enabling extensions

automatically using basic workflow 50, 84
host machines, manually 84
manually on target machines 85

enabling recording
class attributes 342

enabling Sun Java plug-in 260
enabling support

ActiveX/Visual Basic 230
entering testdata statement

manually 121
error during playback

Sheridan command buttons 480
error handling

custom 498
default 497

error messages
agent not responding 487
handling differences 365
troubleshooting 487
unable to start Internet Explorer 489
Window Browser does not define a tag 490

error-handling
writing a function 503

errors
class not loaded 492
handling 497
navigating to 434

errors and the results file 414
errors when calling nested methods 497

596 | Index

Euro symbol
displaying 524

evenly sized tool bars
modifying icon declarations 377

evenly spaced tool bars
modifying icon declarations 377

examples
adding a method to TextField class 362
adding Tab method to DialogBox class 362

exception
definition 572
handling using do...except 185

exception handling
do.. except statements 500

exception values
ActiveX/Visual Basic 235
errors 504

exceptions
defining custom 499

excluded characters
recording 193
replay 193

executables
GUI-specific 373

executing scripts
debugging 439

executing tests
Run Testcase dialog box 411

existing files with Unicode content
specifying file formats 390

existing tests
adding to projects 69

Exists method returns false when object exists 493
Export Results

dialog box 417, 436
exporting results

structured files 436
Expression

dialog box 444
expressions

about 443
evaluating, debugging 444
operator precedence 445

extending class hierarchy
overview 352

Extension Application
dialog box 474

Extension Details
dialog box 465

extension dialog boxes
adding test applications 87

Extension Enabler
deleting applications 89

Extension Enabler dialog box
comparison with Extensions dialog box 89

Extension Information dialog box 93
Extension Options dialog box

ActiveX 474
Java 475

Extension Settings dialog box
client/server 94
Java 95

Web 94
Extension Settings dialog box (.NET) 93
extensions

automatically configurable 82
adding for JVM 259
disabling 89
DOM Extensions dialog box 472
Enable Extensions dialog box (Classic Agent) 92
enabling automatically using basic workflow 50, 84
enabling for AUTs 82
enabling for HTML applications 87
enabling manually on target machines 85
Extension Application dialog box 474
Extension Information dialog box 93
Extension Options dialog box (ActiveX) 474
Extension Options dialog box (Java) 475
Extension Settings dialog box 94
Extension Settings dialog box (.NET) 93
Extension Settings dialog box (Java) 95
Extension Settings dialog box (Web) 94
host machines 83
overview 82
set manually 83
setting-up for distributed testing 229
target machines 83
verifying settings 88

Extensions
deleting applications 89
dialog box 463

Extensions dialog box
comparison with Extension Enabler dialog box 89

Extract Results
dialog box 435

extracting
results 435

F

FAQs
deciding between 4Test methods and native methods

291
disabling CLASSPATH 290
invoking Java code 291
Java 290
many Java CustomWin objects 290
recording AWT menus 291
recording classes 291
saving changes to javaex.ini 291
testing JavaScript objects 291
using Java plug-in outside JVM 291

file
creating 563
frame 572
include 578

file format issues
Unicode content 396

file formats
about 389
existing files with Unicode content 390
new files with Unicode content 390

file types
Silk Test Classic 70

Index | 597

files
adding to projects 71
moving in a project 72
removing from projects 74
using 563

files not displayed
recent files 80, 534

files not found
projects 79, 533

filtering
custom classes 380

filtering methods
cutoff classes 272

filtering properties
cutoff classes 272

filtering properties and methods
turning off class declaration filter 281
turning on class declaration filter 281

Find
dialog box 563

Find dialog
example test cases 542

Find/Replace Values
dialog box 179

finding and replacing values
rules and tips 180

finding values
data-driven tests 179

folders
adding to projects 72
available controls 72
moving in a project 72
removing from projects 73
renaming in projects 73
using in projects 72

font pattern database
generating 386

fonts
displaying differently 395
setting 450
specifying for test frames 298

forward case-sensitive search
setup example 183

frame declarations
streamlining 296

frame file
definition 572

frequently asked questions
deciding between 4Test methods and native methods

291
disabling CLASSPATH 290
invoking Java code 291
Java 290
recording AWT menus 291
recording classes 291
saving changes to javaex.ini 291
testing JavaScript objects 291
to many Java CustomWin objects 290
using Java plug-in outside JVM 291

Frequently Asked Questions
AutoComplete 399

fully qualified object name

definition 572
functional test design

incremental 240
functional testing

overview 241
functionality not supported

Open Agent 488
functions

troubleshooting 492
FunctionTip

using 401

G

General Options
dialog box 448

general protection faults
troubleshooting 525

generating completion reports
test plans 118

generic message box
declarations 328

generic message box declaration
overview 328

GetMachineData
multi-application testing example 219

GetText
code sample 380

global variables
GUI specifiers 370
local variables, same name 446
overview 202
protecting access 203
running from test plan versus running from script 525
unexpected values 446
viewing, debugging 442

globalization
definition 578

Globals dialog box 443
glossary

overview 568
Go to Testcase

dialog box 190
graphical controls

support 374
group description

definition 572
groups

sharing projects 66
GUI objects

hierarchy 573
recording methods 360

GUI specifiers
4Test code 371
global variables 370
inheritance 370
overview 328, 369
syntax 371
usages 371

GUI-specific captions
support 372

GUI-specific executables

598 | Index

supporting 373
GUI-specific menu hierarchies

support 373
GUI-specific objects

support 372
GUI-specific tags

creating 364

H

handles
definition 573

handling GUI differences
porting tests 363

hidecalls
keyword 358

hierarchical object recognition
overview 142

hierarchy of GUI objects
definition 573

host machine
definition 573

host machines
configuring SilkBean support when testing multiple

applications 321
enabling extensions, manually 84

hotkey
definition 573

HTML applications
enabling extensions 87

Html class attributes
adding new 343
deleting 344
recording 343

HTML definitions
tables, Classic Agent 307

HTML frame declarations
streamlining 296

HTML frames
declarations 306

HTML reports
enabling 478

HtmlPopupList
browser crashes when using DOM 545

Hungarian notation
definition 577

I

identifier
definition 577

identifiers
overview 340

identifiers and tags
overview 339
XML objects 314

ignored Java objects
recording classes 279

ignoring
classes, recording 448, 465
Java objects 289

ignoring classes

ActiveX/Visual Basic 237
Java 526

images
testing in Web applications 308

IME
using 394

IME issues
Unicode content 397

IMEs
differing in appearance 397

improving
window declarations 332

improving object recognition
Accessibility 345
Accessibility (Classic Agent) 346

improving recognition
defining new window 332

improving recording
defining a new window 334

include file
definition 578

include files
changes not applied 526
conditionally loading 364
handling very large files 228
loading for different test application versions 365
maximum size 228

include scripts
changes not applied 526

incorrect values
scripts, fixing 434

incremental test design
functional 240

index
using as tag 369

indexed values
incorrect method returns in scripts 497

indexing
schemes for 4Test and native Java methods 261

infinite loops
debugging 446

Infragistics controls, Classic Agent
.NET 249

Infragistics, Classic Agent
.dll files 249

inheritance
GUI specifiers 370

input elements
borderless tables 311

Input Method Editor
setting up 392

Input Method Editor issues
Unicode content 397

Input Method editors
differing in appearance 397

Input Method Editors
using 394

Insert Testplan Template dialog box 116
installing

privileges required 524
installing language support

Unicode content 392

Index | 599

international applications
recording identifiers 391

internationalization
configuring environment 392
definition 578
useful sites 388

internationalized content
issues with displaying 388

internationalized objects
support 387

Internet Explorer
unable to start 489

invalid data
testing applications 176

invisible containers
about 382
filtering unnecessary classes 380

Invoke method
how to write the method 495

InvokeJava method
class not loaded error 492

invokeMethods
drawing line in multiline text field 287

invokeMethods method
JavaMainWin 282

invoking
dialog boxes 342
Java applications and applets 284
Java code from 4Test scripts 291

invoking applets
Java 284

invoking applications
Java 284
JRE 285
JRE using -classpath 285

invoking test cases
multi-application environments 217

J

JAR files
choosing, Classic Agent 483

Java
accessing native methods for predefined classes 287
accessing non-visible objects 288
accessing objects and methods 287
applet controls not recognized 267, 510
calling nested native methods 289
cannot open Web Start application 482
controls are not recognized 536
disabling CLASSPATH 290
enabling support 256
FAQs 290
identifying custom controls 289
ignoring classes 526
ignoring objects 289
invoking applets 284
invoking applications 284
invoking from 4Test scripts 291
javaex.inc 262
launching through .lax file 260
no child objects are recognized 536

predefined class definition file 262
recording classes for custom controls 274
recording custom controls from scripts 275
recording custom controls with the Recorder 274
recording window declarations 280
security privileges 258
setting extension options using javaex.ini 265
testing custom window classes 273
testing scroll panes 290
when to record classes 270
window properties not captured for stand-alone

applications 538
Java applets

disabling plug-ins 267, 509
invoking 284
setup for testing in the browser 238
supported browsers 254

Java Applets
configuring 257

Java application error
running from batch file 482

Java applications
Silk Test Java file missing in plug-in 267, 510
application not ready to test 265, 508
configuring standalone applications 257
defining lwLeaveOpen for launching 494
enabling 259
enabling extensions 259
enabling plug-ins 266, 509
identifying custom controls 289
Java Plug-in check box not checked 266, 509
keeping DOS window open 281
multitags 261
prerequisites 256
recording classes for ignored objects 279
standard names 88
testing browser-based 261
troubleshooting 265, 508
writing an Invoke method for launching 495

Java applications and applets
invoking 284
preparing for testing 260
testing 260

Java AWT
classes for the Classic Agent 254
Classic Agent 252
object recognition 254
supported controls 254

Java AWT menus
playing back 253
recording 253

Java AWT/Swing
testing standard Java objects 253

Java classes
accessing native methods 287
ignoring 526
loading class definition files 274
loading test frame files 274
recording 269

Java console
redirect output to file 282

Java controls

600 | Index

not recognized 536
Java controls not recognized 538
Java custom windows

testing classes 273
Java database connectivity

definition 578
using 282

Java Development Kit
definition 578

Java extension
enabling 256
options 263

java extension loses injection when using VNC 485
Java FAQs

overview 290
Java Foundation Class

playing back menus 253
recording menus 253

Java Foundation Classes
definition 578

Java objects
accessing nested 288
accessing non-visible 288
determining class 493
ignoring 289

Java output
redirect from console to file 282

Java plug-in
using outside JVM 291

Java plugins
enabling 259

Java Runtime Environment
definition 578

Java scroll panes
testing 290

Java security policy
changing 258

Java security privileges
changing 258

Java support
disabling 259
enabling 256
extending 281
manually configuring for Sun JDK 257
Sun JDK 257
supported classes 267

Java SWT and Eclipse
Classic Agent 291

Java SWT custom class attributes
deleting 344

Java Virtual Machine
definition 578

Java virtual machines
supported 254

Java-equivalent window classes
predefined 268

JavaBeans
definition 578
support 255

javaex.ini
saving changes 291
setting Java extension options 265

JavaMainWin not recognized 536
JavaScript

not recognizing updates 538
support 255
testing 291

JDBC
definition 578
using 282

JDK
definition 578
invoking applications 284

JFC
definition 578
playing back menus 253
recording menus 253

JFC classes
predefined 268

JFC objects
mouse clicks fail 518

JFC popup menus
sample declarations 483
sample script 483

JRE
definition 578
invoking applications 285
invoking applications using -classpath 285

JVM
definition 578
supported 254

K

keyword-driven tests
debugging 438

keywords
hidecalls 358

L

Language bar
only English listed 397

large test plans
determining where values are defined 116
overview 116

Latin script
definition 579

launcher application executables
support 260

launching Java applications
writing Invoke method 495

layout
definition 579

legacy scripts
options 540

Library Browser
adding information 403
adding user-defined files 403
not displaying user-defined methods 527
not-displayed Web classes 405
overview 402
source file 402
viewing class methods 404

