
Silk Test 20.5

Silk4NET User Guide

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 1992-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Test are trademarks or registered trademarks
of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-10-23

ii

Contents

Licensing Information ..9
Silk4NET ..10

Do I Need Administrator Privileges to Run Silk4NET? ..10
Automation Under Special Conditions (Missing Peripherals) ..10
Silk Test Product Suite .. 12
Enabling or Disabling Usage Data Collection ..13
Contacting Micro Focus .. 14

Information Needed by Micro Focus SupportLine .. 14
What's New in Silk4NET ...15

Enhance Security with Java-based Encryption ... 15
Usability Enhancements ..15
Technology Updates ..15

Getting Started with Silk4NET ...17
Working with Silk4NET Projects ... 18

Creating a Silk4NET Project ... 18
Creating Silk4NET Tests .. 20

Adding a Silk4NET Test to a Project ... 20
Recording a Silk4NET Test ... 21
Recording a Test on Microsoft Edge ... 22
Recording a Test on Mozilla Firefox .. 23
Recording a Test on Google Chrome ..24
Characters Excluded from Recording and Replaying ... 25
Actions Available During Recording .. 25
Manually Creating a Silk4NET Test ...26
Best Practices for Creating Test Scripts ..26
Adding a Verification to a Script while Recording ..27
Adding a Locator or an Object Map Item to a Test Method Using the Locator Spy27

Replaying Tests .. 29
Running Silk4NET Tests ... 29
Replaying a Test from the Command Line .. 29
Running Tests in Parallel ...30
How Does Silk4NET Synchronize Tests? ..31
Enabling the Playback Status Dialog Box ... 33

Analyzing Test Results .. 34
Analyzing Test Results .. 34
HTML Reports ...34
Visual Execution Logs with TrueLog ... 34

Enabling TrueLog ... 35
Changing the Location of the TrueLog ... 35
TrueLog Sections ..36
Capturing the Contents of a Web Page ..36
Why is TrueLog Not Displaying Non-ASCII Characters Correctly? 37
Why Does TrueLog Not Write Result Files During Playback? 37

Silk Test Open Agent ... 38
Starting the Silk Test Open Agent ... 38
Stopping the Open Agent After Test Execution ...38
Agent Options ... 38
Configuring the Connections Between the Silk4NET Components 47

Configuring the Port to Connect to the Information Service48

Contents | 3

Configuring the Port to Connect to the Open Agent ...49
Editing the Properties of the Silk Test Information Service 50
Replacing the Certificates that are Used for the HTTPS Connection to the Information Service

... 51
Remote Testing with the Open Agent ..52

Testing with a Remote Open Agent ..52
Base State ... 53

Modifying the Base State from the User Interface ...53
Modifying the Base State in a Script ... 55
Running the Base State .. 57

Application Configuration ... 59
Modifying an Application Configuration ...60
Select Application Dialog Box ... 61
Editing Remote Locations ... 61
Application Configuration Errors ... 62
Troubleshooting Application Configurations .. 63
Creating a Test that Tests Multiple Applications ..63

Setting Script Options ... 65
Setting TrueLog Options ..65
Setting Recording Preferences ... 66
Setting Browser Recording Options .. 66
Setting Custom Attributes ... 67
Setting Classes to Ignore .. 68
Setting WPF Classes to Expose During Recording and Playback69
Setting Synchronization Options ... 69
Setting Replay Options ... 70
Setting UI Automation Options ..71
Setting Advanced Options ...71

Silk4NET Sample Tests ..73
Object Recognition .. 74

Locator Basic Concepts .. 74
Object Type and Search Scope ..74
Using Attributes to Identify an Object ... 75

Locator Syntax .. 75
Using Locators .. 77
Using the Find Method .. 78
Using Locators to Check if an Object Exists ... 79
Identifying Multiple Objects with One Locator ... 80
Locator Customization .. 80

Stable Identifiers ...80
Custom Attributes ...83

Troubleshooting Performance Issues for XPath .. 85
Locator Spy ... 86

Object Maps .. 87
Advantages of Using Object Maps ..88
Turning Object Maps Off and On ...88
Using Assets in Multiple Projects .. 88
Merging Object Maps During Action Recording ..89
Using Object Maps with Web Applications ..90
Renaming an Object Map Item ... 91
Modifying Object Maps ..92
Modifying a Locator in an Object Map ...92
Updating Object Maps from the Test Application .. 93
Copying an Object Map Item ...94
Adding an Object Map Item ...95

4 | Contents

Opening an Object Map from a Script ...95
Highlighting an Object Map Item in the Test Application ... 96
Finding Errors in an Object Map ... 96
Deleting an Object Map Item ...97
Initially Filling Object Maps ..97
Grouping Elements in Object Maps .. 97
Object Maps: Frequently Asked Questions ... 98

Can I Merge Multiple Object Maps Into a Single Map? .. 98
What Happens to an Object Map when I Delete a Test Script? 98
Can I Manually Create an Object Map for My Application Under Test? 98

Image Recognition Support .. 99
Image Click Recording .. 99
Image Recognition Methods ... 99
Image Assets .. 100

Creating an Image Asset ..100
Adding Multiple Images to the Same Image Asset ...101
Opening an Asset from a Script ... 102

Image Verifications ..102
Creating an Image Verification ... 102
Adding an Image Verification During Recording ...103

Using Assets in Multiple Projects .. 103
Enhancing Tests ..105

Recording Additional Actions Into an Existing Test ... 105
Calling Windows DLLs .. 105

Calling a Windows DLL from Within a Script ..105
DLL Function Declaration Syntax ...106
DLL Calling Example ..106
Passing Arguments to DLL Functions .. 107
Passing String Arguments to DLL Functions ..108
Aliasing a DLL Name ..109
Conventions for Calling DLL Functions .. 109

Custom Controls ... 109
Dynamic Invoke .. 110
Adding Code to the Application Under Test to Test Custom Controls 111
Testing Apache Flex Custom Controls ... 113
Managing Custom Controls ..114

Improving Object Recognition with Microsoft Accessibility ... 117
Using Accessibility ..118
Enabling Accessibility ...118

Overview of Silk4NET Support of Unicode Content ..119
Microsoft UI Automation ..119

Recording a Test Against an Application with an Implemented UI Automation Provider Interface
... 120

Dynamically Invoking UI Automation Methods ... 121
Locator Attributes for Identifying Controls with UI Automation 122
Scrolling in UI Automation Controls ..123
Limitations when Using UI Automation ...124
Troubleshooting when Testing with UI Automation Support Enabled 124

Text Recognition Support .. 125
Inserting a Result Comment in a Script .. 127
Measuring Execution Time ..127
Slowing Down Tests .. 127
Testing Applications in Multiple UI Sessions on a Single Machine 128
Encrypting Passwords ...130

Using Keyword-Driven Tests as Performance Tests131

Contents | 5

Debugging Scripts ..132
Script Reliability ...132
Stepping Through a Script in Debug Mode ... 132
Stepping Through Script Playback from a Selected Point ...133
Controlling Line Execution During Script Debugging .. 133
Stopping Script Playback at Selected Points .. 133
Printing a Script ...134

Testing Specific Environments ... 135
Apache Flex Support ...135

Configuring Flex Applications to Run in Adobe Flash Player 135
Launching the Component Explorer ...136
Testing Apache Flex Applications ...136
Testing Apache Flex Custom Controls ... 136
Customizing Apache Flex Scripts ...145
Testing Multiple Flex Applications on the Same Web Page145
Adobe AIR Support .. 146
Overview of the Flex Select Method Using Name or Index 146
Selecting an Item in the FlexDataGrid Control ... 146
Enabling Your Flex Application for Testing ..147
Styles in Apache Flex Applications ...158
Configuring Flex Applications for Adobe Flash Player Security Restrictions159
Attributes for Apache Flex Applications ..159
Why Cannot Silk4NET Recognize Apache Flex Controls? 160

Java AWT/Swing Support .. 160
Attributes for Java AWT/Swing Applications ...160
Dynamically Invoking Java Methods ...161
Determining the priorLabel in the Java AWT/Swing Technology Domain162
Oracle Forms Support ..162

Java SWT and Eclipse RCP Support ...163
Java SWT Class Reference ..163
Java SWT Custom Attributes ... 163
Attributes for Java SWT Applications ... 164
Dynamically Invoking Java Methods ...164
Troubleshooting Java SWT and Eclipse Applications ...165

Testing Mobile Applications ...165
Android ... 166
iOS ... 172
Recording Mobile Applications ... 184
Selecting the Mobile Device for Test Replay .. 185
Using Devices from Mobile Center Directly from Silk4NET185
Using Devices from Mobile Center through Silk Central 187
Installing the Certificate for an HTTPS Connection to Mobile Center 188
Changing the Mobile Center Password .. 188
Using SauceLabs Devices ..188
Connection String for a Mobile Device ... 189
Interacting with a Mobile Device ...192
Releasing a Mobile Device ...193
Using the setLocation Method when Testing a Mobile Application194
Troubleshooting when Testing Mobile Applications .. 194
Limitations for Testing Mobile Web Applications .. 200
Limitations for Testing Native Mobile Applications ..201
Dynamically Invoking Methods for Native Mobile Apps .. 203
Clicking on Objects in a Mobile Website .. 204
Using Existing Mobile Web Tests ... 205

.NET Support .. 205
Windows Forms Support ..205

6 | Contents

Windows Presentation Foundation (WPF) Support ..211
Silverlight Application Support ... 220
Visual COBOL Support .. 224

Rumba Support ...229
Rumba Class Reference .. 229
Enabling and Disabling Rumba .. 229
Locator Attributes for Identifying Rumba Controls ..230
Testing a Unix Display .. 230

SAP Support ... 230
SAP Class Reference ...231
Attributes for SAP Applications ...231
Dynamically Invoking SAP Methods ...231
Dynamically Invoking Methods on SAP Controls ... 232
Configuring Automation Security Settings for SAP ...233

Universal Windows Platform Support ..233
Troubleshooting when Testing UWP Apps ..234

Windows API-Based Application Support ... 234
Win32 Class Reference ..234
Attributes for Windows API-based Client/Server Applications234
Determining the priorLabel in the Win32 Technology Domain 235
Testing Embedded Chrome Applications ... 235
Microsoft Foundation Class Support .. 236

Cross-Browser Testing .. 236
Selecting the Browser for Test Replay ..237
Test Objects for xBrowser ...239
Object Recognition for xBrowser Objects ...239
Page Synchronization for xBrowser ..240
Comparing API Playback and Native Playback for xBrowser 241
Setting Mouse Move Preferences .. 242
Browser Configuration Settings for xBrowser ...242
Configuring the Locator Generator for xBrowser ..244
Connection String for a Remote Desktop Browser ...244
Testing Browsers on a Remote Windows Machine .. 245
Testing Google Chrome or Mozilla Firefox on a Mac ..245
Setting Capabilities for WebDriver-Based Browsers .. 246
Testing with Apple Safari on a Mac .. 247
Testing with Google Chrome .. 251
Testing with Mozilla Firefox ...255
Testing with Microsoft Edge ..259
Responsive Web Design Testing ..260
Detecting Visual Breakpoints ... 261
Improving iframe Performance ... 262
Testing Additional Browser Versions .. 264
Cross-Browser Testing: Frequently Asked Questions .. 265
Starting a Browser from a Script .. 269
Finding Hidden Input Fields ..270
Attributes for Web Applications .. 270
Custom Attributes for Web Applications ... 270
xBrowser Class Reference ... 271

Limitations for Testing on Microsoft Windows 8 and Microsoft Windows 8.1 271
Supported Attribute Types ...271

Attributes for Apache Flex Applications ..272
Attributes for Java AWT/Swing Applications ...272
Attributes for Java SWT Applications ... 272
Attributes for SAP Applications ...273
Locator Attributes for Identifying Silverlight Controls ..273

Contents | 7

Locator Attributes for Identifying Controls with UI Automation 274
Locator Attributes for Identifying Rumba Controls ..275
Attributes for Web Applications .. 275
Attributes for Windows Forms Applications .. 276
Attributes for Windows Presentation Foundation (WPF) Applications276
Attributes for Windows API-based Client/Server Applications277
Dynamic Locator Attributes .. 278

Keyword-Driven Tests ..279
Advantages of Keyword-Driven Testing ...279
Keywords ...280
Creating a Keyword-Driven Test in Silk4NET ..281
Recording a Keyword-Driven Test in Silk4NET ... 282
Setting the Base State for a Keyword-Driven Test in Silk4NET283
Implementing a Keyword in Silk4NET ... 284
Recording a Keyword in Silk4NET .. 284
Marking a Test Method in a Script as a Keyword .. 285
Editing a Keyword-Driven Test .. 286
Managing Keywords in a Test in Silk Central .. 286
Which Keywords Does Silk4NET Recommend? ...288
Using Parameters with Keywords ..289
Example: Keywords with Parameters ..290
Combining Keywords into Keyword Sequences ..292
Replaying a Keyword-Driven Test with Specific Variables ..292
Integrating Silk4NET with Silk Central ...293
Implementing Silk Central Keywords in Silk4NET ...294
Uploading a Keyword Library to Silk Central ...295
Uploading a Keyword Library to Silk Central from the Command Line 295
Searching for a Keyword ... 296
Filtering Keywords ...297
Grouping Keywords ...297
Troubleshooting for Keyword-Driven Testing ... 297

Known Issues ... 299
General Issues .. 299
Mobile Web Applications ...301
Web Applications .. 301

Google Chrome .. 301
Internet Explorer ...303
Microsoft Edge ... 304
Mozilla Firefox .. 304

SAP Applications ...305
Silk4NET ... 306

8 | Contents

Licensing Information
Unless you are using a trial version, Silk Test requires a license.

Note: A Silk Test license is bound to a specific version of Silk Test. For example, Silk Test 20.5
requires a Silk Test 20.5 license.

The licensing model is based on the client that you are using and the applications that you want to be able
to test. The available licensing modes support the following application types:

Licensing Mode Application Type

Mobile Native • Mobile web applications.

• Android
• iOS

• Native mobile applications.

• Android
• iOS

Full • Web applications, including the following:

• Apache Flex
• Java-Applets

• Mobile web applications.

• Android
• iOS

• Apache Flex
• Java AWT/Swing, including Oracle Forms
• Java SWT and Eclipse RCP
• .NET, including Windows Forms and Windows

Presentation Foundation (WPF)
• Rumba
• Windows API-Based

Note: To upgrade your license to a Full license,
visit http://www.microfocus.com.

Premium All application types that are supported with a Full
license, plus SAP applications.

Note: To upgrade your license to a Premium
license, visit http://www.microfocus.com.

Mobile Native Add-On In addition to the technologies supported with a Full or
Premium license, the mobile native add-on license offers
support for testing native mobile applications on Android
and iOS.

Licensing Information | 9

http://www.microfocus.com
http://www.microfocus.com

Silk4NET
Silk4NET is the Silk Test plug-in for Microsoft Visual Studio. Silk4NET enables you to efficiently create and
manage functional, regression, and localization tests directly in Visual Studio. With Silk4NET, you can
perform the following tasks within Visual studio:

• Record tests.
• Develop tests using Visual Basic .NET.
• Develop tests using C#.
• Run tests as a part of a test plan in the Microsoft test environment.
• Run tests as a part of your build process.
• View test results.

For information on the tested versions of Visual Studio, refer to the Release Notes.

Silk4NET supports the testing of a broad set of application technologies.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Designed for realizing automation benefits even when applied to complex tests, Silk4NET brings true test
automation capability directly to the developer’s preferred environment and lets you easily cope with
changes made in the test application. Additionally, the powerful testing framework of Silk4NET enables
high reusability of tests across multiple test projects, which further increases the achievable Return On
Investment (ROI). With less time spent on building and maintaining testing suites, your QA staff can
expand test coverage and optimize application quality.

Note: If you have opted not to display the start screen when you start Silk4NET, you can check for
available updates by clicking Help > Check for Product Update.

Do I Need Administrator Privileges to Run Silk4NET?
You require the following privileges to install or run Silk4NET:

• To install Silk4NET, you must have local administrator privileges.
• To install Silk4NET on a Windows server, you must have domain-level administrator privileges.
• To run Silk4NET, you require full access rights to the following folders, including all subfolders:

• C:\ProgramData\Silk\SilkTest.
• %APPDATA%\Roaming\Silk\SilkTest.
• %APPDATA%\Local\Silk\SilkTest.
• %TEMP%.

Automation Under Special Conditions (Missing
Peripherals)

Basic product orientation

Silk4NET is a GUI testing product that tries to act like a human user in order to achieve meaningful test
results under automation conditions. A test performed by Silk4NET should be as valuable as a test
performed by a human user while executing much faster. This means that Silk4NET requires a testing
environment that is as similar as possible to the testing environment that a human user would require in
order to perform the same test.

10 | Silk4NET

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Physical peripherals

Manually testing the UI of a real application requires physical input and output devices like a keyboard, a
mouse, and a display. Silk4NET does not necessarily require physical input devices during test replay.
What Silk4NET requires is the ability of the operating system to perform keystrokes and mouse clicks. The
Silk4NET replay usually works as expected without any input devices connected. However, some device
drivers might block the Silk4NET replay mechanisms if the physical input device is not available.

The same applies to physical output devices. A physical display does not necessarily need to be
connected, but a working video device driver must be installed and the operating system must be in a
condition to render things to the screen. For example, rendering is not possible in screen saver mode or if a
session is locked. If rendering is not possible, low-level replay will not work and high-level replay might also
not work as expected, depend on the technology that is used in the application under test (AUT).

Virtual machines

Silk4NET does not directly support virtualization vendors, but can operate with any type of virtualization
solution as long as the virtual guest machine behaves like a physical machine. Standard peripherals are
usually provided as virtual devices, regardless of which physical devices are used with the machine that
runs the virtual machine.

Cloud instances

From an automation point of view, a cloud instance is not different to a virtual machine. However, a cloud
instance might run some special video rendering optimization, which might lead to situations where screen
rendering is temporarily turned off to save hardware resources. This might happen when the cloud instance
detects that no client is actively viewing the display. In such a case, you could open a VNC window as a
workaround.

Special cases

Application
launched
without any
window
(headless)

Such an application cannot be tested with Silk4NET. Silk4NET needs to hook to a
target application process in order to interact with it. Hooking is not possible for
processes that do not have a visible window. In such a case you can only run system
commands.

Remote
desktops,
terminal
services, and
remote
applications (all
vendors)

If Silk4NET resides and operates within a remote desktop session, it will fully operate
as expected.

Note: You require a full user session and the remote viewing window needs to
be maximized. If the remote viewing window is not displayed for some reason,
for example network issues, Silk4NET will continue to replay but might produce
unexpected results, depending on what remote viewing technology is used. For
example, a lost remote desktop session will negatively impact video rendering,
whereas other remote viewing solutions might show no impact at all once the
viewing window was lost.

If Silk4NET is used to interact with the remote desktop, remote view, or remote app
window, only low-level techniques can be used, because Silk4NET sees only a
screenshot of the remote machine. For some remote viewing solutions even low-level
operations may not be possible because of security restrictions. For example, it might
not be possible to send keystrokes to a remote application window.

Known
automation
obstacles

Silk4NET requires an interactively-logged-on full-user session. Disable anything that
could lock the session, for example screen savers, hibernation, or sleep mode. If this
is not possible because of organizational policies you could workaround such issues
by adding keep alive actions, for example moving the mouse, in regular intervals or at
the end of each test case.

Silk4NET | 11

Note: Depending on the configuration of the actual testing environment and the
technologies that are used for the AUT, the virtualization, and the terminal
services, you may face additional challenges and limitations during the test
automation process.

Silk Test Product Suite
Silk Test is an automated testing tool for fast and reliable functional and regression testing. Silk Test helps
development teams, quality teams, and business analysts to deliver software faster, and with high quality.
With Silk Test you can record and replay tests across multiple platforms and devices to ensure that your
applications work exactly as intended.

The Silk Test product suite includes the following components:

• Silk Test Workbench – Silk Test Workbench is the quality testing environment that offers .NET scripting
for power users and easy to use visual tests to make testing more accessible to a broader audience.

• Silk4NET – The Silk4NET Visual Studio plug-in enables you to create Visual Basic or C# test scripts
directly in Visual Studio.

• Silk4J – The Silk4J Eclipse plug-in enables you to create Java-based test scripts directly in your Eclipse
environment.

• Silk Test Classic – Silk Test Classic is the Silk Test client that enables you to create scripts based on
4Test.

• Silk Test Agents – The Silk Test agent is the software process that translates the commands in your
tests into GUI-specific commands. In other words, the agent drives and monitors the application you are
testing. One agent can run locally on the host machine. In a networked environment, any number of
agents can run on remote machines.

12 | Silk4NET

The sizes of the individual boxes in the image above differ for visualization purposes and do not reflect the
included functionality.

The product suite that you install determines which components are available. To install all components,
choose the complete install option. To install all components with the exception of Silk Test Classic, choose
the standard install option.

Enabling or Disabling Usage Data Collection
To help Micro Focus improve your overall testing experience, Micro Focus would like to collect some
information on how you use Micro Focus software and services. By accepting the terms of the License
Agreement while installing Silk4NET, you allow Micro Focus to collect information about how you use
Silk4NET and about the computer system on which Silk4NET is installed. Micro Focus does not collect any
personally identifiable information, for example your name or address, or any of your data files, for example

Silk4NET | 13

scripts or passwords. By allowing Micro Focus to collect this information, you assist Micro Focus in
identifying trends and usage patters.

To enable or disable the collection of usage data by Micro Focus:

1. Click Silk4NET > About Silk4NET in the menu.

2. In the About dialog box, click Customer Feedback Options.

3. Select one of the following options:

• To enable usage data collection, click Yes, I am willing to participate.
• To disable usage data collection, click No, I would not like to participate.

4. Click OK.

Contacting Micro Focus
Micro Focus is committed to providing world-class technical support and consulting services. Micro Focus
provides worldwide support, delivering timely, reliable service to ensure every customer's business
success.

All customers who are under a maintenance and support contract, as well as prospective customers who
are evaluating products, are eligible for customer support. Our highly trained staff respond to your requests
as quickly and professionally as possible.

Visit http://supportline.microfocus.com/assistedservices.asp to communicate directly with Micro Focus
SupportLine to resolve your issues, or email supportline@microfocus.com.

Visit Micro Focus SupportLine at http://supportline.microfocus.com for up-to-date support news and access
to other support information. First time users may be required to register to the site.

Information Needed by Micro Focus SupportLine
When contacting Micro Focus SupportLine, please include the following information if possible. The more
information you can give, the better Micro Focus SupportLine can help you.

• The name and version number of all products that you think might be causing an issue.
• Your computer make and model.
• System information such as operating system name and version, processors, and memory details.
• Any detailed description of the issue, including steps to reproduce the issue.
• Exact wording of any error messages involved.
• Your serial number.

To find out these numbers, look in the subject line and body of your Electronic Product Delivery Notice
email that you received from Micro Focus.

14 | Silk4NET

http://supportline.microfocus.com/assistedservices.asp
http://supportline.microfocus.com

What's New in Silk4NET
Silk4NET supports the following new features:

Enhance Security with Java-based Encryption
According to the World Quality Report, enhancing security is one of the top priorities of CIOs and senior
technology professionals. With Silk Test 20.5, you can now use Java-based encryption to highly secure the
encryption of data within any Silk Test script. Easily configure which algorithm should be used for
encryption and decryption. Enhance your security with Java-based encryption.

Usability Enhancements

Gain Efficiencies with an Enhanced LocatorSpy

Simply validate the recorded or manually edited locator by pressing Enter to verify if objects can be found
correctly. The enhanced LocatorSpy can save you a lot of time.

Technology Updates
This section lists the significant technology updates for Silk Test 20.5.

New Mozilla Firefox Versions

• Mozilla Firefox 67
• Mozilla Firefox 68
• Mozilla Firefox 69
• Mozilla Firefox 70

Note: This list includes the new versions of Mozilla Firefox that have been tested with Silk Test 20.5
up to the Silk Test release date. Newer Mozilla Firefox versions might also be supported, even if these
have been released after Silk Test 20.5.

New Google Chrome Versions

• Google Chrome 75
• Google Chrome 76
• Google Chrome 77
• Google Chrome 78

Note: This list includes the new versions of Google Chrome that have been tested with Silk Test 20.5
up to the Silk Test release date. Newer Google Chrome versions might also be supported, even if
these have been released after Silk Test 20.5.

Microsoft Edge Support

Silk Test now supports Windows 10 May 2019 Update (44.18362).

What's New in Silk4NET | 15

Android and iOS Support

Silk Test now supports Android 10.x for web applications and native mobile applications.

Silk Test now supports iOS 13.x for web applications and native mobile applications.

Java Support

Silk Test now supports Java 13.

Eclipse Support

Silk Test now supports Eclipse 2019-09 (4.13).

Java SWT Support

Silk Test now supports testing standalone and Rich Client Platform (RCP) applications that are based on
Java SWT 4.13.

Microsoft .NET Framework Support

Silk Test now supports Microsoft .NET Framework 4.7 and 4.8 for WinForms and WPF.

16 | What's New in Silk4NET

Getting Started with Silk4NET
Silk4NET enables you to create and execute automated functional and regression tests. Perform the
following actions to get started with Silk4NET:

1. Create a Silk4NET project.
2. Create automated Silk4NET tests, either by recording actions or keywords, or by manually scripting the

tests.
3. Add the Silk4NET tests to your project. A project can include any combination of recorded tests and

manually scripted tests.
4. Execute the tests.
5. Analyze the test results.

Getting Started with Silk4NET | 17

Working with Silk4NET Projects
This section describes how you can use Silk4NET projects.

A Silk4NET project contains all the resources needed to test the functionality of your applications by using
Silk4NET.

Note: To optimally use the functionality that Silk4NET provides, create an individual project for each
application that you want to test, except when testing multiple applications in the same test.

Creating a Silk4NET Project
1. Click Silk4NET > New Project or File > New Project . The New Project dialog box displays.

2. Under Installed > Templates, click Visual Basic or Visual C#, select Test and then select Silk4NET
Project.

3. Type a name for the project into the Name field.

For the tutorial, type Tutorial.

4. Optional: Type a name for the solution into the Solution field.

5. Click OK. The Project Created dialog box opens.

6. Click Yes to start recording a new test or click No to create an empty project.

For the tutorial, click No.

If you have selected to start recording, the Add New Item dialog box opens.

7. In the Add New Item dialog box, select which type of test you want to record.

• To bundle the recorded actions into one or more keywords, select Silk4NET Keyword-Driven Test.
• To record the test without creating keywords, select Silk4NET Test.

8. If you have selected to start recording, type a name for the new test into the Name text box in the Add
New Item dialog box.

9. Click Add.

10.If you have selected to record a new Silk4NET test, the Select Application dialog box opens. Select
the tab that corresponds to the type of application that you want to test:

• If you are testing a standard application that does not run in a browser, select the Windows tab.
• If you are testing a web application or a mobile web application, select the Web tab.
• If you are testing a native mobile application, select the Mobile tab.

11.To test a standard application, if you have not set an application configuration for the current project,
select the application from the list.

12.To test a web application or a mobile web application, if you have not set an application configuration for
the current project, select one of the installed browsers or mobile browsers from the list.

a) Specify the web page to open in the Enter URL to navigate text box. If an instance of the selected
browser is already running, you can click Use URL from running browser to record against the
URL currently displayed in the running browser instance. For the tutorial, select Internet Explorer
and specify http://demo.borland.com/InsuranceWebExtJS/ in the Enter URL to navigate text box.

b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.

18 | Working with Silk4NET Projects

http://demo.borland.com/InsuranceWebExtJS/

d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes
should be shown in the Browser size list.

13.To test a native mobile application (app) if you have not set an application configuration for the current
project:

a) Select the mobile device, on which you want to test the app, from the list.
b) Select the native mobile application.

• If you want to install the app on the mobile device or emulator, click Browse to select the app file
or enter the full path to the app file into the App file text field. Silk4NET supports HTTP and UNC
formats for the path.

• If you want to use an app that is already installed on an Android device, select the app from the
Package/Activity list or specify the package and the activity in the Package/Activity field.

• If you want to use an app that is already installed on an iOS device, specify the Bundle ID.
• If you want to use an app that is available in Mobile Center, specify the App identifier.

14.Click OK. If you have selected an existing instance of Google Chrome on which you want to replay a
test method, Silk4NET checks whether the automation support is included. If the automation support is
not included, Silk4NET informs you that Google Chrome has to be restarted. The application and the
Recording window open.

If you have selected to create an empty Silk4NET test, a new solution containing the Silk4NET project is
created. Additionally, a Silk4NET test is created in the project with the following language-specific file
name:

• UnitTest1.vb

• UnitTest1.cs

Note: You can also use the context menu in the Solution Explorer to add Silk4NET projects to an
existing solution.

Working with Silk4NET Projects | 19

Creating Silk4NET Tests
Describes how you can create Silk4NET tests.

You can create new Silk4NET tests by recording user actions made against your AUT or by manually
scripting your test classes and methods in Visual Basic or Visual C#.

Adding a Silk4NET Test to a Project
You can only add Silk4NET tests to an existing Silk4NET or Test project. If no Silk4NET or Test project
exists, create a Silk4NET or Test project before you try to create a Silk4NET test.

1. Click Silk4NET > New Test or Project > Add New Item .

Note: If your solution contains more than one Silk4NET projects, select the project to which you
want to add the new test from the list in the Project Selector.

The Add New Item dialog box opens.

2. Under Installed, click one of the following:

• If your project is a Visual Basic project, click Common Items > Silk4NET Test.
• If your project is a Visual C# project, click Visual C# Items > Silk4NET Test.

3. Type a name for the test into the Name field and click Add. The Create a Silk4NET Test dialog box
opens.

4. Select how you want to create your Silk4NET test by clicking one of the following option buttons:

Record a Silk4NET test Record actions and verifications against your application under test
and generate a new test containing the recorded automation
statements.

Create an empty Silk4NET
test

Create an empty test that can be filled with automation statements
later on.

For the tutorial, click Create an empty Silk4NET test.
5. Click OK.

6. If you have selected to record a new Silk4NET test, the Select Application dialog box opens. Select
the tab that corresponds to the type of application that you want to test:

• If you are testing a standard application that does not run in a browser, select the Windows tab.
• If you are testing a web application or a mobile web application, select the Web tab.
• If you are testing a native mobile application, select the Mobile tab.

7. To test a standard application, if you have not set an application configuration for the current project,
select the application from the list.

8. To test a web application or a mobile web application, if you have not set an application configuration for
the current project, select one of the installed browsers or mobile browsers from the list.

a) Specify the web page to open in the Enter URL to navigate text box. If an instance of the selected
browser is already running, you can click Use URL from running browser to record against the
URL currently displayed in the running browser instance. For the tutorial, select Internet Explorer
and specify http://demo.borland.com/InsuranceWebExtJS/ in the Enter URL to navigate text box.

b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

20 | Creating Silk4NET Tests

http://demo.borland.com/InsuranceWebExtJS/

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

9. To test a native mobile application (app) if you have not set an application configuration for the current
project:

a) Select the mobile device, on which you want to test the app, from the list.
b) Select the native mobile application.

• If you want to install the app on the mobile device or emulator, click Browse to select the app file
or enter the full path to the app file into the App file text field. Silk4NET supports HTTP and UNC
formats for the path.

• If you want to use an app that is already installed on an Android device, select the app from the
Package/Activity list or specify the package and the activity in the Package/Activity field.

• If you want to use an app that is already installed on an iOS device, specify the Bundle ID.
• If you want to use an app that is available in Mobile Center, specify the App identifier.

10.Click OK. If you have selected an existing instance of Google Chrome on which you want to replay a
test method, Silk4NET checks whether the automation support is included. If the automation support is
not included, Silk4NET informs you that Google Chrome has to be restarted. The application and the
Recording window open.

If you have selected to record the test, the recorded test is added to your project. If you have selected to
add an empty test, an empty Silk4NET test is added to your project.

Note: You can also use the context menu in the Solution Explorer to add Silk4NET tests to your
Silk4NET or Test project.

Recording a Silk4NET Test
1. Click Silk4NET > New Test or Project > Add New Item .

Note: If your solution contains more than one Silk4NET projects, select the project to which you
want to add the new test from the list in the Project Selector.

The Add New Item dialog box opens.

2. Under Installed, click one of the following:

• If your project is a Visual Basic project, click Common Items > Silk4NET Test.
• If your project is a Visual C# project, click Visual C# Items > Silk4NET Test.

3. Type a name for the test into the Name field and click Add. The Create a Silk4NET Test dialog box
opens.

4. Select Record a Silk4NET test and click OK.

5. If you have not set an application configuration for the current project, select the tab that corresponds to
the type of application that you are testing:

• If you are testing a standard application that does not run in a browser, select the Windows tab.
• If you are testing a web application or a mobile web application, select the Web tab.
• If you are testing a native mobile application, select the Mobile tab.

6. To test a standard application, select the application from the list.

7. To test a web application or a mobile web application, if you have not set an application configuration for
the current project, select one of the installed browsers or mobile browsers from the list.

a) Specify the web page to open in the Enter URL to navigate text box. If an instance of the selected
browser is already running, you can click Use URL from running browser to record against the
URL currently displayed in the running browser instance. For the tutorial, select Internet Explorer
and specify http://demo.borland.com/InsuranceWebExtJS/ in the Enter URL to navigate text box.

Creating Silk4NET Tests | 21

http://demo.borland.com/InsuranceWebExtJS/

b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

8. To test a native mobile application (app) if you have not set an application configuration for the current
project:

a) Select the mobile device, on which you want to test the app, from the list.
b) Select the native mobile application.

• If you want to install the app on the mobile device or emulator, click Browse to select the app file
or enter the full path to the app file into the App file text field. Silk4NET supports HTTP and UNC
formats for the path.

• If you want to use an app that is already installed on an Android device, select the app from the
Package/Activity list or specify the package and the activity in the Package/Activity field.

• If you want to use an app that is already installed on an iOS device, specify the Bundle ID.
• If you want to use an app that is available in Mobile Center, specify the App identifier.

9. Click OK. If you have selected an existing instance of Google Chrome on which you want to replay a
test method, Silk4NET checks whether the automation support is included. If the automation support is
not included, Silk4NET informs you that Google Chrome has to be restarted. The application and the
Recording window open.

10.Perform the interactions, which you want to record, with your application under test.

For additional information about recording a mobile application, see Recording Mobile Applications. For
information about the actions available during recording, see Actions Available During Recording.

11.When you are finished with recording, click Stop. The Recording Complete dialog box opens. From
this dialog box, you can click Playback to replay the recorded test.

• If you are using Visual Studio 2010, you can also access the Test View in Visual Studio, where you
can replay and manage your tests.

• If you are using Visual Studio 2012 or later, you can also access the Test Explorer in Visual Studio,
where you can replay and manage your tests.

The recorded interactions are added as a file to your project. The default file name of the generated file is
UnitTest<Index>.cs or UnitTest<Index>.vb, depending on the default programming language of
your project. For example, if you are recording the first test for a Visual Basic project, the name of the
generated file is UnitTest1.vb

Note: You can also create a new project and record the new test into the new project.

Recording a Test on Microsoft Edge
Before you can record a Silk4NET test, you must have created a Silk4NET project.

When starting the interaction with a web application on Microsoft Edge, Silk4NET closes any open instance
of Microsoft Edge and starts a new browser. This new browser uses a temporary profile without add-ons
and with an empty cache. This instance of Microsoft Edge is closed when shutting down the Open Agent or
when starting to test another application outside Microsoft Edge.

Note: You can currently not record keyword-driven tests on Microsoft Edge.

To record a new test for a web application on Microsoft Edge:

22 | Creating Silk4NET Tests

1. Select the project to which you want to add the new test.

2. In the toolbar, click Record Actions. The Add New Item dialog box opens.

3. Select Silk4NET Test.

4. Type a name for the new test into the Name field.

5. Click Add.

6. In the Select Browser dialog box, select the browser that you want to use.

7. Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.

8. Optional: Select an Orientation for the browser window.

9. Click Record.

10.The Interactive Recording window opens and displays the application under test. Perform the actions
that you want to record.

a) Click on the object with which you want to interact. Silk4NET performs the default action for the
object. If there is no default action, or if you have to insert text or specify parameters, the Choose
Action dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: If the action has parameters, type the parameters into the parameter fields.

Silk4NET automatically validates the parameters.
d) Click OK to close the Choose Action dialog box. Silk4NET adds the action to the recorded actions

and replays it on the mobile device or emulator.

During recording, Silk4NET displays the mouse position next to the recording window. You can toggle
the location to switch between displaying the absolute mouse position on the device display and the
mouse position in relation to the active object. For additional information about the actions available
during recording, see Actions Available During Recording.

11.Click Stop. The Record Complete dialog box opens.

12.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Recording a Test on Mozilla Firefox
Before you can record a Silk4NET test, you must have created a Silk4NET project.

To record a new test for a web application on Mozilla Firefox:

1. Select the project to which you want to add the new test.

2. In the toolbar, click Record Actions. The Add New Item dialog box opens.

3. Select Silk4NET Test.

4. Type a name for the new test into the Name field.

5. Click Add.

6. In the Select Browser dialog box, select the browser that you want to use.

7. Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.

8. Optional: Select an Orientation for the browser window.

9. Click Record.

10.The Interactive Recording window opens and displays the application under test. Perform the actions
that you want to record.

Creating Silk4NET Tests | 23

a) Click on the object with which you want to interact. Silk4NET performs the default action for the
object. If there is no default action, or if you have to insert text or specify parameters, the Choose
Action dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: If the action has parameters, type the parameters into the parameter fields.

Silk4NET automatically validates the parameters.
d) Click OK to close the Choose Action dialog box. Silk4NET adds the action to the recorded actions

and replays it on the mobile device or emulator.

During recording, Silk4NET displays the mouse position next to the recording window. You can toggle
the location to switch between displaying the absolute mouse position on the device display and the
mouse position in relation to the active object. For additional information about the actions available
during recording, see Actions Available During Recording.

11.Click Stop. The Record Complete dialog box opens.

12.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Recording a Test on Google Chrome
Silk4NET supports recording a test on Google Chrome 50 or later. For previous versions of Google
Chrome, Silk4NET supports only replaying tests and recording locators.

Before you can record a Silk4NET test, you must have created a Silk4NET project.

Note: You cannot record tests on Google Chrome versions prior to version 50.

To record a new test for a web application on Google Chrome 50 or later:

1. Select the project to which you want to add the new test.

2. In the toolbar, click Record Actions. The Add New Item dialog box opens.

3. Select Silk4NET Test.

4. Type a name for the new test into the Name field.

5. Click Add.

6. In the Select Browser dialog box, select the browser that you want to use.

7. Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.

8. Optional: Select an Orientation for the browser window.

9. Click Record.

10.The Interactive Recording window opens and displays the application under test. Perform the actions
that you want to record.

a) Click on the object with which you want to interact. Silk4NET performs the default action for the
object. If there is no default action, or if you have to insert text or specify parameters, the Choose
Action dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: If the action has parameters, type the parameters into the parameter fields.

Silk4NET automatically validates the parameters.
d) Click OK to close the Choose Action dialog box. Silk4NET adds the action to the recorded actions

and replays it on the mobile device or emulator.

During recording, Silk4NET displays the mouse position next to the recording window. You can toggle
the location to switch between displaying the absolute mouse position on the device display and the

24 | Creating Silk4NET Tests

mouse position in relation to the active object. For additional information about the actions available
during recording, see Actions Available During Recording.

11.Click Stop. The Record Complete dialog box opens.

12.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Characters Excluded from Recording and Replaying
The following characters are ignored by Silk Test during recording and replay:

Characters Control

... MenuItem

tab MenuItem

& All controls. The ampersand (&) is used as an accelerator
and therefore not recorded.

Actions Available During Recording
During recording, you can perform the following actions in the Recording window:

Action Steps

Pause recording. Click Pause to bring the AUT into a specific state without recording the actions,
and then click Record to resume recording.

Change the sequence of the
recorded actions.

To change the sequence of the recorded actions in the Recording window,
select the actions that you want to move and drag them to the new location.

Select multiple actions. To select multiple actions, press Ctrl and click on the actions or press Shift
and click on the first and the last action that you want to select.

Replay recorded actions. To replay recorded actions from the Recording window, select the actions and
click Play. To select all recorded actions, click on Recorded Actions and then
click Play.

Remove a recorded action. To remove a falsely recorded action from the Recording window, hover the
mouse cursor over the action and click Delete.

Verify an image or a property of a
control.

Move the mouse cursor over the object that you want to verify and press Ctrl
+Alt.

Change the object map entry If you are recording against a web application or a mobile web app and if the
automatically generated object map entry for a recorded object is difficult to
read or contains special characters, you might want to change the object map
entry to something more readable. You can do this during recording by right-
clicking on the object and then expanding the Object identification area of the
Choose Action dialog. Then you can edit the object map entry in the Object
Map ID field. For example, the automatically generated object map entry for an
image in our demo application is http demo borland. If you look at the object
map, it is be difficult to understand what object this entry refers to. Changing the
object map entry to something like InsuranceWebHomePageBanner would
possibly provide more context. This functionality is available for all supported
desktop and mobile browsers except Internet Explorer.

Creating Silk4NET Tests | 25

Action Steps

Select a different locator If you are recording against a web application or a mobile web app and the
automatically generated locator for a recorded object does not meet your
requirements, you can click on the arrow in the Locator field and let Silk4NET
generate alternative locator suggestions for you. All suggested locators
uniquely identify the object. This functionality is available for all supported
desktop and mobile browsers except Internet Explorer.

Manually Creating a Silk4NET Test
1. Add a Silk4NET test to your project.

2. Optional: To add support for controls of a specific application technology, you must include an import
statement at the beginning of the test that references the application technology namespace, as shown
in the following examples:

'Visual Basic .NET
Imports SilkTest.Ntf.Wpf
Imports SilkTest.Ntf.XBrowser
Imports SilkTest.Ntf.Win32

//C#
using SilkTest.Ntf.Wpf;
using SilkTest.Ntf.XBrowser;
using SilkTest.Ntf.Win32;

3. Configure the base state of the test application. For example:

'Visual Basic .NET
Dim baseState = New BrowserBaseState(BrowserType.InternetExplorer,
"www.borland.com")
baseState.Execute()

//C#
BrowserBaseState baseState = new
BrowserBaseState(BrowserType.InternetExplorer, "www.borland.com");
baseState.Execute();

Note: The base state makes sure that the application that you want to test is running and in the
foreground. This ensures that tests will always start with the same application state, which makes
them more reliable. In order to use the base state, it is necessary to specify what the main window
looks like and how to launch the application that you want to test if it is not running. Creating a
base state is optional. However, it is recommended as a best practice.

4. Add test classes and methods that test the desired functionality of the test application.

Best Practices for Creating Test Scripts
The way in which you write your test cases might have a great impact on the performance and stability of
your test set. During recording, Silk4NET creates scripts that are as fast and stable as possible. However,
there might be circumstances that require you to manually create or edit test scripts. This topic provides
some general guidelines that might help you create test scripts that are maintainable, reusable, and lead to
stable tests.

• Name your tests consistently and ensure that test names are self-explaining. Try to make the names
correspond with the application under test and the tested functionality. For example, the test names
MyApp_SuccessfulLogin and MyApp_FailingLogin are far easier to understand for other users than
Untitled_42 and Untitled_43.

26 | Creating Silk4NET Tests

• Describe your test cases as thoroughly as possible in a comment. Without a good description of the test
case in natural language, someone who needs to change the implementing code might not be able to
comprehend what exactly the test is doing.

• Ensure that your application under test is at the proper state when the test case starts. Return the
application under test to the correct state before executing the actions in a test case.

• Ensure that your application under test is at a proper state when the test case finishes. If additional
tests depend on the outcome of the test, ensure that they can start. Return the application under test to
the correct state when the actions in a test case are executed.

• Whenever possible, ensure that your test cases are not depending on the results of other test cases.
When this is not possible, ensure that the test cases are executed in the right order.

• Add verifications to your tests, to test the correctness of your application under test as well as the
functional flow.

• Use keyword-driven testing to create highly reusable action sets. Bundle commonly used actions into
keywords, combine keywords that are often executed sequentially into keyword sequences, and execute
combinations of keywords and keyword sequences as keyword driven-tests.

• To keep your tests maintainable and reusable, prefer writing multiple simple test cases that are
combinable to writing complex test cases.

• To avoid redundancies in your test set, prefer updating existing test cases to adding new test cases.

Adding a Verification to a Script while Recording
Do the following to add a verification to a script during recording:

1. Begin recording.

2. Move the mouse cursor over the object that you want to verify and press Ctrl+Alt.
When you are recording a mobile Web application, you can also click on the object and click Add
Verification.

This option temporarily suspends recording and displays the Select Verification Type dialog box.

3. Select Verify properties of the TestObject.
For information about adding an image verification to a script, see Adding an Image Verification During
Recording.

4. Click OK. The Verify Properties dialog box opens.

5. To select the property that you want to verify, check the corresponding check box.

6. Click OK. Silk4NET adds the verification to the recorded script and you can continue recording.

Adding a Locator or an Object Map Item to a Test Method
Using the Locator Spy

Manually capture a locator or an object map item using the Locator Spy and copy the locator or the object
map item to the test method. For instance, you can identify the caption or the XPath locator string for GUI
objects using the Locator Spy. Then, copy the relevant locator strings and attributes into the test methods
in your scripts.

1. Open the test class that you want to modify.

2. Click Silk4NET > Locator Spy. The Locator Spy and the application under test open. If you are testing
a mobile application, a recording window opens, representing the screen of the mobile device. You
cannot perform actions in the recording window, but you can perform actions on the mobile device or
emulator and then refresh the recording window.

3. Optional: To bring the application under test into the appropriate state before recording a locator, click
Stop Recording Locator. The actions that you perform in the application under test are no longer
recorded. To continue with the recording of a locator, click Start Recording Locator.

Creating Silk4NET Tests | 27

4. Optional: To display locators in the Locator column instead of object map items, uncheck the Show
object map identifiers check box.

Object map item names associate a logical name (an alias) with a control or a window, rather than the
control or window's locator. By default, object map item names are displayed.

Note: When you check or uncheck the check box, the change is not automatically reflected in the
locator details. To update an entry in the Locator Details table, you have to click on the entry.

5. Position the mouse over the object that you want to record. The related locator string or object map item
shows in the Selected Locator text box.

Note: If you are testing on a browser, the Selected Locator field displays the locator only when
you actually capture it.

6. Press Ctrl+Alt to capture the object.

Note: Press Ctrl+Shift to capture the object if you specified the alternative record break key
sequence on the General Recording Options page of the Script Options dialog box.

7. Optional: Click Show additional locator attributes to display any related attributes in the Locator
Attribute table.

8. Optional: You can replace a recorded locator attribute with another locator attribute from the Locator
Attribute table.

For example, your recorded locator might look like the following:

/BrowserApplication//BrowserWindow//input[@id='loginButton']

If you have a textContents Login listed in the Locator Attribute table, you can manually change
the locator to the following:

/BrowserApplication//BrowserWindow//input[@textContents='Login']

The new locator displays in the Selected Locator text box.

9. To copy the locator, click Copy Locator to Clipboard.

In the Selected Locator text box, you can also mark the portion of the locator string that you want to
copy, and then you can right-click the marked text and click Copy.

10.In the script, position your cursor to the location to which you want to paste the recorded locator.

For example, position your cursor in the appropriate parameter of a Find method in the script.

The test method, into which you want to paste the locator, must use a method that can take a locator as
a parameter. Using the Locator Spy ensures that the locator is valid.

11.Copy the locator or the object map item to the test case or to the Clipboard.

12.Click Close.

28 | Creating Silk4NET Tests

Replaying Tests
This section provides detailed information on the various ways to replay your Silk4NET tests.

For example, you can run Silk4NET tests from Visual Studio or by using the command line.

Running Silk4NET Tests
By default, Silk4NET 19.5 or later uses a 64bit JVM for keyword-driven tests. To run keyword-driven tests
with Silk4NET, set the default processor architecture under Test > Test Settings > Default Processor
Architecture in the Visual Studio menu to x64. Alternatively, you can specify your own 32bit JVM for
Silk4NET by setting the SILK_KEYWORD_DRIVEN_JAVA_HOME environment variable.

This topic describes how you can run your Silk4NET tests in Visual Studio.

1. To view all the tests that are available in the selected project or solution:

• In Visual Studio 2010, click Test > Windows > Test View.
• In Visual Studio 2012 later, click Test > Windows > Test Explorer.

2. In the Test View or the Test Explorer, depending on which version of Visual Studio you are using,
select the tests that you want to execute.

3. Right-click on your selection and click one of the following:

• In Visual Studio 2010, click Run Selection.
• In Visual Studio 2012 or later, click Run Selected Tests.

To run all tests in the selected project or solution, click Run All in the Test View or the Test Explorer,
depending on which version of Visual Studio you are using.

4. If you are testing a web application, the Select Browser dialog box opens. Select the browser and click
Run.

5. Optional: If necessary, you can press both Shift keys at the same time to stop the execution of the test.

6. When the test execution is complete, the Playback Complete dialog box opens. Click Explore Results
to examine the results of the tests with TrueLog or click OK to close the dialog box.

Note: When you execute your tests, and Visual Studio starts the components that are needed for the
execution of the tests, Visual Studio will clean up everything when the test execution is finished,
terminating the Open Agent and all open browser windows.

Replaying a Test from the Command Line
To run Silk4NET tests from the command line, you can use VSTest.Console.exe. This command line
executable is included in Visual Studio and does not require any additional tools in addition to Silk4NET to
be installed. For additional information on using the VSTest.console from the command line, refer to Using
VSTest.console from the command line.

To run your Silk4NET tests from the command line, perform the following actions:

1. Create a DLL with the tests to be executed.
For example, call the DLL myTestFile.dll.

Note: You can include multiple test classes in a single DLL. All tests in the various test classes will
be executed.

Replaying Tests | 29

https://msdn.microsoft.com/library/jj155800.aspx
https://msdn.microsoft.com/library/jj155800.aspx

2. Run the tests in the DLL by typing:

Vstest.console.exe [TestFileNames] [Options]

For example, to execute the tests in myTestFile.dll, type the following:

vstest.console.exe myTestFile.dll

Note: For information on the available command line options, refer to Using VSTest.console from
the command line.

3. To create a TrueLog for a test class, use the <SilkTestClass> annotation.
For example, to run the class MyTestClass with TrueLog enabled, use the following class header in your
script:

<SilkTestClass> Public Class MyTestClass

Then create the DLL, for example myTestClass.dll and execute the tests from the command line by
typing:

vstest.console.exe myTestClass.dll

Running Tests in Parallel
You can use multiple MSTest processes to execute tests in parallel against multiple browsers or mobile
devices. For example, you can use this functionality when executing test from a continuous integration
server, or from Silk Central.

Silk Testby default supports parallel testing for the following browsers and platforms:

• Google Chrome.
• Mozilla Firefox.
• Web, native, and hybrid apps on the following platforms:

• Physical Android devices.
• Android Emulators.
• Physical iOS devices.

To disable parallel test replay, set the environment variable SILKTEST_ENABLE_PARALLEL_TESTING to
false.

Note: Enabling parallel testing causes the Open Agent to handle each test-executing process
separately. Applications which have been tested in one Silk Test client cannot be tested from another
client, while the initial client is running. For example, you cannot test the same application alternating
between Silk4J and Silk4NET.

Note: You cannot execute multiple test runs on the same mobile device at the same time. Before
running tests in parallel, ensure that enough devices or emulators are available. Any test runs that get
no mobile device or emulator assigned will fail.

Each parallel test run starts as a separate vstestconsole.exe or mstest.exe, which corresponds to one
browser or mobile device. You can specify the browser or mobile device that you want to associate with a
specific vstestconsole.exe or mstest.exe through the connection string. For additional information, see
Connection String for a Mobile Device or Connection String for a Remote Desktop Browser .

The following image shows testing multiple browsers in parallel:

30 | Replaying Tests

https://msdn.microsoft.com/library/jj155800.aspx
https://msdn.microsoft.com/library/jj155800.aspx

The following image shows testing multiple devices in parallel:

Multiple processes starting simultaneously might each try to start the Open Agent on the machine on which
Silk4NET is running. Running the Open Agent multiple times on the same machine is not possible and will
cause Silk4NET to throw an exception. To avoid this, ensure that the Open Agent is running before starting
the parallel test runs.

The test results are stored in multiple TrueLog files, one for each test run. To ensure that the TrueLog files
are not overwritten, you can add placeholders to the TrueLog file name. For additional information, see
Setting TrueLog Options.

Note: If you are experiencing high memory consumption during testing, ensure that test results are
saved in the compressed TLZ file format, and not in the XLG format. Silk4NET does not support the
TrueLog API for parallel testing.

How Does Silk4NET Synchronize Tests?
Many unexpected test failures are related to synchronization issues. Weak synchronization during test
replay might generate false negative results, making it difficult to detect actual application problems.
Synchronization errors are timing issues that heavily depend on the test environment, making these errors
difficult to reproduce and solve. For example, a synchronization error that occurs in a specific test
environment might never be reproduced in the development environment. Weak synchronization is one of
the most common reasons for an automation project to get unmanageable with a growing set of automated
tests.

Silk4NET provides automated test synchronization for all supported technologies, enabling you to build
robust and manageable test sets. During the replay of a test, Silk4NET ensures that the test always waits
until the AUT is ready to perform the next action. For a verification step in a test, Silk4NET ensures that any
preceding actions in the test are completed before performing the verification.

To adapt your tests to the specific behavior of your AUT, you can change the values of the following
synchronization timeouts:

Replaying Tests | 31

Synchronization timeout
(OPT_SYNC_TIMEOUT)

The maximum time in milliseconds that Silk4NET waits
for the AUT to become ready during playback. The default
value is 300000 milliseconds.

Object resolve timeout
(OBJ_WAIT_RESOLVE_OBJDEF)

The maximum time in milliseconds that the Find method
searches for an object. The default value is 5000
milliseconds.

Note: To be able to successfully run tests under
load or on slow systems, for example a virtual
machine accessed through a slow connection,
Silk4NET occasionally increases the internal
timeout, for example while the AUT is starting and
when a dialog or window appears. As soon as the
AUT, dialog, or window is completely started,
Silk4NET reduces the timeout again to the value
you have specified for
OPT_WAIT_RESOLVE_OBJDEF.

Object resolve retry interval
(OPT_WAIT_RESOLVE_OBJDEF_RETRY)

If Silk4NET cannot immediately find an object, Silk4NET
will retry to find the object until the object resolve timeout
expires. The object resolve retry interval specifies the
time in milliseconds that Silk4NET waits before retrying to
find the object. The default value is 1000 milliseconds.

Object enabled timeout
(OPT_OBJECT_ENABLED_TIMEOUT)

The maximum time in milliseconds that Silk4NET waits
for an object to become enabled during playback. The
default value is 1000 milliseconds.

Note: The timeouts do not overlap.

For detailed information about the automated synchronization that Silk4NET provides specifically for Web
applications, see Page Synchronization for xBrowser. For detailed information about the synchronization
that Silk4NET provides specifically for Ajax applications, see How to Synchronize Test Automation Scripts
for Ajax Applications.

In addition to the automated synchronization, Silk4NET also enables you to manually add wait functions to
your scripts. Silk4NET provides the following wait functions for manual synchronization:

WaitForObject Waits for an object that matches the specified locator. Works with an
xPath locator or an object map identifier.

WaitForProperty Waits until the specified property gets the specified value or until the
timeout is reached.

WaitForPropertyNotEquals Waits until the value of the specified property no longer equals the
specified value or until the timeout is reached.

WaitForDisappearance Waits until the object does not exist or until the timeout is reached.

WaitForChildDisappearance Waits until the child object specified by the locator parameter does not
exist or until the timeout is reached.

WaitForScreenshotStable Waits until the object is visually stable and does not change its position.

If a test randomly fails with an ObjectNotFoundException, increase the Object resolve timeout, for
example to 30 seconds. For very specific long running operations, for example a click on an object that
displays after a long calculation with a progress dialog, manually add the WaitForObject method to the
test script, to wait until the object is found, or add the WaitForDisappearance method to the test script,
to wait until the progress dialog is no longer displayed.

32 | Replaying Tests

http://community.microfocus.com/borland/test/silk_test/b/weblog/archive/2012/06/15/how-to-synchronize-test-automation-scripts-for-ajax-applications.aspx
http://community.microfocus.com/borland/test/silk_test/b/weblog/archive/2012/06/15/how-to-synchronize-test-automation-scripts-for-ajax-applications.aspx

Automated synchronization example

Consider the following code sample, where Silk4NET tries to click on a button with the
caption Ok:

'VB .NET code
Dim button = _desktop.PushButton("@caption='Ok'")
button.Click()

// C# code
var button = _desktop.PushButton("@caption='Ok'");
button.Click();

To replay the actions in this code sample, Silk4NET performs the following
synchronization actions:

1. Silk4NET tries to find the button. If the Object resolve timeout runs out, Silk4NET
stops the replay and throws an exception.

2. Silk4NET waits until the application under test (AUT) is ready. If the Synchronization
timeout runs out before the AUT is ready, Silk4NET stops the replay and throws an
exception.

3. Silk4NET waits until the button is enabled. If the Object enabled timeout runs out
before the button is enabled, Silk4NET stops the replay and throws an exception.

4. Silk4NET clicks the button.
5. Silk4NET waits until the application under test (AUT) is ready again.

Enabling the Playback Status Dialog Box
Enable the Playback Status dialog box to view the actions that are performed during the replay of a test.
This dialog box is very useful when replaying tests on another machine, for example on a remote Mac or on
a mobile device.

To enable the Playback Status dialog box:

1. Click Silk4NET > Edit Options.

2. Click the Replay tab.

3. To enable the Playback Status dialog box, check the OPT_SHOW_PLAYBACK_STATUS_DIALOG
check box.

4. To display a video or screenshots of the application under test in the Playback Status dialog box, check
the OPT_PLAYBACK_STATUS_DIALOG_SCREENSHOTS check box.

5. Click OK.

Note: If you are testing on a remote Mac or on a mobile device, ensure that the Mac or device does
not switch off the screen during testing, otherwise the Playback Status dialog box will not display
anything.

Replaying Tests | 33

Analyzing Test Results
To enable you to analyze your tests after executing them, for example to find out why and how a test has
failed, Silk4NET generates test reports during test execution.

By default, Silk4NET writes both a TrueLog and an HTML report when running a test. You can select which
result formats Silk4NET should generate under Silk4NET > Edit Options > TrueLog > Select result
format.

Analyzing Test Results
After running a test, you can review the test results and analyze the success or failure of the test run.

1. Run a Silk4NET test. When the execution is finished, the Playback Complete dialog box opens.

2. Click Explore Results to examine the results of the tests.

3. Click through the results.

Silk4NET captures a screenshot whenever a test fails.

HTML Reports
By default, Silk4NET creates an HTML report and a TrueLog report when running tests. Both report
formats include summary information about the test run and detailed information about the executed
actions.

When a test run is finished, you can access the HTML report from the Playback Complete dialog.

By default, the HTML report is created in a sub-directory of the directory in which the Visual Studio solution
file and the results of the Visual Studio Unit Testing Framework are located. You can change the location
under Silk4NET > Edit Options > TrueLog > TrueLog location.

Visual Execution Logs with TrueLog
TrueLog is a powerful technology that simplifies root cause analysis of test case failures through visual
verification. The results of test runs can be examined in TrueLog Explorer. When an error occurs during a
test run, TrueLog enables you to easily locate the line in your script that generated the error so that the
issue can be resolved.

Note: TrueLog is supported only for one local or remote agent in a script. When you use multiple
agents, for example when testing an application on one machine, and that application writes data to a
database on another machine, a TrueLog is written only for the first agent that was used in the script.
When you are using a remote agent, the TrueLog file is also written on the remote machine.

For additional information about TrueLog Explorer, refer to the Silk TrueLog Explorer Help for Silk Test.

You can enable TrueLog in Silk4NET to create visual execution logs during the execution of Silk4NET tests.
The TrueLog file is created in the working directory of the process that executed the Silk4NET tests.

The default setting is that screenshots are only created when an error occurs in the script, and only test
cases with errors are logged.

34 | Analyzing Test Results

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-truelogexplorer-en.pdf

Enabling TrueLog
For new Silk4NET scripts, TrueLog is enabled by default. You can enable or disable TrueLog by checking or
un-checking the Enable TrueLog check box in the TrueLog tab of the Script Options dialog box. To open
the Script Options dialog box, click Silk4NET > Edit Options.

To enable TrueLog for existing Silk4NET scripts, which are using the Visual Studio Unit Testing Framework,
you have to replace the TestClass attribute of all test classes in the script with the SilkTestClass
attribute.

To enable TrueLog for existing Silk4NET scripts:

1. Open the script that contains the test class for which you want to enable TrueLog.

2. Add the SilkTestClass attribute to the test class.

By default, the TrueLog is created in the TestResults sub-directory of the directory, in which the Visual
Studio solution file and the results of the Visual Studio Unit Testing Framework are located. To specify a
different location for the TrueLog, click Silk4NET > Edit Options to open the Script Options dialog box
and click Browse to the right of the TrueLog file field.

The Visual Studio solution file is the file in which the Silk4NET scripts are located. When the Silk4NET test
execution is complete, a dialog box opens, and you can click Explore Results to review the TrueLog for the
completed test.

Examples

To enable TrueLog for a class in a Visual Basic script, use the following code:

<SilkTestClass()> Public Class MyTestClass
 <TestMethod()> Public Sub MyTest()
 ' my test code
 End Sub
End Sub

To enable TrueLog for a class in a C# script, use the following code:

[SilkTestClass]
public class MyTestClass {
 [TestMethod]
 public void MyTest() {
 // my test code
 }
}

Changing the Location of the TrueLog
By default, the TrueLog is created in the TestResults sub-directory of the directory, in which the Visual
Studio solution file and the results of the Visual Studio Unit Testing Framework are located.

To specify another location for the TrueLog:

1. In the menu, click Silk4NET > Edit Options. The Script Options dialog box displays.

2. Select the TrueLog tab.

3. Click Browse to the right of the TrueLog location field.

When running a test in the current project, the TrueLog is saved to the specified location.

Analyzing Test Results | 35

TrueLog Sections
You can add sections to TrueLogs to add structure to complex scripts and to logically divide scripts into
smaller named parts.

TrueLog sections can be nested and the same name can be used for multiple sections, which means the
names do not have to be unique.

To create a new section in a TrueLog file, use the following code:

openTrueLogSection("section_name")

To close the last TrueLog section that was opened, use the following code:

closeCurrentTrueLogSection()

Sections are automatically closed in the following cases:

• The test case ends.
• The test class ends.
• The test run ends.
• A keyword ends.
• An exception occurs.