Index | 601

viewing functions 403
Web browser classes not displayed 486

licenses
handling limited licenses 228

licensing
available license types 19

linking descriptions to scripts
Testplan Details dialog box 121

linking descriptions to test cases
Testplan Details dialog box 121

linking test plans to test cases
example 123

links
not recognized 545
testing 308

list box
cannot record second window 521

list boxes
custom 379
owner-draw 538

load testing
definition 579

loading include files
conditionally 364

local applications
single 199

local sub-plan copies
refreshing 117

local variables
global variables, same name 446
viewing, debugging 442

localization
definition 579

localization levels
definition 579

localized browser support
changing include files 394

localized browsers
changing default browser include files 394
resetting support to default 394
support 393

localizing applications
definition 579

locally testing multiple applications
sample include file (Classic Agent) 512
sample script file (Classic Agent) 511

Locals dialog box 443
location suffix

adding to declarations tag 377
locator

definition 579
locator attributes

excluded characters 193
Windows API-based controls 315

locator recognition
enhancing 535

locators
setting custom attributes 469

locks
acquiring 118
overview 118
releasing 118

test plans 118
logging

elapsed time 437
machine information 437
thread 437

logging errors
programmatically 501

logic errors
evaluating 416

logical controls
different implementations 365

logical hierarchy
definition 580

login windows
handling 103
non-Web applications (Classic Agent) 104
Web applications 103

looking at statistics
bitmaps 427

loop variables
incorrect values 446

lwLeaveOpen
defining for launching Java applications 494
specifying windows to be left open (Classic Agent) 106

M

machine handle operator
specifying 211

machine handle operators
alternative syntax 212

machine information
logging 437

machine zone security, Classic Agent
setting 247
setting using command prompt 247
setting using control panel 247

main function
using in scripts 184

main window
declarations 330

manual test
definition 580
describing the state 114

manual test state
describing 114

manual tests
updating 140

mapping custom classes
to standard classes (Classic Agent) 375

mark
definition 580

Mark by Named Query
dialog box 125

Mark by Query
dialog box 124

marked tests
printing 124

marking commands
interactions 124

masks
applying 429

602 | Index

creating one that excludes all differences 430
editing 429
excluding differences 429
excluding selected areas 429
prerequisites 428
saving 430

master plan
definition 580

master plans
connecting with sub-plans 117

maximum size
Silk Test Classic files 527

MBCS
definition 581

member-of operator
using to access data 336

MemberList
customizing 398
using 401

menu
declarations 330

menu commands
cannot access 519

menu hierarchies
GUI-specific 373

menu item pick
application hangs during playback 519

Merge Results
dialog box 416, 434

merging
results, test plans 416, 434

message box
definition 580

messages sent to the result file
relationship with exceptions defined in 4test.inc 529

method
definition 580

methods
adding to existing classes 359
adding to single GUI objects 359
agent support 62
defining 359
defining for single GUI objects 359
deriving new from existing 361
enumerating 272
recording for GUI objects 360
redefining 361
thresholds for filtering 272
troubleshooting 492

methods return incorrect indexed values in scripts 497
MFC

support 319
Microsoft Accessibility

improving object recognition 345
Microsoft Foundation Class

support 319
migrating

from the Classic Agent to the Open Agent 54
minus (-) sign

definition 580
missing peripherals

test machines 20

modal
definition 580

modeless
definition 581

modified declarations
using 380

modify declarations
icons contained in an evenly sized and spaced tool bar

377
modifying declarations

Record Window Declarations dialog box 335
modifying identifiers

test frames 298
modules

viewing, debugging 444
mouse actions

playing back 527
mouse coordinate

off screen 546
MoveableWin

cannot extend class 520
moving files

between projects 73
on Files tab 72

moving folders
in a project 72

multi-application environments
cs.inc 228

multi-application testing
code for template.t 225
invoking example 225
invoking example explained 226
invoking test cases 217
overview 216
template.t explained 226

multi-machine testing
Terminal Server environment 215

multi-test case
statements 217

multibyte character set
definition 581

Multiple Application Domains (.NET)
definition 581

multiple applications
setting up the recovery system 510

multiple machines
driving 203
troubleshooting 510

multiple tag recording
turning off 336

multiple tests
recovering 202

multiple verifications
test cases 501

multiple-application environments
test case structure 216

multitags
Java applications 261

N

Named Query command

Index | 603

differences with Query 134
naming conflicts

resolving 272
native Java controls

versus 4Test 261
native Java methods

comparing with 4Test methods 291
native methods

accessing for predefined Java classes 287
enumerating 272
resolving naming conflicts with 4Test methods 272
using non-enumerated methods 272

native properties
enumerating 272

native Visual Basic objects
displayed as custom windows 481

navigating to errors 434
negative testing

definition 581
nested declarations

definition 581
nested Java objects

accessing 288
NetBIOS host

enabling networking 200
networking protocols 198

network
configuring 199

Network
dialog box 200

network testing
types of testing 241

networking
supported protocols for the Classic Agent 198

networks
enabling 200
enabling on agents 201
enabling on NetBIOS host 200
enabling on remote host 201

never executing code
checking 446

New Attribute dialog box 140
new files with Unicode content

specifying file formats 390
new projects

creating 49, 67
New Property Set

dialog box 472
New Test Frame

dialog box, Classic Agent 142
New Testplan Query

dialog box 136
no methods found

Visual Basic 481
no properties found

Visual Basic 481
no tag defined

window browser 490
no-touch (.NET)

definition 581
no-touch applications, Classic Agent

prerequisites 245

Windows Forms 244
non-graphical custom controls

support 375
non-visible Java objects

accessing 288
non-visible objects

accessing in Java 288
non-Web applications

handling login windows (Classic Agent) 104
not all actions captured

recorder 528
not enumerated methods

using 272
not recognizing updates on Internet Explorer page

containing JavaScript 538
notation

attributes tag 342
notification testing

code example 1 221
code example 2 224
explanation of code example 1 223
explanation of code example 2 225
single-user example 221
single-user example explanation 223
two-user example 224
two-user example explanation 225

NumChildren
alternative class property 358

O

object
definition 581

object attributes
verifying 168

object files
advantages 326
locations 327
overview 326

object locations
recording 157

object properties
overview 166
verifying 166
verifying (Classic Agent) 166

object recognition
agent differences 55
control class not recognized 377
hierarchical 142
improving by defining new window 332
improving with Accessibility 345
improving with Accessibility (Classic Agent) 346
Java AWT 254
objects recognized as custom controls 374
Swing 254

object-oriented programming languages
classes 255

objects
captions 339
collection 233
dependent 233
internationalized 387

604 | Index

not visible within application 535
properties 166
steps for verifying attributes 168
troubleshooting 517
verifying attributes 168
verifying properties 166
verifying properties (Classic Agent) 166
verifying state 169
verifying with the Verify function 167

objects recognized as custom controls
reasons 374

OCR
4Test functions 384
generating the font pattern database 386
overview 383
pattern file generation 387
SGOCRLIB.DLL 386
support 383

OCR module
files 383
overview 383

OLESSCommand class
error during click playback 480

Open Agent
comparison to Classic Agent, classes 57
migrating to from Classic Agent 54
recording options, setting 448, 465
replay options, setting 469

Open Agent parameters
comparison to Classic Agent 61

opening
TrueLog Options dialog box 419

opening projects
existing 68

operators
checking precedence 445

OPT_AGENT_CLICKS_ONLY
option 24

OPT_ALTERNATE_RECORD_BREAK
option 25

OPT_APPREADY_RETRY
option 25

OPT_APPREADY_TIMEOUT
option 25

OPT_BITMAP_MATCH_COUNT
option 25

OPT_BITMAP_MATCH_INTERVAL
option 26

OPT_BITMAP_MATCH_TIMEOUT
option 26

OPT_BITMAP_PIXEL_TOLERANCE
option 27

OPT_CLASS_MAP
option 27

OPT_CLOSE_CONFIRM_BUTTONS
option 27

OPT_CLOSE_DIALOG_KEYS
option 27

OPT_CLOSE_MENU_NAME
option 27

OPT_CLOSE_WINDOW_BUTTONS
option 27

OPT_CLOSE_WINDOW_MENUS
option 28

OPT_CLOSE_WINDOW_TIMEOUT
option 28

OPT_COMPATIBILITY
option 28

OPT_COMPATIBLE_TAGS
option 28

OPT_COMPRESS_WHITESPACE
option 28

OPT_DROPDOWN_PICK_BEFORE_GET
option 29

OPT_ENABLE_ACCESSIBILITY
option 29, 460

OPT_ENABLE_EMBEDDED_CHROME_SUPPORT
options 318

OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT
option 30, 460

OPT_ENABLE_UI_AUTOMATION_SUPPORT
option 30

OPT_ENSURE_ACTIVE_WINDOW
option 30

OPT_EXTENSIONS
option 30

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES
option 30

OPT_HANG_APP_TIME_OUT
option 30

OPT_ITEM_RECORD
option 30

OPT_KEYBOARD_DELAY
option 31

OPT_KEYBOARD_LAYOUT
option 31

OPT_KILL_HANGING_APPS
option 31

OPT_LOCATOR_ATTRIBUTES_CASE_SENSITIVE
option 31, 460

OPT_MATCH_ITEM_CASE
option 32

OPT_MENU_INVOKE_POPUP
option 32

OPT_MENU_PICK_BEFORE_GET
option 32

OPT_MOUSE_DELAY
option 32

OPT_MULTIPLE_TAGS
option 32

OPT_NO_ICONIC_MESSAGE_BOXES
option 33

OPT_PAUSE_TRUELOG
option 33

OPT_PLAY_MODE
option 33

OPT_POST_REPLAY_DELAY
option 33

OPT_RADIO_LIST
option 33

OPT_RECORD_LISTVIEW_SELECT_BY_TYPEKEYS
option 33

OPT_RECORD_MOUSE_CLICK_RADIUS
option 33

Index | 605

OPT_RECORD_MOUSEMOVES
option 34

OPT_RECORD_SCROLLBAR_ABSOLUT
option 34

OPT_REL1_CLASS_LIBRARY
option 34

OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT
option 34, 460

OPT_REPLAY_HIGHLIGHT_TIME
option 34

OPT_REPLAY_MODE
option 34

OPT_REQUIRE_ACTIVE
option 35

OPT_RESIZE_APPLICATION_BEFORE_RECORDING
option 35

OPT_SCROLL_INTO_VIEW
option 35

OPT_SET_TARGET_MACHINE
option 35

OPT_SHOW_OUT_OF_VIEW
option 36

OPT_SYNC_TIMEOUT
option 36

OPT_TEXT_NEW_LINE
option 36

OPT_TRANSLATE_TABLE
option 36

OPT_TRIM_ITEM_SPACE
option 37

OPT_USE_ANSICALL
option 37

OPT_USE_SILKBEAN
option 37

OPT_VERIFY_ACTIVE
option 37

OPT_VERIFY_APPREADY
option 37

OPT_VERIFY_CLOSED
option 37

OPT_VERIFY_COORD
option 37

OPT_VERIFY_CTRLTYPE
option 38

OPT_VERIFY_ENABLED
option 38

OPT_VERIFY_EXPOSED
option 38

OPT_VERIFY_RESPONDING
option 38

OPT_VERIFY_UNIQUE
option 38

OPT_WAIT_ACTIVE_WINDOW
option 39

OPT_WAIT_ACTIVE_WINDOW_RETRY
option 39

OPT_WINDOW_MOVE_TOLERANCE
option 39

OPT_WINDOW_RETRY
option 40

OPT_WINDOW_SIZE_TOLERANCE
option 40

OPT_WINDOW_TIMEOUT
option 41

OPT_WPF_CHECK_DISPATCHER_FOR_IDLE
option 41

OPT_WPF_CUSTOM_CLASSES
option 41

OPT_WPF_PREFILL_ITEMS
option 42

OPT_XBROWSER_ENABLE_IFRAME_SUPPORT
option 42

OPT_XBROWSER_EXCLUDE_IFRAMES 43
OPT_XBROWSER_FIND_HIDDEN_INPUT_FIELDS

option 43
OPT_XBROWSER_INCLUDE_IFRAMES 43
OPT_XBROWSER_SYNC_EXCLUDE_URLS

option 44
OPT_XBROWSER_SYNC_MODE

option 43
OPT_XBROWSER_SYNC_TIMEOUT

option 44
optical character recognition

4Test functions 384
OCR module 383
overview 383
pattern file generation 387
SGOCRLIB.DLL 386

optimizing replay
replay options, setting 469

options
advanced 460
agents 24
OPT_ENABLE_EMBEDDED_CHROME_SUPPORT

318
recording, Classic Agent 144, 468
recording, Open Agent 448, 465
replay, Open Agent 469
sets 366
sets, adding to projects 69
setting 448

options sets
editing in projects 69
porting 366
specifying 366
using in projects 69