The following code sample demonstrates the usage of TrueLog sections:

[TestMethod]
public void SubSections()
{
 Agent.OpenTrueLogSection("Section a");
 Agent.LogInfo("In section a");
 Agent.OpenTrueLogSection("Section b");
 Agent.LogInfo("In section b");
 Agent.CloseCurrentTrueLogSection();
 Agent.LogInfo("In section a again");
}

For additional information on the supported methods, refer to the API documentation of your Silk Test
client.

Capturing the Contents of a Web Page
To capture a screenshot of the the part of the web page that is currently visible in the browser window, you
can use the CaptureBitmap method. You have to specify the absolute or relative file path to the location
and the name for the image file as a parameter. For example:

//C# code
browserWindow.CaptureBitmap("C:\Temp\MyPage.png");

'VB code
browserWindow.CaptureBitmap("C:\Temp\MyPage.png")

To capture a screenshot of the entire contents of a web page as a single image, you can use the
CaptureFullPageBitmap method. You have to specify the absolute or relative file path to the location
and the name for the image file as a parameter. For example:

//C# code
browserWindow.CaptureFullPageBitmap("C:\Temp\MyPage.png");

'VB code
browserWindow.CaptureFullPageBitmap("C:\Temp\MyPage.png")

36 | Analyzing Test Results

Why is TrueLog Not Displaying Non-ASCII Characters
Correctly?
TrueLog Explorer is a MBCS-based application, meaning that to be displayed correctly, every string must
be encoded in MBCS format. When TrueLog Explorer visualizes and customizes data, many string
conversion operations may be involved before the data is displayed.

Sometimes when testing UTF-8 encoded Web sites, data containing characters cannot be converted to the
active Windows system code page. In such cases, TrueLog Explorer will replace the non-convertible
characters, which are the non-ASCII characters, with a configurable replacement character, which usually
is '?'.

To enable TrueLog Explorer to accurately display non-ASCII characters, set the system code page to the
appropriate language, for example Japanese.

Why Does TrueLog Not Write Result Files During
Playback?
Silk4NET might display the following error message after playback:
Unable to explore result file because no result file was written. Ensure that you have sufficient permissions
and that the unit testing extension in the references of your Silk4NET project corresponds to the used
version of Visual Studio.

In this case, the reference to the unit testing extension is pointing to a different version of Visual Studio
than the one that you are currently using. For example, this can happen if you have migrated the Silk4NET
project from a previous version of Visual Studio. To enable TrueLog to write result files, change the
reference to the wrong Visual Studio version so that it points to the correct version. Also ensure that the
Enable TrueLog check box in the TrueLog tab of the Script Options dialog box is checked. To open the
Script Options dialog box, click Silk4NET > Edit Options.

Example

If the Silk4NET projects reference Visual Studio 2012 and the version that you are using
is Visual Studio 2013, remove the reference to
SilkTest.Ntf.VisualStudio2012.UnitTestingExtension from the Silk4NET
projects and add the reference
SilkTest.Ntf.VisualStudio2013.UnitTestingExtension to the projects.

Analyzing Test Results | 37

Silk Test Open Agent
The Silk Test Open Agent is the software process that translates the commands in your scripts into GUI-
specific commands. In other words, the Open Agent drives and monitors the application that you are
testing.

One Agent can run locally on the host machine. In a networked environment, any number of Agents can
replay tests on remote machines. However, you can record only on a local machine.

Starting the Silk Test Open Agent
Before you can create a test or run a sample script, the Silk Test Open Agent must be running. Typically,
the Agent starts when you launch the product. If you must manually start the Open Agent, perform this
step.

Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test Open Agent or
(in Microsoft Windows 10) Start > Silk > Silk Test Open Agent. The Silk Test Open Agent icon
displays in the system tray.

Stopping the Open Agent After Test Execution
You can stop the Open Agent by using the command-line option -shutDown or from a script, to ensure that
the agent does not continue running after the end of the test execution. The following code sample shows
how you can stop the Open Agent from the command line:

openAgent.exe -shutDown

To stop the agent from a script:

1. Open or create a script that is executed when the test execution is finished.

For example, open an existing script that is used for cleanup after test execution.

2. Add the ShutDown method to the script.

Note: The Open Agent will restart as soon as the agent is required by another script.

Agent Options
This section describes the options that can be manipulated with the GetOption and SetOption
methods.

Note: By default, you can set global options by choosing Silk4NET > Edit Options in the menu.

To set or get agent options in a script, use the GetOption or SetOption methods. For instance, when
you type, Agent.SetOption(Options., the agent options display automatically in the active editor
window with the auto-completion and syntactical assistance technology. For instance, you might see the
following options in the active editor window:

38 | Silk Test Open Agent

An example for inserting an option into a script would be the following:

'VB .NET code
Agent.SetOption(Options.ApplicationReadyTimeout, 100000)

// C# code
Agent.SetOption(Options.ApplicationReadyTimeout, 100000);

Alternatively, you can use the agent option name in scripts. For instance, you can type:

'VB .NET code
Agent.SetOption("OPT_APPREADY_TIMEOUT", 100000)

// C# code
Agent.SetOption("OPT_APPREADY_TIMEOUT", 100000);

.NET Option Name Agent Option Name Constant
Type

Description

ApplicationReadyTime
out

OPT_APPREADY_TIMEOUT NUMBER Specifies the number of milliseconds to
wait for a newly launched application to
become ready. If the application is not
ready within the specified timeout,
Silk4NET raises an exception.

BitmapMatchCount OPT_BITMAP_MATCH_COUNT INTEGER Specifies the number of consecutive
snapshots that must be the same for
the bitmap to be considered stable.
Snapshots are taken up to the number
of seconds specified by
OPT_BITMAP_MATCH_TIMEOUT, with
a pause specified by
OPT_BITMAP_MATCH_INTERVAL
occurring between each snapshot.

By default, this is 0.

BitmapMatchInterval OPT_BITMAP_MATCH_INTERVAL REAL Specifies the time interval between
snapshots to use for ensuring the
stability of the bitmap image. The
snapshots are taken up to the time
specified by
OPT_BITMAP_MATCH_TIMEOUT.

By default, this is 0.1.

BitmapMatchTimeout OPT_BITMAP_MATCH_TIMEOUT REAL Specifies the total time allowed for a
bitmap image to become stable.

During the time period, Silk4NET takes
multiple snapshots of the image, waiting
the number of seconds specified with

Silk Test Open Agent | 39

.NET Option Name Agent Option Name Constant
Type

Description

OPT_BITMAP_MATCH_TIMEOUT
between snapshots. If the value
returned by
OPT_BITMAP_MATCH_TIMEOUT is
reached before the number of bitmaps
specified by
OPT_BITMAP_MATCH_COUNT
match, Silk4NET stops taking
snapshots and raises the exception
E_BITMAP_NOT_STABLE.

By default, this is 5.

BitmapPixelTolerance OPT_BITMAP_PIXEL_TOLERANCE INTEGER Specifies the number of pixels of
difference below which two bitmaps are
considered to match. If the number of
pixels that are different is smaller than
the number specified with this option,
the bitmaps are considered identical.
The maximum tolerance is 32767
pixels.

By default, this is 0.

ButttonsToCloseWindo
ws

OPT_CLOSE_WINDOW_BUTTONS LIST OF
STRING

Specifies the buttons used to close
windows with the CloseSynchron
method.

ButttonsToConfirmDial
ogs

OPT_CLOSE_CONFIRM_BUTTON
S

LIST OF
STRING

Specifies the buttons used to close
confirmation dialog boxes that appear
when closing windows with the
CloseSynchron method.

CloseUnresponsiveAp
plications

OPT_KILL_HANGING_APPS BOOLEAN Specifies whether unresponsive
applications are closed. An application
is unresponsive if communication
between the Agent and the application
fails, e.g. times out. Set this option to
TRUE when testing applications that
cannot run multiple instances. By
default, this is FALSE.

CloseWindowTimeout OPT_CLOSE_WINDOW_TIMEOUT NUMBER Specifies the number of milliseconds to
wait before the next close strategy is
tried. The Agent executes four close
attempts before failing, so the total time
before a close fails is four times the
value you specify.

Compatibility OPT_COMPATIBILITY STRING Enables you to use the Silk4NET
behavior of the specified Silk4NET
version for specific features, when the
behavior of these features has changed
in the latest version.

Example strings:

• 12

40 | Silk Test Open Agent

.NET Option Name Agent Option Name Constant
Type

Description

• 11.1

• 13.0.1

By default, this option is not set.

EnsureObjectIsActive OPT_ENSURE_ACTIVE_OBJDEF BOOLEAN Ensures that the target object is active.
By default, this is FALSE.

EnableAccessibility OPT_ENABLE_ACCESSIBILITY BOOLEAN TRUE to enable Accessibility when you
are testing a Win32 application and
Silk4NET cannot recognize objects.
Accessibility is designed to enhance
object recognition at the class level.

FALSE to disable Accessibility.

By default, this is FALSE.

Note: For Mozilla Firefox and
Google Chrome, Accessibility is
always activated and cannot be
deactivated.

EnableMobileWebview
FallbackSupport

OPT_ENABLE_MOBILE_WEBVIEW
_FALLBACK_SUPPORT

BOOLEAN Enables mobile native fallback support
for hybrid mobile applications that are
not testable with the default browser
support.

By default, this is FALSE.

EnableUiAutomationSu
pport

OPT_ENABLE_UI_AUTOMATION_S
UPPORT

NUMBER TRUE to enable Microsoft UI
Automation support instead of the
normal Win32 control recognition. This
option might be useful when you are
testing a Win32 application and
Silk4NET cannot recognize objects.
AUTODETECT to automatically enable
Microsoft UI Automation support for
JavaFX.

By default, this is FALSE.

HangAppTimeOut OPT_HANG_APP_TIME_OUT NUMBER Specifies the Unresponsive
application timeout, which is the
timeout for pending playback actions.

The default value is 5000 milliseconds.

HighlightObjectDuring
Playback

OPT_REPLAY_HIGHLIGHT BOOLEAN Specifies whether the current object is
highlighted during playback.

By default, this is FALSE, which means
that objects are not highlighted by
default.

KeyboardEventDelay OPT_KEYBOARD_INPUT_DELAY NUMBER Sets the delay in milliseconds between
playback of keyboard strokes.

Silk Test Open Agent | 41

.NET Option Name Agent Option Name Constant
Type

Description

Be aware that the optimal number you
select can vary, depending on the
application that you are testing. For
example, if you are testing a Web
application, a setting of 1 millisecond
radically slows down the browser.
However, setting this to 0 (zero) may
cause basic application testing to fail.

KeysToCloseDialogs OPT_CLOSE_DIALOG_KEYS LIST OF
STRING

Specifies the keystroke sequence to
close dialog boxes that open after trying
to close a window with the
CloseSynchron method. Examples
include: <ESC>, <Alt+F4>.

LocatorAttributesCase
Sensitive

OPT_LOCATOR_ATTRIBUTES_CA
SE_SENSITIVE

BOOLEAN Set to Yes to add case-sensitivity to
locator attribute names, or to No to
match the locator names case
insensitive. The names of locator
attributes for mobile Web applications
are always case insensitive, and this
option is ignored when recording or
replaying mobile Web applications.

MenuItemsToCloseWin
dows

OPT_CLOSE_WINDOW_MENUS LIST OF
STRING

Specifies the menu items used to close
windows with the CloseSynchron
method. Examples include: "File/Exit*",
"File/Quit*".

MouseEventDelay OPT_MOUSE_INPUT_DELAY NUMBER Specifies the delay in milliseconds used
before each mouse event.

ObjectResolveRetryInt
erval

OPT_WAIT_RESOLVE_OBJDEF_R
ETRY

NUMBER Specifies the time in milliseconds to
wait before re-trying to find an object
that could not be immediately resolved
during playback. When the
ObjectResolveTimeout runs out, no
further retries are attempted.

ObjectResolveTimeout OPT_WAIT_RESOLVE_OBJDEF NUMBER Specifies the time in milliseconds to
wait for an object to be resolved during
playback. As soon as the object is
resolved, Silk4NET can recognize it.

PlaybackMode OPT_REPLAY_MODE NUMBER Defines how controls are replayed. Use
low level to replay each control using
the mouse and keyboard. Use high
level to use the API to replay each
control. All controls have a default
playback mode assigned. When the
default replay mode is selected, each
control uses its default playback mode.
The default mode delivers the most
reliable results. Selecting low or high
level playback overrides the playback

42 | Silk Test Open Agent

.NET Option Name Agent Option Name Constant
Type

Description

mode of all controls with the playback
mode selected.

Possible values include 0, 1 and 2. 0 is
default, 1 is high level, 2 is low level. By
default, this is 0.

PostReplayDelay OPT_POST_REPLAY_DELAY NUMBER Specifies the time in milliseconds to
wait after invoking a function or setting
a property.

RemoveFocusOnCapt
ureText

OPT_REMOVE_FOCUS_ON_CAPT
URE_TEXT

BOOLEAN Set to Yes to take the focus off the
application under test during a text
capture. By default, this is set to No,
leaving the focus on the application
under test. A text capture is performed
during recording and replay by the
following methods:

• TextClick

• TextCapture

• TextExists

• TextRect

SuspensionTimeout OPT_NTF_SUSPENSION_TIMEOU
T

NUMBER Specifies the maximum time in
milliseconds to wait for an answer from
the NTF. If the time is exceeded, the
communication between NTF and the
Open Agent is considered as
suspended.

SyncTimeout OPT_SYNC_TIMEOUT NUMBER Specifies the maximum time in
milliseconds for an object to be ready.

Note: When you upgrade from a Silk
Test version prior to Silk Test 13.0,
and you had set the
OPT_XBROWSER_SYNC_TIMEOUT
option, the Options dialog box will
display the default value of the
OPT_SYNC_TIMEOUT, although
your timeout is still set to the value
you have defined.

TransparentClasses OPT_TRANSPARENT_CLASSES LIST OF
STRING

To simplify the object hierarchy and to
shorten the length of the lines of code
in your test scripts and functions, you
can suppress the controls for certain
unnecessary classes in the following
technologies:

• Win32.

• Java AWT/Swing.

• Java SWT/Eclipse.

Silk Test Open Agent | 43

.NET Option Name Agent Option Name Constant
Type

Description

• Windows Presentation Foundation
(WPF).

Specify the names of any classes that
you want to ignore during recording and
playback.

OPT_WPF_CHECK_DISPATCHER_
FOR_IDLE

BOOLEAN For some WPF applications the Silk
Test synchronization might not work
due to how certain controls are
implemented, resulting in Silk4NET not
recognising when the WPF application
is idle. Setting this option to FALSE
disables the WPF synchronization and
prevents Silk4NET from checking the
WPF dispatcher, which is the thread
that controls the WPF application. Set
this option to FALSE to solve
synchronization issues with certain
WPF applications. By default, this is
TRUE.

WPFCustomClasses OPT_WPF_CUSTOM_CLASSES LIST OF
STRING

Specify the names of any WPF classes
that you want to expose during
recording and playback. For example, if
a custom class called MyGrid derives
from the WPF Grid class, the objects
of the MyGrid custom class are not
available for recording and playback.
Grid objects are not available for
recording and playback because the
Grid class is not relevant for functional
testing since it exists only for layout
purposes. As a result, Grid objects
are not exposed by default. In order to
use custom classes that are based on
classes that are not relevant to
functional testing, add the custom
class, in this case MyGrid, to the
OPT_WPF_CUSTOM_CLASSES
option. Then you can record, playback,
find, verify properties, and perform any
other supported actions for the
specified classes.

WPFPrefillItems OPT_WPF_PREFILL_ITEMS BOOLEAN Defines whether items in a
WPFItemsControl, like
WPFComboBox or WPFListBox, are
pre-filled during recording and
playback. WPF itself lazily loads items
for certain controls, so these items are
not available for Silk4NET if they are
not scrolled into view. Turn pre-filling
on, which is the default setting, to

44 | Silk Test Open Agent

.NET Option Name Agent Option Name Constant
Type

Description

additionally access items that are not
accessible without scrolling them into
view. However, some applications have
problems when the items are pre-filled
by Silk4NET in the background, and
these applications can therefore crash.
In this case turn pre-filling off.

XbrowserEnableIframe
Support

OPT_XBROWSER_ENABLE_IFRA
ME_SUPPORT

BOOLEAN Specifies whether to enable iframe and
frame support for browsers. If you are
not interested in the content of the
iframes in a web application, disabling
the iframe support might improve replay
performance. For example, disabling
the iframe support might significantly
improve replay performance for web
pages with many adds and when
testing in a mobile browser. This option
is ignored by Internet Explorer. This
option is enabled by default.

XBrowserExcludeIFra
mes

OPT_XBROWSER_EXCLUDE_IFR
AMES

STRING Every entry in the list defines an
attribute name and the corresponding
value. All iframes and frames that do
not match at least one of the entries are
considered during testing. Wildcards
are allowed, for example the entry
"src:*advertising*" would exclude
<IFRAME src=http://my.domain/
advertising-banner.html>. This option is
ignored by Internet Explorer. If the list is
empty, all iframes and frames are
considered during testing. Separate
multiple entries with a comma.

XBrowserFindHiddenIn
putFields

OPT_XBROWSER_FIND_HIDDEN_
INPUT_FIELDS

BOOLEAN Specifies whether to display hidden
input fields, which are HTML fields for
which the tag includes
type="hidden". The default value
is TRUE.

XBrowserIncludeIFram
es

OPT_XBROWSER_INCLUDE_IFRA
MES

STRING Every entry in the list defines an
attribute name and the corresponding
value. All iframes and frames that do
not match at least one of the entries are
excluded. Wildcards are allowed, for
example the entry "name:*form" would
include <IFRAME name="user-form"
src=…>. This option is ignored by
Internet Explorer. If the list is empty, all
iframes and frames are considered
during testing. Separate multiple entries
with a comma.

Silk Test Open Agent | 45

.NET Option Name Agent Option Name Constant
Type

Description

XBrowserSynchronizati
onMode

OPT_XBROWSER_SYNC_MODE STRING Configures the supported
synchronization mode for HTML or
AJAX. Using the HTML mode ensures
that all HTML documents are in an
interactive state. With this mode, you
can test simple Web pages. If more
complex scenarios with Java script are
used, it might be necessary to manually
script synchronization functions. Using
the AJAX mode eliminates the need to
manually script synchronization
functions. By default, this value is set to
AJAX.

XBrowserSynchronizati
onTimeout

OPT_XBROWSER_SYNC_TIMEOU
T

NUMBER Specifies the maximum time in
milliseconds for an object to be ready.

Note: Deprecated. Use the
option OPT_SYNC_TIMEOUT
instead.

XBrowserSynchronizati
onURLExcludes

OPT_XBROWSER_SYNC_EXCLUD
E_URLS

STRING Specifies the URL for the service or
Web page that you want to exclude
during page synchronization. Some
AJAX frameworks or browser
applications use special HTTP
requests, which are permanently open
in order to retrieve asynchronous data
from the server. These requests may let
the synchronization hang until the
specified synchronization timeout
expires. To prevent this situation, either
use the HTML synchronization mode or
specify the URL of the problematic
request in the Synchronization
exclude list setting.

Type the entire URL or a fragment of
the URL, such as http://test.com/
timeService or timeService.

Separate entries by comma, for
example:

'VB .NET code
Agent.SetOption(OPT_XBROWS
ER_SYNC_EXCLUDE_URLS,
{ "fpdownload.macromedia.c
om",
"fpdownload.adobe.com",
"download.microsoft.com" }
)

// C# code
Agent.SetOption(OPT_XBROWS
ER_SYNC_EXCLUDE_URLS,
{ "fpdownload.macromedia.c

46 | Silk Test Open Agent

.NET Option Name Agent Option Name Constant
Type

Description

om",
"fpdownload.adobe.com",
"download.microsoft.com" }
);

Configuring the Connections Between the Silk4NET
Components

To enable connecting to a remote machine through a firewall or to enable connecting to a remote machine
securely by using HTTPS, you can configure the ports through which Silk4NET communicates with the
information service and the Open Agent.

When the Open Agent starts, a random available port is assigned to Silk4NET and to the application that
you are testing. The port numbers are registered on the Silk Test information service (information service).

The information service provides the following information to Silk4NET:

• The number of the port Silk4NET can use to connect to the Open Agent. Communication runs directly
between Silk4NET and the agent. You might need to configure this port for remote agent scenarios, for
example to avoid firewall conflicts.

• The browsers that are available on the machine on which the information service is installed.
• The mobile devices that are connected to the machine on which the information service is installed.
• The emulators that are available on the machine on which the information service is installed.
• The mobile browsers that are available on the previously mentioned mobile devices and emulators.

By default, the Open Agent communicates with the information service on HTTPS port 48561. You can
configure additional ports for the information service as alternate ports that work when the default port is
not available. By default, the information service uses ports 2966, 11998, and 11999 as alternate ports.

Typically, you do not have to configure port numbers manually. However, if you want to test on a remote
machine and there is a port number conflict or an issue with a firewall between the machine on which
Silk4NET is installed and the test machine, you can configure the port number for the communication
between Silk4NET and the Open Agent on the remote machine or the port number for the communication
between Silk4NET and the information service on the remote machine. If you have multiple remote
machines on which you want to test, you can use different port numbers for each remote machine or you
can use the same available port numbers for all remote machines.

Silk Test Open Agent | 47

Configuring the Port to Connect to the Information
Service
Before you begin this task, stop the Silk Test Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Open Agent.
Then, the information service forwards communication to the port that the Open Agent uses. However, you
can configure the information service port settings to avoid problems with a firewall by forcing
communication on a specific port.

By default, the port that is used to connect Silk4NET with the information service over a secure HTTPS
connection is port 48561. When you can use the default port, you can type hostname without the port
number for ease of use. If you do specify a port number, ensure that it matches the value for the default

48 | Silk Test Open Agent

port of the information service or one of the additional information service ports. Otherwise, communication
will fail.

If necessary, you can change the port number that all clients use to connect to the information service.

1. Navigate to the infoservice.properties.sample file and open it.

• In a Microsoft Windows system, this file is located in C:\ProgramData\Silk\Silk Test\conf,
where “C:\ProgramData” is equivalent to the content of the ALLUSERSPROFILE environment
variable, which is set by default on Windows systems.

• On macOS, this file is located in /Users/<user>/.silk/silktest/conf.

This file contains commented text and sample alternate port settings.

2. Specify whether Silk4NET should communicate with the information service over a secure connection
through HTTPS.

• To use a secure connection through HTTPS, set infoservice.https.enabled to true. This is
the default setting.

• To disable using a secure connection through HTTPS, set infoservice.https.enabled to
false.

3. Optional: If you have specified that you want to use a secure connection through HTTPS, you can
specify a different port that is not in use through which Silk4NET should communicate with the
information service as the infoservice.default.https.port.

The default HTTPS port is 48561. Port numbers can be any number from 1 to 65535.

4. Optional: If you have specified that you do not want to use a secure connection through HTTPS, you
can specify a different port that is not in use through which Silk4NET should communicate with the
information service as the infoservice.default.port.

The default port is 22901.

5. Save the file as infoservice.properties.

6. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Configuring the Port to Connect to the Open Agent
Before you begin this task, stop the Silk Test Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Open Agent.
Then, the information service forwards communication to the port that the Open Agent uses. However, you
can configure the information service port settings to avoid problems with a firewall by forcing
communication on a specific port.

If necessary, change the port number that the Silk Test client or the application that you want to test uses to
connect to the Open Agent.

1. Navigate to the agent.properties.sample file and open it.

By default, this file is located at: %APPDATA%\Silk\SilkTest\conf, which is typically C:\Users
\<user name>\AppData\Silk\SilkTest\conf where <user name> equals the current user
name.

2. Change the value for the appropriate port.

Typically, you configure port settings to resolve a port conflict.

Note: Each port number must be unique. Ensure that the port numbers for the Agent differ from
the information service port settings.

Port numbers can be any number from 1 to 65535.

Port settings include:

Silk Test Open Agent | 49

• agent.vtadapter.port – Controls communication between Silk Test Workbench and the Open
Agent when running tests.

• agent.xpmodule.port – Controls communication between Silk Test Classic and the Agent when
running tests.

• agent.autcommunication.port – Controls communication between the Open Agent and the
application that you are testing.

• agent.rmi.port – Controls communication with the Open Agent and Silk4J.
• agent.ntfadapter.port – Controls communication with the Open Agent and Silk4NET.
• agent.heartbeat.port – Required to test with an Open Agent that is installed on a remote

machine.

Note: The ports for Apache Flex testing are not controlled by this configuration file. The assigned
port for Flex application testing is 6000 and increases by 1 for each Flex application that is tested.
You cannot configure the starting port for Flex testing.

3. Save the file as agent.properties.

4. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Editing the Properties of the Silk Test Information
Service
Use the infoservice.properties file to specify the port for the Silk Test Information Service, whether
to use a secure connection through HTTPS, or the capabilities that are applied each time Silk Test
executes a test on the machine on which the Silk Test Information Service is running.

1. Navigate to the directory in which the infoservice.properties.sample file is located.

• On a Windows machine, navigate to %PROGRAMDATA%\Silk\SilkTest\conf, for example C:
\ProgramData\Silk\SilkTest\conf.

• On macOS, navigate to ~/.silk/silktest/conf/.

2. Rename the file infoservice.properties.sample to infoservice.properties.

3. Specify whether Silk4NET should communicate with the information service over a secure connection
through HTTPS.

• To use a secure connection through HTTPS, set infoservice.https.enabled to true. This is
the default setting.

• To disable using a secure connection through HTTPS, set infoservice.https.enabled to
false.

4. Optional: If you have specified that you want to use a secure connection through HTTPS, you can
specify a different port that is not in use through which Silk4NET should communicate with the
information service as the infoservice.default.https.port.

The default HTTPS port is 48561. Port numbers can be any number from 1 to 65535.

5. Optional: To redirect all HTTP requests to the HTTPS port, if you have specified that you want to use a
secure connection through HTTPS, set infoservice.http-to-https.enabled to true.

The default value is false.

6. Optional: If you have specified that you do not want to use a secure connection through HTTPS, you
can specify a different port that is not in use through which Silk4NET should communicate with the
information service as the infoservice.default.port.

The default port is 22901.

7. Optional: To replace the certificates that are used by Silk Test for the HTTPS connection with your own
certificates, see Replacing the Certificates that are Used for the HTTPS Connection to the Information
Service.

50 | Silk Test Open Agent

8. To specify capabilities, add the following line to the infoservice.properties file:

customCapabilities=<custom capability_1>;<custom_capability_2>;...

Example: Running an iOS Simulator in a Specified Language

To always run a specific iOS Simulator on a Mac in the same language, for example
Japanese, specify the custom capabilities language and locale. To do so, add the
following line to the infoservice.properties file:

customCapabilities=language=ja;locale=ja_JP

Replacing the Certificates that are Used for the HTTPS
Connection to the Information Service
When using a secure connection through HTTPS between Silk4NET and the information service, the
following self-signed certificate files are used:

• The keystore certificate file is used for the information service HTTPS server.
• The following certificate files are used for the machine on which the Silk4NET client is running:

• cacerts

• cacerts.p12

• cacerts.pem

You can use OpenSSL and the Java keytool executable to replace these files with your own certificate files.

1. Ensure that OpenSSL and a JDK are installed on your machine.

2. Start the Java keytool executable from the bin folder of your JDK installation folder.

3. Create a private and public key pair in your private keystore file on the information service HTTPS
server:

keytool -genkey -alias jetty -keyalg RSA -keypass Borland -storepass
Borland -keystore keystore -validity 1095

4. When prompted to type a first and last name, type * as a wildcard for the host.

5. Export the information from your private keystore to a temporary certificate file named server.cer:

keytool -export -alias jetty -storepass Borland -file server.cer -keystore
keystore

This temporary certificate file is required to generate the certificate files for the machine on which the
Silk4NET client is running.

6. Create a certificate file named cacerts from the server.cer file.

keytool -import -v -trustcacerts -alias jetty -file server.cer -keystore
cacerts -keypass Borland -storepass Borland

7. Import the information from the cacerts file into the temporary certificate file cacerts.p12.

keytool -importkeystore -srckeystore cacerts -destkeystore cacerts.p12 -
srcstoretype JKS -deststoretype PKCS12 -srcstorepass Borland -deststorepass
Borland

8. Create the public keystore file cacerts.pem in the PKCS12 keystore format from the temporary
certificate file cacerts.p12

openssl pkcs12 -in cacerts.p12 -out cacerts.pem -cacerts -nokeys

9. Deploy the files keystore, cacerts, cacerts.p12, and cacerts.pem to the configuration folder:

• On a Windows machine, deploy the files to %PROGRAMDATA%\Silk\SilkTest\conf, for example
C:\ProgramData\Silk\SilkTest\conf.

Silk Test Open Agent | 51

• On macOS, deploy the files to ~/.silk/silktest/conf/.

Remote Testing with the Open Agent
You can install Silk4NET on a remote machine and test an application on this remote location from the
Silk4NET that is installed on your local machine.

Note: If you want to test mobile applications on a mobile device that is connected to a remote
machine or on an Emulator or Simulator on a remote machine, or web applications on Apple Safari or
on a remote Microsoft Edge, you have to use a remote Silk Test information service instead of a
remote Open Agent.

Testing with a Remote Open Agent
To replay tests against an application on a remote machine with Silk4NET, perform the following actions:

1. Create a test against the application on the local machine.

2. Install the Open Agent on the remote machine.

For additional information, refer to the Silk Test Installation Guide.

3. Start the Open Agent on the remote machine.

4. In the test script, use the Connect method of the Agent class to connect to the remote Open Agent.

For example, add the following line to the script:

// VB .NET code
Private agent As RemoteAgent = Agent.Connect("hostname:port")

// C# code
private RemoteAgent agent = Agent.Connect("hostname:port");

For additional information, see Testing Applications in Multiple UI Sessions on a Single Machine .

5. To execute a command in the test script on the remote machine, add the agent to the command.

For example, if the command in the local test script was SomeAgentFunction, change the command
to the following:

// VB .NET code
Dim d As Desktop = agent.Desktop
Dim baseState = New BaseState()
agent.ExecuteBaseState(basestate)
d.SomeAgentFunction()

// C# code
Desktop d = agent.Desktop;
BaseState basestate = new BaseState();
agent.ExecuteBaseState(basestate);
d.SomeAgentFunction();

52 | Silk Test Open Agent

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-installguide-en.pdf

Base State
An application’s base state is the known, stable state that you expect the application to be in before each
test case begins execution, and the state the application can be returned to after each test case has ended
execution. This state may be the state of an application when it is first started.

When you create a class for an application, Silk4NET automatically creates a base state.

Base states are important because they ensure the integrity of your tests. By guaranteeing that each test
case can start from a stable base state, you can be assured that an error in one test case does not cause
subsequent test cases to fail.

Silk4NET automatically ensures that your application is at its base state during the following stages:

• Before a test runs
• During the execution of a test
• After a test completes successfully

Note: Silk4NET stores the base state and any Silk4NET options in the config.silk4net
configuration file. Silk4NET creates such a file for each Silk4NET project.

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

You can edit the base state in the following ways:

• Through the user interface, for example if you want to specify how to start the AUT during both
recording and replay.

• In a script, for example if you only want to start the AUT in the specified way when replaying the tests in
the script.

Modifying the Base State from the User Interface
You can edit the base state from the user interface to specify how Silk4NET starts an application under test
(AUT) during recording and replay. You can specify the executable location of the AUT, the working
directory, the URL and the connection string for a web application, and so on. For example, if you want to
execute tests on a production web site, which have already been executed on a staging web site, you can
simply change the URL in the base state and the tests are executed against the new web site.

Note: To specify how Silk4NET starts an application under test (AUT) only for specific tests during
replay, edit the base state in the script that contains the tests. For additional information, see
Modifying the Base State in a Script.

To edit the base state through the user interface:

1. Click Silk4NET and choose Edit Application Configurations. The Edit Application Configurations
dialog box opens and lists the existing application configurations.

2. Click Edit to the right of the application configuration that you want to change.

3. To test a web application or a mobile web application, if you have not set an application configuration for
the current project, select one of the installed browsers or mobile browsers from the list.

You can also click Change to open the Select Application dialog box and then select the browser that
you want to use.

4. To specify an executable, type the full path to the executable into the Executable field.

Base State | 53

Note: If you are testing a web application, and you want to specify an executable for the browser,
select the custom browser type.

For example, to start Mozilla Firefox, type C:\Program Files (x86)\Mozilla Firefox
\firefox.exe.

5. If you are testing a desktop application and you want to use an executable pattern, type the executable
name and file path of the desktop application that you want to test into the Executable Pattern text box.
For example, you might type *\calc.exe to specify the Calculator.

6. If you are testing a desktop application and you want to use a command line pattern in combination with
the executable file, type the command line pattern into the Command Line Pattern text box.

7. To specify command line arguments, type the arguments into the Command Line Arguments field.

Note: If you are testing a web application, and you want to start a browser with command line
arguments, select the custom browser type.

For example, to start Mozilla Firefox with the profile myProfile, type -p myProfile.

8. If you are testing an application which depends on a supplemental directory, specify the path to the
directory in the Working directory filed.

For example, if you use a batch file to start a Java application, the batch file may reference a JAR file
that relies on a relative path. In this case, specify a working directory to reconcile the relative path.

9. If you are testing a desktop application, specify the main window of the application in the Locator field.
For example, the locator might look like /Shell[@caption='Swt Test Application'].

10.If you are testing a web application, type the address of the web application into the Navigate to URL
text box.

11.Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as the
screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

12.Optional: Select an Orientation for the browser window.

13.Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes
should be shown in the Browser size list.

14.If you are testing a web application or a mobile native application on a remote location, for example on a
mobile device that is connected to a Mac, and you want to edit the remote location, click Change to
open the Select Application dialog box and then click Edit Remote Locations.

15.If you are testing a mobile application or a web application on Apple Safari, type the connection string
into the Connection String text box.

For additional information, see Connection String.

16.To edit the capabilities for a WebDriver-based browser, you can use the Connection String text box.
For example, to start Google Chrome with a maximized browser window, type the following into the
Connection String text box:

chromeOptions={"args":["--start-maximized"]}

For additional information, see Setting Options and Capabilities for Web-Driver Based Browsers.

17.If you are testing a mobile native application, specify the application:

• If you want to install the app on the mobile device or emulator, click Browse to select the app file or
enter the full path to the app file into the App file text field. Silk4NET supports HTTP and UNC
formats for the path.

• If you want to use an app that is already installed on an Android device, select the app from the
Package/Activity list or specify the package and the activity in the Package/Activity field.

• If you want to use an app that is already installed on an iOS device, specify the Bundle ID.
• If you want to use an app that is available in Mobile Center, specify the App identifier.

18.Click OK.

54 | Base State

19.If the application under test usually takes a long time to start, increase the application ready timeout in
the replay options.

Executing the base state starts the application if it is not already running. If the application is already
running, Silk4NET does not start another instance of the application.

If your test includes multiple application configurations and you are modifying an application or Web page
other than the object associated with the base state, you can turn off the base state. This indicates that the
base state will not be used for recording or replaying the modifications. Therefore, you must record the
steps to launch the application or Web page within your test. For instance, if you want to test a Web page,
start Internet Explorer within your test.

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

Modifying the Base State in a Script
You can edit the base state in a script to specify how Silk4NET starts an application under test (AUT)
during replay. You can specify the executable location of the AUT, the working directory, the URL and the
connection string for a web application, and so on. For example, if you want to execute tests on a
production web site, which have already been executed on a staging web site, you can simply change the
URL in the base state and the tests are executed against the new web site.

Note: To specify how Silk4NET starts an application under test (AUT) during recording and replay,
edit the base state from the user interface. For additional information, see Modifying the Base State
from the User Interface.

To edit the base state in a script:

1. Open the script.

2. Change the baseState method.

You can add your code between creating the base state and executing it:

' VB code
' Go to web page 'demo.borland.com/InsuranceWebExtJS'
BrowserBaseState baseState = new BrowserBaseState()
' <-- Insert your changes here!
baseState.Execute()

// C# code
//Go to web page 'demo.borland.com/InsuranceWebExtJS'
BrowserBaseState baseState = new BrowserBaseState();
// <-- Insert your changes here!
baseState.Execute();

3. Use the following code to specify the executable name and file path of the application that you want to
test:

' VB code
baseState.Executable=executable

// C# code
baseState.Executable=executable;

For example, to specify the Calculator, type the following:

' VB code
baseState.Executable = "C:\\Windows\\SysWOW64\\calc.exe"

// C# code
baseState.Executable = "C:\\Windows\\SysWOW64\\calc.exe";

Base State | 55

To specify Mozilla Firefox, type the following:

' VB code
baseState.Executable = "C:\\Program Files (x86)\\Mozilla Firefox\
\firefox.exe"

// C# code
baseState.Executable = "C:\\Program Files (x86)\\Mozilla Firefox\
\firefox.exe";

4. Use the following code to specify command line arguments:

' VB code
baseState.CommandLineArguments = commandLineArguments

// C# code
baseState.CommandLineArguments = commandLineArguments;

For example, to start Mozilla Firefox with the profile myProfile, type the following:

' VB code
baseState.CommandLineArguments = "-p myProfile"

// C# code
baseState.CommandLineArguments = "-p myProfile";

5. You can use the following code to specify a different working directory:

' VB code
baseState.WorkingDirectory = workingDirectory

// C# code
baseState.WorkingDirectory = workingDirectory;

6. If you want to use an executable pattern, use the following code:

' VB code
baseState.ExecutablePattern = executablePattern

// C# code
baseState.ExecutablePattern = executablePattern;

For example, if you want to specify an executable pattern for the Calculator, type:

' VB code
baseState.ExecutablePattern = "*\\calc.exe"

// C# code
baseState.ExecutablePattern = "*\\calc.exe";

7. If you want to use a command line pattern in combination with the executable file, use the following
code:

' VB code
baseState.CommandLinePattern = commandLinePattern

// C# code
baseState.CommandLinePattern = commandLinePattern;

For example, if the command line of the application ends with com.example.MyMainClass you might
want to use *com.example.MyMainClass as the command line pattern:

' VB code
baseState.CommandLinePattern = "*com.example.MyMainClass"

// C# code
baseState.CommandLinePattern = "*com.example.MyMainClass";

8. If you are testing a web application or a mobile web application, and you have not set an application
configuration for the current project, specify one of the installed browsers or mobile browsers.

56 | Base State

For example, to specify Google Chrome, type the following:

' VB code
baseState.BrowserType = BrowserType.GoogleChrome

// C# code
baseState.BrowserType = BrowserType.GoogleChrome;

9. If you are testing a web application or a mobile web application, and you have not set an application
configuration for the current project, specify the address of the web application that you want to test:

' VB code
baseState.Url = url

// C# code
baseState.Url = url;

For example, type the following:

' VB code
baseState.Url = "demo.borland.com/InsuranceWebExtJS/"

// C# code
baseState.Url = "demo.borland.com/InsuranceWebExtJS/";

10.If you want to test a web application on a desktop browser, you can specify the height and width of the
browser window:

' VB code
baseState.ViewportHeight = viewportHeight
baseState.ViewportWidth = viewportWidth

// C# code
baseState.ViewportHeight = viewportHeight;
baseState.ViewportWidth = viewportWidth;

11.If you want to test a web application or a mobile native application on a remote location, specify the
connection string:

' VB code
New MobileBaseState(connectionString)

// C# code
new MobileBaseState(connectionString);

For information on the connection string, see Connection String for a Remote Desktop Browser or
Connection String for a Mobile Device.

12.To edit the capabilities for Mozilla Firefox or Google Chrome , you can also use the connection string.
For example, to set the download folder for Mozilla Firefox, type the following:

' VB code
baseState.ConnectionString = "moz:firefoxOptions= {\"prefs\":
{ \"browser.download.dir\":\"C:/Download/\"}};"

// C# code
baseState.ConnectionString = "moz:firefoxOptions= {\"prefs\":
{ \"browser.download.dir\":\"C:/Download/\"}};";

For additional information, see Setting Options and Capabilities for Web-Driver Based Browsers.

Running the Base State
Before starting to record a test against an application, you can execute the base state to bring all
applications, against which you want to record, to the appropriate state for recording.

To run the base state:

Click Silk4NET > Run Base State.

Base State | 57

Depending on the type of the application, Silk4NET performs the following actions:

• Executes the application configurations of all applications, for which an application configuration is
defined in the current project.

• For desktop applications, Silk4NET opens the application from the specified installation directory. If the
specified path to the directory includes the %ProgramFiles% environment variable, and Silk4NET
cannot find the application in the Program Files directory, Silk4NET additionally searches in the
Program Files (x86) directory. If the specified path to the directory includes the
%ProgramFiles(x86)% environment variable, Silk4NET first searches in the Program Files
(x86) directory, and if the application is not found, Silk4NET additionally searches the Program
Files directory.

• For web applications, Silk4NET opens the web application in the specified browser and to the specified
URL.

• For mobile web applications, Silk4NET opens the specified browser on the specified mobile device or
Emulator to the specified URL.

• For mobile native applications, Silk4NET opens the specified app on the specified mobile device or
Emulator. If the specified app is not installed on the specified mobile device or Emulator, Silk4NET
installs and then opens the app.

58 | Base State

Application Configuration
An application configuration defines how Silk4NET connects to the application that you want to test.
Silk4NET automatically creates an application configuration when you create the base state. However, at
times, you might need to modify, remove, or add an additional application configuration. For example, if you
are testing an application that modifies a database and you use a database viewer tool to verify the
database contents, you must add an additional application configuration for the database viewer tool.

• For a Windows application, an application configuration includes the following:

• Executable pattern

All processes that match this pattern are enabled for testing. For example, the executable pattern for
Internet Explorer is *\IEXPLORE.EXE. All processes whose executable is named IEXPLORE.EXE
and that are located in any arbitrary directory are enabled.

• Command line pattern

The command line pattern is an additional pattern that is used to constrain the process that is
enabled for testing by matching parts of the command line arguments (the part after the executable
name). An application configuration that contains a command line pattern enables only processes for
testing that match both the executable pattern and the command line pattern. If no command-line
pattern is defined, all processes with the specified executable pattern are enabled. Using the
command line is especially useful for Java applications because most Java programs run by using
javaw.exe. This means that when you create an application configuration for a typical Java
application, the executable pattern, *\javaw.exe is used, which matches any Java process. Use
the command line pattern in such cases to ensure that only the application that you want is enabled
for testing. For example, if the command line of the application ends with
com.example.MyMainClass you might want to use *com.example.MyMainClass as the command
line pattern.

• For a web application in a desktop browser on the local machine, an application configuration includes
only the browser type.

Note: To start a browser with command line arguments or to specify a working directory or a
specific executable for the browser, select the custom browser type. For additional information, see
Modifying the Base State.

• For a web application in Apple Safari or in Microsoft Edge on a remote machine, an application
configuration includes the following:

• Browser type.
• Connection string.

• For a web application in a mobile browser, an application configuration includes the following:

• Browser type.
• Connection string.

• For a native mobile application, an application configuration includes the following:

• Connection string.
• Simple application name. If multiple applications on the mobile device have the same name, the fully

qualified name of the application is used.

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

Application Configuration | 59

Modifying an Application Configuration
An application configuration defines how Silk4NET connects to the application that you want to test.
Silk4NET automatically creates an application configuration when you create the base state. However, at
times, you might need to modify, remove, or add an additional application configuration. For example, if you
are testing an application that modifies a database and you use a database viewer tool to verify the
database contents, you must add an additional application configuration for the database viewer tool.

1. Click Silk4NET and choose Edit Application Configurations. The Edit Application Configurations
dialog box opens and lists the existing application configurations.

2. To add an additional application configuration, click Add application configuration.

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

The Select Application dialog box opens. Select the tab and then the application that you want to test
and click OK.

3. To remove an application configuration, click Remove next to the appropriate application configuration.

4. To edit an application configuration, click Edit next to the appropriate application configuration.

5. To specify an executable, type the full path to the executable into the Executable field.

Note: If you are testing a web application, and you want to specify an executable for the browser,
select the custom browser type.

For example, to start Mozilla Firefox, type C:\Program Files (x86)\Mozilla Firefox
\firefox.exe.

6. If you are testing a desktop application, type the name of the executable of the application that you want
to test into the Executable Pattern field.

The pattern is case insensitive and allows an asterisk (*) as a wild card, which matches any text of any
length, and a question mark (?), which matches one character.

For example, the executable pattern for Notepad is *\notepad.exe. All processes whose executable
is named notepad.exe and that are located in any arbitrary directory are enabled.

7. If you are testing a desktop application and you want to use a command line pattern in combination with
the executable file, type the command line pattern into the Command Line Pattern text box.

8. To test a web application or a mobile web application, if you have not set an application configuration for
the current project, select one of the installed browsers or mobile browsers from the list.

You can also click Change to open the Select Application dialog box and then select the browser that
you want to use.

9. If you are testing a web application, type the address of the web application into the Navigate to URL
text box.

10.To detect any visual breakpoints for a web application, click Edit Browser Sizes.

For additional information, see Detecting Visual Breakpoints.

11.Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as the
screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

12.Optional: Select an Orientation for the browser window.

13.Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes
should be shown in the Browser size list.

14.If you are testing a mobile application or a web application on Apple Safari, type the connection string
into the Connection String text box.

For additional information, see Connection String for a Mobile Device.

60 | Application Configuration

15.Click OK.

Select Application Dialog Box
Use the Select Application dialog box to select the application that you want to test, to associate an
application with an object map, or to add an application configuration to a test. Application types are listed
in tabs on the dialog box. Select the tab for the application type you want to use.

Windows Lists all Microsoft Windows applications that are running on the system. Select an item from
the list and click OK.

Use the Hide processes without caption check box to filter out applications that have no
caption.

Web Lists all available browsers, including mobile browsers on any connected mobile devices and
Apple Safari on a Mac. Specify the web page to open in the Enter URL to navigate text box.
If an instance of the selected browser is already running, you can click Use URL from
running browser to record against the URL currently displayed in the running browser
instance. If you want to test a web application on a desktop browser with a predefined browser
size, select the browser size from the Browser size list. When selecting a browser size, you
can also select an Orientation for the selected browser.

Note: Do not add more than one browser application configuration when testing a web
application with a defined base state.

Mobile Lists all available mobile devices and all running Android emulators, including devices
connected to a remote location. Select this tab to test mobile native applications. You can
select to test the mobile application (app) that is currently running on the selected mobile
device, or you can browse for or manually specify the name or file of the app that you want to
test.

Editing Remote Locations
You can use the Remote Locations dialog box to add any browsers and mobile devices on a remote
location to the set of applications that you can test.

1. Click Silk4NET > Edit Remote Locations. The Remote Locations dialog box appears.

2. To add an additional remote location, perform the following actions:

a) Click on the arrow to the right of Add Location to specify whether you want to add a remote location
which is using the Silk Test Information Service, Silk Central, or the Mobile Center.

Note: You can only configure one Silk Central as a remote location. If you have already
configured the integration with Silk Central, Silk Central is listed in the remote locations list.

b) Click Add Location. The Add Location dialog box appears.
c) Type the URL of the remote location and the port through which Silk4NET connects to the

information service on the remote machine into the Host field.

The default port is 22901.
d) If you are trying to add a secure connection through HTTPS to Mobile Center, install the Mobile

Center certificate.

For additional information, see Installing the Certificate for an HTTPS Connection to Mobile Center.
e) If you are trying to add connection to Mobile Center, specify your User name and Password for

Mobile Center.

For information on changing the Mobile Center password, see Changing the Mobile Center
Password.

Application Configuration | 61

f) Optional: Edit the name of the remote location in the Name field.
g) Optional: Click Test to verify that the remote connection works.
h) Click OK.

3. To edit an existing remote location, click Edit.

4. To remove a remote location, click Remove.

5. Optional: To reduce the amount of browsers and devices in the Select Application dialog, click Do not
show devices and browsers from this location. The installed browsers and connected devices of the
remote location will no longer be displayed in the Select Application dialog. By default, all installed
browsers and connected devices of all remote locations are displayed in the Select Application dialog.

6. By default, remote locations are saved to %APPDATA%\Silk\SilkTest\conf
\remoteLocations.xml. To change the file in which the remote locations are saved, for example to
share the file with other team members, perform the following actions:

a) Click Sharing Options. The Sharing Options dialog box appears.
b) Click Save to shared file.
c) Click Browse to select the file.

You could also set the full path to the remote locations in a file named
remoteLocationsFileLocation.properties, for example if you want to use a file that is located
in a repository. For example, to use the remote locations that are specified in the file
remoteLocations.xml, under C:\mySources, create a file with the name
remoteLocationsFileLocation.properties in the folder %APPDATA%\Silk\SilkTest\conf
\ and type fileLocation=C\:\\mySources\\remoteLocations.xml into the file.

7. To load a set of already configured remote locations from a shared file, for example to use remote
locations that have been specified by another team member, perform the following actions:

a) Click Sharing Options. The Sharing Options dialog box appears.
b) Click Load from shared file.
c) Click Browse to select the file.

8. Click OK.

When you have added a remote location, the browsers that are installed on the remote location, including
Apple Safari on a Mac, are available in the Web tab of the Select Application dialog box, and the mobile
devices that are connected to the remote location are available in the Mobile tab of the Select Application
dialog box.

Application Configuration Errors
When the program cannot attach to an application, the following error message opens:
Failed to attach to application <Application Name>. For additional information, refer to the Help.

In this case, one or more of the issues listed in the following table may have caused the failure:

Issue Reason Solution

Time out • The system is too slow.

• The size of the memory of the
system is too small.

Use a faster system or try to reduce
the memory usage on your current
system.

User Account Control (UAC) fails You have no administrator rights on
the system.

Log in with a user account that has
administrator rights.

Command-line pattern The command-line pattern is too
specific. This issue occurs especially
for Java. The replay may not work as
intended.

Remove ambiguous commands from
the pattern.

62 | Application Configuration

Issue Reason Solution

• The Select Browser dialog box
does not display when running a
test against a Web application.

• Multiple browser instances are
started when running a test
against a Web application.

• When running a test against a
Web application with a browser
instance open, Silk4NET might
stop working.

A base state and multiple browser
application configurations are defined
for the test case.

Remove all browser application
configurations except one from the
test case.

Playback error when running a test No application configuration is
defined for the test.

The following exception might be
displayed:

No application
configuration present.

• When running a keyword-driven
test, ensure that a keyword which
executes the base state is
included in the test.

• Ensure that an application
configuration is configured for the
current project.

Troubleshooting Application Configurations

Why is my application not displayed in the Select Application dialog box

• Uncheck the Hide processes without caption check box. This check box is checked by default and
prevents applications without a caption from being displayed in the dialog box.

• Run Silk4NET with elevated privileges.

1. Close Silk4NET.
2. Stop the Open Agent.
3. Run Silk4NET as an administrator.

• Use the Task Manager to check if the application is running under a different user account.
• Ensure that the application is not started with the runas command or a similar command.

Creating a Test that Tests Multiple Applications
You can test multiple applications with a single test script. To create such a test script, you need to add an
application configuration for each application that you want to test to the project in which the script resides.

1. Record or manually script a test for the primary application that you want to test.

2. Click Silk4NET and choose Edit Application Configurations. The Edit Application Configurations
dialog box opens and lists the existing application configurations.

3. To add an additional application configuration, click Add application configuration.

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

The Select Application dialog box opens. Select the tab and then the application that you want to test
and click OK.

4. Click OK.

5. Record or manually script additional actions into the script using the new application configuration.

Application Configuration | 63

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

64 | Application Configuration

Setting Script Options
Specify script options for recording, browser and custom attributes, classes to ignore, synchronization, and
the replay mode.

Note: For each Silk4NET project, Silk4NET creates the config.Silk4net configuration file.
Silk4NET stores the base state of the application under test and all options in this file. The options are
then used during replay.

Setting TrueLog Options
You can enable TrueLog reports and HTML reports to capture bitmaps and to log information for test runs
with Silk4NET.

Logging bitmaps and controls might adversely affect the performance of Silk4NET. Because capturing
bitmaps and logging information can result in large TrueLog files, you may want to log test cases with
errors only and then adjust the TrueLog options for test cases where more information is needed.

The results of test runs can be examined in the TrueLog Explorer, in the case of TrueLog reports, or in a
browser, in the case of HTML reports. For additional information on the TrueLog Explorer, refer to the Silk
TrueLog Explorer Help for Silk Test.

Note: To reduce the size of TrueLog files with Silk Test 17.5 or later, the file format for TrueLog files
has changed from .xlg to the compressed .tlz file format. Files with a .xlg suffix are
automatically appended with a .tlz suffix. To parse result data from a .tlz file, you can unzip
the .tlz file and parse the data from the included .xlg file.

To enable creating result data and to customize the information that Silk4NET collects, perform the
following steps:

1. Click Silk4NET > Edit Options. The Script Options dialog box opens.

2. Click the TrueLog tab.

3. Select the result format:

• Select TrueLog Report (.tlz) to generate visual execution logs that can be viewed in TrueLog
Explorer.

• Select HTML Report to generate an HTML-based report that can be viewed in a browser.
• Select Both to generate both a TrueLog report and an HTML-based report.

4. In the TrueLog location field, type the name of and optionally the path to the TrueLog file, or click
Browse and select the file.

The HTML report is created in a sub-directory of the specified TrueLog location.

Note: The path is validated at execution time. Tests that are executed by Silk Central set this value
to the Silk Central results directory to enable the screenshots to be shown in the result view.

5. Select the Screenshot mode.

Default is On Error.

6. Optional: Set the Delay.

This delay gives the operating system time to draw the application window before a bitmap is taken. You
can try to add a delay if your application is not drawn properly in the captured bitmaps.

7. Click OK.

Setting Script Options | 65

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-truelogexplorer-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-truelogexplorer-en.pdf

Setting Recording Preferences
Set the shortcut key combination to pause recording and specify whether absolute values and mouse move
actions are recorded.

Note: All the following settings are optional. Change these settings if they will improve the quality of
your test methods.

1. Click Silk4NET > Edit Options.

2. Click the Recording tab.

3. To set Ctrl+Shift as the shortcut key combination to use to pause recording, check the
OPT_ALTERNATE_RECORD_BREAK check box.

By default, Ctrl+Alt is the shortcut key combination.

4. To record absolute values for scroll events, check the OPT_RECORD_SCROLLBAR_ABSOLUT check
box.

5. To record mouse move actions for web applications, Win32 applications, and Windows Forms
applications, check the OPT_RECORD_MOUSEMOVES check box. You cannot record mouse move
actions for child technology domains of the xBrowser technology domain, for example Apache Flex and
Swing.

6. If you record mouse move actions, in the OPT_RECORD_MOUSEMOVE_DELAY text box, specify how
many milliseconds the mouse has to be motionless before a MouseMove is recorded.

By default this value is set to 200.

7. To record text clicks instead of Click actions on objects where TextClick actions usually are
preferable to Click actions, check the OPT_RECORD_TEXT_CLICK check box.

8. To record image clicks instead of Click actions on objects where ImageClick actions usually are
preferable to Click actions, check the OPT_RECORD_IMAGE_CLICK check box.

9. To define whether you want to record object map entries or XPath locators, select the appropriate
recording mode from the OPT_RECORD_OBJECTMAPS_MODE list:

• Object map entries for new and existing objects. This is the default mode.
• XPath locators for new and existing objects.
• XPath locators for new objects only. For objects that already exist in an object map, the object

map entry is reused. Choosing this setting enables you to create object maps for the main controls
of an AUT, and to persist these object maps while creating additional tests against the AUT.

10.To resize the application under test (AUT) when a recording session starts, check the
OPT_RESIZE_APPLICATION_BEFORE_RECORDING check box.

This check box is checked by default, enabling the Silk Recorder to display next to the AUT. When this
check box is unchecked, the AUT and the Silk Recorder might overlap.

11.Click OK.

Setting Browser Recording Options
Specify browser attributes to ignore while recording and whether to record native user input instead of
DOM functions.

Note: All the following settings are optional. Change these settings if they will improve the quality of
your test methods.

1. Click Silk4NET > Edit Options. The Script Options dialog box opens.

2. Click the Browser tab.

66 | Setting Script Options

3. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.
For example, if you do not want to record attributes named height, add the height attribute name to
the grid.
Separate attribute names with a comma.

4. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.
For example, if you do not want to record attributes assigned the value of x-auto, add x-auto to the
grid.
Separate attribute values with a comma.

5. To record native user input instead of DOM functions, check the
OPT_XBROWSER_RECORD_LOWLEVEL check box.
For example, to record Click instead of DomClick and TypeKeys instead of SetText, check this
check box.
If your application uses a plug-in or AJAX, use native user input. If your application does not use a plug-
in or AJAX, we recommend using high-level DOM functions, which do not require the browser to be
focused or active during playback. As a result, tests that use DOM functions are faster and more
reliable.

6. To set the maximum length for locator attribute values, type the length into the field in the Maximum
attribute value length section.
If the actual length exceeds that limit the value is truncated and a wild card (*) is appended. By default
this value is set to 20 characters.

7. To automatically search for an unobstructed click spot on the specified target element, check the
OPT_XBROWSER_ENABLE_SMART_CLICK_POSITION check box.

8. To force Mozilla Firefox to open external links in a new tab instead of a new window, check
OPT_FIREFOX_SINGLE_WINDOW_MODE.

Note: This option only works with Mozilla Firefox 52 or later.

9. To disable iframe and frame support for browsers, uncheck
OPT_XBROWSER_ENABLE_IFRAME_SUPPORT.
If you are not interested in the content of the iframes in a web application, disabling the iframe support
might improve replay performance. For example, disabling the iframe support might significantly improve
replay performance for web pages with many adds and when testing in a mobile browser. This option is
ignored by Internet Explorer. This option is enabled by default.

10.In the Whitelist for iframe support, specify attributes of iframes and frames that should be considered
during testing.
Every entry in the list defines an attribute name and the corresponding value. All iframes and frames
that do not match at least one of the entries are excluded. Wildcards are allowed, for example the entry
"name:*form" would include <IFRAME name="user-form" src=…>. This option is ignored by Internet
Explorer. If the list is empty, all iframes and frames are considered during testing. Separate multiple
entries with a comma.

11.In the Blacklist for iframe support, specify attributes of iframes and frames that should be excluded
during testing.
Every entry in the list defines an attribute name and the corresponding value. All iframes and frames
that do not match at least one of the entries are considered during testing. Wildcards are allowed, for
example the entry "src:*advertising*" would exclude <IFRAME src=http://my.domain/advertising-
banner.html>. This option is ignored by Internet Explorer. If the list is empty, all iframes and frames are
considered during testing. Separate multiple entries with a comma.

12.Click OK.

Setting Custom Attributes
Silk4NET includes a sophisticated locator generator mechanism that guarantees locators are unique at the
time of recording and are easy to maintain. Depending on your application and the frameworks that you

Setting Script Options | 67

use, you might want to modify the default settings to achieve the best results. You can use any property
that is available in the respective technology as a custom attribute given that they are either numbers
(integers, doubles), strings, item identifiers, or enumeration values.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

For the technology domains listed in the list box on the Custom Attributes tab, you can also retrieve
arbitrary properties (such as a WPFButton that defines myCustomProperty) and then use those properties
as custom attributes. To achieve optimal results, add a custom automation ID to the elements that you want
to interact with in your test. In Web applications, you can add an attribute to the element that you want to
interact with, such as <div myAutomationId= "my unique element name" />. Or, in Java SWT,
the developer implementing the GUI can define an attribute (for example testAutomationId) for a
widget that uniquely identifies the widget in the application. A tester can then add that attribute to the list of
custom attributes (in this case, testAutomationId), and can identify controls by that unique ID. This
approach can eliminate the maintenance associated with locator changes.

If multiple objects share the same attribute value, such as a caption, Silk4NET tries to make the locator
unique by combining multiple available attributes with the "and" operation and thus further narrowing down
the list of matching objects to a single object. Should that fail, an index is appended. Meaning the locator
looks for the nth control with the caption xyz.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, loginName to two
different text fields, both fields will return when you call the loginName attribute.

1. Click Silk4NET > Edit Options. The Script Options dialog box opens.

2. Click the Custom Attributes tab.

3. From the Select a tech domain list box, select the technology domain for the application that you are
testing.

Note: You cannot set custom attributes for Flex or Windows API-based client/server (Win32)
applications.

4. Add the attributes that you want to use to the list.

If custom attributes are available, the locator generator uses these attributes before any other attribute.
The order of the list also represents the priority in which the attributes are used by the locator generator.
If the attributes that you specify are not available for the objects that you select, Silk4NET uses the
default attributes for the application that you are testing.

Separate attribute names with a comma.

Note: To include custom attributes in a web application, add them to the html tag. For example
type, <input type='button' bcauid='abc' value='click me' /> to add an attribute
called bcauid.

Note: To include custom attributes in a Java SWT control, use the
org.swt.widgets.Widget.setData(String key, Object value) method.

Note: To include custom attributes in a Swing control, use the
putClientProperty("propertyName", "propertyValue") method.

5. Click OK.

Setting Classes to Ignore
To simplify the object hierarchy and to shorten the length of the lines of code in your test scripts and
functions, you can suppress the controls for certain unnecessary classes in the following technologies:

68 | Setting Script Options

• Win32.
• Java AWT/Swing.
• Java SWT/Eclipse.
• Windows Presentation Foundation (WPF).

1. Click Silk4NET > Edit Options. The Script Options dialog box opens.

2. Click the Transparent Classes tab.

3. In the Transparent classes grid, type the name of the class that you want to ignore during recording
and playback.

Separate class names with a comma.

4. Click OK.

Setting WPF Classes to Expose During Recording and
Playback

Specify the names of any WPF classes that you want to expose during recording and playback. For
example, if a custom class called MyGrid derives from the WPF Grid class, the objects of the MyGrid
custom class are not available for recording and playback. Grid objects are not available for recording and
playback because the Grid class is not relevant for functional testing since it exists only for layout
purposes. As a result, Grid objects are not exposed by default. In order to use custom classes that are
based on classes that are not relevant to functional testing, add the custom class, in this case MyGrid, to
the OPT_WPF_CUSTOM_CLASSES option. Then you can record, playback, find, verify properties, and
perform any other supported actions for the specified classes.

1. Click Silk4NET > Edit Options. The Script Options dialog box opens.

2. Click the WPF tab.

3. In the Custom WPF class names grid, type the name of the class that you want to expose during
recording and playback.

Separate class names with a comma.

4. Click OK.

Setting Synchronization Options
Specify the synchronization and timeout values.

Note: All the following settings are optional. Change these settings if they will improve the quality of
your test methods.

1. Click Silk4NET > Edit Options. The Script Options dialog box opens.

2. Click the Synchronization tab.

3. To specify the synchronization algorithm for the ready state of a web application, from the
OPT_XBROWSER_SYNC_MODE list box, choose an option.