Oracle DSN
data-driving test cases 179

Oracle Forms
troubleshooting 517

organizing
projects 71

other options
Agent Options dialog box 461

outline
definition 581

overriding
default recovery system 102

overwriting data-driven scripts
Specify Data Driven Script dialog box 187

owner-draw
list boxes and combo boxes 538

606 | Index

P

packaged projects
emailing 76

packaging
projects 74

parallel processing
spawn statement 207
statements 207

parallel statements
using 207

parallel test cases
using templates 208

parallel testing
asynchronous 205

parameters
agent comparison 61

parent object
definition 582

passing arguments
scripts 408
to DLL functions 350

passing data
data-driven test cases 183

pattern file generation
OCR 387
optical character recognition 387

peak load testing 242
performance testing

definition 582
physical hierarchy (.NET)

definition 582
plug-ins

enabling for Java applications 266, 509
plus (+) sign

definition 582
polymorphism

concept 352
definition 582

popup list
cannot record second window 521

port numbers
Classic Agent 229

porting tests
another GUI 363
differences between GUIs 363

predefined ActiveX/Visual Basic controls
list 231

predefined attributes
test plan editor 130

predefined classes
ActiveX/Visual Basic controls 230
AWT 268

prerequisites
testing Java applications 256

Print
dialog box 565

Printer Setup
dialog box 565

printers
setting up 565

printing

active window contents 565
marked tests 124

priorLabel
Win32 technology domain 318

privileges required
installing Silk Test 524
running Silk Test 524

product suite
components 22

Product Support 567
project

definition 582
Project Description

dialog box 81
Project Explorer

overview 66
sorting resources 73
turning on and off 74
Unicode characters do not display 396

project files
editing 80, 534
not loaded 79, 533

project information
storing 64

project-related information
storing 64

projects
about 64
accessing files 65
adding an options set 69
adding existing tests 69
adding files 71
adding folders 72
cannot load project file 79, 533
cannot save files 79, 533
creating 49, 67
editing project files 80, 534
editing the options set 69
emailing packaged projects 76
exporting 78
files not found 79, 533
moving files between 73
moving files in projects 72
moving folders in projects 72
opening existing projects 68
organizing 71
packaging 74
Project Description dialog box 81
removing files 74
removing folders 73
renaming 71
renaming folders 73
sharing among a group 66
storing information 64
troubleshooting 79, 533
turning Project Explorer on and off 74
viewing associated files 74
viewing resources 74
working with folders 72

properties
definition 583
enumerating 272

Index | 607

objects 166
sets 190
thresholds for filtering 272
using instead of data members 532
verifying 357
verifying as sets 190

property list
confirming 361

property sets
Combine Property Sets dialog box 472
combining 191
creating 191
deleting 191
Edit Property Set dialog box 472
editing 192
New Property Set dialog box 472
overview 190
predefined 192
Property Sets dialog box 471

Property Sets
dialog box 471

protocols
networking (Classic Agent) 198

Q

queries
building 183
combining 135
combining to create new 133
creating, named 125
creating, test plans 134
deleting 135
editing 135
including symbols 134
test plans 133

query
definition 583

Query command
differences with Named Query 134

Quick Start Wizard
cannot find 520

R

recent files
files not displayed 80, 534

recognizing borderless tables
guidelines 311

recognizing controls
as custom controls 374

recognizing objects in browsers
tips 310

Record Actions
dialog box 163

Record Application State
dialog box 156

Record Class Scripted
dialog box 159

Record Defined Window
dialog box 160

record functionality

agents 46
Record Method

dialog box 360
record options

Classic Agent 144, 468
Open Agent 448, 465

Record Status on Classic Agent
dialog box 161

Record Testcase
dialog box 164

Record Window Declarations
dialog box 336

Record Window Declarations Options
dialog box 339

Record Window Identifiers
dialog box 158

Record Window Locations
dialog box 157

Record Window Tags
dialog box, Classic Agent 160

recorder
adding properties 518
does not capture all actions 528

Recorder Options
dialog box, Classic Agent 144, 468

recording
4Test components 152
Accessibility classes 160
actions 157
application states 156
available functionality 46
AWT menus 291
changing tags recorded by default 336
classes for custom Java controls 274
cleanup stage 154
defined windows 160
Html class attributes 343
Java classes 269
Java window declarations 280
methods for GUI objects 360
object highlighting 143
object locations 157
pasting recording from cleanup 154
pasting to editor 154
Record Status on Classic Agent dialog box 161
remote 202
scripted classes 159
setting classes to ignore 470
setting options, Classic Agent 144, 468
setting options, Open Agent 448, 465
test cases 164
test frames 326
Update Files dialog box 165
Verify Window dialog box 162
Verify Window Edit dialog box 163
window identifiers 158
window tags, Classic Agent 160
without window declarations 149

recording a Close method
Classic Agent 107

Recording a window declaration for a dialog 333
recording browser-page declarations

608 | Index

many child objects 546
recording classes

custom Java controls 274
enumerating methods and properties 272
ignored Java objects 279
when to record classes 270

recording identifiers
international applications 391

recording new classes
ActiveX/Visual Basic controls 236

Recording Options
dialog box, Open Agent 448, 465

recording popup menus
DHTML 294
Dynamic HTML 294

recording test cases
Classic Agent 51, 153
linking to scripts and test cases 155

recording the stages
test cases 151

recording window declarations
main window 333
menu hierarchy 333
only the Java applet is seen 537
Web applications 295

recording, Classic Agent
classes for .NET controls 245
DataGrid actions 246
Infragistics toolbars actions 252

recovery system
Classic Agent 96
closing windows 101
defaults.inc file 227
definition 583
flow of control 100
modifying 102
overriding default 102
setting for the Classic Agent 50, 97
specifying new window closing procedures 106
starting the application 101
testing ability to close application dialog boxes 155
Web applications 100, 262

regression testing
definition 583

releasing locks
test plans 118

remote applications
multiple 199
networking 199
single 199

remote testing
default browser 510

removing
unused space, result files 437

renaming
projects 71

Replace
dialog box 564

replacing
strings 564

replacing values
data-driven tests 179

replay
setting options, Open Agent 469

replay options
Agent Options dialog box 469
setting, Open Agent 469

replaying
setting classes to ignore 470

report types
selecting 478

reporting
distributed results 211

reraise statement
error handling 498

resolving
naming conflicts 272

result bitmaps
baseline bitmaps, graphical differences 431

result files
changing the color of elements 433
comparing 432
using 432

result sets
attaching comments 432
default number, changing 433

results
converting to test plans 112
customizing 433
deleting 433
displaying 417
displaying a different set 437
errors and results file 414
exporting, structured files 436
extracting 435
interpreting 413
marking failed test cases 434
merging, test plans 416, 434
removing unused space, result files 437
results file overview 413
scripts, fixing incorrect values 434
selecting 417
starting the Bitmap Tool from the results file 427
storing 435
storing and exporting 435
viewing an individual summary 435

results file
definition 583
overview 413

results files
not opening 521
test plans, converting 112

rules and tips
finding and replacing values 180

Run Application State
dialog box 411

Run Testcase
dialog box 411

running
active script or suite 411
batch file, Dr. Watson error 482
global variables, test plan versus script 525
test cases, data driven 182
test plans 410

Index | 609

tests 408
running test cases

stopping 411
Runtime

about 552
comparing with Silk Test Classic 552
installing 552
starting 552

Runtime Options
dialog box 451

Runtime Status
dialog box 413

S
sample applications

web applications 293
sample command line

Visual Café 286
sample scripts

CaptureAllClasses 277
CaptureObjectClass 276

saving captured bitmaps
Bitmap Tool 424

saving changes
sub-plans 118

saving existing files
Save as dialog box opens 397

script
definition 583

script deadlocks
4Test handling 242

script file
definition 583

script files
saving 156

ScriptEnter method
overriding default recovery system 102

ScriptExit method
overriding default recovery system 102

scripting
common problems 522

scripts
deadlock handling 242
incorrect values, fixing 434
linking to by recording a test case 155
methods return incorrect indexed values 497
passing arguments to 408
saving 156
using main function 184

search setup example
forward case-sensitive search 183

searching
strings 563

security privileges
Java 258

Select Data Source
dialog box 186

Select Results
dialog box 417

Select Testcase
dialog box 190

selecting test cases
to data drive 179

serial number 567
Set attributes

adding members 130
removing members 130

Set Recovery System
dialog box 108

SetText
code sample 380

SetText() statements
recording two 528

setting
options 448

setting agent options
Web testing 91

setting classes to ignore
transparent classes 470

setting default agent
Runtime Options dialog box 45
toolbar 45

setting extension options
ActiveX/Visual Basic 237

setting Java extension options
javaex.ini 265

setting options
TrueLog 419
TrueLog Explorer 419

setting the recovery system
Classic Agent 50, 97

setting up IME
Unicode content 392

setting up the recovery system
multiple local applications 510

Setup Data Driven Script DSN
dialog box 186

setup steps
web applications, Classic Agent 294

SGOCRLIB.DLL
OCR 386
optical character recognition 386

shared data
specifying 119

sharing initialization files
test plans 118

sharing projects
groups 66

Sheridan command buttons
error during click playback 480

Show All Classes check box
not all objects are visible 535

ShowBorderlessTables
setting options 313

ShowListItem option
setting 313

side-by-side (.NET)
definition 583

Silk Test Classic
not starting 80, 534

Silk Test Classic files
maximum size 527

SilkBean
configuring on target UNIX machines 320

610 | Index

configuring support on host machine when testing
multiple applications 321

overview 319
preparing test scripts 320
troubleshooting 321

SilkBean support
target UNIX machines 320

Simplified Chinese
definition 584

single applications
local 199
remote 199

single GUI objects
defining methods 359

single-application environments
test case structure 217

single-application tests
recovery-system file 227

single-byte character set (SBCS) 584
single-byte files

reusing as double-byte 389
smoke test 584
sorting resources

Project Explorer 73
spawn

multi-application testing example 219
spawn statement

using 207
specifiers

GUI 328
Specify Data Driven Script

dialog box 187
Specify Data Driven Testcase

dialog box 187
Specify Rows

dialog box 188
specifying

target machine for a single command 211
specifying attribute hierarchy

adding new Html class attributes 343
recording existing Html class attributes 343

specifying browser
testing Web applications 92

specifying data-driven scripts
Specify Data Driven Script dialog box 187

specifying new window closing procedures
recovery system 106

specifying windows to be left open
Classic Agent 106

SSTab control
tag declarations 313

standard applications
configuring 317

Standard Widget Toolkit (SWT) 584
starting

command line 323
starting Bitmap Tool

from icon 427
from the results file 427

starting from the command line
Silk Test Classic 323

starting Java applications through command line

troubleshooting 266, 508
starting the Bitmap Tool

Run dialog box 428
statement

definition 584
statements

do...except 372
parallel 207
type 372

status line 584
stdcall

DLL calling conventions 348
step into

debugging 440
step over

debugging 440
stopping

running test cases 411
storing and exporting

results 435
storing results 435
str function

does not round correctly 532
stress testing 584
structured files

results, exporting 436
style-bits

class mapping 381
class mapping example 382
overview 381
using with class mapping 381

sub-menus of a Java menu are being recorded as
JavaDialogBoxes 518

sub-plans
connecting with master plans 117
copying 117
opening 117
refreshing local copies 117
saving changes 118

subplan
definition 585

suite
definition 585

suites
creating 408

Sun Java
enabling plug-in 260

Sun JDK
Java support 257
manually configuring Java support 257

supported browsers
testing Java applets 254

supported controls
Java AWT 254
Swing 254
Web applications 293

supported Java classes
overview 267

SupportLine 567
suppressing controls

Classic Agent 248, 292, 316
Open Agent 316

Index | 611

Swing
Classic Agent 252
definition 585
object recognition 254
supported controls 254