The synchronization algorithm configures the waiting period for the ready state of an invoke call. By
default, this value is set to AJAX.

4. In the Synchronization exclude list text box, type the entire URL or a fragment of the URL for any
service or web page that you want to exclude.

Some AJAX frameworks or browser applications use special HTTP requests, which are permanently
open in order to retrieve asynchronous data from the server. These requests may let the
synchronization hang until the specified synchronization timeout expires. To prevent this situation, either
use the HTML synchronization mode or specify the URL of the problematic request in the
Synchronization exclude list setting.

Setting Script Options | 69

For example, if your web application uses a widget that displays the server time by polling data from the
client, permanent traffic is sent to the server for this widget. To exclude this service from the
synchronization, determine what the service URL is and enter it in the exclusion list.

For example, you might type:

• http://example.com/syncsample/timeService
• timeService
• UICallBackServiceHandler

Separate multiple entries with a comma.

Note: If your application uses only one service, and you want to disable that service for testing,
you must use the HTML synchronization mode rather than adding the service URL to the exclusion
list.

Tip: Micro Focus recommends adding a substring of an URL to the exclude list, instead of the
entire URL. For example, add /syncsample to the exclude list instead of http://
example.com/syncsample/timeService. Excluding the entire URL might not work because
the browser might return only a relative URL to Silk4NET. For example, if the browser returns
only /syncsample/timeService and you have added http://example.com/syncsample/
timeService to the exclude list, Silk4NET does not exclude the returned URL.

5. To specify the maximum time, in milliseconds, to wait for an object to be ready, type a value in the
OPT_SYNC_TIMEOUT text box.

By default, this value is set to 300000.

6. To specify the time, in milliseconds, to wait for an object to be resolved during replay, type a value in the
OPT_WAIT_RESOLVE_OBJDEF text box.

By default, this value is set to 5000.

7. To specify the time, in milliseconds, to wait before the agent attempts to resolve an object again, type a
value in the OPT_WAIT_RESOLVE_OBJDEF_RETRY text box.

By default, this value is set to 500.

8. Click OK.

Setting Replay Options
Specify whether you want to ensure that the object that you want to test is active and whether to override
the default replay mode. The replay mode defines whether controls are replayed with the mouse and
keyboard or with the API. Use the default mode to deliver the most reliable results. When you select
another mode, all controls use the selected mode.

1. Click Silk4NET > Edit Options. The Script Options dialog box opens.

2. Click the Replay tab. The Replay Options page displays.

3. If the application under test usually takes a long time to start, increase the time to wait for the
application by increasing the value in the OPT_APPREADY_TIMEOUT text box.

4. From the OPT_REPLAY_MODE list box, select one of the following options:

• Default – Use this mode for the most reliable results. By default, each control uses either the mouse
and keyboard (low level) or API (high level) modes. With the default mode, each control uses the
best method for the control type.

• High level – Use this mode to replay each control using the API of the target technology. For
example for Rumba controls, the Rumba RDE API is used to replay the controls.

• Low level – Use this mode to replay each control using the mouse and keyboard.

5. To ensure that the object that you want to test is active, check the OPT_ENSURE_ACTIVE_OBJDEF
check box.

70 | Setting Script Options

6. To change the time to wait for an object to become enabled during playback, type the new time into the
field in the Object enabled timeout section.

The time is specified in milliseconds. The default value is 1000.

7. To enable the Playback Status dialog box, check the OPT_SHOW_PLAYBACK_STATUS_DIALOG
check box.

You can use the Playback Status dialog box to see the actions that are performed during the replay of
a test on a remote location, for example when executing a test against a mobile application on a remote
device.

8. To display a video or screenshots of the application under test in the Playback Status dialog box, check
the OPT_PLAYBACK_STATUS_DIALOG_SCREENSHOTS check box.

9. Click OK.

Setting UI Automation Options
Enable UI Automation support and specify which attributes and values to exclude from locators to allow
Silk4NET to better identify objects in applications that have implemented UI Automation provider interfaces,
for example applications that are based on JavaFX or QT.

Note: All the following settings are optional. Change these settings if they will improve the quality of
your test methods.

1. Click Silk4NET > Edit Options. The Script Options dialog box opens.

2. Click the UI Automation tab.

3. Set Enable Microsoft UI Automation Support to True to enable Microsoft UI Automation support
instead of the normal Win32 control recognition.

Note: If you are testing against a Java FX application, you do not have to enable the UI
Automation support, as Silk4NET enables this out-of-the-box for Java FX applications.

Note: The UI Automation support overrides the standard technology-domain-specific support.
When you are finished interacting with the controls that require UI Automation support, disable the
UI Automation support again to resume working with standard controls.

4. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.
For example, if you want to ignore the attribute name automationid, because multiple controls in your
AUT have an attribute with this name, add the automationid attribute name to the list.

Separate attribute names with a comma.

5. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.
For example, the value JavaFX* is added to the list by default, because all JavaFX controls include an
attribute value of the form JavaFX<number>.

Separate attribute names with a comma.

6. Click OK.

Setting Advanced Options
Set advanced options to enable fallback support, to specify whether locator attribute names should be case
sensitive, and so on.

1. Click Silk4NET > Edit Options. The Script Options dialog box opens.

2. Click the Advanced tab. The Advanced Options page displays.

3. To test an embedded Chrome application, specify the executable and the port as a value pair in the
Enable embedded Chrome support field.
For example, myApp.exe=9222.

Setting Script Options | 71

To specify multiple embedded Chrome applications, separate the value pairs with a comma.

4. Enable OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT to enable the mobile native
fallback support for hybrid mobile applications that are not testable with the default browser support.

5. Enable OPT_ENABLE_ACCESSIBILITY to enable Microsoft Accessibility in addition to the normal
Win32 control recognition.

6. Enable OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT to remove the focus from the window before
capturing a text.

A text capture is performed during recording and replay by the following methods:

• TextClick

• TextCapture

• TextExists

• TextRect

7. Enable OPT_LOCATOR_ATTRIBUTES_CASE_SENSITIVE to set locator attribute names to be case
sensitive. The names of locator attributes for mobile web applications are always case insensitive, and
this option is ignored when recording or replaying mobile web applications.

8. Set the default accuracy level for new image assets by selecting a value from 1 (low accuracy) to 10
(high accuracy) from the OPT_IMAGE_ASSET_DEFAULT_ACCURACY list box.

9. Set the default accuracy level for new image verification assets by selecting a value from 1 (low
accuracy) to 10 (high accuracy) from the OPT_IMAGE_VERIFICATION_DEFAULT_ACCURACY list
box.

10.Click OK.

72 | Setting Script Options

Silk4NET Sample Tests
The Silk4NET sample tests are packaged in a Visual Studio solution which you can open and view as well
as run against the Silk Test sample applications.

To open the sample projects, click Open sample projects in the Silk4NET Start Page, or click FILE >
Open Project in Visual Studio and browse to \Users\Public\Documents\SilkTest\samples
\Silk4NET. Select the folder that corresponds to the Visual Studio version that you are using and select
the samples solution file. Then click Open.

In addition to the installed Silk4NET sample applications, the set of Silk4NET sample tests includes several
tests for the following Silk Test Web-based sample applications:

Insurance Co. Web site http://demo.borland.com/InsuranceWebExtJS/

Green Mountain Outpost Web http://demo.borland.com/gmopost/

Silk4NET Sample Tests | 73

http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/gmopost/

Object Recognition
Silk4NET identifies any control in the application under test (AUT) by combining the name of the control
class and a collection of prioritized attributes into a unique XPath locator. If the combined XPath locator
does not uniquely identify the control, Silk4NET additionally adds an index to the locator. During recording,
Silk4NET allows you to select an alternative locator for a control from the list in the Locator field of the
Choose Action dialog.

Within Silk4NET, literal references to identified objects are referred to as locators. Silk4NET uses locators
to find and identify objects in the application under test (AUT). Locators are a subset of the XPath query
language, which is a common XML-based language defined by the World Wide Web Consortium, W3C.

Locator Basic Concepts
Silk4NET supports a subset of the XPath query language. For additional information about XPath, see
http://www.w3.org/TR/xpath20/.

XPath expressions rely on the current context, the position of the object in the hierarchy on which the Find
method was invoked. All XPath expressions depend on this position, much like a file system. For example:

• "//Shell" finds all shells in any hierarchy starting from the current context.
• "Shell" finds all shells that are direct children of the current context.

Additionally, some XPath expressions are context sensitive. For example, myWindow.find(xPath) makes
myWindow the current context.

Dynamic object recognition uses a Find or FindAll functions to identify an object in a test case.

Object Type and Search Scope
A locator typically contains the type of object to identify and a search scope. The search scope is one of
the following:

• //
• /

Locators rely on the current object, which is the object for which the locator is specified. The current object
is located in the object hierarchy of the application's UI. All locators depend on the position of the current
object in this hierarchy, much like a file system.

XPath expressions rely on the current context, which is the position of the object in the hierarchy on which
the Find method was invoked. All XPath expressions depend on this position, much like a file system.

Note:

The object type in a locator for an HTML element is either the HTML tag name or the class name that
Silk4NET uses for this object. For example, the locators //a and //DomLink, where DomLink is the
name for hyperlinks in Silk4NET, are equivalent. For all non-HTML based technologies only the
Silk4NET class name can be used.

Example

• //a identifies hyperlink objects in any hierarchy relative to the current object.
• /a identifies hyperlink objects that are direct children of the current object.

74 | Object Recognition

http://www.w3.org/TR/xpath20

Note: <a> is the HTML tag for hyperlinks on a Web page.

Example

The following code sample identifies the first hyperlink in a browser. This example
assumes that a variable with the name browserWindow exists in the script that refers to
a running browser instance. Here the type is "a" and the current object is
browserWindow.

VB

Dim link As DomLink = browserWindow.DomLink("//a")

C#

DomLink link = browserWindow.DomLink("//a");

Using Attributes to Identify an Object
To identify an object based on its properties, you can use locator attributes. The locator attributes are
specified in square brackets after the type of the object.

Example

The following sample uses the textContents attribute to identify a hyperlink with the
text Home. If there are multiple hyperlinks with the same text, the locator identifies the
first one.

VB

 Dim link as DomLink = browserWindow.DomLink("//
a[@textContents='Home']")

C#

DomLink link = browserWindow.DomLink("//
a[@textContents='Home']");

Locator Syntax
Silk4NET supports a subset of the XPath query language to locate UI controls.

The following table lists the constructs that Silk4NET supports.

Note: <a> is the HTML tag for hyperlinks on a Web page.

Supported Locator Construct Sample Description

// //a Identifies objects that are
descendants of the current object.

The example identifies hyperlinks on
a web page.

/ /a Identifies objects that are direct
children of the current object. Objects

Object Recognition | 75

Supported Locator Construct Sample Description

located on lower hierarchy levels are
not recognized.

The example identifies hyperlinks on
a web page that are direct children of
the current object.

Attribute Example 1: //
a[@textContents='Home']

Example 2: //
div[@textContents='Price:
* USD']

Identifies objects by a specific
attribute. You can use the wildcards *
and ?in the attribute value.

Example 1 identifies hyperlinks with
the text Home, Example 2 uses a wild
card to identify a div with a price.

Index Example 1: //a[3]

Example 2: //
a[@textContents='Home']
[2]

Identifies a specific occurrence of an
object if there are multiple ones.
Indices are 1-based in locators.

Example 1 identifies the third
hyperlink and Example 2 identifies
the second hyperlink with the text
Home.

Logical Operators:

• and

• or

• not

• =

• !=

Example 1: //
a[@textContents='Remove'
or
@textContents='Delete']

Example 2: //
a[@textContents!
='Remove']

Example 3: //
a[not(@textContents='Dele
te' or @id='lnkDelete')
and @href='*/delete']

Identifies objects by using logical
operators to combine attributes.

Example 1 identifies hyperlinks that
either have the caption Remove or
Delete, Example 2 identifies
hyperlinks with a text that is not
Remove, and Example 3 shows how
to combine different logical operators.

ancestor Example 1: //
input[@id='username']/
ancestor::form

Example 2: //
input[@id='username']/
ancestor::div[@className=
'container']

Identifies ancestors, for example
parent, grandparent, and so on, of an
object.

Example 1 finds the form element
that has a child input element with the
identifier username, Example 2 finds
the div with the class name container
that has a has a child input element
with the identifier username.

.. Example 1: //
input[@id='username']/
ancestor::form

Example 2: //
input[@id='username']/
ancestor::div[@className=
'container']

Identifies the parent of an object.

Example 1 identifies the parent of the
hyperlink with the text Edit and
Example 2 identifies a hyperlink with
the text Delete that has a sibling
hyperlink with the text Edit.

76 | Object Recognition

Supported Locator Construct Sample Description

following-sibling Example: //
td[@textContents='John']/
following-sibling::td[2]

Identifies siblings after the current
object.

The example identifies the table cell
which is located two cells to the right
of the table cell with the text John.

preceding-sibling Example: //
td[@textContents='John']/
preceding-sibling::td[2]

Identifies siblings before the current
object.

The example identifies the table cell
which is located two cells to the left of
the table cell with the text John.

* Example 1: //
*[@textContents='Home']

Example 2: /*/a

Identifies objects without considering
their types, like hyperlink, text field, or
button.

Example 1 identifies objects with the
given text content, regardless of their
type, and Example 2 identifies
hyperlinks that are second-level
descendants of the current object.

The following table lists the locator constructs that Silk4NET does not support.

Unsupported Locator Construct Example

Comparing two attributes with each other. //a[@textContents = @id]

An attribute name on the right side is not supported. An
attribute name must be on the left side.

//a['abc' = @id]

Combining multiple locators with and or or. //a[@id = 'abc'] or ..//Checkbox

More than one set of attribute brackets. //a[@id = 'abc'] [@textContents =
'123']

(use //a [@id = 'abc' and @textContents
= '123'] instead)

More than one set of index brackets. //a[1][2]

Any construct that does not explicitly specify a class or
the class wildcard, such as including a wildcard as part of
a class name.

//[@id = 'abc']

(use //*[@id = 'abc'] instead)

"//*//a[@id='abc']"

Using Locators
Within Silk4NET, literal references to identified objects are referred to as locators. For convenience, you
can use shortened forms for the locator strings in scripts. Silk4NET automatically expands the syntax to
use full locator strings when you playback a script. When you manually code a script, you can omit the
following parts in the following order:

• The search scope, //.
• The object type name. Silk4NET defaults to the class name.

Object Recognition | 77

• The surrounding square brackets of the attributes, [].

When you manually code a script, we recommend that you use the shortest form available.

Note: When you identify an object, the full locator string is captured by default.

The following locators are equivalent:

• The first example uses the full locator string.

VB

_desktop.DomLink("//BrowserApplication//BrowserWindow//
a[@textContents='Home']").Select()

C#

_desktop.DomLink("//BrowserApplication//BrowserWindow//
a[@textContents='Home']").Select();

To confirm the full locator string, use the Locator Spy dialog box.
• The second example works when the browser window already exists.

VB

browserWindow.DomLink("//a[@textContents='Home']").Select()

C#

browserWindow.DomLink("//a[@textContents='Home']").Select();

Alternatively, you can use the shortened form.

VB

browserWindow.DomLink("@textContents='Home'").Select()

C#

browserWindow.DomLink("@textContents='Home'").Select();

To find an object that has no real attributes for identification, use the index. For instance, to select the
second hyperlink on a Web page, you can type:

VB

browserWindow.DomLink("[2]").Select()

C#

browserWindow.DomLink("[2]").Select();

Additionally, to find the first object of its kind, which might be useful if the object has no real attributes, you
can type:

VB

browserWindow.DomLink().Select()

C#

browserWindow.DomLink().Select();

Using the Find Method
Instead of using methods like .DomLink, you can use the Find method to identify a single object with a
locator.

Note: The Find method can only use full locators, the shortened locator form is not supported.

78 | Object Recognition

Instead of typing:

VB

_desktop.DomLink("//a[@textContents='Home']").Select()

C#

_desktop.DomLink("//a[@textContents='Home']").Select();

you can type:

VB

_desktop.Find(Of DomLink)("//a[@textContents='Home']").Select()

C#

_desktop.Find<DomLink>("//a[@textContents='Home']").Select();

The .DomLink method also uses the Find method internally. Prefer using the .DomLink method,
because it is more concise than the Find method.

Using Locators to Check if an Object Exists
You can use the Exists method to determine if an object exists in the application under test.

The following code checks if a hyperlink with the text Log out exists on a Web page:

VB

If (browserWindow.Exists("//a[@textContents='Log out']")) Then
 ' do something
End If

C#

if (browserWindow.Exists("//a[@textContents='Log out']")){
 // do something
}

Using the Find method

You can use the Find method and the FindOptions method to check if an object, which you want to use
later, exists.

The following code searches for a window and closes the window if the window is found:

VB

Dim mainWindow As Window
mainWindow = _desktop.Find("//Window[@caption='My Window']", New
FindOptions(False))
If (mainWindow IsNot Nothing) Then
 mainWindow.CloseSynchron()
End If

C#

Window mainWindow = _desktop.Find<Window>("//Window[@caption='My Window']",
new FindOptions(false));
if (mainWindow != null){
 mainWindow.CloseSynchron();
}

Object Recognition | 79

Identifying Multiple Objects with One Locator
You can use the FindAll method to identify all objects that match a locator rather that only identifying the
first object that matches the locator.

Example

The following code example uses the FindAll method to retrieve all hyperlinks of a
Web page:

VB

Dim links As IList(Of DomLink) = browserWindow.FindAll(Of
DomLink)("//a")

C#

IList<DomLink> links = browserWindow.FindAll<DomLink>("//a");

Locator Customization
This section describes how you can create stable locators that enable Silk4NET to reliably recognize the
controls in your application under test (AUT).

Silk4NET relies on the identifiers that the AUT exposes for its UI controls and is very flexible and powerful
in regards to identifying UI controls. Silk4NET can use any declared properties for any UI control class and
can also create locators by using the hierarchy of UI controls. From the hierarchy, Silk4NET chooses the
most appropriate items and properties to identify each UI control.

Silk4NET can exclude dynamic numbers of controls along the UI control hierarchy, which makes the object
recognition in Silk4NET very robust against changes in the AUT. Intermediate grouping controls that
change the hierarchy of the UI control tree, like formatting elements in Web pages, can be excluded from
the object recognition.

Some UI controls do not expose meaningful properties, based on which they can be identified uniquely.
Applications which include such controls are described as applications with bad testability. Hierarchies, and
especially dynamic hierarchies, provide a good means to create unique locators for such applications.
Applications with good testability should always provide a simple mechanism to identify UI controls
uniquely.

One of the simplest and most effective practices to make your AUT easier to test is to introduce stable
identifiers for controls and to expose these stable identifiers through the existing interfaces of the
application.

Stable Identifiers
A stable identifier for a UI control is an identifier that does not change between invocations of the control
and between different versions of the application, in which the UI control exists. A stable identifier needs to
be unique in the context of its usage, meaning that no other control with the same identifier is accessible at
the same time. This does not necessarily mean that you need to use GUID-style identifiers that are unique
in a global context. Identifiers for controls should be readable and provide meaningful names. Naming
conventions for these identifiers will make it much easier to associate the identifier to the actual control.

80 | Object Recognition

Example: Is the caption a good identifier for a control?

Very often test tools are using the caption as the default identifier for UI controls. The
caption is the text in the UI that is associated with the control. However, using the
caption to identify a UI control has the following drawbacks:

• The caption is not stable. Captions can change frequently during the development
process. For example, the UI of the AUT might be reviewed at the end of the
development process. This prevents introducing UI testing early in the development
process because the UI is not stable.

• The caption is not unique. For example, an application might include multiple buttons
with the caption OK.

• Many controls are not exposing a caption, so you need to use another property for
identification.

• Using captions for testing localized applications is cumbersome, as you need to
maintain a caption for a control in each language and you also have to maintain a
complex script logic where you dynamically can assign the appropriate caption for
each language.

Creating Stable Locators
One of the main advantages of Silk4NET is the flexible and powerful object-recognition mechanism. By
using XPath notation to locate UI controls, Silk4NET can reliably identify UI controls that do not have any
suitable attributes, as long as there are UI elements near the element of interest that have suitable
attributes. The XPath locators in Silk4NET can use the entire UI control hierarchy or parts of it for
identifying UI controls. Especially modern AJAX toolkits, which dynamically generate very complex
Document Object Models (DOMs), do not provide suitable control attributes that can be used for locating UI
controls.

In such a case, test tools that do not provide intelligent object-recognition mechanisms often need to use
index-based recognition techniques to identity UI controls. For example, identify the n-th control with icon
Expand. This often results in test scripts that are hard to maintain, as even minor changes in the
application can break the test script.

A good strategy to create stable locators for UI controls that do not provide useful attributes is to look for an
anchor element with a stable locator somewhere in the hierarchy. From that anchor element you can then
work your way to the element for which you want to create the locator.

Silk4NET uses this strategy when creating locators, however there might be situations in which you have to
manually create a stable locator for a control.

Example: Locating Siblings of a Control
This topic describes how you can locate a control, which does not provide any meaningful attributes that
can be used in locators, when a stable locator for a sibling of the control is available.

Assume that you have already identified the control Item 0.0, which has the following stable locator:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']

If you know that Item 0.0 has a following-sibling of the type a, you can use the following code to build a
stable locator for the sibling:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']/following-
sibling::a

You can also use the sibling approach to identify text fields. Text fields often do not provide any meaningful
attributes that can be used in locators. By using the label of a text field, you could create a meaningful
locator for the text field, because the label is the best identifier for the text field from the perspective of a
tester. You can easily use the label as a part of the locator for a test field by using the sibling approach. For

Object Recognition | 81

example, if the text field is a preceding-sibling of a label with the text User Name, you can use the following
locator:

/BrowserApplication//BrowserWindow//DIV[@textContent='User Name']/preceding-
sibling::input[@type='text']

Example: Locating the Expand Icon in a Dynamic GWT Tree
The Google Widget Toolkit (GWT) is a very popular and powerful toolkit, which is hard to test. The dynamic
tree control is a very commonly used UI control in GWT. To expand the tree, we need to identify the
Expand icon element.

You can find a sample dynamic GWT tree at http://samples.gwtproject.org/samples/Showcase/
Showcase.html#!CwTree.

The default locator generated by Silk4NET is the following:

/BrowserApplication//BrowserWindow//DIV[@id='gwt-debug-cwTree-dynamicTree-
root-child0']/DIV/DIV[1]//IMG[@border='0']

For the following reasons, this default locator is no reliable locator for identifying the Expand icon for the
control Item 0.0:

• The locator is complex and built on multiple hierarchies. A small change in the DOM structure, which is
dynamic with AJAX, can break the locator.

• The locator contains an index for some of the controls along the hierarchy. Index based locators are
generally weak as they find controls by their occurrence, for example finding the sixth expand icon in a
tree does not define the control well. An exception to that rule would be if the index is used to express
different data sets that you want to identify, for example the sixth data row in a grid.

Often a good strategy for finding better locators is to search for siblings of elements that you need to locate.
If you find siblings with better locators, XPath allows you to construct the locator by identifying those
siblings. In this case, the tree item Item 0.0 provides a better locator than the Expand icon. The locator of
the tree item Item 0.0 is a stable and simple locator as it uses the @textContents property of the control.

By default, Silk4NET uses the property @id, but in GWT the @id is often not a stable property, because it
contains a value like ='gwt-uid-<nnn>', where <nnn> changes frequently, even for the same element
between different calls.

You can manually change the locator to use the @textContents property instead of the @id.

Original Locator:

/BrowserApplication//BrowserWindow//DIV[@id='gwt-uid-109']

Alternate Locator:

/BrowserApplication//BrowserWindow//DIV[@textContents='Item 0.0']

Or you can instruct Silk4NET to avoid using @id='gwt-uid-<nnn>'. In this case Silk4NET will
automatically record the stable locator. You can do this by adding the text pattern that is used in @id
properties to the locator attribute value blacklist. In this case, add gwt-uid* to the blacklist.

When inspecting the hierarchy of elements, you can see that the control Item 0.0 and the Expand icon
control have a joint root node, which is a DomTableRow control.

To build a stable locator for the Expand icon, you first need to locate Item 0.0 with the following locator:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']

Then you need to go up two levels in the element hierarchy to the DomTableRow element. You express this
with XPath by adding /../.. to the locator. Finally you need to search from DomTableRow for the
Expand icon. This is easy as the Expand icon is the only IMG control in the sub-tree. You express this with
XPath by adding //IMG to the locator. The final stable locator for the Expand icon looks like the following:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']/../..//IMG

82 | Object Recognition

http://samples.gwtproject.org/samples/Showcase/Showcase.html#!CwTree
http://samples.gwtproject.org/samples/Showcase/Showcase.html#!CwTree

Or even better, use the XPath ancestor axis to locate the Expand icon:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']/
ancestor::tr//IMG

Custom Attributes
Many UI technologies provide a mechanism that allows them to extend the set of predefined attributes of
UI controls with custom attributes. These custom attributes can be used by the application developer to
introduce stable identifiers that uniquely identify the control. Silk4NET can access custom attributes of UI
controls and can also use these custom attributes to identify UI controls.

Using special automation for the identification of UI controls has several advantages compared to using the
defined attributes like caption. Being able to establish stable identifiers in the application code and to
expose these identifiers through either custom attributes or defined automation properties leads to
understandable and maintainable test-automation scripts, allowing you to start with your test automation
early in the development process.

You can configure the attributes used for identification by using the flexible locator strategy of Silk4NET.

Custom Attributes for Apache Flex Applications
Apache Flex applications use the predefined property automationName to specify a stable identifier for
the Apache Flex control as follows:

<?xml version="1.0" encoding="utf-8"?>
 <s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx" width="400" height="300">
 <fx:Script>
 …
 </fx:Script>
 <s:Button x="247" y="81" label="Button" id="button1" enabled="true"
click="button1_clickHandler(event)"
 automationName="AID_buttonRepeat"/>
 <s:Label x="128" y="123" width="315" height="18" id="label1"
verticalAlign="middle"
 text="awaiting your click" textAlign="center"/>
 </s:Group>

Apache Flex application locators look like the following:

…//SparkApplication//SparkButton[@caption='AID_buttonRepeat'

Attention: For Apache Flex applications, the automationName is always mapped to the locator
attribute caption in Silk4NET. If the automationName attribute is not specified, Silk4NET maps the
property ID to the locator attribute caption.

Java SWT Custom Attributes
You can add custom attributes to a test application to make a test more stable. For example, in Java SWT,
the developer implementing the GUI can define an attribute (for example, 'silkTestAutomationId')
for a widget that uniquely identifies the widget in the application. A tester using Silk4NET can then add that
attribute to the list of custom attributes (in this case, 'silkTestAutomationId'), and can identify
controls by that unique ID. Using a custom attribute is more reliable than other attributes like caption or
index, since a caption will change when you translate the application into another language, and the index
will change whenever another widget is added before the one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different text fields, both fields will return when you call the 'loginName' attribute.

Object Recognition | 83

Java SWT Example

If you create a button in the application that you want to test using the following code:

Button myButton = Button(parent, SWT.NONE);

myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test, you can use the following query:

Dim button =
desktop.PushButton("@SilkTestAutomationId='myButton'")

To enable a Java SWT application for testing custom attributes, the developers must include custom
attributes in the application. Include the attributes using the
org.swt.widgets.Widget.setData(String key, Object value) method.

Custom Attributes for Web Applications
HTML defines a common attribute ID that can represent a stable identifier. By definition, the ID uniquely
identifies an element within a document. Only one element with a specific ID can exist in a document.

However, in many cases, and especially with AJAX applications, the ID is used to dynamically identify the
associated server handler for the HTML element, meaning that the ID changes with each creation of the
Web document. In such a case the ID is not a stable identifier and is not suitable to identify UI controls in a
Web application.

A better alternative for Web applications is to introduce a new custom HTML attribute that is exclusively
used to expose UI control information to Silk4NET.

Custom HTML attributes are ignored by browsers and by that do not change the behavior of the AUT. They
are accessible through the DOM of the browser. Silk4NET allows you to configure the attribute that you
want to use as the default attribute for identification, even if the attribute is a custom attribute of the control
class. To set the custom attribute as the default identification attribute for a specific technology domain,
click Silk4NET > Edit Options > Custom Attributes and select the technology domain.

The application developer just needs to add the additional HTML attribute to the Web
element.

Original HTML code:

<A HREF="http://abc.com/control=4543772788784322..."

HTML code with the new custom HTML attribute AUTOMATION_ID:

<A HREF="http://abc.com/control=4543772788784322..."
AUTOMATION_ID = "AID_Login" <IMG src="http://abc.com/xxx.gif"
width=16 height=16>

When configuring the custom attributes, Silk4NET uses the custom attribute to
construct a unique locator whenever possible. Web locators look like the following:

…//DomLink[@AUTOMATION_ID='AID_Login'

Example: Changing ID

One example of a changing ID is the Google Widget Toolkit (GWT), where the ID often
holds a dynamic value which changes with every creation of the Web document:

ID = 'gwt-uid-<nnn>'

In this case <nnn> changes frequently.

84 | Object Recognition

Custom Attributes for Windows Forms Applications
Windows Forms applications use the predefined automation property automationId to specify a stable
identifier for the Windows forms control.

Silk4NET automatically will use this property for identification in the locator. Windows Forms application
locators look like the following:

/FormsWindow//PushButton[@automationId='btnBasicControls']

Custom Attributes for WPF Applications
WPF applications use the predefined automation property AutomationProperties.AutomationId to
specify a stable identifier for the WPF control as follows:

<Window x:Class="Test.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <Button AutomationProperties.AutomationId="AID_buttonA">The
Button</Button>
 </Grid>
</Window>

Silk4NET automatically uses this property for identification in the locator. WPF application locators look like
the following:

/WPFWindow[@caption='MainWindow']//WPFButton[@automationId='AID_buttonA']

Troubleshooting Performance Issues for XPath
When testing applications with a complex object structure, for example complex web applications, you may
encounter performance issues, or issues related to the reliability of your scripts. This topic describes how
you can improve the performance of your scripts by using different locators than the ones that Silk4NET
has automatically generated during recording.

Note: In general, we do not recommend using complex locators. Using complex locators might lead to
a loss of reliability for your tests. Small changes in the structure of the tested application can break
such a complex locator. Nevertheless, when the performance of your scripts is not satisfying, using
more specific locators might result in tests with better performance.

The following is a sample element tree for the application MyApplication:

Root
 Node id=1
 Leaf id=2
 Leaf id=3
 Leaf id=4
 Leaf id=5
 Node id=6
 Node id=7
 Leaf id=8
 Leaf id=9
 Node id=9
 Leaf id=10

You can use one or more of the following optimizations to improve the performance of your scripts:
• If you want to locate an element in a complex object structure, search for the element in a specific part

of the object structure, not in the entire object structure. For example, to find the element with the
identifier 7 in the sample tree, if you have a query like Root.Find("//Node[@id='7']"), replace it
with a query like Root.Find("/Node[@id='6']/Node[@id='7']"). The first query searches the

Object Recognition | 85

element tree for the elements with the identifiers 1 to 7. The second query searches only for the
element first level nodes, which are the node with the identifier 1 and the node with the identifier 6, for
the node with the identifier 6, and then searches in the subtree of the node with the identifier 6 for the
first leaf with the identifier 7.