Symantec Visual Café
invoking applications from command line 285
invoking applications from IDE 287

Symantex Itools classes
predefined 269

symbols
assigning values 129
definition 585
including in queries 134
overview 126
specifying as arguments for testcase statements 129
using 126

symbolvalue
assigning to symbol 129

synchronization options
Agent Options dialog box 459

synchronizing threads with semaphores 204
sys functions

agent specific differences 62
system dialog boxes

cannot display multiple languages 395

T

table recognition 302
tables

building queries 183
dynamic 306
HTML definitions, Classic Agent 307
testing in Web applications 307
verifying in client/server applications 239

tag
definition 585

tag declarations
SSTab control 313

tags
constructing 142
deciding on which form to use 365
overview 340
recording, Classic Agent 160
specifying 334
using index as tag 369

tags and identifiers
overview 297

target machine
definition 585

target machines
manually enabling extensions 85

template
definition 586

templates
test plans 110

Terminal Server
multi-machine testing 215
overview 215

test application settings
copying 88

test applications
adding to extension dialog boxes 87
deleting from Extension Enabler dialog box 89
deleting from Extensions dialog box 89
duplicating settings 88
loading different include files for different application

versions 365
test automation

obstacles 20
test case

definition 586
test case example

word processor feature 150
test case structure

multiple-application environments 216
single-application environments 217

test cases
about 145
anatomy of basic test case 146
constructing 147
data 148
data-driven 172
designing 146
designing and recording, Classic Agent 142
example word processor feature 150
linking to by recording a test case 155
marking failed 434
overview 145
overview of recording the stages 151
recording 164
recording overview, Classic Agent 151
recording task, Classic Agent 51, 153
running 52, 409
running data driven 182
running in animation mode 411
saving 148
stopping during execution 411
types 146
verifying 153
with multiple verifications 501

test description
definition 586

test frame file 586
test frame files

loading 274
test frames

creating, Classic Agent 142
files 296
modifying identifiers 298
overview 296
recording 326
recording, web applications (Classic Agent) 295, 297
saving 341
specifying browser size 298
specifying fonts 298
specifying username and password 298

test machines
missing peripherals 20

test plan 586
test plan attributes

Set attribute, adding members 130
Set attribute, removing members 130

612 | Index

test plan editor
adding comments 120
predefined attributes 130
symbol definition statements 128

test plan outlines
change levels 113
indent levels 113

test plan queries
creating 134
overview 133

test plan results
adding comments 113

test plan templates
inserting 114

test plans
acquiring locks 118
adding comments to results 113
adding data 119
adding data-driven test cases 183
assigning attributes and values 131
attributes 129
categorizing 123
changing colors 115
connecting sub-plans with master plans 117
copying sub-plans 117
creating 112
creating queries 134
creating sub-plans 117
creating, from results files 112
details, test cases 139
dividing into master plan and sub-plans 116
documenting manual tests 114
editor statements 120
example outline 110
generating completion reports 118
indent and change levels in outlines 113
inserting templates 114
large test plans 116
linking 121
linking manually to a test plan 122
linking scripts to using the Testplan Detail dialog box

122
linking test cases to using the Testplan Detail dialog

box 122
linking to data-driven test cases 121
linking to scripts 115, 122
linking to test cases 115, 122
linking to test cases, example 123
locks 118
marking 123
marking tests 124
marking-command interactions 124
opening sub-plans 117
overview 109
predefined attributes 130
printing marked tests 124
queries 133
refreshing local sub-plan copies 117
releasing locks 118
running 410
sharing initialization files 118
stopping 531

structure 109
templates 110
user defined attributes 130
values 129
working with 112

test results
interpreting 413
reporting 211
viewing 53, 414

test scripts
debugging 438, 439
preparing for SilkBean 320

test-cases
working with data-driven 173

testcase statements
specifying symbols as arguments 129

TestCaseEnter method
defining 495
overriding default recovery system 102

TestCaseExit method
defining 495
overriding default recovery system 102

testcases
designing 146
overview 145
stopping during execution 411
types 146

testdata statement
entering manually 121
entering with Testplan Details dialog box 120

testing
application states 157
concurrency 241
configuration 241
databases 214
driving multiple machines 203
functional 241
peak load 242
strategies 240
volume 242

testing .NET applications
Classic Agent 243

testing applications
Classic Agent 194
invalid data 176
SilkBean 319

testing asynchronous in parallel 205
testing controls

comparing 4Test methods with ActiveX methods 234
Web applications 307

testing images
Web applications 308

testing in the browser
setup for ActiveX or Java applets 238

testing Java
configuring Silk Test Classic 256
prerequisites 256

testing links
Web applications 308

testing methodology
web applications 292

testing multiple applications

Index | 613

configuring SilkBean support 321
overview 216
window declarations 217

testing multiple machines
overview 209
running tests serially on multiple targets 210

testing on multiple machines
Classic Agent 194

testing popup menus
DHTML 294
Dynamic HTML 294

testing recovery system
closing application dialog boxes 155

testing serially
client and server 214

testing text
Web applications 309

testing web applications
web page objects, Classic Agent 304

testing Web applications
specifying browser 92
testing text 309

testing XML
overview 313

Testplan
dialog box 112

Testplan Completion Report
dialog box 119

Testplan Detail
dialog box 137

Testplan Detail - Testcase
dialog box 139

Testplan Detail dialog box
defining symbols 128
linking scripts to test plans 122
linking test cases to test plans 122

Testplan Details dialog box
entering testdata statement 120
linking descriptions to scripts and test cases 121

testplan editor
operator 120

Testplan Editor
predefined attributes 130
statements 120

testplan queries
overview 133

TestPlanEnter method
overriding default recovery system 102

TestPlanExit method
overriding default recovery system 102

tests
marking 124
porting to another GUI 363
running 408
running and interpreting results 408

text boxes
custom 378
Return key 368

text click recording
overview 406

text field
not allowing input 531

text fields
custom 378
return key 368

text recognition
overview 406

threads
concurrent programming 203
logging 437
specifying target machines 210
synchronizing with semaphores 204

timing options
Agent Options dialog box 455

tips
recognizing objects in browsers 310

tips and tricks
data-driven test cases 175

TotalMemory parameter 586
Traditional Chinese 587
transcript

enabling 444
Transcript dialog box 445
transparent classes

setting, recording 448, 465
trapping the exception number 499
troubleshooting

4Test Editor does not display enough characters 529
ActiveX/Visual Basic 480
application environment 482
basic workflow issues, Classic Agent 53, 485
browser is launched when not testing applets 486
browsers 486
Classic Agent 480
configuration test failures 242
custom error handling 498
error messages 487
exception handling 497
general tips 538
Java applications 265, 508
java.lang.UnsatisfiedLinkError 535
mouse clicks fail on JFC and Visual Café objects 518
not all objects are visible in application 535
objects 517
Oracle Forms 517
other problems 518
playback is slow with applications launched from

browser 486
projects 79, 533
recognition 535
Silk Test Classic does not recognize a popup dialog

box caused by an AWT applet in a browser
537

Silk Test Classic does not record Click() actions against
custom controls in Java applets 537

SilkBean 321
SilkTest does not launch Java Web Start application

482
starting Java applications through command line 266,

508
testing on multiple machines 510
unable to delete file 489
verifying $Name property during playback does not

work 496

614 | Index

Web applications 544
window not found 492
writing an error-handling function 503

troubleshooting Java applications
no controls found during testing 266, 509

troubleshooting Unicode content
characters not displayed properly 396
compile errors 396
dialog boxes cannot display multiple languages 395
fonts look different 395
IME looks different 397
only English when clicking Language bar icon 397
only pipes are recorded 395
only pipes can be entered in files 395
pipes and squares 395
pipes and squares are displayed in Win32 AUT 395
pipes and squares in the Project tab 395
Save as dialog box when saving existing files 397
Unicode characters do not display 396
VB/ActiveX applications 396

TrueLog
configuring 478
enabling 478
limitations 419
options for the Classic Agent 475
prerequisites 419
replacement characters for non-ASCII 419
setting options 419
wrong non-ASCII characters 419

TrueLog Explorer
about 418
configuring 478
enabling 478
modifying your script to resolve Window Not Found

Exception 421
overview 418
setting options 419
toggling at runtime using a script 421
viewing results 421

TrueLog Options - Classic Agent
dialog box 475

TrueLog Options dialog box
modifying your script to resolve exceptions 421
opening 419

turning off
multiple tag recording 336

type
statements 372

typographical errors
debugging 446

U

unable to connect
agent 489

unable to delete file
troubleshooting 489

unable to start
Internet Explorer 489

unexpected values
global variables 446

unicode content

configuring Microsoft Windows XP PC 392
using DB Tester 388

Unicode content
installing language support 392
setting up IME 392
support 387
troubleshooting 395
troubleshooting display issues 395
troubleshooting file format issues 396
troubleshooting IME issues 397

uninitialized variables
debugging 447

unique data
specifying 119

UNIX machines
configuring SilkBean support 320

Update Files
dialog box 165

Update Manual Tests
dialog box 140

user defined attributes
test plans 130

user options
Web applications 298

User options for table recognition 302
user-defined methods

documentation examples 404
username

specifying for test frame
password

specifying for test frame 298
using basic workflow

enabling extensions 50, 84
using file functions

adding information to the beginning of a file 532

V

values
assigning to test plans 131
finding and replacing 179
test plans 129

variable
definition 587

variable browser not defined 490
variables

changing values, debugging 443
same name 446
viewing, debugging 442

VBOptionButton
access to control methods 232

VBOptionButton control methods)
access 232

verification options
Agent Options dialog box 456

verification properties
defining 357

verification statement 587
verifications

defining properties 357
fuzzy 170
overview 166

Index | 615

Verify function
verifying objects 167

verify properties does not capture window properties 538
Verify Window

dialog box 162
Verify Window Edit

dialog box 163
verifying

control no longer displayed 172
object attributes 168
object properties 166
window no longer displayed 172

verifying $Name property
does not work during playback 496

verifying appearance
bitmaps 169

verifying bitmaps
overview 168

verifying object attributes
steps 168

verifying objects
using Verify function 167

verifying properties
as sets 190

verifying state
objects 169

VerifyProperties()
BrowserPage properties and children detected during

recording 546
View Module dialog box 445
View Options dialog box 418
view trace listing

enabling 444
viewing

test results 53, 414
viewing an individual summary 435
viewing class methods

Library Browser 404
viewing files

associated with projects 74
viewing resources

included within projects 74
viewing results

TrueLog Explorer 421
viewing statistics

comparing bitmaps 427
virus detectors

conflicts 524
Visual 4Test

definition 587
Visual Basic

native objects displayed as custom windows 481
no methods found 481
no properties found 481
predefined class definition file 230
properties not displayed 480
testing 229
troubleshooting 480
troubleshooting application configuration 482

Visual Basic applications
standard names 88

Visual Basic support

overview 229
Visual Café

sample command line 286
Visual Café objects

mouse clicks fail 518
VO automation

changing to DOM extension 303
information for current customers 303
workaround 303

VO extension
information for current customers 303

VO extensions
comparison to DOM 303

W

Web application classes
4Test language (Classic Agent) 315

web applications
cannot recognize web object, Classic Agent 548
different browsers 302
recording test frames, Classic Agent 295, 297
sample applications 293
setting up, Classic Agent 294
testing methodology 292

Web applications
application not ready to test 544
cannot find Web page 548
cannot recognize text 549
cannot verify browser extension settings 547
characters not displayed properly 396
children in browser page not recognized 547
Classic Agent 292
columns 307
controls 307
empty page 545
error with IE and Accessibility 545
Extension Settings dialog box 94
handling login windows 103
images 308
links 308
many MoveMouse() calls 550
no HTML elements 545
recording window declarations 295
recovery system 100, 262
setting DOM extension options 299
supported controls 293
tables 307
test frame containing HTML frame declarations does

not compile 550
test frame files 296
testing text 309
troubleshooting 544
user options 298

Web classes
not displayed in Library Browser 405

web pages
testing objects, Classic Agent 304

Web property sets not displayed during verification 550
Web Start

not launching 482
Web testing

616 | Index

setting agent options 91
WebSync 567
what happens when you enable ActiveX/Visual Basic?