• When you want to locate multiple items in the same hierarchy, first locate the hierarchy, and then locate
the items based on their common root node. If you have a query like Root.FindAll("/
Node[@id='1']/Leaf"), replace it with a query like the following:

Public Sub Main()
 Dim commonRootNode = _desktop.Find("//Node[@id='1']")
 commonRootNode.Find("/Leaf[@id='2']")
 commonRootNode.Find("/Leaf[@id='3']")
 commonRootNode.Find("/Leaf[@id='4']")
 commonRootNode.Find("/Leaf[@id='5']")
End Sub

Locator Spy
You can use the Locator Spy to record unique Silk Test locators for any control in your application under
test (AUT). From the Locator Spy, you can copy the locator for a control or any attributes of the control into
methods in your scripts. You can also use the Locator Spy to edit the attributes of the locator for a control
and you to validate these changes. Using the Locator Spy ensures that the locator for a control is valid.

The object tree in the Locator Spy lists all the controls that are available in the AUT. You can use the
object tree to inspect the available controls and the control hierarchy of the AUT. When recording
WebDriver locators, a ">" in the object tree denotes switching from one IFrame to another.

Note: The locator attributes table of the Locator Spy displays all attributes that you can use in the
locator. For web applications, the table also includes any attributes that you have defined to be
ignored during recording.

86 | Object Recognition

Object Maps
An object map is a test asset that contains items that associate a logical name (an alias) with a control or a
window, rather than the control or window's locator. Once a control is registered in an object map asset, all
references to it in scripts are made by its alias, rather than by its actual locator name.

You can use object maps to store objects that you are using often in multiple scripts. Multiple tests can
reference a single object map item definition, which enables you to update that object map definition once
and have Silk4NET update it in all tests that reference the object map definition.

In your scripts, you can mix object map identifiers and locators. This feature enables you to keep your
object maps relatively small and easier to manage. You can simply store the commonly used objects in
your object maps, and use locators to reference objects that are rarely used.

Tip: To optimally use the functionality that object maps provide, create an individual project in
Silk4NET for each application that you want to test.

Example for object maps

The following construct shows a definition for a BrowserWindow where the locator is
used:

_desktop.BrowserApplication("cnn_com").BrowserWindow("//
BrowserWindow[1]")

The name of the object map asset is cnn_com. The locator that can be substituted by
an alias in the object map is the following:

"//BrowserWindow[1]"

The object map entry for the BrowserWindow is BrowserWindow.

The resulting definition of the BrowserWindow in the script is the following:

_desktop.BrowserApplication("cnn_com").BrowserWindow("BrowserWin
dow")

If the index in the locator changes, you can just change the alias in the object map,
instead of having to change every appearance of the locator in your test script.
Silk4NET will update all tests that reference the object map definition.

Example for mixing object map identifiers and locators

The following sample code shows how you can mix object map identifiers and locators
to specify a rarely used child object of an object stored in an object map:

// VB
Window window = _desktop.Window("MyApplication") // object map
id - the application window is used often
MenuItem aboutMenuItem =
_desktop.MenuItem("@caption='About'") // locator - the About
dialog is only used once
aboutMenuItem.Select()

// C#
Window window = _desktop.Window("MyApplication"); // object map
id - the application window is used often
MenuItem aboutMenuItem =
_desktop.MenuItem("@caption='About'"); // locator - the About

Object Maps | 87

dialog is only used once-
aboutMenuItem.Select();

Advantages of Using Object Maps
Object maps have the following advantages:

• They simplify test maintenance by applying changes made to a locator for an object map item to all
tests that include the corresponding object map item.

• They ease the handling of locators in a large scale functional testing environment.
• They can be managed independent of individual scripts.
• They substitute complex locator names with descriptive names, which can make scripts easier to read.
• They eliminate dependence on locators, which may change if the test application is modified.

Turning Object Maps Off and On
You can configure Silk4NET to use the locator name or the alias from the object map during recording.

To use the alias from the object map during recording:

1. Click Silk4NET > Edit Options.

2. Click Recording.

3. To define whether you want to record object map entries or XPath locators, select the appropriate
recording mode from the OPT_RECORD_OBJECTMAPS_MODE list:

• Object map entries for new and existing objects. This is the default mode.
• XPath locators for new and existing objects.
• XPath locators for new objects only. For objects that already exist in an object map, the object

map entry is reused. Choosing this setting enables you to create object maps for the main controls
of an AUT, and to persist these object maps while creating additional tests against the AUT.

Note: In addition to the XPath attributes, Silk4NET uses additional attributes of the element when
merging object maps during locator recording. However, attributes that might lead to ambiguous
usage of object map IDs in a recorded script are not used to map locators to existing object map
entries.

Note: When you enable the Record object maps setting, object map item names display in place of
locators throughout Silk4NET. For instance, if you view the Application Configurations category in
the Properties pane, you will notice that the Locator box shows the object map item name rather
than the locator name.

Using Assets in Multiple Projects
In Silk4NET, image assets, image verifications, and object maps are referred to as assets. If you want to
use assets outside of the scope of the project in which they are located, you need to add a direct project
reference from the project in which you want to use the assets to the project in which the assets are
located.

During replay, when an asset is used, Silk4NET firstly searches in the current project for the asset. The
current project is the directory which contains the test code that is currently executed. If Silk4NET does not
find the asset in the current project, Silk4NET additionally searches the projects to which the current
project has a project reference. If the asset is still not found, Silk4NET throws an error.

88 | Object Maps

Note: When the code of a project, which you have added as a dependency to another project, is not
referenced in the code of the dependent project, Visual Studio will remove the project dependency
when you build the dependent project. To use assets that are located in a project dependency, you
have to add a code reference from the dependent project to a member of the project in which the
assets are located. By adding such a code reference, you ensure that Visual Studio will not remove
the project dependency when you are building the dependent project. For example, you could add a
class or a constant to the project dependency, and then call the class or constant in the code of the
dependent project.

If assets with the same name exist in more than one project, and you do not want to use the asset that is
included in the current project, you can define which specific asset you want to use in any method that
uses the asset. To define which asset you want to use, add the assembly name as a prefix to the asset
name when calling the method. The assembly name defaults to the project name.

Example: Adding a project reference

If the project ProjectA contains a test that calls the following code:

'VB code
window.ImageClick("imageAsset")

and the image asset imageAsset is located in project ProjectB, you need to add a direct
project reference from ProjectA to ProjectB.

Example: Calling a specific asset

If ProjectA and ProjectB both contain an image asset with the name
anotherImageAsset, and you explicitly want to click the image asset from ProjectB, use
the following code:

'VB code
window.ImageClick("ProjectB:anotherImageAsset")

Merging Object Maps During Action Recording
When you record actions with Silk4NET, Silk4NET checks if existing object map entries can be reused.
Silk4NET checks this directly during recording, when a new locator is generated. Silk4NET checks if the
object that is currently recorded in the application under test exactly matches an existing object map entry,
and if yes, Silk4NET reuses the object map identifier from the object map.

This behavior has the following benefits:

• Silk4NET correctly reuses an object map identifier during recording, even if the locator in the object map
has changed.

• A recorded script cannot contain wrong object map identifiers, and therefore will never fail to play back
because of a wrong object map identifier.

• If you restructure your object map, for example by adding an additional level of hierarchy, the object map
identifiers are still reused.

Example

Silk4NET records the following script when you click on the Products link in the Micro
Focus website, http://www.borland.com.

With _desktop.BrowserApplication("borland_com")
 With .BrowserWindow("BrowserWindow")
 .DomLink("Products").Click(MouseButton .Left, New Point
(47, 18))
 End With
End With

Object Maps | 89

http://www.borland.com

The recorded object map looks like this:

borland_com //BrowserApplication
 BrowserWindow //BrowserWindow
 Products //
A[@textContents='Products']

You could now manually restructure the object map to include the header section of the
Micro Focus website:

borland_com //BrowserApplication
 BrowserWindow //BrowserWindow
 header //
HEADER[@role='banner']
 Products //
A[@textContents='Products']

When you now record a click on the Products link the object map is reused correctly,
and the following script is recorded:

With _desktop.BrowserApplication("borland_com")
 With .BrowserWindow("BrowserWindow")
 .DomElement("header").DomLink("Products").Click(MouseButt
on .Left, New Point (47, 18))
 End With
End With

Note: When you record another object in the header section of
the Micro Focus website, for example the About link, Silk4NET
adds the About object map entry as a child of
BrowserWindow, and not of header.

Using Object Maps with Web Applications
By default, when you record actions against a Web application, Silk4NET creates an object map with the
name WebBrowser for native browser controls and an object map asset for every Web domain.

For common browser controls which are not specific for a Web domain, like the main window or the dialog
boxes for printing or settings, an additional object map is generated in the current project with the name
WebBrowser.

In the object map, you can edit the URL pattern by which the object map entries are grouped. When you
edit the pattern, Silk4NET performs a syntactical validation of the pattern. You can use the wildcards *
and ? in the pattern.

Example

When you record some actions on http://www.borland.com and http://
www.microfocus.com and then open the printer dialog, the following three new object
map assets are added to the Asset Browser:

• WebBrowser
• borland_com
• microfocus_com

Note: Silk4NET generates the new object map assets only for projects without an object map. If you
record actions against a Web application for which Silk4NET already includes an object map that was
generated with a version of Silk4NET prior to version 14.0, the additionally recorded entries are stored

90 | Object Maps

http://www.borland.com
http://www.microfocus.com
http://www.microfocus.com

into the existing object map, and there are no additional object map assets generated for the Web
domains.

Renaming an Object Map Item
You can manually rename items and locators in an object map.

Warning: Renaming an object map item affects every script that uses that item. For example, if you
rename the Cancel button object map item from CancelMe to Cancel, every script that uses
CancelMe must be changed manually to use Cancel.

Object map items must be unique. If you try to add a duplicate object map item, Silk4NET notifies you that
the object must be unique.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip explains
the error. Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,]. Invalid locator
paths include: empty or incomplete locator paths.

1. In the Solution Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that includes the object map item that you want to rename.
• Right-click the object map that includes the object map item that you want to rename and choose

Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the object map item that you want to rename.
For example, you might need to expand a node to locate the item that you want to rename.

4. Click the object that you want to rename and then click the object again.

5. Type the item name that you want to use and then press Enter.

If you use an invalid character, the item name displays in red.

The new name displays in the Item name list.

6. Press CTRL+S to save your changes

Note: All child nodes of any node in the object map tree are sorted alphabetically when you save the
object map.

If any existing scripts use the item name that you changed, you must manually change the scripts to use
the new item name.

Note: While recording against a web application or a mobile web app, you can directly change the
name of the object map entry in the Choose Action dialog. Right-click on the object and then expand
the Object identification area of the Choose Action dialog. Then you can edit the object map entry
in the Object Map ID field. This functionality is available if you are testing against one of the following
browsers:

• Microsoft Edge.
• Apple Safari.
• Mozilla Firefox 41 or later.
• Google Chrome 50 or later.
• A mobile browser.

Object Maps | 91

Modifying Object Maps
An existing object map is able to reuse existing object map identifiers during recording, even if you have
added additional structural elements to the object map.

Example: Adding a DIV to an existing object map

Let us suppose you want to add a DIV element to bundle the email and login fields in
the following simple object map:

demo_borland_com //
BrowserApplication
 BrowserWindow //
BrowserWindow
 login-form email //
INPUT[@id='login-form:email']
 login-form login //
INPUT[@id='login-form:login']

You can change the structure of the object map by adding the new DIV loginArea and
the object map will still be able to correctly reuse the object map identifiers during
recording.

demo_borland_com //
BrowserApplication
 BrowserWindow //
BrowserWindow

loginArea //'DIV[@id='
login']
 login-form email //
INPUT[@id='login-form:email']
 login-form login //
INPUT[@id='login-form:login']

Modifying a Locator in an Object Map
Locators are automatically associated with an object map item when you record a script. However, you
might want to modify a locator path to make it more generic. For example, if your test application
automatically assigns the date or time to a specific control, you might want to modify the locator for that
control to use a wildcard. Using a wildcard enables you to use the same locator for each test even though
each test inserts a different date or time.

1. In the Solution Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that includes the locator that you want to modify.
• Right-click the object map that includes the locator that you want to modify and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the locator that you want to modify.
For example, you might need to expand a node to locate the locator that you want to modify.

4. Click the locator path that you want to modify and then click the locator path again.

92 | Object Maps

5. If you have a valid locator path, you can type the item name and locator path that you want to use and
then press Enter. To determine a valid locator path, use the Locator Spy dialog box as described in
the following steps:

a) Click Silk4NET > Locator Spy.
b) Position the mouse over the object that you want to record and press CTRL+ALT. Silk4NET displays

the locator string in the Locator text field.
c) Select the locator that you want to use in the Locator Details table.
d) Copy and paste the locator into the object map.

6. If necessary, modify the item name or locator text to meet your needs.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip
explains the error.

Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,].

Invalid locator paths include: empty or incomplete locator paths.

7. Press CTRL+S to save your changes

If any existing scripts use the locator path that you modified, you must manually change the visual tests or
scripts to use the new locator path.

Updating Object Maps from the Test Application
If items in the test application change, you can use the Object Map UI to update the locators for these
items.

1. In the Solution Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that you want to use.
• Right-click the object map that you want to use and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Click Update Locator. The Locator Spy displays and Silk4NET opens the test application.

4. Position the mouse cursor over the object that you want to record and press CTRL+ALT. Silk4NET
displays the locator string in the Locator text field.

5. Select the locator that you want to use in the Locator Details table.

6. Remove any attributes that you do not want to use from the locator that is displayed in the Locator text
field.

7. Click Validate Locator to validate that the locator works.

8. Click Paste Locator to Editor to update the locator in the object map.

9. Save the changed object map.

When you update an object map item from the AUT, you can change only the XPath representations of leaf
nodes in the object map tree. You cannot change the XPath representations of any parent nodes. When the
XPath representations of higher-level nodesin the object map tree are not consistent after the update, an
error message displays.

Example

For example, suppose you have an object map item with an object map ID that has the
following three hierarchy levels:

WebBrowser.Dialog.Cancel

Object Maps | 93

The corresponding XPath representation of these hierarchy levels is the following:

 /BrowserApplication//Dialog//PushButton[@caption='Cancel']

• First hierarchy level: /BrowserApplication
• Second hierarchy level: //Dialog
• Third hierarchy level: //PushButton[@caption='Cancel']

You can use the following locator to update the object map item:

 /BrowserApplication//Dialog//PushButton[@id='123']

• First hierarchy level: /BrowserApplication
• Second hierarchy level: //Dialog
• Third hierarchy level: //PushButton[@id='123']

You cannot use the following locator cannot to update the object map item, because the
second level hierarchy nodes do not match:

 /BrowserApplication//BrowserWindow//PushButton[@id='9999999']

• First hierarchy level: /BrowserApplication
• Second hierarchy level: //BrowserWindow
• Third hierarchy level: //PushButton[@id='9999999']

Copying an Object Map Item
You can copy and paste object map entries within or between object maps. For example, if the same
functionality exists in two separate test applications, you might copy a portion of one object map into
another object map.

1. In the Solution Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that includes the object map item that you want to copy.
• Right-click the object map that includes the object map item that you want to copy and choose

Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the object map item that you want to copy.
For example, you might need to expand a node to locate the item that you want to copy.

4. Choose one of the following:

• Right-click the object map item that you want to copy and choose Copy tree.
• Click the object map item that you want to copy and then press Ctrl+C.

5. In the object map hierarchy, navigate to the position where you want to paste the item that you copied.

For instance, to include an item on the first level of the hierarchy, click the first item name in the item list.
To position the copied item a level below a specific item, click the item that you want to position the
copied item below.

To copy and paste between object maps, you must exit the map where you copied the object map item
and open and edit the object map where you want to paste the object map item.

6. Choose one of the following:

• Right-click the position in the object map where you want to paste the copied object map item and
choose Paste.

94 | Object Maps

• Click the position in the object map where you want to paste the copied object map item and then
press Ctrl+V.

The object map item displays in its new position in the hierarchy.

7. Press CTRL+S to save your changes

If any existing scripts use the object map item name that you moved, you must manually change the scripts
to use the new position in the hierarchy.

Adding an Object Map Item
Object map items are automatically created when you record a script. Occasionally, you might want to
manually add an object map item.

1. In the Solution Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Double-click the object map to which you want to add the new item. The object map displays a hierarchy
of the object map items and the locator associated with each item.

3. In the object map hierarchy, right-click on the item below which you want to add the new object map
item.

For instance, to include an item on the first level of the hierarchy, right-click on the first item name in the
item list. To position the new item a level below a specific item, right-click on the item below which you
want to position the new item.

4. Click Insert new. A new item is added to the hierarchy, as the first child of the current node.

5. If you have a valid locator path, you can type the item name and locator path that you want to use and
then press Enter. To determine a valid locator path, use the Locator Spy dialog box as described in
the following steps:

a) Click Silk4NET > Locator Spy.
b) Position the mouse over the object that you want to record and press CTRL+ALT. Silk4NET displays

the locator string in the Locator text field.
c) Select the locator that you want to use in the Locator Details table.
d) Copy and paste the locator into the object map.

6. If necessary, modify the item name or locator text to meet your needs.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip
explains the error.

Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,].

Invalid locator paths include: empty or incomplete locator paths.

7. Press CTRL+S to save your changes

Note: All child nodes of any node in the object map tree are sorted alphabetically when you save the
object map.

Opening an Object Map from a Script
When you are editing a script, you can open an object map by right clicking on an object map entry in the
script and selecting Open Silk4NET Asset. This will open the object map in the GUI.

Example

// VB .NET code
<TestMethod()> Public Sub TestMethod1()
 With _desktop.Window("Untitled -

Object Maps | 95

Notepad").TextField("TextField").TypeKeys("hello")
 End With
End Sub

// C# code
[TestMethod]
public void TestMethod1()
{
 Window untitledNotepad = _desktop.Window("Untitled -
Notepad");
 untitledNotepad.TextField("TextField").TypeKeys("hello");
}

In the previous code sample, right-click Untitled - Notepad to open the entry
Untitled - Notepad in the object map, or right-click TextField to open the entry
Untitled - Notepad.TextField in the object map.

Highlighting an Object Map Item in the Test Application
After you add or record an object map item, you can click Highlight to highlight the item in the test
application. You might want to highlight an item to confirm that it's the item that you want to modify in the
object map.

1. In the Solution Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that you want to use.
• Right-click the object map that you want to use and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. In the object map hierarchy, select the object map item that you want to highlight in the test application.

Note: Ensure that only one instance of the test application is running. Running multiple instances
of the test application will cause an error because multiple objects will match the locator.

4. Click Highlight.

The Select Application dialog box might open if the test application has not been associated with the
object map. If this happens, select the application that you want to test and then click OK.

Silk4NET opens the test application and displays a green box around the control that the object map
item represents.

Finding Errors in an Object Map
If you use an invalid character or locator, the item name or locator text displays in red and a tooltip explains
the error. Use the toolbar in the Object Map window to navigate to any errors.

1. In the Solution Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that you want to troubleshoot.
• Right-click the object map that you want to troubleshoot and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Look for any item name or locator text displayed in red.

96 | Object Maps

4. If necessary, modify the item name or locator text to meet your needs.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip
explains the error.

Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,].

Invalid locator paths include: empty or incomplete locator paths.

5. Press CTRL+S to save your changes

Deleting an Object Map Item
You might want to delete an item from an object map if it no longer exists in the test application or for some
other reason.

1. In the Solution Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Double-click the object map that includes the object map item that you want to delete. The object map
displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the object map item that you want to delete.
For example, you might need to expand a node to locate the object map item that you want to delete.

4. Choose one of the following:

• Right-click the object map item that you want to delete and choose Delete, or choose Delete tree to
additionally delete all child items of the object map item.

• Click the object map item that you want to delete and then press DEL, or press CTRL+DEL to
additionally delete all child items of the object map item.

After deleting an object map item, the focus moves to the next item in the object map.

5. Press CTRL+S to save your changes

If any existing scripts use the object map item or its children that you deleted, you must manually change
any references to that object map item in the scripts.

Initially Filling Object Maps
As a best practice, we recommend that you fill your object map and then review all object map items before
you record your tests.

To initially fill your object map with all available items in the AUT, you might create a test that clicks every
object and opens every window and dialog box in your test application. Then, you can review the object
map item for each object and make any necessary modifications before you record your functional tests.
After you have reviewed and modified the object map items you can delete the test that you have created
to fill the object map.

Tip: You can use the arrow keys to navigate between items in an object map.

Grouping Elements in Object Maps
When items in an object map have no consistent parent object, you can group these elements by adding a
new tree item with the locator ".", which is the locator for the current element in Xpath.

Warning: Grouping object map items affects every script that uses these items. Every script that uses
these items must be changed manually to use the new locators.

Object Maps | 97

1. In the Solution Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that you want to edit.
• Right-click the object map that you want to edit and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Right click on the tree item below which you want to add the new structuring item and choose Insert
New.

4. Double click the Item name field of the new object map item.

5. Type the item name that you want to use and then press Enter.

If you use an invalid character, the item name displays in red.

The new name displays in the Item name list.

6. Click the Locator path field of the new object map item and type . into the field.

7. Press Enter.

8. For every object map item that you want to relocate to a new location under the new item:

a) Right click on the item that you want to relocate and choose Cut tree.
b) Right click on the new structuring item and choose Paste.

9. Press CTRL+S to save your changes

Object Maps: Frequently Asked Questions
This section lists questions that you might encounter when using object maps with Silk4NET.

Can I Merge Multiple Object Maps Into a Single Map?
Although Micro Focus recommends recording into the same object map instead of merging existing object
maps, you can use a text editor to merge multiple object maps into a single map.

What Happens to an Object Map when I Delete a Test
Script?
When you delete a test script that includes object map entries, the associated object maps are not
changed. All object map entries are persisted.

Can I Manually Create an Object Map for My
Application Under Test?
Micro Focus recommends creating object maps during the recording of a test. However, you can also
create an empty object map and manually add object map entries to this map.

To create a new object map, select Silk4NET > New Object Map from the menu.

98 | Object Maps

Image Recognition Support
You can use image recognition in the following situations:

• To conveniently interact with test applications that contain highly customized controls, which cannot be
identified using object recognition. You can use image clicks instead of coordinate-based clicks to click
on a specified image.

• To test graphical objects in the application under test, for example charts.
• To perform a check of the visible UI of the application under test.

If you want to click on a control that is otherwise not recognizable, you can use the ImageClick method
with an image asset. If you want to verify that an otherwise not recognizable control exists in your
application under test, you can use the VerifyAsset method with an image verification.

Image recognition methods are supported for all technology domains that are supported by Silk4NET.

Note: Image recognition methods do not work with controls that are not visible on the screen. For
example, you cannot use image recognition for an image that is scrolled out of view.

Image Click Recording
Image click recording is disabled by default in favor of coordinate-based click recording, because image
click recording might generate a confusingly large number of images.

To enable image click recording, click Silk4NET > Edit Options, select the Recording tab, and check the
check box in the Record image clicks section.

Note: When recording on a mobile browser, you do not have to enable image click recording.

When image click recording is enabled, Silk4NET records ImageClick methods when object recognition
or text recognition is not possible. You can insert image clicks in your script for any control, even if the
image clicks are not recorded.

If you do not whish to record an ImageClick action, you can turn off image click recording and record
normal clicks or text clicks.

Note: The recorded images are not reused. Silk4NET creates a new image asset for each image click
that you record.

Note: Image click recording is not supported for applications or applets that use the Java AWT/Swing
controls.

Image Recognition Methods
Silk4NET provides the following methods for image recognition:

Method Description

ImageClick Clicks in the middle of the image that is specified in an asset. Waits until
the image is found or the Object resolve timeout, which you can define in
the synchronization options, is over.

ImageExists Returns whether the image that is specified in an asset exists.

Image Recognition Support | 99

Method Description

ImageRectangle Returns the object-relative rectangle of the image that is specified in an
asset.

ImageClickFile Clicks on the image that is specified in a file.

ImageExistsFile Returns whether the image that is specified in a file exists.

ImageRectangleFile Returns the object-relative rectangle of the image that is specified in a
file.

VerifyAsset Executes a verification asset. Throws a VerificationFailedException if the
verification does not pass.

TryVerifyAsset Executes a verification asset and returns whether the verification passed.

Note: Image recognition methods do not work with controls that are not visible on the screen. For
example, you cannot use image recognition for an image that is scrolled out of view.

Image Assets
You can use image assets in the following situations:

• To conveniently interact with test applications that contain highly customized controls, which cannot be
identified using object recognition. You can use image clicks instead of coordinate-based clicks to click
on a specified image.

• To test graphical objects in the application under test, for example charts.

Image assets consist of an image with some additional information that is required by Silk4NET to work
with the asset.

Silk4NET provides the following methods for image assets:

Method Description

ImageClick Clicks in the middle of the specified image asset. Waits until the image is
found or the Object resolve timeout, which you can define in the
synchronization options, is over.

ImageExists Returns whether the specified image asset exists.

ImageRectangle Returns the object-relative rectangle of the specified image asset.

Image assets must be located in the Image Assets folder of the project. The .imageasset files must be
embedded resources.

Creating an Image Asset
You can create image assets in one of the following ways:

• By inserting a new image asset into an existing script.
• During recording.
• From the menu.

To create a new image asset from the menu, perform the following steps:

1. In the menu, click Silk4NET > New Image Asset.

2. Type a useful name for the asset into the Name field and double-click Silk4NET Image Asset. The
image asset UI opens.

100 | Image Recognition Support

3. Select how you want to add an image to the asset.

• If you want to use an existing image, click Browse and select the image file.
• If you want to capture a new image from the UI of the application under test, select Capture. If you

are testing a Web application, you can select the browser on which you want to capture the image
from the Select Browser window.

• If you want to capture a new image after a delay of three seconds, for example to expand a menu in
the application under test before the image is captured, select Capture with Pause.

4. If you have selected to capture a new image, select the area of the screen that you want to capture and
click Capture Selection.

5. Optional: Click Verify to check if Silk4NET can find the image asset in the UI of the AUT.

If you are testing a Web application, you can select the browser on which you want to capture the image
from the Select Browser window.

6. Optional: Check the Click position check box to select the location on which any clicks on the image
asset are performed.

The default location is the center of the image. Type the location into the x and y fields or select the
location on the image.

7. Specify the Accuracy Level.

The accuracy level defines how much the image to be verified is allowed to be different to the image in
the application under test, before Silk4NET declares the images as different. This is helpful if you are
testing multiple systems or browsers with different screen resolutions. We recommend to choose a high
level of accuracy in order to prevent false positives. You can change the default accuracy level in the
options.

Note: When you set the Accuracy Level to less than five, the actual colors of the images are no
longer considered for the comparison. Only the grayscale representations of the images are
compared.

8. Save the image asset.

The new image asset is listed under the current project in the Solution Explorer, and you can use it to
perform image clicks.

You can add multiple images to the same image asset.

Note: To add an image click while recording against a mobile browser, you can right-click in the
Recording window and select ImageClick from the action list.

Adding Multiple Images to the Same Image Asset
During testing, you will often need to test functionality on multiple environments and with different testing
configurations. In a different environment, the actual image might differ in such a degree from the image
that you have captured in the image asset, that image clicks might fail, although the image is existing. In
such a case, you can add multiple images to the same image asset.

To add an additional image to an image asset:

1. Double-click on the image asset to which you want to add an additional image. The image asset UI
opens.

2. Click on the plus sign in the lower part of the UI to add a new image to the image asset.

3. Save the image asset.

The new image is added to the asset. Each time an image click is called, and until a match is achieved,
Silk4NET will compare the images in the asset with the images in the UI of the application under test. By
default, Silk4NET compares the images in the order in which they have been added to the asset.

Image Recognition Support | 101

Note: To change the order in which Silk4NET compares the images, click on an image in the lower
part of the image asset UI and drag the image to the position that you want. The order lowers from left
to right. The image that is compared first is the image in the left-most position.

Opening an Asset from a Script
When you are editing a script, you can open an asset by right clicking it and selecting Open Silk4NET
Asset. This will open the asset in the GUI.

If the asset is a reference to a file on the system, for example, referenced by ImageClickFile, the file
will be opened by your system's default editor.

Image Verifications
You can use an Image Verification to check if an image exists in the UI of the application under test (AUT)
or not.

Image verifications consist of an image with some additional information that is required by Silk4NET to
work with the asset.

To execute an image verification, use the VerifyAsset method.

Image verification assets must be located in the Verifications folder of the project.
The .verification files must be embedded resources.

An image verification fails when Silk4NET cannot find the image in the AUT. In this case the script breaks
execution and throws a VerificationFailedException. To avoid this behavior, use the TryVerifyAsset
method.

If the locator for the image verification is not found in the AUT, Silk4NET throws an
ObjectNotFoundException.

You can open a successful image verification in TrueLog Explorer by clicking Open Verification in the Info
tab of the verification step. You can open a failed image verification in TrueLog Explorer by clicking Show
Differences in the Info tab of the verification step. If a failed image verification would have been successful
if a lower accuracy level had been used, the accuracy level that would have succeeded is suggested.

Creating an Image Verification
You can create image verifications in one of the following ways:

• By using the menu.
• During recording.

To create a new image verification in the menu, perform the following steps:

1. Click Silk4NET > New Image Verification.
2. Type a useful name for the asset into the Name field and double-click Silk4NET Image Verification.

The image verification UI opens.
3. Click Identify to identify the image that you want to verify in the application under test.
4. Optional: If you want to recapture the same image from the application under test, because there is a

change in comparison to the image that you had initially captured, click Recapture.
If you are testing a Web application, you can select the browser on which you want to capture the image
from the Select Browser window.

5. Optional: You can click Verify to test if the image verification works. Silk4NET searches for the image in
the UI of the AUT, top-down and left to right, and highlights the first matching image.

6. Optional: You can add an exclusion area to the image verification, which will not be considered when
Silk4NET compares the image verification to the UI of the application under test (AUT).

102 | Image Recognition Support

7. Optional: You can set the option Client Area Only to define that only the part of the image that is
actually part of the AUT is considered when Silk4NET compares the image verification to the UI of the
AUT.

8. Specify the Accuracy Level.

The accuracy level defines how much the image to be verified is allowed to be different to the image in
the application under test, before Silk4NET declares the images as different. This is helpful if you are
testing multiple systems or browsers with different screen resolutions. We recommend to choose a high
level of accuracy in order to prevent false positives. You can change the default accuracy level in the
options.

Note: When you set the Accuracy Level to less than five, the actual colors of the images are no
longer considered for the comparison. Only the grayscale representations of the images are
compared.

9. Save the image verification.

The new image verification is listed in the Solution Explorer, and you can use it to check if the image
exists in the UI of your application under test.

Adding an Image Verification During Recording
You can add image verifications to your scripts to check if controls which are otherwise not recognizable
exist in the UI of the application under test. To add an image verification during the recording of a script,
perform the following steps:

1. Begin recording.

2. Move the mouse cursor over the image that you want to verify and click Ctrl + Alt. Silk4NET asks you if
you want to verify a property or an image.

3. Select Create or Insert an Image Verification.

4. Perform one of the following steps:

• To create a new image verification in the image verification UI, select New from the list box.
• To insert an existing image verification asset, select the image verification asset from the list box.

5. Click OK.

• If you have chosen to create a new image verification, the image verification UI opens.
• If you have chosen to use an existing image verification, the image verification is added to your

script. You can skip the remaining steps in this topic.

6. To create a new image verification, click Verify in the image verification UI.

7. Move the mouse cursor over the image in the AUT and click CTRL+ALT. The image verification UI
displays the new image verification.