ActiveX/Visual Basic 230, 231, 233, 235–238, 480
Win32

pipes and squares are displayed in AUT 395
priorLabel 318

window browser
no tag defined 490

Window Browser does not define a tag
error message 490

window declarations
assigning agents 24
improving 332
overview 332
recording for Java 280
recording for main window 333
recording only pipes 395
recording without 149
testing multiple applications 217
XML 314

window identifiers
constructing 142
recording 158

window is not active 490
window is not enabled 491
window is not exposed 491
window not found

troubleshooting 492
window not found exceptions

preventing 47
setting in agent options 47
setting manually 47

window part 587
window properties

not captured by verify properties 538
window timeout

setting 47
setting in agent options 47
setting manually 47

Window Timeout
setting 234

windows
declarations 332
defining 334
verifying that no longer displayed 172

Windows accessibility
accex.ini file 164

Windows Accessibility
dialog box 160

Windows API-based applications
attributes 315
overview 315
testing 315

Windows Forms
overview 244

Windows Forms applications
Classic Agent 244

Windows Forms, Classic Agent
enabling .NET support 243
no-touch application prerequisites 245
no-touch application support 244
recording new classes 245

Windows XP
unicode content 392

wMainWindow
DefaultBaseState 99

workflow
data-driven 173

workflow bars
disabling 177
enabling 177

works order number 567
wStartup

handling login windows (Classic Agent) 104

X

XML
window declarations 314

XML objects
identifiers 314
tags 314

XML recognition
setting options 314

XPath
definition 587

Z

Zoom window
capturing in scan mode 424

zooming windows
Bitmap Tool 427

Index | 617

	Contents
	Licensing Information
	Automation Under Special Conditions (Missing Peripherals)
	Silk Test Product Suite
	Classic Agent
	How Silk Test Classic Assigns an Agent to a Window Declaration
	Agent Options
	Setting the Default Agent
	Setting the Default Agent Using the Runtime Options Dialog Box
	Setting the Default Agent Using the Toolbar Icons

	Connecting to the Default Agent
	Creating a Script that Uses Both Agents
	Overview of Record Functionality Available for the Silk Test Agents
	Setting the Window Timeout Value to Prevent Window Not Found Exceptions
	Manually Setting the Window Timeout Value
	Setting the Window Timeout Value in the Agent Options Dialog Box

	Basic Workflow for the Classic Agent
	Creating a New Project
	Enabling Extensions Automatically Using the Basic Workflow
	Setting the Recovery System for the Classic Agent
	Recording a Test Case With the Classic Agent
	Running a Test Case
	Viewing Test Results
	Troubleshooting Basic Workflow Issues with the Classic Agent

	Migrating from the Classic Agent to the Open Agent
	Differences for Agent Options Between the Silk Test Agents
	Differences in Object Recognition Between the Silk Test Agents
	Differences in the Classes Supported by the Silk Test Agents
	Differences in the Parameters Supported by the Silk Test Agents
	Overview of the Methods Supported by the Silk Test Agents
	SYS Functions Supported by the Open Agent and the Classic Agent

	Silk Test Classic Projects
	Storing Project Information
	Accessing Files Within Your Project
	Sharing a Project Among a Group
	Project Explorer
	Creating a New Project
	Opening an Existing Project
	Converting Existing Tests to a Project
	Using Option Sets in Your Project
	Editing an Options Set

	Silk Test Classic File Types
	Organizing Projects
	Adding Existing Files to a Project
	Renaming Your Project
	Working with Folders in a Project
	Adding a Folder to the Files Tab of the Project Explorer
	Moving Files and Folders
	Removing a Folder from the Files tab of the Project Explorer
	Renaming a Folder on the Files Tab of the Project Explorer
	Sorting Resources within the Global Tab of the Project Explorer

	Moving Files Between Projects
	Removing Files from a Project
	Turning the Project Explorer View On and Off
	Viewing Resources Within a Project

	Packaging a Silk Test Classic Project
	Emailing a Project

	Exporting a Project
	Troubleshooting Projects
	Files Not Found When Opening Project
	Silk Test Classic Cannot Load My Project File
	Silk Test Classic Cannot Save Files to My Project
	Silk Test Classic Does Not Run
	My Files No Longer Display In the Recent Files List
	Cannot Find Items In Classic 4Test
	Editing the Project Files

	Project Description Dialog Box

	Enabling Extensions for Applications Under Test
	Extensions that Silk Test Classic can Automatically Configure
	Extensions that Must be Set Manually
	Extensions on Host and Target Machines
	Enabling Extensions Automatically Using the Basic Workflow
	Enabling Extensions on a Host Machine Manually
	Manually Enabling Extensions on a Target Machine
	Enabling Extensions for Embedded Browser Applications that Use the Classic Agent
	Enabling Extensions for HTML Applications (HTAs)
	Adding a Test Application to the Extension Dialog Boxes
	Verifying Extension Settings
	Why Applications do not have Standard Names
	Duplicating the Settings of a Test Application in Another Test Application
	Deleting an Application from the Extension Enabler or Extensions Dialog Box
	Disabling Browser Extensions
	Comparison of the Extensions Dialog Box and the Extension Enabler Dialog Box
	Configuring the Browser
	Setting Agent Options for Web Testing
	Specifying a Browser for Silk Test Classic to Use in Testing a Web Application
	Specifying your Default Browser

	Enable Extensions Dialog Box (Classic Agent)
	Extension Information Dialog Box
	Extension Settings Dialog Box (.NET)
	Extension Settings Dialog Box (Web)
	Extension Settings Dialog Box (Client/Server)
	Extension Settings Dialog Box (Java)

	Understanding the Recovery System for the Classic Agent
	Setting the Recovery System for the Classic Agent
	Base State
	DefaultBaseState Function
	Adding Tests that Use the Classic Agent to the DefaultBaseState
	DefaultBaseState and wMainWindow
	Flow of Control
	The Non-Web Recovery Systems Flow of Control
	Web Applications and the Recovery System
	How the Non-Web Recovery System Closes Windows
	How the Non-Web Recovery System Starts the Application

	Modifying the Default Recovery System
	Overriding the Default Recovery System
	Handling Login Windows
	Handling Login Windows in Web Applications that Use the Classic Agent
	Handling Login Windows in Non-Web Applications that Use the Classic Agent

	Handling Browser Pop-up Windows in Tests that Use the Classic Agent
	Specifying Windows to be Left Open for Tests that Use the Classic Agent
	Specifying New Window Closing Procedures
	Specifying Buttons, Keys, and Menus that Close Windows
	Recording a Close Method for Tests that Use the Classic Agent

	Set Recovery System Dialog Box

	Test Plans
	Structure of a Test Plan
	Overview of Test Plan Templates
	Example Outline for Word Search Feature
	Converting a Results File to a Test Plan
	Working with Test Plans
	Creating a New Test Plan
	Indent and Change Levels in an Outline
	Adding Comments to Test Plan Results
	Documenting Manual Tests in the Test Plan
	Describing the State of a Manual Test
	Inserting a Template
	Changing Colors in a Test Plan
	Linking the Test Plan to Scripts and Test Cases
	Insert Testplan Template Dialog Box

	Working with Large Test Plans
	Determining Where Values are Defined in a Large Test Plan
	Dividing a Test Plan into a Master Plan and Sub-Plans
	Creating a Sub-Plan
	Copying a Sub-Plan
	Opening a Sub-Plan
	Connecting a Sub-Plan with a Master Plan
	Refreshing a Local Copy of a Sub-Plan
	Sharing a Test Plan Initialization File
	Saving Changes
	Overview of Locks
	Acquiring and Releasing a Lock
	Generating a Test Plan Completion Report
	Testplan Completion Report Dialog Box

	Adding Data to a Test Plan
	Specifying Unique and Shared Data
	Adding Comments in the Test Plan Editor
	Testplan Editor Statements
	The # Operator in the Testplan Editor
	Using the Testplan Detail Dialog Box to Enter the testdata Statement
	Entering the testdata Statement Manually

	Linking Test Plans
	Linking a Description to a Script or Test Case using the Testplan Detail Dialog Box
	Linking a Test Plan to a Data-Driven Test Case
	Linking to a Test Plan Manually
	Linking a Test Case or Script to a Test Plan using the Testplan Detail Dialog Box
	Linking the Test Plan to Scripts and Test Cases
	Example of Linking a Test Plan to a Test Case

	Categorizing and Marking Test Plans
	Marking a Test Plan
	How the Marking Commands Interact
	Marking One or More Tests
	Printing Marked Tests
	Mark By Query Dialog Box
	Mark By Named Query Dialog Box

	Using Symbols
	Overview of Symbols
	Symbol Definition Statements in the Test Plan Editor
	Defining Symbols in the Testplan Detail Dialog box
	Assigning a Value to a Symbol
	Specifying Symbols as Arguments when Entering a testcase Statement

	Attributes and Values
	Predefined Attributes
	User Defined Attributes
	Adding or Removing Members of a Set Attribute
	Rules for Using + and -
	Defining an Attribute and the Values of the Attribute
	Assigning Attributes and Values to a Test Plan
	Assigning an Attribute from the Testplan Detail Dialog Box
	Modifying the Definition of an Attribute

	Queries
	Overview of Test Plan Queries
	Overview of Combining Queries to Create a New Query
	Guidelines for Including Symbols in a Query
	The Differences between Query and Named Query Commands
	Creating a New Query
	Edit a Query
	Delete a Query
	Combining Queries
	Combine Testplan Queries Dialog Box
	New/Edit Testplan Query Dialog Box
	Create Session Dialog Box

	Testplan Detail Dialog Box
	Testplan Detail - Testcase Dialog Box
	Define Attributes Dialog Box
	New Attribute Dialog Box
	Update Manual Tests Dialog Box
	Duplicate Test Descriptions dialog box

	Designing and Recording Test Cases with the Classic Agent
	Creating a New Test Frame for the Classic Agent
	Hierarchical Object Recognition
	Highlighting Objects During Recording
	Setting Recording Options for the Classic Agent
	Test Cases
	Overview of Test Cases
	Anatomy of a Basic Test Case
	Types of Test Cases
	Test Case Design
	Constructing a Test Case
	Data in Test Cases
	Saving Test Cases
	Recording Without Window Declarations
	Overview of Application States
	Behavior of an Application State Based on NONE
	Example: A Feature of a Word Processor

	Recording Test Cases with the Classic Agent
	Overview of Recording the Stages of a Test Case
	Overview of Recording 4Test Components
	Recording a Test Case With the Classic Agent
	Verifying a Test Case
	Recording the Cleanup Stage and Pasting the Recording
	Testing the Ability of the Recovery System to Close the Dialog Boxes of Your Application
	Linking to a Script and Test Case by Recording a Test Case
	Saving a Script File
	Recording an Application State
	Testing an Application State
	Recording Actions
	Recording the Location of an Object
	Recording Window Identifiers
	Recording a Scripted Class
	Recording a Windows Accessibility Class
	Recording a Defined Window
	Recording Window Tags
	Record Status on Classic Agent Dialog Box
	Verify Window Dialog Box
	Verify Window Edit Dialog Box
	Record Actions Dialog Box
	Record Testcase Dialog Box
	Windows Accessibilitys accex.ini File
	Update Files Dialog Box

	Verification
	Verifying Object Properties
	Verifying Object Properties (Classic Agent)
	Verifying an Object Using the Verify Function