8. Click OK. The new image verification is added to the current project.

9. Continue recording.

Using Assets in Multiple Projects
In Silk4NET, image assets, image verifications, and object maps are referred to as assets. If you want to
use assets outside of the scope of the project in which they are located, you need to add a direct project
reference from the project in which you want to use the assets to the project in which the assets are
located.

During replay, when an asset is used, Silk4NET firstly searches in the current project for the asset. The
current project is the directory which contains the test code that is currently executed. If Silk4NET does not
find the asset in the current project, Silk4NET additionally searches the projects to which the current
project has a project reference. If the asset is still not found, Silk4NET throws an error.

Image Recognition Support | 103

Note: When the code of a project, which you have added as a dependency to another project, is not
referenced in the code of the dependent project, Visual Studio will remove the project dependency
when you build the dependent project. To use assets that are located in a project dependency, you
have to add a code reference from the dependent project to a member of the project in which the
assets are located. By adding such a code reference, you ensure that Visual Studio will not remove
the project dependency when you are building the dependent project. For example, you could add a
class or a constant to the project dependency, and then call the class or constant in the code of the
dependent project.

If assets with the same name exist in more than one project, and you do not want to use the asset that is
included in the current project, you can define which specific asset you want to use in any method that
uses the asset. To define which asset you want to use, add the assembly name as a prefix to the asset
name when calling the method. The assembly name defaults to the project name.

Example: Adding a project reference

If the project ProjectA contains a test that calls the following code:

'VB code
window.ImageClick("imageAsset")

and the image asset imageAsset is located in project ProjectB, you need to add a direct
project reference from ProjectA to ProjectB.

Example: Calling a specific asset

If ProjectA and ProjectB both contain an image asset with the name
anotherImageAsset, and you explicitly want to click the image asset from ProjectB, use
the following code:

'VB code
window.ImageClick("ProjectB:anotherImageAsset")

104 | Image Recognition Support

Enhancing Tests
This section describes how you can enhance a test.

Recording Additional Actions Into an Existing Test
Once a test is created, you can open the test and record additional actions to any point in the test. This
allows you to update an existing test with additional actions.

1. Open an existing test script.

2. Select the location in the test script into which you want to record additional actions.

Note: Recorded actions are inserted after the selected location. The application under test (AUT)
does not return to the base state. Instead, the AUT opens to the scope in which the preceding
actions in the test script were recorded.

3. Click Silk4NET > Record Actions.

Silk4NET minimizes and the Recording window opens.

4. Record the additional actions that you want to perform against the AUT.

For information about the actions available during recording, see Actions Available During Recording.

5. To stop recording, click Stop in the Recording window.

Calling Windows DLLs
This section describes how you can call DLLs. You can call a DLL either within the process of the Open
Agent or in the application under test (AUT). This allows the reuse of existing native DLLs in test scripts.

DLL calls in the Open Agent are typically used to call global functions that do not interact with UI controls in
the AUT.

DLL calls in the AUT are typically used to call functions that interact with UI controls of the application. This
allows Silk4NET to automatically synchronize the DLL call during playback.

Note: In 32-bit applications, you can call 32-bit DLLs, while in 64-bit applications you can call 64-bit
DLLs. The Open Agent can execute both 32-bit and 64-bit DLLs.

Note: The .NET framework also provides built-in support for DLL calling, which is called P/Invoke. P/
Invoke can be used in Visual Basic scripts to call DLL functions within the process that executes the
script. However, in contrast to calling DLL functions with Silk Test Workbench in the application under
test, there is no automatic synchronization.

Note: You can only call DLLs with a C interface. If you want to call .NET assemblies, which also have
the file extension .dll, do not use the DLL calling feature but instead just add a reference to the
assembly in your .NET script.

Calling a Windows DLL from Within a Script
A declaration for a DLL starts with an interface that has a Dll attribute. The syntax of the declaration is the
following:

<Dll("dllname.dll")> Public Interface DllInterfaceName
 FunctionDeclaration

Enhancing Tests | 105

 [FunctionDeclaration]…
End Interface

// C# code
[Dll("dllname.dll")]
public interface DllInterfaceName {
 FunctionDeclaration ...
}

dllname The name of or the full path to the DLL file that contains the functions you want to
call from your scripts. Environment variables in the DLL path are automatically
resolved. You do not have to use double backslashes (\\) in the path, single
backslashes (\) are sufficient.

DllInterfaceName The identifier that is used to interact with the DLL in a script.

FunctionDeclaration A function declaration of a DLL function you want to call.

DLL Function Declaration Syntax
A function declaration for a DLL typically has the following form:

For functions that do not have a return value, the declaration has the following form:

return-type The data type of the return value.

function-name The name of the function.

arg-list A list of the arguments that are passed to the function.

The list is specified as follows:

data-type The data type of the argument.

identifier The name of the argument.

DLL Calling Example
This example writes the text hello world! into a field by calling the SendMessage DLL function from
user32.dll.

DLL Declaration:

// VB .NET code
<Dll("user32.dll")> Public Interface IUserDll32Functions
 Function SendMessageW(_
 ByVal obj As TestObject,ByVal message As Integer,ByVal wParam As
Integer,ByVal lParam As String) As Integer
End Interface

// C# code
[Dll("user32.dll")]
public interface IUserDll32Functions {
 int SendMessageW(TestObject obj, int message, int wParam, string lParam);
}

The following code shows how to call the declared DLL function in the AUT:

// VB .NET code
Public Sub Main()
 Dim user32Functions As IUserDll32Functions =
DllCall.CreateInProcessDllCall(Of IUserDll32Functions)()
 Dim textField = _desktop.Window().TextField()
 user32Functions.SendMessageW(textField, WindowsMessages.WM_SETTEXT, 0, "my

106 | Enhancing Tests

text")
End Sub

// C# code
public void main()
{
 IUserDll32Functions user32Functions =
DllCall.CreateInProcessDllCall<IUserDll32Functions>();
 TextField textField = _desktop.Window().TextField();
 user32Functions.SendMessageW(textField, (int) WindowsMessages.WM_SETTEXT,
0, "my text");
}

Note: You can only call DLL functions in the AUT if the first parameter of the DLL function has the C
data type HWND.

The following code shows how to call the declared DLL functions in the process of the Open Agent:

// VB .NET code
Public Sub Main()
 Dim user32Functions As IUserDll32Functions = DllCall.CreateAgentDllCall(Of
IUserDll32Functions)()
 Dim textField = _desktop.Window().TextField()
 user32Functions.SendMessageW(textField, WindowsMessages.WM_SETTEXT, 0, "my
text")
End Sub

// C# code
public void main()
{
 IUserDll32Functions user32Functions =
DllCall.CreateAgentDllCall<IUserDll32Functions>();
 TextField textField = _desktop.Window().TextField();
 user32Functions.SendMessageW(textField, (int) WindowsMessages.WM_SETTEXT,
0, "my text");
}

Note: The example code uses the WindowsMessages class that contains useful constants for usage
with DLL functions that relate to Windows messaging.

Passing Arguments to DLL Functions
DLL functions are written in C, so the arguments that you pass to these functions must have the
appropriate C data types. The following data types are supported:

Use this data type for arguments or return values with the following data types:

• int
• INT
• long
• LONG
• DWORD
• BOOL
• WPARAM
• HWND

The type works for all DLL arguments that have a 4-byte value.

Use this data type for arguments or return values with the C data types long and int64. The type
works for all DLL arguments that have an 8-byte value.

Enhancing Tests | 107

Use this data type for arguments or return values with the C data types short and WORD. The
type works for all DLL arguments that have a 2-byte value.

Use this data type for arguments or return values with the C data type bool.

String Use this for arguments or return values that are Strings in C.

Use this for arguments or return values with the C data type double.

Use this for arguments with the C data type RECT. cannot be used as a return value.

Use this for arguments with the C data type POINT. Point cannot be used as a return value.

Use this for arguments with the C data type HWND. TestObject cannot be used as a return value,
however you can declare DLL functions that return a HWND with an Integer as the return type.

Note: The passed TestObject must implement the interface so that Silk4NET is able to
determine the window handle for the TestObject that should be passed into the DLL
function. Otherwise an exception is thrown when calling the DLL function.

List Use this for arrays for user defined C structs. Lists cannot be used as a return value.

Note: When you use a List as an parameter, the list that is passed in must be large enough
to hold the returned contents.

Note: A C struct can be represented by a List, where every list element corresponds to a
struct member. The first struct member is represented by the first element in the list, the
second struct members is represented by the second element in the list, and so on.

Note: Any argument that you pass to a DLL function must have one of the preceding data types.

Passing String Arguments to DLL Functions
Strings that are passing into a DLL function or that are returned by a DLL function are treated by default as
Unicode Strings. If your DLL function requires ANSI String arguments, use the CharacterSet property of
the DllFunctionOptions attribute.

Example

<Dll("user32.dll")> Public Interface IUserDll32Functions
 <DllFunctionOptions(CharacterSet:=CharacterSet.Ansi)>
Function SendMessageA(_
 ByVal obj As TestObject, ByVal message As Integer , ByVal
wParam As Integer , ByRef lParam As String) As Integer
End Interface

Passing a String back from a DLL call as a ByRef argument works per default if the String's size does not
exceed 256 characters length. If the String that should be passed back is longer than 256 characters, you
need to pass a Visual Basic String in that is long enough to hold the resulting String.

Example

Use the following code to create a String with 1024 blank characters:

Dim longEmptyString = New String (" "c , 1024)

Pass this String as a ByRef argument into a DLL function and the DLL function will pass
back Strings of up to 1024 characters of length.

108 | Enhancing Tests

When passing a String back from a DLL call as a function return value, the DLL should implement a DLL
function called FreeDllMemory that accepts the C String pointer returned by the DLL function and that
frees the previously allocated memory. If no such function exists the memory will be leaked.

Aliasing a DLL Name
If a DLL function has the same name as a reserved word in Visual Basic, or the function does not have a
name but an ordinal number, you need to rename the function within your declaration and use the alias
statement to map the declared name to the actual name.

Example

For example, the Exit statement is reserved by the Visual Basic compiler. Therefore, to
call a function named exit, you need to declare it with another name, and add an alias
statement, as shown here:

<Dll("mydll.dll")> Public Interface IMyDllFunctions
 <DllFunctionOptions(Alias:="exit")> Sub MyExit()
End Interface

Conventions for Calling DLL Functions
The following calling conventions are supported when calling DLL functions:

• __stdcall
• __cdecl

The __stdcall calling convention is used by default when calling DLL functions. This calling convention is
used by all Windows API DLL functions.

You can change the calling convention for a DLL function by using the CallingConvention property of
the DllFunctionOptions attribute.

Example

The following code example declares a DLL function with the __decl calling convention:

<Dll("msvcrt.dll")> Public Interface IMsVisualCRuntime

<DllFunctionOptions(CallingConvention:=CallingConvention.Cdecl)>
 Function cos(ByVal input As Double) As Double
End Interface

Custom Controls
Silk4NET provides the following features to support you when you are working with custom controls:

• The dynamic invoke functionality of Silk4NET enables you to directly call methods, retrieve properties,
or set properties on an actual instance of a control in the application under test (AUT).

• The class mapping functionality enables you to map the name of a custom control class to the name of
a standard Silk Test class. You can then use the functionality that is supported for the standard Silk Test
class in your test.

Silk4NET supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)

Enhancing Tests | 109

• Windows Forms
• Java AWT/Swing
• Java SWT

• You can add code to the AUT to test custom controls.
• The Manage Custom Controls dialog box enables you to specify a name for a custom control that can

be used in a locator and also enables you to write reusable code for the interaction with the custom
control.

Note: For custom controls, you can only record methods like Click,TextClick, and TypeKeys with
Silk4NET. You cannot record custom methods for custom controls except when you are testing
Apache Flex applications.

Dynamic Invoke
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4NET API for this control. Dynamic invoke is especially useful when you are working
with custom controls, where the required functionality for interacting with the control is not exposed through
the Silk4NET API.

Call dynamic methods on objects with the Invoke method. To retrieve a list of supported dynamic
methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the InvokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.Invoke("SetTitle", "my new title")

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Note: You cannot dynamically invoke methods for DOM elements.

Frequently Asked Questions About Dynamic Invoke
This section includes a collection of questions that you might encounter when you are dynamically invoking
methods to test custom controls.

Which Methods Can I Call With the Invoke Method?

To get a list of all the methods that you can call with the Invoke method for a specific test object, you can
use the GetDynamicMethodList. To view the list, you can for example print it to the console or view it in
the debugger.

Why Does an Invoke Call Return a Simple String when the Expected Return is a Complex Object?

The Invoke method can only return simple data types. Complex types are returned as string. Silk4NET
uses the ToString method to retrieve the string representation of the return value. To call the individual
methods and read properties of the complex object that is returned by the first method invocation, use
InvokeMethods instead of Invoke.

110 | Enhancing Tests

How Can I Simplify My Scripts When I Use Many Calls To InvokeMethods?

When you extensively use InvokeMethods in your scripts, the scripts might become complex because
you have to pass all method names as strings and all parameters as lists. To simplify such complex scripts,
create a static method that interacts with the actual control in the AUT instead of interacting with the control
through InvokeMethods. For additional information, see Adding Code to the Application Under Test to
Test Custom Controls.

Adding Code to the Application Under Test to Test
Custom Controls
When you are testing Windows Forms applications or WPF applications, and you want to test complex
custom controls or custom controls that you cannot test by simply using the Invoke and InvokeMethods
methods, you can create a static method that interacts with the actual control in the application under test
(AUT) and you can add this code to the AUT.

The benefit for you from adding code to the AUT is that the code in the AUT can use regular method calls
for interacting with the control, instead of using the reflection-like style of calling methods with the dynamic
invoke methods. Therefore you can use code completion and IntelliSense when you are writing you code.
You can then call the code in the AUT with a simple invoke call, where you pass the control of interest as a
parameter.

You can add code to the AUT in the following ways:

• Compile the code into the AUT. The implementation is simple, but you will be changing the AUT,
which you might not want to do.

• Inject code to the AUT at runtime by using the LoadAssembly method in a test script. This requires
more effort than compiling the code into the AUT, but the injected code will be located close to the
test code. The LoadAssembly method is available for the classes WPFWindow and FormsWindow.

Example: Testing the UltraGrid Infragistics control

This example demonstrates how you can retrieve the content of an UltraGrid control.
The UltraGrid control is included in the NETAdvantage for Windows Forms
library which is provided by Infragistics. You can download a trial of the library from
http://www.infragistics.com/products/windows-forms/downloads.

To create the UltraGridUtil class, perform the following actions:

1. Create a new class library project in C# or VB .NET. Call the new project
AUTExtensions.

Note: The class library should use the same .NET version
as the AUT.

2. Add references to the required dependencies to the project. For example, for
Infragistics version 12.2 you need to reference the following assemblies:

• Infragistics4.Shared.v12.2
• Infragistics4.Win.UltraWinGrid.v12.2
• Infragistics4.Win.v12.2

If you are not sure which version of Infragistics is used in your AUT you can use the
Process Explorer tool from Microsoft to see which assemblies are loaded in your
AUT.

a. In the AUTExtensions project, create the new class UltraGridUtil with the
following content:

' VB code
Public Class UltraGridUtil

Enhancing Tests | 111

http://www.infragistics.com/products/windows-forms/downloads

 Public Shared Function GetContents(ultraGrid As
Infragistics.Win.UltraWinGrid.UltraGrid) As List(Of List(Of
String))
 Dim contents = New List(Of List(Of String))
 For Each row In ultraGrid.Rows
 Dim rowContents = New List(Of String)
 For Each cell In row.Cells
 rowContents.Add(cell.Text)
 Next
 contents.Add(rowContents)
 Next
 Return contents
 End Function

End Class

// C# code
using System.Collections.Generic;

namespace AUTExtensions {

 public class UltraGridUtil {

 public static List<List<string>>
GetContents(Infragistics.Win.UltraWinGrid.UltraGrid grid) {
 var result = new List<List<string>>();
 foreach (var row in grid.Rows) {
 var rowContent = new List<string>();
 foreach (var cell in row.Cells) {
 rowContent.Add(cell.Text);
 }
 result.Add(rowContent);
 }
 return result;
 }

 }

}

Note: The Shared modifier makes the GetContents
method a static method.

3. Build the AUTExtensions project.
4. Load the assembly into the AUT during playback.

• Open an existing test script or create a new test script in a Silk4NET project.
• Add the AUTExtensions project as a reference to the Silk4NET project.
• Add the following code to your test script:

' VB code
mainWindow.LoadAssembly(GetType(UltraGridUtil).Assembly.Loca
tion)

// C# code
mainWindow.LoadAssembly(typeof(UltraGridUtil).Assembly.Locat
ion);

5. Call the static method of the injected code in order to get the contents of the
UltraGrid:

'VB code
Dim ultraGrid = mainWindow.Control("@automationId='my grid'")
Dim contents As IList =

112 | Enhancing Tests

mainWindow.Invoke("AUTExtensions.UltraGridUtil.GetContents",
ultraGrid)

// C# code
Dim ultraGrid = mainWindow.Control("@automationId='my grid'");
Dim contents As IList =
mainWindow.Invoke("AUTExtensions.UltraGridUtil.GetContents",
ultraGrid);

Frequently Asked Questions About Adding Code to the AUT
This section includes a collection of questions that you might encounter when you are adding code to the
AUT to test custom controls.

Why is Code That I Have Injected Into the AUT With the LoadAssembly Method Not Updated in the
AUT?

If code in the AUT is not replaced by code that you have injected with the LoadAssembly method into the
AUT, the assembly might already be loaded in your AUT. Assemblies cannot be unloaded, so you have to
close and re-start your AUT.

Why Do the Input Argument Types Not Match When I Invoke a Method?

If you invoke a method and you get an error that says that the input argument types do not match, the
method that you want to invoke was found but the arguments are not correct. Make sure that you use the
correct data types in your script.

If you use the LoadAssembly method in your script to load an assembly into the AUT, another reason for
this error might be that your assembly is built against a different version of the third-party library than the
version that is used by the AUT. To fix this problem, change the referenced assembly in your project. If you
are not sure which version of the third-party library is used in your AUT, you can use the Process Explorer
tool from Microsoft.

How Do I Fix the Compile Error when an Assembly Can Not Be Copied?

When you have tried to add code to the AUT with the LoadAssembly method, you might get the following
compile error:
Could not copy '<assembly_name>.dll' to '<assembly_name>.dll'. The process cannot access the file.
The reason for this compile error is that the assembly is already loaded in the AUT and cannot be
overwritten.

To fix this compile error, close the AUT and compile your script again.

Testing Apache Flex Custom Controls
Silk4NET supports testing Apache Flex custom controls. However, by default, Silk4NET cannot record and
playback the individual sub-controls of the custom control.

For testing custom controls, the following options exist:

• Basic support

With basic support, you use dynamic invoke to interact with the custom control during replay. Use this
low-effort approach when you want to access properties and methods of the custom control in the test
application that Silk4NET does not expose. The developer of the custom control can also add methods
and properties to the custom control specifically for making the control easier to test. A user can then
call those methods or properties using the dynamic invoke feature.

The advantages of basic support include:

Enhancing Tests | 113

• Dynamic invoke requires no code changes in the test application.
• Using dynamic invoke is sufficient for most testing needs.

The disadvantages of basic support include:

• No specific class name is included in the locator, for example Silk4NET records //FlexBox rather
than //FlexSpinner.

• Only limited recording support.
• Silk4NET cannot replay events.

For more details about dynamic invoke, including an example, see Dynamically Invoking Apache Flex
Methods.

• Advanced support

With advanced support, you create specific automation support for the custom control. This additional
automation support provides recording support and more powerful play-back support. The advantages
of advanced support include:

• High-level recording and playback support, including the recording and replaying of events.
• Silk4NET treats the custom control exactly the same as any other built-in Apache Flex control.
• Seamless integration into Silk4NET API
• Silk4NET uses the specific class name in the locator, for example Silk4NET records //

FlexSpinner.

The disadvantages of advanced support include:

• Implementation effort is required. The test application must be modified and the Open Agent must be
extended.

Managing Custom Controls
You can create custom classes for custom controls for which Silk4NET does not offer any dedicated
support. Creating custom classes offers the following advantages:

• Better locators for scripts.
• An easy way to write reusable code for the interaction with the custom control.

Example: Testing the UltraGrid Infragistics control

Suppose that a custom grid control is recognized by Silk4NET as the generic class
Control. Using the custom control support of Silk4NET has the following advantages:

Better object
recognition
because the
custom control
class name
can be used in
a locator.

Many objects might be recognized as Control.
The locator requires an index to identify the
specific object. For example, the object might be
identified by the locator //Control[13]. When
you create a custom class for this control, for
example the class UltraGrid, you can use the
locator //UltraGrid. By creating the custom
class, you do not require the high index, which
would be a fragile object identifier if the
application under test changed.

You can
implement
reusable
playback
actions for the

When you are using custom classes, you can
encapsulate the behavior for getting the contents
of a grid into a method by adding the following
code to your custom class, which is the class that

114 | Enhancing Tests

control in
scripts.

gets generated when you specify the custom
control in the user interface.

Typically, you can implement the methods in a
custom control class in one of the following ways:

• You can use methods like Click, TypeKeys,
TextClick, and TextCapture.

• You can dynamically invoke methods on the
object in the AUT.

• You can dynamically invoke methods that you
have added to the AUT. This is the approach
that is described in this example.

You can use the following code to call the static
method that is defined in the example in Adding
Code to the Application Under Test to Test
Custom Controls. The method GetContents is
added into the generated class UltraGrid.

' VB code
Partial Public Class UltraGrid

 Public Function GetContents() As
IList
 Return
Invoke("AUTExtensions.UltraGridUtil.
GetContents", Me)
 End Function

End Class

// C# code
public partial class UltraGrid {

 public System.Collections.IList
GetContents() {
 return
(System.Collections.IList)
Invoke("AUTExtensions.UltraGridUtil.
GetContents", this);
 }

}

When you define a class as a custom control, you
can use the class in the same way in which you
can use any built-in class, for example the
Dialog class.

' VB code
Dim ultraGrid As UltraGrid =
mainWindow.UltraGrid("@automationId=
'my grid'")
Dim contents =
ultraGrid.GetContents()

// C# code
UltraGrid ultraGrid =
mainWindow.UltraGrid("@automationId=
'my grid'");

Enhancing Tests | 115

IList contents =
ultraGrid.GetContents();

Supporting a Custom Control
Silk4NET supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

To create a custom class for a custom control for which Silk4NET does not offer any dedicated support.

1. Click Silk4NET > Manage Custom Controls. The Manage Custom Controls dialog box opens.

2. In the Silk4NET Custom Controls Output Directory field, type in a name or click Browse to select the
script that will contain the custom control.

3. Click on the tab of the technology domain for which you want to create a new custom class.

4. Click Add.

5. Click one of the following:

• Click Identify new custom control to directly select a custom control in your application with the
Identify Object dialog box.

• Click Add new custom control to manually add a custom control to the list.

A new row is added to the list of custom controls.

6. If you have chosen to manually add a custom control to the list:

a) In the Silk Test base class column, select an existing base class from which your class will derive.

This class should be the closest match to your type of custom control.
b) In the Silk Test class column, enter the name to use to refer to the class.

This is what will be seen in locators. For example: //UltraGrid instead of //Control[13].

Note: After you add a valid class, it will become available in the Silk Test base class list. You
can then reuse it as a base class.

c) In the Custom control class name column, enter the fully qualified class name of the class that is
being mapped.

For example: Infragistics.Win.UltraWinGrid.UltraGrid. For Win32 applications, you can
use the wildcards ? and * in the class name.

7. Only for Win32 applications: In the Use class declaration column, set the value to False to simply map
the name of a custom control class to the name of a standard Silk Test class.

When you map the custom control class to the standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. Set the value to True to additionally use the class
declaration of the custom control class.

8. Click OK.

9. Only for scripts:

a) Add custom methods and properties to your class for the custom control.
b) Use the custom methods and properties of your new class in your script.

Note: The custom methods and properties are not recorded.

116 | Enhancing Tests

Note: Do not rename the custom class or the base class in the script file. Changing the generated
classes in the script might result in unexpected behavior. Use the script only to add properties and
methods to your custom classes. Use the Manage Custom Controls dialog box to make any other
changes to the custom classes.

Custom Controls Options
Silk4NET > Manage Custom Controls.

Silk4NET supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

In the Silk4NET Custom Controls Output Directory, define the script file into which the new custom
classes should be generated.

When you map a custom control class to a standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. The following Custom Controls options are
available:

Option Description

Silk Test base class Select an existing base class to use that your class will derive from. This class
should be the closest match to your type of custom control.

Silk Test class Enter the name to use to refer to the class. This is what will be seen in locators.

Custom control class
name

Enter the fully qualified class name of the class that is being mapped. You can
use the wildcards ? and * in the class name.

Use class
declaration

This option is available only for Win32 applications. By default False, which
means the name of the custom control class is mapped to the name of the
standard Silk Test class. Set this setting to True to additionally use the class
declaration of the custom control class.

Note: After you add a valid class, it will become available in the Silk Test base class list. You can
then reuse it as a base class.

Example: Setting the options for the UltraGrid Infragistics control

To support the UltraGrid Infragistics control, use the following values:

Option Value

Silk Test base class Control

Silk Test class UltraGrid

Custom control class name Infragistics.Win.UltraWi
nGrid.UltraGrid

Improving Object Recognition with Microsoft Accessibility
You can use Microsoft Accessibility (Accessibility) to ease the recognition of objects at the class level.
There are several objects in Internet Explorer and in Microsoft applications that Silk4NET can better
recognize if you enable Accessibility. For example, without enabling Accessibility Silk4NET records only

Enhancing Tests | 117

basic information about the menu bar in Microsoft Word and the tabs that appear. However, with
Accessibility enabled, Silk4NET fully recognizes those objects.

Example

Without using Accessibility, Silk4NET cannot fully recognize a DirectUIHwnd control,
because there is no public information about this control. Internet Explorer uses two
DirectUIHwnd controls, one of which is a popup at the bottom of the browser window.
This popup usually shows the following:

• The dialog box asking if you want to make Internet Explorer your default browser.
• The download options Open, Save, and Cancel.

When you start a project in Silk4NET and record locators against the DirectUIHwnd
popup, with accessibility disabled, you will see only a single control. If you enable
Accessibility you will get full recognition of the DirectUIHwnd control.

Using Accessibility
Win32 uses the Accessibility support for controls that are recognized as generic controls. When Win32
locates a control, it tries to get the accessible object along with all accessible children of the control.

Objects returned by Accessibility are either of the class AccessibleControl, Button or CheckBox.
Button and Checkbox are treated specifically because they support the normal set of methods and
properties defined for those classes. For all generic objects returned by Accessibility the class is
AccessibleControl.

Example

If an application has the following control hierarchy before Accessibility is enabled:

• Control

• Control
• Button

When Accessibility is enabled, the hierarchy changes to the following:

• Control

• Control

• Accessible Control
• Accessible Control

• Button
• Button

Enabling Accessibility
If you are testing a Win32 application and cannot recognize objects, you should first enable Accessibility.
Accessibility is designed to enhance object recognition at the class level.

To enable Accessibility:

1. Click Silk4NET > Edit Options. The Script Options dialog box opens.

2. Click Advanced.

3. Select the Use Microsoft Accessibility option. Accessibility is turned on.

118 | Enhancing Tests

Overview of Silk4NET Support of Unicode Content
The Open Agent is Unicode-enabled, which means that the Open Agent is able to recognize double-byte
(wide) languages.

With Silk4NET you can test applications that contain content in double-byte languages such as Chinese,
Korean, or Japanese (Kanji) characters, or any combination of these.

The Open Agent supports the following:

• Localized versions of Windows.
• International keyboards and native language Input Method Editors (IME).
• Passing international strings as parameters to test cases, methods, and so on, and comparing strings.
• Reading and writing text files in multiple formats: ANSI, Unicode, and UTF-8.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Before testing double-byte characters with Silk4NET

Testing an internationalized application, particularly one that contains double-byte characters, is more
complicated than testing an application that contains strictly English single-byte characters. Testing an
internationalized application requires that you understand a variety of issues, from operating system
support, to language packs, to fonts, to working with IMEs and complex languages.

Before you begin testing your application using Silk4NET, you must do the following:

• Meet the needs of your application under test (AUT) for any necessary localized OS, regional settings,
and required language packs.

• Install the fonts necessary to display your AUT.
• If you are testing an application that requires an IME for data input, install the appropriate IME.

Microsoft UI Automation
Microsoft UI Automation (UI Automation) is a framework that enables you to access, identify, and
manipulate UI elements of any application by providing programmatic access to these user interface
elements. When testing against Windows-based applications that have implemented UI Automation
provider interfaces, you can use UI Automation to improve the object recognition for the controls in these
applications. In this Help, we will refer to such controls as UI Automation controls.

Note: Silk4NET supports testing Windows-based applications that have implemented UI Automation
on machines with Microsoft Windows 8 or later.

UI Automation provides fallback support for applications that are based on the following technologies:

• Win32
• WPF
• WinForms
• Oracle JavaFX
• QT
• PowerBuilder
• Delphi
• Microsoft Office

For example, if you cannot record a test against your application because Silk4NET cannot recognize the
objects in the application or because Silk4NET recognizes all objects in the application as Control, you
could try to enable the UI Automation support.

Enhancing Tests | 119

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

To enable the UI Automation support during recording, stop recording, enable the option
OPT_ENABLE_UI_AUTOMATION_SUPPORT, and resume recording. For additional information, see
Setting UI Automation Options.

Note: The UI Automation support overrides the standard technology-domain-specific support. When
you are finished interacting with the controls that require UI Automation support, disable the UI
Automation support again to resume working with standard controls.

Note: If you are testing against a Java FX application, you do not have to enable the UI Automation
support, as Silk4NET enables this out-of-the-box for Java FX applications.

To ensure that the methods supported for a UI Automation control cover the corresponding controls in all
supported technologies, the Silk4NET API supports only a subset of the methods and properties available
for these controls. To call additional methods and properties that are not available in the Silk4NET API for a
control, use dynamic invoke.

Recording a Test Against an Application with an
Implemented UI Automation Provider Interface
Use the Interactive Recording window to record a test against a windows-based application which has
implemented UI Automation provider interfaces.

Note: Silk4NET supports testing Windows-based applications that have implemented UI Automation
on machines with Microsoft Windows 8 or later.

Before you can record a Silk4NET test, you must have created a Silk4NET project.

To record a new test for a windows-based application which has implemented UI Automation provider
interfaces:

1. Select the project to which you want to add the new test.

2. In the toolbar, click Record Actions. The Add New Item dialog box opens.

3. Select Silk4NET Test.

4. Click Yes.

5. Type a name for the new test into the Name field.

6. Click Add.

7. The Interactive Recording window opens and displays the application under test. Perform the actions
that you want to record.

a) Click on the object with which you want to interact. Silk4NET performs the default action for the
object. If there is no default action, or if you have to insert text or specify parameters, the Choose
Action dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: If the action has parameters, type the parameters into the parameter fields.

Silk4NET automatically validates the parameters.
d) Click OK to close the Choose Action dialog box. Silk4NET adds the action to the recorded actions

and replays it on the mobile device or emulator.

During recording, Silk4NET displays the mouse position next to the recording window. You can toggle
the location to switch between displaying the absolute mouse position on the device display and the
mouse position in relation to the active object. For additional information about the actions available
during recording, see Actions Available During Recording.