	Verifying Object Attributes
	Verifying Attributes of an Object

	Overview of Verifying Bitmaps
	Verifying Appearance Using a Bitmap

	Overview of Verifying an Objects State
	Fuzzy Verification
	Verifying that a Window or Control is No Longer Displayed

	Data-Driven Test Cases
	Data-Driven Workflow
	Working with Data-Driven Test Cases
	Code Automatically Generated by Silk Test Classic
	Tips And Tricks for Data-Driven Test Cases
	Testing an Application with Invalid Data
	Enabling and Disabling Workflow Bars
	Data Source for Data-Driven Test Cases
	Configuring Your DSN
	Setting Up a Data Source
	Using an Oracle DSN to Data Drive a Test Case

	Creating the Data-Driven Test Case
	Selecting a Test Case to Data Drive
	Finding and Replacing Values
	Rules and Tips for Finding and Replacing Values in the Data-Driven Workflow
	Running a Data-Driven Test Case
	Running a Test Case Using a Sample Record for Each Table Used by the Data-Driven Test Case
	Passing Data to a Test Case
	Example Setup for Forward Case-Sensitive Search
	Building Queries
	Adding a Data-Driven Test Case to a Test Plan
	Using a main Function in the Script
	Using do...except to Handle an Exception

	Select Data Source Dialog Box
	Setup Data Driven Script DSN Dialog Box
	Specify Data Driven Script Dialog Box
	Specify Data Driven Testcase Dialog Box
	Specify Rows Dialog Box
	Go to Testcase Dialog Box
	Select Testcase Dialog Box

	Property Sets
	Verifying Properties as Sets
	Creating a New Property Set
	Combining Property Sets
	Deleting a Property Set
	Editing an Existing Property Set
	Specifying a Class-Property Pair
	Predefined Property Sets

	Characters Excluded from Recording and Replaying

	Testing in Your Environment with the Classic Agent
	Distributed Testing with the Classic Agent
	Configuring Your Test Environment (Classic Agent)
	Client/Server Testing Configurations
	Networking Protocols Used by the Classic Agent
	Single Local Applications
	Remote Applications
	Single Remote Applications
	Multiple Remote Applications

	Configuring a Network of Computers
	Enabling Network Access to the Classic Agent
	Enabling Networking on NetBIOS Host
	Enabling Networking on an Agent
	Enabling Networking on a Remote Host

	Running Test Cases in Parallel
	Concurrency
	Global Variables
	Recovering Multiple Tests
	Remote Recording
	Threads and Concurrent Programming
	Driving Multiple Machines
	Protecting Access to Global Variables
	Synchronizing Threads with Semaphores
	Testing In Parallel but Not Synchronously
	Statement Types
	Parallel Processing Statements
	Using Parallel Statements
	Using a Spawn Statement

	Using Templates
	Using the Parallel Template
	Client/Server Template

	Testing Multiple Machines
	Running Tests on One Remote Target
	Running Tests Serially on Multiple Targets
	Specifying the Target Machine Driven By a Thread
	Specifying the Target Machine For a Single Command
	Reporting Distributed Results
	Alternative Machine Handle Operator
	Testing Clients Concurrently
	Testing Clients Plus Server Serially
	Testing Databases
	Multi-Machine Testing in a Terminal Server Environment

	Testing Multiple Applications
	Overview of Multi-Application Testing
	Test Case Structure in a Multi-Application Environment
	Invoking a Test Case in a Multi-Application Environment
	Test Case Structure in a Single-Application Environment
	Window Declarations for Multi-Application Testing
	Concurrency Test Example Code
	Concurrency Test Explained
	Notification Test Example Code (1 of 2)
	Notification Test Example Explained (1 of 2)
	Notification Test Example Code (2 of 2)
	Notification Test Example Explained (2 of 2)
	Code for template.t
	template.t Explained
	defaults.inc
	cs.inc
	Include File Size

	Troubleshooting Distributed Testing
	Handling Limited Licenses
	Resolving Port-Number Conflicts
	Setting-Up Extensions for Distributed Testing

	Testing ActiveX/Visual Basic Controls
	Overview of ActiveX/Visual Basic Support
	Enabling ActiveX/Visual Basic Support
	Predefined Classes for ActiveX/Visual Basic Controls
	Predefined Class Definition File for Visual Basic
	List of Predefined ActiveX/Visual Basic Controls
	Access to VBOptionButton Control Methods
	0-Based Arrays
	Dependent Objects and Collection Objects
	Working with Dynamically Windowed Controls
	Window Timeout
	Conversion of BOOLEAN Values
	Testing Controls: 4Test Versus ActiveX Methods
	Control Access is Similar to Visual Basic
	Prerequisites for Testing ActiveX/Visual Basic Controls
	ActiveX/Visual Basic Exception Values
	Recording New Classes for ActiveX/Visual Basic Controls
	Loading Class Definition Files
	Disabling ActiveX/Visual Basic Support
	Ignoring an ActiveX/Visual Basic Class
	Setting ActiveX/Visual Basic Extension Options
	Setup for Testing ActiveX Controls or Java Applets in the Browser

	Client/Server Application Support
	Client/Server Testing Challenges
	Verifying Tables in ClientServer Applications
	Evolving a Testing Strategy
	Incremental Functional Test Design
	Network Testing Types
	Concurrency Testing
	Configuration Testing
	Functional Testing
	Peak Load Testing
	Volume Testing

	How 4Test Handles Script Deadlock
	Troubleshooting Configuration Test Failures

	Testing .NET Applications with the Classic Agent
	Enabling .NET Support
	Tips for Working with .NET
	Windows Forms Applications
	Using the Classic Agent to Test Windows Forms Applications
	No-Touch Windows Forms Application Support
	Prerequisites for Testing .NET No-Touch Applications
	Recording New Classes for .NET Controls
	Recording Actions on the DataGrid
	Setting Your Machine Zone Security
	Setting Your Machine Zone Security using the Command Prompt
	Setting Your Machine Zone Security using the Control Panel

	Ensuring that the Segue.SilkTest.Net.Shared.dll has been Installed
	Suppressing Controls (Classic Agent)
	Infragistics Controls
	Support for Infragistics .dll Files
	Configuring .NET
	Editing a Configuration File Directly
	Using the Control Panel to Edit Your Configuration File

	Choosing to Configure the Machine or the Application
	Recording Actions on the Infragistics Toolbars

	Testing Java AWT/Swing Applications with the Classic Agent
	Testing Standard Java Objects and Custom Controls
	Recording and Playing Back JFC Menus
	Recording and Playing Back Java AWT Menus
	Object Recognition for Java AWT/Swing Applications
	Supported Controls for Java AWT/Swing Applications
	Java AWT Classes for the Classic Agent
	Supported Java Virtual Machines
	Supported Browsers for Testing Java Applets
	Overview of JavaScript Support
	Support for JavaBeans
	Classes in Object-Oriented Programming Languages
	Configuring Silk Test Classic to Test Java
	Prerequisites for Testing Java Applications
	Enabling Java Support
	Configuring Silk Test Classic Java Support for the Sun JDK
	Manually Configuring Silk Test Classic Java Support
	Configuring Standalone Java Applications and Java Applets

	Java Security Privileges Required by Silk Test Classic
	Disabling Java Support
	Enabling Java Applications and Plugins
	Enabling Extensions for the Default Java Application
	Enabling a New Extension for a Java Application
	Enabling Use of Sun Java Plug-In
	Configuring Silk Test Classic to Support a Java Application Launched from a .lax File

	Testing Java Applications and Applets
	Preparing for Testing Stand-Alone Java Applications and Applets
	Testing Browser-Based Java Applications
	Indexed Values in Test Scripts
	Multitags and Java Applications
	When to Use 4Test Versus Native Java Controls
	Predefined Class Definition File for Java
	Web Applications and the Recovery System
	Java Extension Options
	Setting Java Extension Options Using the javaex.ini File
	Troubleshooting Java Applications
	Why Is My Java Application Not Ready To Test?
	Why Can I Not Test a Java Application Which Is Started Through a Command Prompt?
	What Can I Do If My Java Application Not Contain Any Controls Below JavaMainWin?
	How Can I Enable a Java Plug-In?
	What Can I Do If the Java Plug-In Check Box Is Not Checked?
	What Can I Do When I Am Testing an Applet That Does Not Use a Plug-In, But the Browser Has a Plug-In Loaded?
	What Can I Do If the Silk Test Java File Is Not Included in a Plug-In?
	What Can I Do If Java Controls In an Applet Are Not Recognized?

	Supported Java Classes
	Predefined Java-Equivalent Window Classes
	Predefined AWT Classes
	Predefined JFC Classes
	Predefined Symantec Itools Classes

	Recording Java Classes
	When to Record Classes
	How Methods and Properties are Enumerated
	Using Native Methods that are Not Enumerated
	Thresholds for Filtering Methods and Properties
	Naming Conflicts
	Java Custom Windows
	Loading Class Definition Files or Test Frame Files
	Recording Classes for Custom Java Controls
	Recording Classes for Custom Java Controls Using the Recorder
	Recording Classes for Custom Java Controls from a Script
	Example Script that Calls CaptureObjectClass
	Results of Call to CaptureObjectClass
	Example Script that Calls CaptureAllClasses
	Results of Call to CaptureAllClasses

	Recording Classes for Ignored Java Objects
	Recording Java Window Declarations
	Turning On the Class Declaration Filter
	Turning Off the Class Declaration Filter

	Extending Java Support
	Keeping the DOS Window Open when Returning to DefaultBaseState
	Redirect Output from Java Console to File
	Using Java Database Connectivity (JDBC)
	invokeMethods Method

	Invoking Java Applications and Applets
	Invoking Java Applets
	Invoking JDK Applications
	Invoking JRE Applications
	Invoking JRE Applications Using -classpath
	Invoking Symantec Visual Café Applications from Command Line
	Sample Visual Café Command Line
	Invoking Symantec Visual Café Applications from IDE
	invokeMethods Example: Draw a Line in a Text Field

	Accessing Java Objects and Methods
	Accessing Native Methods for Predefined Java Classes
	Accessing Nested Java Objects
	Accessing Non-Visible Java Objects
	Calling Nested Methods
	Identifying Custom Controls
	Ignoring a Java Object
	Testing Java Scroll Panes

	Frequently Asked Questions About Testing Java Applications
	Why Do I See so Many Java CustomWin Objects?
	Why Do I Need to Disable the Classpath if I have Java Installed but Am not Testing It?
	When Should I Record Classes?
	How Do I Decide Whether to Use 4Test Methods or Native Methods?
	How Can I Save the Changes I Make to javaex.ini?
	How Can I Record AWT Menus?
	Can I Use the Java Plug-In to Test Applets Outside My Browsers Native JVM?
	Can I Test JavaScript Objects?
	Can I Invoke Java Code from 4Test Scripts?

	Testing Java SWT and Eclipse Applications with the Classic Agent
	Suppressing Controls (Classic Agent)
	Java SWT Classes for the Classic Agent

	Testing Web Applications with the Classic Agent
	Testing Methodology for Web Applications
	Supported Controls for Web Applications
	Sample Web Applications
	API Click Versus Agent Click
	Testing Dynamic HTML (DHTML) Popup Menus
	Recording Dynamic HTML (DHTML) Popup Menus

	Setting Up a Web Application (Classic Agent)
	Recording the Test Frame for a Web Application (Classic Agent)
	Recording Window Declarations for a Web Application
	Streamlining HTML Frame Declarations
	Overview of Test Frames
	The Test Frame File for a Web Application
	Recording the Test Frame for a Web Application (Classic Agent)
	Tags and Identifiers
	Modifying the Identifiers
	Specifying Browser Size and Fonts
	Specifying Username and Password

	User Options
	Setting DOM Extension Options
	User Options for Table Recognition

	Testing Web Applications on Different Browsers
	VO Automation
	Information for Current Customers that Are Using VO
	Changing Existing VO Automation to the DOM Extension
	Comparison of DOM and VO

	Testing Objects in a Web Page with the Classic Agent
	Useful Information About DOM
	Dynamic Tables
	How Silk Test Classic Declares HTML Frames
	Testing Columns and Tables
	Definition of a Table (Classic Agent)
	Testing Controls
	Testing Images
	Testing Links
	Testing Text in Web Applications
	Tips on how Silk Test Classic Recognizes Objects in Browsers
	Testing Borderless Tables
	Overview of Input Elements and Borderless Tables
	Guidelines to Recognizing Borderless Tables
	Levels of Recognition for Borderless Tables
	Setting Options for ShowBorderlessTables
	Setting the ShowListItem Option
	Tag Declaration for SSTab Control

	Testing XML
	Identifiers and Tags with XML Objects
	Window Declarations for XML
	Setting Options for XML Recognition

	General Web Application Classes

	Testing Windows API-Based Applications
	Overview of Windows API-Based Application Support
	Locator Attributes for Windows API-Based Applications
	Suppressing Controls (Classic Agent)
	Suppressing Controls (Open Agent)
	Configuring Standard Applications
	Determining the priorLabel in the Win32 Technology Domain
	Testing Embedded Chrome Applications
	Microsoft Foundation Class Support

	Testing Applications with the SilkBean
	Preparing Test Scripts to Run with SilkBean
	Configuring SilkBean Support on the Target (UNIX) Machine
	Configuring SilkBean Support on the Host Machine when Testing Multiple Applications
	Correcting Problems when Using the SilkBean

	Using Advanced Techniques with the Classic Agent
	Starting from the Command Line
	Starting Silk Test Classic from the Command Line
	Starting the Classic Agent from the Command Line

	Recording a Test Frame
	Overview of Object Files
	Advantages of Object Files
	Object File Locations
	Specifying where Object Files Should be Written To and Read From

	Declarations
	Generic Message Box Declaration
	GUI Specifiers
	Overview of Dialog Box Declarations
	Main Window and Menu Declarations

	Window Declarations
	Improving Silk Test Classic Window Declarations
	Improving Object Recognition by Defining a New Window
	Recording Window Declarations for the Main Window and Menu Hierarchy
	Recording a Window Declaration for a Dialog Box
	Defining a New Window
	Specifying Tags
	Modify a Declaration in the Record Window Declarations Dialog Box
	Changing the Tags Recorded by Default
	Turning Off Multiple Tag Recording
	Use the member-of Operator to Access Data
	Record Window Declarations Dialog Box
	Record Window Declarations Options Dialog Box

	Identifiers and Tags
	Captions for Objects
	Overview of Identifiers
	Overview of Tags

	Save the Test Frame
	Specifying How a Dialog Box is Invoked
	Class Attributes
	Attributes Tag Notation
	Enabling Class Attribute Recording
	Recording Existing Html Class Attributes and Specifying the Hierarchy of Attributes
	Adding a New Class Attribute and Specifying the Hierarchy of Attributes
	Deleting a Class Attribute
	Edit Class Attributes Dialog Box

	Improving Object Recognition with Microsoft Accessibility
	Enabling Accessibility
	Adding Accessibility Classes
	Improving Object Recognition with Accessibility
	Removing Accessibility Classes

	Calling Windows DLLs from 4Test
	Aliasing a DLL Name
	Calling a DLL from within a 4Test Script
	Passing Arguments to DLL Functions
	Using DLL Support Files Installed with Silk Test Classic

	Extending the Class Hierarchy
	Classes
	Overview of Classes
	Polymorphism
	CursorClass, ClipboardClass, and AgentClass
	Defining New Classes with the Classic Agent
	Defining New Class Properties
	DesktopWin
	Logical Classes
	Class Hierarchy (Classic Agent)

	Verifying Attributes and Properties
	Attribute Definition and Verification
	Defining a New Attribute for an Existing Class
	Defining New Verification Properties
	Syntax for Attributes
	Hidecalls Keyword
	An Alternative to NumChildren as a Class Property

	Defining Methods and Custom Properties
	Defining a New Method
	Defining a New Method for a Single GUI Object
	Recording a Method for a GUI Object
	Deriving a New Method from an Existing One
	Defining Custom Verification Properties
	Redefining a Method
	Confirming the Property List

	Examples
	Example: Adding a Method to TextField Class
	Example: Adding Tab Method to DialogBox Class
	Example: Defining a Custom Verification Property

	Porting Tests to Other GUIs
	Handling Differences Among GUIs
	Creating a Class that Maps to Several Silk Test Classic Classes
	Creating GUI-Specific Tags
	Conditionally Loading Include Files
	Load Different Include Files for Different Versions of the Test Application
	Deciding which Form of Tag to Use
	Different Error Messages
	One Logical Control can Have Two Implementations
	Options Sets and Porting
	Specifying Options Sets
	Supporting Differences in Application Behavior
	Text Box Requires Return Keystroke
	Using Cross-Platform Methods in Your Scripts
	Using the Index as the Tag

	About GUI Specifiers
	Class Declarations
	Conditional Compilation
	Conditionally Compile Code
	GUI with Inheritance
	GUI with Global Variables
	Marking 4Test Code as GUI Specific
	Syntax of a GUI Specifier
	What Happens when the Code is Compiled
	Where You Use GUI Specifiers
	do...except Statements
	Type Statements

	Supporting GUI-Specific Objects
	Supporting GUI-Specific Captions
	Supporting GUI-Specific Executables
	Supporting GUI-Specific Menu Hierarchies

	Supporting Custom Controls
	Why Silk Test Classic Sees Controls as Custom Controls
	Reasons Why Silk Test Classic Sees the Control as a Custom Control
	Supporting Graphical Controls
	Custom Controls (Classic Agent)
	Mapping Custom Classes to Standard Classes
	Perform a Class Mapping when a Declaration for a CustomWin Displays in the Record Window Declaration Dialog
	Non-Graphical Custom Controls
	Adding xy Coordinates to a Declaration
	Modify Declarations for Each of the Icons Contained in an Evenly Sized and Spaced Tool Bar
	Adding a Location Suffix to the Tag of a Declaration
	Silk Test Classic Does Not Recognize the Class of a Control
	Supporting Custom Text Fields
	Supporting Custom List Boxes
	Class Map Dialog Box

	Using Clipboard Methods
	Get and Set Text Sample Code
	Using the Modified Declaration

	Filtering Custom Classes
	Using Class Mapping to Filter Custom Classes
	Overview of Style-Bits
	Class Mapping with Style-Bits
	Invisible Containers
	Example: Class Mapping Using Style-Bits

	OCR Support
	The Silk Test Classic OCR Module
	The 4Test OCR Functions
	Instructions for Generating the Font Pattern Database
	More Information about SGOCRLIB.DLL
	Pattern File Generation

	Supporting Internationalized Objects
	Overview of Silk Test Classic Support of Unicode Content
	Using DB Tester with Unicode Content
	Issues Displaying Double-Byte Characters
	Learning More About Internationalization
	Silk Test Classic File Formats
	Reusing Silk Test Classic Single-Byte Files as Double-Byte
	Specifying File Formats for Existing Files with Unicode Content
	Specifying File Formats for New Files with Unicode content

	Working with Bi-Directional Languages
	Recording Identifiers for International Applications
	Configuring Your Environment
	Configuring Your Microsoft Windows XP PC for Unicode Content
	Installing Language Support
	Setting Up Your Input Method Editor

	Displaying Double-Byte Characters
	Displaying Double-Byte Characters in Dialog Boxes
	Displaying Double-Byte Characters in the Editor

	Localized Browser Support for the Classic Agent
	Changing the Default Browser Include Files
	Resetting Browser Support to Default

	Using an IME with Silk Test Classic

	Troubleshooting Unicode Content
	Display Issues
	Why Are My Window Declarations Recording Only Pipes?
	What Are Pipes and Squares Anyway?
	Why Can I Only Enter Pipes Into a Silk Test Classic File?
	Why Do I See Pipes and Squares in the Project Tab?
	Why Cannot My System Dialog Boxes Display Multiple Languages?
	Why Do I See Pipes and Squares in My Win32 AUT?
	Why Do the Fonts on My System Look so Different?
	Why Do Unicode Characters Not Display in the Silk Test Project Explorer
	Why Is My Web Application Not Displaying Characters Properly?

	File Formats
	Considerations for VB/ActiveX Applications
	Why Am I Getting Compile Errors?
	Why Does Silk Test Classic Open Up the Save As Dialog Box when I Try to Save an Existing File?

	Working with Input Method Editors
	Why is English the Only Language Listed when I Click the Language Bar Icon?
	Why Does This IME Look so Different from Other IMEs I Have Used

	Using Autocomplete
	Overview of AutoComplete
	Customizing your MemberList
	Frequently Asked Questions about AutoComplete
	Turning AutoComplete Options Off
	Using AppStateList
	Using DataTypeList
	Using FunctionTip
	Using MemberList

	Overview of the Library Browser
	Library Browser Source File
	Adding Information to the Library Browser
	Add User-Defined Files to the Library Browser with Silk Test Classic
	Viewing Functions in the Library Browser
	Viewing Methods for a Class in the Library Browser
	Examples of Documenting User-Defined Methods
	Web Classes Not Displayed in Library Browser
	Library Browser

	Text Recognition Support

	Running Tests and Interpreting Results
	Running Tests
	Creating a Suite
	Passing Arguments to a Script
	Running a Test Case
	Running a Test Plan
	Running the Currently Active Script or Suite
	Stopping a Running Test Case Before it Completes
	Setting a Test Case to Use Animation Mode
	Run Application State Dialog Box
	Run Testcase Dialog Box
	Runtime Status Dialog Box

	Interpreting Results
	Overview of the Results File
	Viewing Test Results
	Errors And the Results File
	Viewing Differences
	Merging Test Plan Results
	Selecting which Results to Display
	Export Results Dialog Box
	View Options Dialog Box
	Compare Two Results Dialog Box

	Analyzing Results with the Silk TrueLog Explorer
	TrueLog Explorer
	TrueLog Limitations and Prerequisites
	Why is TrueLog Not Displaying Non-ASCII Characters Correctly?

	Opening the TrueLog Options Dialog Box
	Setting TrueLog Options
	Toggle TrueLog at Runtime Using a Script
	Viewing Results Using the TrueLog Explorer
	Modifying Your Script to Resolve Window Not Found Exceptions When Using TrueLog

	Analyzing Bitmaps
	Overview of the Bitmap Tool
	When to use the Bitmap Tool
	Capturing Bitmaps with the Bitmap Tool
	Capturing a Bitmap with the Bitmap Tool
	Capturing a Bitmap During Recording
	Capturing All or Part of the Zoom Window in Scan Mode
	Saving Captured Bitmaps

	Comparing Bitmaps
	Rules for Using Comparison Commands
	Bitmap Functions
	Baseline and Result Bitmaps
	Designating a Bitmap as a Baseline
	Designating a Bitmap as a Results File
	Un-Setting a Designated Bitmap

	Zooming the Baseline Bitmap, Result Bitmap, and Differences Window
	Looking at Statistics
	Viewing Statistics by Comparing the Baseline Bitmap and the Result Bitmap

	Exiting from Scan Mode
	Starting the Bitmap Tool
	Starting the Bitmap Tool from its Icon and Opening Bitmap Files
	Starting the Bitmap Tool from the Results File
	Starting the Bitmap Tool from the Run Dialog Box

	Using Masks
	Prerequisites for the Masking Feature
	Applying a Mask
	Editing an Applied Mask
	Creating and Applying a Mask that Excludes Some Differences or Just Selected Areas
	Creating and Applying a Mask that Excludes All Differences
	Saving a Mask

	Analyzing Bitmaps for Differences
	Scanning Bitmap Differences
	Showing Areas of Difference
	Graphically Show Areas of Difference Between a Baseline and a Result Bitmap
	Moving to the Next or Previous Difference
	Zooming in on the Differences

	Working with Result Files
	Attaching a Comment to a Result Set
	Comparing Result Files
	Customizing results
	Deleting Results
	Change the default number of result sets
	Changing the Colors of Elements In the Results File
	Fix incorrect values in a script
	Marking Failed Test Cases
	Merging Test Plan Results
	Navigating to errors
	Viewing an individual summary
	Storing and Exporting Results
	Storing results
	Extracting Results
	Exporting Results
	Displaying a different set of results
	Removing the Unused Space from a Result File
	Logging Elapsed Time, Thread, and Machine Information

	Debugging Test Scripts
	Designing and Testing with Debugging in Mind
	Executing a Script in the Debugger
	Debugging a Test Script
	Debugger Menus
	Stepping Into and Over Functions
	Working with Scripts During Debugging
	Exiting the Debugger
	Breakpoints
	Setting Breakpoints
	Viewing Breakpoints
	Deleting Breakpoints
	Add Breakpoint Dialog Box
	Delete Breakpoint Dialog Box
	Breakpoint Dialog Box

	Viewing Variables
	Changing the Value of a Variable
	Globals Dialog Box
	Locals Dialog Box
	Expressions
	Evaluating Expressions

	Enabling View Trace Listing
	Viewing a List of Modules
	View Module Dialog Box
	Viewing the Debugging Transcripts
	Transcript Dialog Box
	Call Stack Dialog Box
	Debugging Tips
	Checking the Precedence of Operators
	Checking for Code that Never Executes
	Global and Local Variables with the Same Name
	Handling Global Variables with Unexpected Values
	Incorrect Usage of Break Statements
	Incorrect Values for Loop Variables
	Infinite loops
	Typographical Errors
	Uninitialized Variables

	Setting Silk Test Classic Options
	Setting General Options
	Setting the Editor Font
	Setting the Editor Colors
	Runtime Options Dialog Box
	Compiler Constants Dialog Box

	Agent Options Dialog Box
	Timing Tab
	Verification Tab
	Close Tab
	Bitmap Tab
	Bitmap Agent Options

	Synchronization Tab
	Setting Advanced Options
	Other Tab
	Compatibility Tab

	Extensions Dialog Box
	Extension Details Dialog Box

	Setting Recording Options for the Open Agent
	Setting Recording Options for the Classic Agent
	Setting Replay Options for the Open Agent
	Defining which Custom Locator Attributes to Use for Recognition
	Setting Classes to Ignore
	Custom Controls Dialog Box
	Property Sets Dialog Box
	New Property Set Dialog Box
	Combine Property Sets Dialog Box

	DOM Extensions Dialog Box
	Extension Application Dialog Box
	Extension Options (ActiveX) Dialog Box
	Extension Options Dialog Box (Java)
	TrueLog Options - Classic Agent Dialog Box
	Setting TrueLog Options

	Troubleshooting the Classic Agent
	ActiveX and Visual Basic Applications
	What Happens When You Enable ActiveX/Visual Basic?
	Silk Test Classic Does Not Display the Appropriate Visual Basic Properties
	Silk Test Classic Does Not Recognize ActiveX Controls in a Web Application
	Silk Test Classic Displays an Error When Playing Back a Click on a Sheridan Command Button
	Silk Test Classic Displays Native Visual Basic Objects as Custom Windows
	Record Class Finds no Properties or Methods for a Visual Basic Object
	Inconsistent Recognition of ActiveX Controls
	Test Failures During Visual Basic Application Configuration

	Application Environment
	Dr. Watson when Running from Batch File
	Silk Test Classic does not Launch my Java Web Start Application
	Which JAR File do I Use with JDK/JRE?
	Sample Declarations and Script for Testing JFC Popup Menus
	Java Extension Loses Injection when Using Virtual Network Computing (VNC)

	Troubleshooting Basic Workflow Issues with the Classic Agent
	Browsers
	I Am not Testing Applets but Browser is Launched During Playback
	Playback is Slow when I Test Applications Launched from a Browser
	Library Browser does Not Display Web Browser Classes

	Error Messages
	Agent not responding
	BrowserChild MainWindow Not Found When Using Internet Explorer 7.x
	Cannot find file agent.exe
	Control is not responding
	Functionality Not Supported on the Open Agent
	Unable to Connect to Agent
	Unable to Delete File
	Unable to Start Internet Explorer
	Variable Browser not defined
	Window Browser does not define a tag
	Window is not active
	Window is not enabled
	Window is not exposed
	Window not found

	Functions and Methods
	Class not Loaded Error
	Exists Method Returns False when Object Exists
	How can I Determine the Exact Class of a java.lang.Object Returned by a Method
	How to Define lwLeaveOpen
	Defining TestCaseEnter and TestCaseExit Methods
	How to Write the Invoke Method
	I cannot Verify $Name Property during Playback
	Errors when calling nested methods
	Methods Return Incorrect Indexed Values in My Scripts

	Handling Exceptions
	Default Error Handling
	Custom Error Handling
	Trapping the exception number
	Defining Your Own Exceptions
	Using do...except Statements to Trap and Handle Exceptions
	Programmatically Logging an Error
	Performing More than One Verification in a Test Case
	Writing an Error-Handling Function
	Exception Values

	Troubleshooting Java Applications
	Why Is My Java Application Not Ready To Test?
	Why Can I Not Test a Java Application Which Is Started Through a Command Prompt?
	What Can I Do If My Java Application Not Contain Any Controls Below JavaMainWin?
	How Can I Enable a Java Plug-In?
	What Can I Do If the Java Plug-In Check Box Is Not Checked?
	What Can I Do When I Am Testing an Applet That Does Not Use a Plug-In, But the Browser Has a Plug-In Loaded?
	What Can I Do If the Silk Test Java File Is Not Included in a Plug-In?
	What Can I Do If Java Controls In an Applet Are Not Recognized?

	Multiple Machines Testing
	Remote Testing and Default Browser
	Setting Up the Recovery System for Multiple Local Applications
	two_apps.t
	two_apps.inc

	Objects
	Does Silk Test Classic Support Oracle Forms?
	Mouse Clicks Fail on Certain JFC and Visual Café Objects
	My Sub-Menus of a Java Menu are being Recorded as JavaDialogBoxes

	Other Problems
	Adding a Property to the Recorder
	Application Hangs When Playing Back a Menu Item Pick
	Cannot Access Some of the Silk Test Classic Menu Commands
	Cannot Double-Click a Silk Test Classic File and Open Silk Test Classic
	Cannot Extend AnyWin, Control, or MoveableWin Classes
	Cannot Find the Quick Start Wizard
	Cannot open results file
	Cannot Play Back Picks of Cascaded Sub-Menus for an AWT Application
	Cannot Record Second Window
	Common DLL Problems
	Common Scripting Problems
	Conflict with Virus Detectors
	Displaying the Euro Symbol
	Do I Need Administrator Privileges to Run Silk Test Classic?
	General Protection Faults
	Running Global Variables from a Test Plan Versus Running Them from a Script
	Ignoring a Java Class
	Include File or Script Compiles but Changes are Not Picked Up
	Library Browser Not Displaying User-Defined Methods
	Maximum Size of Silk Test Classic Files
	Playing Back Mouse Actions
	Recorder Does Not Capture All Actions
	Recording two SetText () Statements
	Relationship between Exceptions Defined in 4test.inc and Messages Sent To the Result File
	The 4Test Editor Does Not Display Enough Characters
	Silk Test Classic Support of Delphi Applications
	Stopping a Test Plan
	A Text Field Is Not Allowing Input
	Using a Property Instead of a Data Member
	Using File Functions to Add Information to the Beginning of a File
	Why Does the Str Function Not Round Correctly?

	Troubleshooting Projects
	Files Not Found When Opening Project
	Silk Test Classic Cannot Load My Project File
	Silk Test Classic Cannot Save Files to My Project
	Silk Test Classic Does Not Run
	My Files No Longer Display In the Recent Files List
	Cannot Find Items In Classic 4Test
	Editing the Project Files

	Recognition Issues
	How Can the Application Developers Make Applications Ready for Automated Testing?
	I Cannot See all Objects in my Application even after Enabling Show All Classes
	java.lang.UnsatisfiedLinkError
	JavaMainWin is Not Recognized
	None of My Java Controls are Recognized
	Only JavaMainWin is Recognized
	Only Applet Seen
	Silk Test Classic Does not Record Click() Actions Against Custom Controls in Java Applets
	Silk Test Classic Does not Recognize a Popup Dialog Box caused by an AWT Applet in a Browser
	Silk Test Classic is Not Recognizing Updates on Internet Explorer Page Containing JavaScript
	Java Controls are Not Recognized
	Verify Properties does not Capture Window Properties

	Tips
	Owner-Draw List Boxes and Combo Boxes
	Options for Legacy Scripts
	Declaring an Object for which the Class can Vary
	Drag and Drop Operations
	Example Test Cases for the Find Dialog Box
	Declaring an Object for which the Class can Vary
	When to use the Bitmap Tool

	Troubleshooting Web Applications
	Why Is My Web Application Not Ready To Test?
	What Can I Do If the Page I Have Selected Is Empty?
	Why Do I Get an Error Message When I Set the Accessibility Extension?
	HtmlPopupList Causes the Browser to Crash when Using IE DOM Extension
	Silk Test Classic Does Not Recognize Links
	Mouse Coordinate (x, y) is Off the Screen
	Recording a Declaration for a Browser Page Containing Many Child Objects
	Recording VerifyProperties() Detects BrowserPage Properties and Children
	Silk Test Classic Cannot See Any Children in My Browser Page
	Silk Test Classic Cannot Verify Browser Extension Settings
	Silk Test Classic Cannot Find the Web Page of the Application
	Silk Test Classic Cannot Recognize Web Objects with the Classic Agent
	Silk Test Classic Recognizes Static HTML Text But Does Not Recognize Text
	A Test Frame Which Contains HTML Frame Declarations Does Not Compile
	Web Property Sets Are Not Displayed During Verification
	Why Does the Recorder Generate so Many MoveMouse() Calls?

	Using the Runtime Version of Silk Test Classic
	Installing the Runtime Version
	Starting the Runtime Version
	Comparing Silk Test Classic and Silk Test Classic Runtime Menus and Commands

	Working with Files
	Creating a New File
	Searching for a String in a File
	Replacing a String in a File
	4Test Editor
	Setting Up a Printer
	Printing the Contents of the Active Window
	Confirm Test Description Identifier Dialog Box

	Contacting Micro Focus
	Information Needed by Micro Focus SupportLine

	Glossary
	4Test Classes
	4Test-Compatible Information or Methods
	Abstract Windowing Toolkit
	accented character
	agent
	applet
	application state
	attributes
	Band (.NET)
	base state
	bidirectional text
	Bytecode
	call stack
	child object
	class
	class library
	class mapping
	Classic 4Test
	client area
	custom object
	data-driven test case
	data member
	declarations
	DefaultBaseState
	diacritic
	Difference Viewer
	double-byte character set (DBCS)
	dynamic instantiation
	dynamic link library (DLL)
	enabling
	exception
	frame file
	fully qualified object name
	group description
	handles
	hierarchy of GUI objects
	host machine
	hotkey
	Hungarian notation
	identifier
	include file
	internationalization or globalization
	Java Database Connectivity (JDBC)
	Java Development Kit (JDK)
	Java Foundation Classes (JFC)
	Java Runtime Environment (JRE)
	Java Virtual Machine (JVM)
	JavaBeans
	Latin script
	layout
	levels of localization
	load testing
	localization
	localize an application
	locator
	logical hierarchy
	manual test
	mark
	master plan
	message box
	method
	minus (-) sign
	modal
	modeless
	Multibyte Character Set (MBCS)
	Multiple Application Domains (.NET)
	negative testing
	nested declarations
	No-Touch (.NET)
	object
	outline
	Overloaded method
	parent object
	performance testing
	physical hierarchy (.NET)
	plus (+) sign
	polymorphism
	project
	properties
	query
	recovery system
	regression testing
	results file
	script
	script file
	side-by-side (.NET)
	Simplified Chinese
	Single-Byte Character Set (SBCS)
	smoke test
	Standard Widget Toolkit (SWT)
	statement
	status line
	stress testing
	subplan
	suite
	Swing
	symbols
	tag
	target machine
	template
	test description
	test frame file
	test case
	test plan
	TotalMemory parameter
	Traditional Chinese
	variable
	verification statement
	Visual 4Test
	window declarations
	window part
	XPath