8. Click Stop. The Record Complete dialog box opens.

9. Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

120 | Enhancing Tests

Dynamically Invoking UI Automation Methods
To ensure that the methods supported for a UI Automation control cover the corresponding controls in all
supported technologies, the Silk4NET API supports only a subset of the methods and properties available
for these controls. To call additional methods and properties that are not available in the Silk4NET API for a
control, use dynamic invoke.

Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4NET API for this control. Dynamic invoke is especially useful when you are working
with custom controls, where the required functionality for interacting with the control is not exposed through
the Silk4NET API.

Call dynamic methods on objects with the Invoke method. To retrieve a list of supported dynamic
methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the InvokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.Invoke("SetTitle", "my new title")

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4NET types.

Silk4NET types include primitive types, for example boolean, int, and string, lists, and other types, for
example Point and Rect.

• Enum types.

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects.

Pass .NET struct and object parameters as a list. The elements in the list must match one constructor
for the .NET object in the test application. For example, if the method expects a parameter of the .NET
type System.Windows.Vector, you can pass a list with two integers. This works because the
System.Windows.Vector type has a constructor with two integer arguments.

• Other controls.

Control parameters can be passed as TestObject.

Supported Methods and Properties

The following methods and properties can be called:

Enhancing Tests | 121

• All public methods and properties that the MSDN defines for the AutomationElement class. For
additional information, see http://msdn.microsoft.com/en-us/library/
system.windows.automation.automationelement.aspx.

• All methods and properties that MSUIA exposes. The available methods and properties are grouped in
"patterns". Pattern is a MSUIA specific term. Every control implements certain patterns. For an overview
of patterns in general and all available patterns see http://msdn.microsoft.com/en-us/library/
ms752362.aspx. A custom control developer can provide testing support for the custom control by
implementing a set of MSUIA patterns.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4NET types.
• All methods that have no return value return null in C# or Nothing in VB.
• A string for all other types.

To retrieve this string representation, call the ToString method on returned .NET objects in the
application under test.

Example

This example shows how you can call the scrolling methods of a UIADocument control
by using dynamic invoke. Silk4NET does not expose these scrolling methods in the API,
as these methods are not available for the UIADocument control in all technologies that
have implemented UI Automation provider interfaces.

To see which methods and properties are available for the control, you could use code
similar to the following:

' VB .NET code
Dim textBox As UIADocument = mainWindow.Find("//UIADocument")
Dim propertyList = textBox.GetPropertyList()
Dim methodList = textBox.GetDynamicMethodList()

For this example, the propertyList that is returned by the GetPropertyList method
includes the property ScrollPattern.VerticalScrollPercent. The methodList
that is returned by the GetDynamicMethodList method includes the method
ScrollPattern.ScrollVertical.

By using dynamic invoke, you can call the method ScrollPattern.ScrollVertical
as follows:

textBox.Invoke("ScrollPattern.ScrollVertical",
ScrollAmount.SmallIncrement)

Alternatively, you can call the property ScrollPattern.VerticalScrollPercent
as follows:

textBox.GetProperty("ScrollPattern.VerticalScrollPercent")

Locator Attributes for Identifying Controls with UI
Automation
The supported locator attributes for controls in Windows-based applications that have implemented UI
Automation provider interfaces include:

• automationId
• caption

122 | Enhancing Tests

http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx

• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

To identify controls in Windows-based applications that have implemented UI Automation provider
interfaces within scripts, you can specify the automationId, caption, className, name or any dynamic
locator attribute. The automationId can be set by the application developer. For example, a locator with an
automationId might look like //UIAButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
UIAButton[@automationId="okB
utton"]

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//UIAButton[@caption="Ok"]

className The class name (without namespace) of the UI
Automation control. Using the className attribute can
help to identify a custom control that is derived from a
standard UI Automation control that Silk4NET
recognizes.

//
UIAButton[@className='MyCust
omButton']

name The name of a control. Can be provided by the
developer of the application under test.

//
UIAButton[@name="okButton"]

During recording, Silk4NET creates a locator for a UI Automation control by using the automationId, name,
caption, or className attributes in the order that they are listed in the preceding table. For example, if a
control has an automationId and a name, Silk4NET uses the automationId, if it is unique, when creating the
locator.

To find out which additional custom attributes you could use for the UI Automation controls in your AUT, you
can use the Verify Properties dialog box. To do so, hover the mouse cursor over a UI Automation control
during recording, and click Ctrl+Alt. You can then see which properties are available for the control. For
example, for some applications, the attribute value is useful.

Scrolling in UI Automation Controls
Silk4NET provides two different sets of scrolling-related methods and properties, depending on the UI
Automation control.

• The first type of controls includes controls that can scroll by themselves and therefore do not expose the
scrollbars explicitly as children. For example combo boxes, panes, list boxes, tree controls, data grids,
auto complete boxes, and others.

• The second type of controls includes controls that cannot scroll by themselves but expose scrollbars as
children for scrolling. For example text fields.

This distinction in Silk4NET exists because the UI Automation controls implement scrolling in those two
ways.

Enhancing Tests | 123

Controls that support scrolling

In this case, scrolling-related methods and property are available for the control that contains the
scrollbars. Therefore, Silk4NET does not expose scrollbar objects.

Examples

The following command scrolls a list box to the bottom:

listBox.SetVerticalScrollPercent(100)

The following command scrolls the list box down by one unit:

listBox.ScrollVertical(ScrollAmount.SmallIncrement)

Controls that do not support scrolling

In this case the scrollbars are exposed. No scrolling-related methods and properties are available for the
control itself. The horizontal and vertical scrollbar objects enable you to scroll in the control by specifying
the increment or decrement, or the final position, as a parameter in the corresponding API functions. The
increment or decrement can take the values of the ScrollAmount enumeration. For additional
information, refer to the MSUIA documentation. The final position is related to the position of the object,
which is defined by the application designer.

Examples

The following command scrolls a vertical scrollbar within a text box to position 15:

 textBox.UIAVerticalScrollBar().ScrollToPosition(15)

The following command scrolls a vertical scrollbar within a text box to the bottom:

 textBox.UIAVerticalScrollBar().ScrollToMaximum()

Limitations when Using UI Automation
The known limitations when using UI Automation are:

No support for IMEs while using UI Automation support

While the UI Automation support is enabled, Silk4NET provides no support for using Input Method Editors
(IMEs).

Troubleshooting when Testing with UI Automation
Support Enabled

Why does a script with UI Automation controls that is recorded on Microsoft Windows 7 not replay
on Microsoft Windows 8 or later?

When you record a script that includes UI Automation controls on Microsoft Windows 7 or prior, and then
try to replay it on Microsoft Windows 8 or later, the replay might fail. That is because Microsoft has changed
the underlying automation, and the UI Automation behave differently between those Windows versions.

For example, some UI Automation controls in an application might have a value for the automationId
attribute on Microsoft Windows 7 and no value for the same attribute on Microsoft Windows 10.

In such a case, Micro Focus recommends recording the script again against the later Microsoft Windows
version.

124 | Enhancing Tests

Why is the first action in a Microsoft Office application not replayed?

If you are recording against a Microsoft Office application, the application window needs to be active before
recording so that Silk4NET can replay all actions correctly. For example, if you are recording against
Microsoft Excel, and you have changed the focus to another application, the first click in Excel that is
recorded by Silk4NET will not do anything during replay. You will have to repeat the recorded action and
remove it from your test.

As a workaround, left-click into the title bar of the Microsoft Office application before recording any actions.
This click into the title bar is not recorded by Silk4NET, and you can continue recording as intended.

Text Recognition Support
Text recognition methods enable you to conveniently interact with test applications that contain highly
customized controls, which cannot be identified using object recognition. You can use text clicks instead of
coordinate-based clicks to click on a specified text string within a control.

For example, you can simulate selecting the first cell in the second row of the following table:

Specifying the text of the cell results in the following code:

'VB code
table.TextClick("Brian Miller")

// C# code
table.TextClick("Brian Miller");

Text recognition methods are supported for the following technology domains:

• Win32.
• WPF.
• Windows Forms.
• Java SWT and Eclipse.
• Java AWT/Swing.

Note: For Java Applets, and for Swing applications with Java versions prior to version 1.6.10, text
recognition is supported out-of-the-box. For Swing applications with Java version 1.6.10 or later,
which do not support Direct3D, you have to add the following command-line element when starting
the application:

-Dsun.java2d.d3d=false

For example:

javaw.exe -Dsun.java2d.d3d=false -jar mySwingApplication.jar

Text recognition is not supported for Java Applets and Swing applications that support Direct3D.
• Internet Explorer.
• WebDriver-based browsers.

Note: Text recognition does not work with controls that are not visible on the screen. For example, you
cannot use text recognition for a text that is scrolled out of view.

Note: Text recognition might not work if the font that is used in the target text is not installed on the
machine on which the test is executed.

Enhancing Tests | 125

WebDriver-based browsers

The text recognition methods can be applied to BrowserWindow and DomElement objects.

Note: Text recognition does not work for text that is drawn in <canvas> elements.

Note: Text recognition does not work for content added by CSS pseudo-elements like ::before
and ::after.

Text recognition methods

Silk4NET offers the following methods to drive testing through interacting with the text that the AUT renders
on the screen:

TextCapture Returns the text that is within a control. Also returns text from child controls.

TextClick Clicks on a specified text within a control. Waits until the text is found or the Object
resolve timeout, which you can define in the synchronization options, is over.

TextRectangle Returns the rectangle of a certain text within a control or a region of a control.

TextExists Determines whether a given text exists within a control or a region of a control.

The text recognition methods prefer whole word matches over partially matched words. Silk4NET
recognizes occurrences of whole words previously than partially matched words, even if the partially
matched words are displayed before the whole word matches on the screen. If there is no whole word
found, the partly matched words will be used in the order in which they are displayed on the screen.

The methods TextClick, TextRectangle, and TextExists internally use TextCapture to grab the
visible text from the application and allow for further processing of that text. The underlying TextCapture
method is implemented in two different ways. Silk4NET decides which implementation to use depending on
the type of the application under test.

• For native windows applications, including WPF, WinForms, and Java applications, but also Internet
Explorer, Silk4NET hooks into the text rendering functions of the Windows API to extract the text that
the application draws on the screen.

• For Google Chrome, Mozilla Firefox, Microsoft Edge, and Apple Safari, Silk4NET uses a JavaScript-
based approach to retrieve the text after it was rendered by the browser.

Note: Because of the different nature of these two implementations, Silk4NET might return different
text for the same web application, depending on which browser is used.

Example

The user interface displays the text the hostname is the name of the host. The following
code clicks on host instead of hostname, although hostname is displayed before host on
the screen:

'VB code
control.TextClick("host")

// C# code
control.TextClick("host");

The following code clicks on the substring host in the word hostname by specifying the
second occurrence:

'VB code
control.TextClick("host", 2)

// C# code
control.TextClick("host", 2);

126 | Enhancing Tests

Inserting a Result Comment in a Script
You can add result comments to a test script to provide supplemental information about the test. During the
execution of the test, the result comments are added to the TrueLog file of the test.

You can add different comment types for information, warnings, and errors. The following code sample
shows an example for each comment type:

'VB .NET code
Agent.LogInfo("This is a comment!")
Agent.LogWarning("This is a warning!")
Agent.LogError("This is an error!")

// C# code
Agent.LogInfo("This is a comment!");
Agent.LogWarning("This is a warning!");
Agent.LogError("This is an error!");

Measuring Execution Time
You can use methods and properties provided by the Timer class to measure the time that your tests
require to execute. For additional information, see Timer Class.

Among other usages, these methods and properties are used for the timing of test executions that are
triggered from Silk Performer. For additional information on integrating Silk4NET with Silk Performer, refer
to the Silk Performer Help.

Slowing Down Tests
Some applications under test might require extensive loading of application data in the UI, and might not be
finished on time with loading objects that are required for replaying a test. To successfully replay tests on
such an AUT, you can check for the existence of an object before performing an action on it, or you can add
sleeps before performing an action.

Note: Micro Focus does not recommend generally adding sleeps to tests, because in most cases
Silk4NET will automatically detect if an object is available, and sleeps might severely reduce the
performance of tests.

1. To check if an object is available in the AUT, use the Exists method.

For example, to wait for six seconds for the button INPUT to become available, add the following line to
your test script:

'VB .NET code
browserWindow.Exists("//INPUT", 6000)

// C# code
browserWindow.Exists("//INPUT", 6000)

2. To add a sleep before performing an action on a control, use the method.

For example, to sleep for six seconds, add the following line to your test script:

'VB .NET code
System.Threading.Thread.Sleep(6000)

// C# code
browserWindow.Exists("//INPUT", 6000)

Enhancing Tests | 127

https://www.microfocus.com/documentation/silk-performer/20.5/en/silkperformer-webhelp-en/GUID-B1C1E2FF-7E91-4528-80FD-94B9F6244033.html

Testing Applications in Multiple UI Sessions on a Single
Machine

To test applications in multiple UI sessions on a single machine or to test multiple agents on a single
machine, connect to multiple Open Agent instances on the machine. Every agent runs in its own UI-
session. A UI session can be a Remote Desktop Protocol (RDP) connection or a Citrix-based connection.

1. Create the UI sessions.

2. Open a command line window.

3. Navigate to the folder /ng/agent in the Silk Test installation directory.

For example, the default folder path might look like the following: C:\Program Files (x86)\Silk
\SilkTest\ng\agent.

4. In each UI session, execute the following command: openAgent.exe -infoServicePort=<port>.

Note: Use a unique port number, because this port will be used in your Silk4NET script to identify
the Open Agent and the UI session in which the agent is running.

5. Change your Silk4NET scripts to connect to the Open Agent instances.

To connect to an Open Agent instance, add the following line to the script:

// VB .NET code
Private agent As RemoteAgent = Agent.Connect("hostname:port")

// C# code
private RemoteAgent agent = Agent.Connect("hostname:port");

Where hostname is the name of the machine on which the agent is running, and port is the unique port
that you have specified.

The resulting objects are independent of each other and can be used either in one thread or in multiple
threads.

Note: If you want to launch an application in multiple UI sessions, you have to execute the base state
for each UI session.

The following classes include overloaded methods for multi-agent or multi-session testing:

• Agent
• BaseState
• BrowserBaseState
• Clipboard
• ConsoleWindow
• Desktop
• DllCall

Note: To use TrueLog when testing applications in multiple UI sessions on a remote machine, you
need to manually copy any generated TrueLog files from the remote machine to your local machine.

Example

Assume that the server machine that is hosting the UI sessions is named ui-srv. You
can create three UI sessions by using the ports 22903, 22904, and 22905.

In the first session, open the command line window, navigate to the agent directory,
and type the following:

openAgent.exe -infoServicePort=22903

Do the same for the other two sessions with the respective ports 22904 and 22905.

128 | Enhancing Tests

To connect to the Open Agent instances, add the following code to your script:

// VB .NET code
Private agent1 As RemoteAgent = Agent.Connect("ui-srv:22903")
Private agent2 As RemoteAgent = Agent.Connect("ui-srv:22904")
Private agent3 As RemoteAgent = Agent.Connect("ui-srv:22905")

// C# code
private RemoteAgent agent1 = Agent.Connect("ui-srv:22903");
private RemoteAgent agent2 = Agent.Connect("ui-srv:22904");
private RemoteAgent agent3 = Agent.Connect("ui-srv:22905");

The following sample script prints a simple text to each of the three UI sessions:

// VB .NET code
<SilkTestClass()> Public Class TestMultiSession

 Private agent1 As RemoteAgent = Agent.Connect("ui-srv:22903")
 Private agent2 As RemoteAgent = Agent.Connect("ui-srv:22904")
 Private agent3 As RemoteAgent = Agent.Connect("ui-srv:22905")

 <TestMethod()> Public Sub Test()
 Dim d1 As Desktop = agent1.Desktop
 Dim d2 As Desktop = agent2.Desktop
 Dim d3 As Desktop = agent3.Desktop

 Dim baseState = New BaseState()
 agent1.ExecuteBaseState(baseState)
 agent2.ExecuteBaseState(baseState)
 agent3.ExecuteBaseState(baseState)

 d1.Window("@caption='My Application'").TypeKeys("Hello to
session 1!")
 d2.Window("@caption='My Application'").TypeKeys("Hello to
session 2!")
 d3.Window("@caption='My Application'").TypeKeys("Hello to
session 3!")
 End Sub
End Class

// C# code
[SilkTestClass]
 public class TestMultiSession {

 private RemoteAgent agent1 = Agent.Connect("ui-srv:22903");
 private RemoteAgent agent2 = Agent.Connect("ui-srv:22904");
 private RemoteAgent agent3 = Agent.Connect("ui-srv:22905");

 [TestMethod]
 public void Test() {
 Desktop d1 = agent1.Desktop;
 Desktop d2 = agent2.Desktop;
 Desktop d3 = agent3.Desktop;

 BaseState basestate = new BaseState();
 agent1.ExecuteBaseState(basestate);
 agent2.ExecuteBaseState(basestate);
 agent3.ExecuteBaseState(basestate);

 d1.Window("@caption='My Application'").TypeKeys("Hello to
session 1!");
 d2.Window("@caption='My Application'").TypeKeys("Hello to
session 2!");
 d3.Window("@caption='My Application'").TypeKeys("Hello to
session 3!");

Enhancing Tests | 129

 }
 }

Encrypting Passwords
Encrypt password sensitive strings that are plain text to avoid security issues.

1. In the menu, select Silk4NET > Password Encoder. The Password Encoder dialog appears.

2. Type the string to be encrypted into the Password field. The encrypted password is displayed in the
Encoded string field.

3. Click Copy and Close to copy the encrypted password to the clipboard and to close the Password
Encoder dialog.

4. Change the appropriate code lines in your test scripts.

Note: You can also encrypt a string in code by using the Encrypt method. Encrypted strings can be
decrypted using the Decrypt method.

130 | Enhancing Tests

Using Keyword-Driven Tests as
Performance Tests

In addition to performing functional testing and regression testing with Silk4NET, you can export your
keyword-driven tests to Silk Performer and use them for performance testing and load testing.

To export keyword-driven tests to Silk Performer, ensure that Silk Performer 18.0 or later is installed. Select
the Silk4NET project that contains the keyword-driven tests and click Export as Performance Tests in the
Silk4NET menu.

If you have already exported the keyword-driven tests in a Silk4NET project to Silk Performer, and you
want to update the corresponding project in Silk Performer, perform the following actions.

1. Start Silk Performer.
2. Open the project that you want to update.
3. Open the Silk4NET project.
4. Click Export as Performance Tests.
5. Confirm that you want to update the current Silk Performer project.

The reference to the library in the Data Files node of the Silk Performer project will be updated.

For additional information, refer to the Silk Performer documentation.

Using Keyword-Driven Tests as Performance Tests | 131

Debugging Scripts
Run-time errors encountered during playback can be caused by a variety of factors, such as changes in the
test application, script coding mistakes, or environmental changes. Quickly diagnosing and fixing these
errors by debugging scripts minimizes script maintenance efforts and facilitates a more efficient team
testing effort.

Script debugging lets you temporary suspend script playback in the development environment to manage,
examine, reset, step through, or continue script playback.

Script Reliability
Application testing reveals errors in the application being tested. When testing software applications, these
errors can cause scripts to not execute to completion.

The ability of scripts to reliably play back to completion is essential to successful testing. Synchronization
issues, and expected and unexpected application errors may cause scripts to fail before playing back to
completion. Silk4NET provides built-in option settings and scripting features that allow scripts to adjust to
synchronization and application issues and play back reliably in any testing environment.

When playing back scripts, some errors are the result of slow application response time, which causes the
application to lose synchronization with the scripts that test it. These errors can be handled by adjusting
Silk4NET option settings that optimize synchronization between the scripts and the application being
tested.

Stepping Through a Script in Debug Mode
You can play back scripts to execute one line at a time while in debug mode. Known as stepping, this
allows a tester to trace through code during playback to see the order in which statements execute, which
aids in debugging.

Stepping enables you to walk through a script in debug mode to closely examine its execution.

In debug mode, control playback execution by using the following commands:

Step Into (F11) Executes the script one statement at a time. Step Into is useful to trace through each
line in the code and steps into functions or embedded scripts. Each function or
embedded script is also executed one code line at a time.

Step Into is useful for detailed analysis of a test, and lets you see the effect of each
statement on variable usage and test application interaction.

Note: You cannot step into an iterator while debugging a VB .NET script. The
iterator is executed but the debugger will not show that the iterator was entered
during execution. You can set a breakpoint inside the iterator, and the execution
will stop at the breakpoint, but any parameters or local variables of the iterator
will not be shown in the Locals window. For additional information on iterators,
see Iterators.

Step Over (F10) Executes each procedure as if it were a single statement. Use this instead of Step Into
to go directly into a function, without stepping through the individual lines that make up
the function.

132 | Debugging Scripts

https://msdn.microsoft.com/en-us/library/dscyy5s0.aspx

Step Out (Shift
+ F11)

Executes all remaining code in a procedure as if it were a single statement, and exits
to the next statement in the procedure that caused the procedure to be initially called.

Set Run Pointer/
Next Statement

Continues execution with the statement at which the pointer is currently located,
without executing any intermediate statements. Drag the pointer to the statement and
click F5 to execute it.

Stepping commands are accessed from the DEBUG menu.

Stepping Through Script Playback from a Selected Point
During debugging, you can execute the script from where playback was suspended by a breakpoint.

1. Set a breakpoint at a specific line in the script.

2. Press F5 to playback the script. Playback executes to the breakpoint, suspends and enters debug
mode.

3. Press F5 to playback the script to the next breakpoint.

If the code executes successfully, playback re-enters debug mode and the next code to be played back
is highlighted in yellow. If the code does not playback successfully, the Playback Error dialog box
opens.

4. Press F5 to step through playback of the remaining code in the script. Playback executes to the set
breakpoint. The script displays in debug mode where you can step through the playback execution,
control the step playback execution, or playback to/from certain points in the script.

Controlling Line Execution During Script Debugging
While debugging a script, you can control flow to aid in error recognition and to reduce the time needed to
diagnose and fix errors.

The Step Over command sets the execution point to the line in your script that you choose. This feature is
only available while at a breakpoint during debugging.

Use the Step Over command when you want to re-run a statement within the current procedure or to skip
over statements in your script you do not want to play back. While debugging a script, this feature lets you
control flow to aid in error recognition and reduce the time needed to diagnose and fix errors.

1. While debugging or at a breakpoint during playback, perform one of the following steps:

• Drag the yellow arrow to the code line to be played back next.
• Click to position the cursor on the next line to be played back and then choose DEBUG > Step Over.

2. Press F5 to resume playback at the selected line. After the selected line executes, playback suspends,
and Silk4NET returns to debug mode. The execution point goes to the next sequential line.

Stopping Script Playback at Selected Points
You can configure scripts to suspend at set points during playback and enter debug mode. The points at
which you set a script to stop on playback are called breakpoints. Breakpoints let you manage playback to
facilitate debugging, and can help isolate where a script fails. Breakpoints help to analyze how a script
plays back even if there are no errors in the script. When you set a breakpoint, playback stops at the
breakpoint and enters debug mode.

Setting breakpoints enables a script to play back to any specific point of interest. Place breakpoints at
specific lines where you want to stop playback. Playback executes to the first breakpoint and suspends
until you tell the script to proceed.

Debugging Scripts | 133

1. Open the script in which you want to set a breakpoint.

2. Click the line where playback is to be suspended.

3. Click DEBUG > Toggle Breakpoint. A breakpoint icon appears in the column next to the line. Playback
executes to the set breakpoint. When playback suspends at a breakpoint, the script highlights the
breakpoint line in yellow with a yellow arrow pointing to the line.

During debugging, you can control line execution during playback. You can also configure scripts to
playback to or from a specific line.

Tip: Select a line with a breakpoint and press F9 to delete the breakpoint from the selected line.
Press Ctrl+Shift+F9 to delete all breakpoints from a script.

Printing a Script
You can print the code that displays in the Code window for easy review and troubleshooting.

1. Open the script that you want to print.

2. Choose File > Print. The Print dialog box opens.

3. Select the printer from the list or click Find Printer to search for an additional printer.

4. Optional: Check the Print to file check box to print to a file, such as a PDF.

5. Optional: Click Preferences to change the page setup settings, for example margins and orientation.

6. Optional: In the Page Range section, specify whether to print the entire document or only selected
pages.

Click one of the following options.

• All – Prints the entire document.
• Selection – Prints the selected code.
• Pages – Prints the specified pages.
• Current Page – Prints the current page.

7. Optional: In the Number of copies filed, specify the number of copies to print.

8. Optional: Check the Collate check box to print the corresponding page of every copy together.

This check box is only enabled when you have selected to print more than one copy.

9. Click Print.

134 | Debugging Scripts

Testing Specific Environments
Silk4NET supports testing several types of environments.

Apache Flex Support
Silk4NET provides built-in support for testing Apache Flex applications using Internet Explorer and the
Standalone Flash Player, and Adobe AIR applications built with Apache Flex 4 or later.

Silk4NET also supports multiple application domains in Apache Flex 3.x and 4.x applications, which
enables you to test sub-applications. Silk4NET recognizes each sub-application in the locator hierarchy
tree as an application tree with the relevant application domain context. At the root level in the locator
attribute table, Apache Flex 4.x sub-applications use the SparkApplication class. Apache Flex 3.x sub-
applications use the FlexApplication class.

Supported Controls

For a complete list of the record and playback controls available for Apache Flex testing, see the Flex Class
Reference.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Apache Flex. The Silk
Test Automation SDK supports the same components in the same manner that the Automation API
for Apache Flex supports them. For instance, the typekey statement in the Flex Automation API
does not support all keys. You can use the input text statement to resolve this issue. For more
information about using the Flex Automation API, see the Apache Flex Release Notes.

Configuring Flex Applications to Run in Adobe Flash
Player
To run an Apache Flex application in Flash Player, one or both of the following must be true:

• The developer who creates the Flex application must compile the application as an EXE file. When a
user launches the application, it will open in Flash Player. Install Windows Flash Player from http://
www.adobe.com/support/flashplayer/downloads.html.

• The user must have Windows Flash Player Projector installed. When a user opens a Flex .SWF file, he
can configure it to open in Flash Player. Windows Flash Projector is not installed when Flash Player is
installed unless you install the Apache Flex developer suite. Install Windows Flash Projector from http://
www.adobe.com/support/flashplayer/downloads.html.

1. For Microsoft Windows 7 and Microsoft Windows Server 2008 R2, configure Flash Player to run as
administrator. Perform the following steps:

a) Right-click the Adobe Flash Player program shortcut or the FlashPlayer.exe file, then click
Properties.

b) In the Properties dialog box, click the Compatibility tab.
c) Check the Run this program as an administrator check box and then click OK.

2. Start the .SWF file in Flash Player from the command prompt (cmd.exe) by typing:
"<Application_Install_Directory>\ApplicationName.swf"

By default, the <SilkTest_Install_Directory> is located at Program Files\Silk\Silk Test.

Testing Specific Environments | 135

http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html

Launching the Component Explorer
Silk Test provides a sample Apache Flex application, the Component Explorer. Compiled with the Adobe
Automation SDK and the Silk Test specific automation implementation, the Component Explorer is pre-
configured for testing.

In Internet Explorer, open http://demo.borland.com/flex/SilkTest20.0/index.html. The application
launches in your default browser.

Testing Apache Flex Applications
Silk Test provides built-in support for testing Apache Flex applications. Silk Test also provides several
sample Apache Flex applications. You can access the sample applications at http://demo.borland.com/flex/
SilkTest20.0/index.html.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Before you can test your own Apache Flex application, your Apache Flex developers must perform the
following steps:

• Enabling your Apache Flex application for testing
• Creating testable Apache Flex applications
• Coding Apache Flex containers
• Implementing automation support for custom controls

To test your own Apache Flex application, follow these steps:

• Configuring security settings for your local Flash Player
• Recording a test
• Playing back a test
• Customizing Apache Flex scripts
• Testing a custom Apache Flex control

Note: Loading an Apache Flex application and initializing the Flex automation framework may take
some time depending on the machine on which you are testing and the complexity of your Apache
Flex application. Set the Window timeout value to a higher value to enable your application to fully
load.

Testing Apache Flex Custom Controls
Silk4NET supports testing Apache Flex custom controls. However, by default, Silk4NET cannot record and
playback the individual sub-controls of the custom control.

For testing custom controls, the following options exist:

• Basic support

With basic support, you use dynamic invoke to interact with the custom control during replay. Use this
low-effort approach when you want to access properties and methods of the custom control in the test
application that Silk4NET does not expose. The developer of the custom control can also add methods
and properties to the custom control specifically for making the control easier to test. A user can then
call those methods or properties using the dynamic invoke feature.

The advantages of basic support include:

• Dynamic invoke requires no code changes in the test application.
• Using dynamic invoke is sufficient for most testing needs.

The disadvantages of basic support include:

136 | Testing Specific Environments

http://demo.borland.com/flex/SilkTest20.0/index.html
http://demo.borland.com/flex/SilkTest20.0/index.html
http://demo.borland.com/flex/SilkTest20.0/index.html
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

• No specific class name is included in the locator, for example Silk4NET records //FlexBox rather
than //FlexSpinner.

• Only limited recording support.
• Silk4NET cannot replay events.

For more details about dynamic invoke, including an example, see Dynamically Invoking Apache Flex
Methods.

• Advanced support

With advanced support, you create specific automation support for the custom control. This additional
automation support provides recording support and more powerful play-back support. The advantages
of advanced support include:

• High-level recording and playback support, including the recording and replaying of events.
• Silk4NET treats the custom control exactly the same as any other built-in Apache Flex control.
• Seamless integration into Silk4NET API
• Silk4NET uses the specific class name in the locator, for example Silk4NET records //

FlexSpinner.

The disadvantages of advanced support include:

• Implementation effort is required. The test application must be modified and the Open Agent must be
extended.

Dynamically Invoking Flex Methods
You can call methods, retrieve properties, and set properties on controls that Silk4NET does not expose by
using the dynamic invoke feature. This feature is useful for working with custom controls and for working
with controls that Silk4NET supports without customization.

Note: Typically, most properties are read-only and cannot be set.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4NET supports for the control.
• All public methods that the Flex API defines
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4NET types

Silk4NET types includes primitive types (such as boolean, int, string), lists, and other types (such as
Point)

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4NET types. These types are listed in the Supported Parameter
Types section.

• All methods that have no return value return null in C# or Nothing in VB.

Testing Specific Environments | 137

Defining a Custom Control in the Test Application
Typically, the test application already contains custom controls, which were added during development of
the application. If your test application already includes custom controls, you can proceed to Testing a Flex
Custom Control Using Dynamic Invoke or to Testing a Custom Control Using Automation Support.

This procedure shows how a Flex application developer can create a spinner custom control in Flex. The
spinner custom control that we create in this topic is used in several topics to illustrate the process of
implementing and testing a custom control.

The spinner custom control includes two buttons and a textfield, as shown in the following graphic.

The user can click Down to decrement the value that is displayed in the textfield and click Up to increment
the value in the textfield.

The custom control offers a public "Value" property that can be set and retrieved.
1. In the test application, define the layout of the control.

For example, for the spinner control type:

<?xml version="1.0" encoding="utf-8"?>
<customcontrols:SpinnerClass xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:controls="mx.controls.*" xmlns:customcontrols="customcontrols.*">
 <controls:Button id="downButton" label="Down" />
 <controls:TextInput id="text" enabled="false" />
 <controls:Button id="upButton" label="Up"/>
</customcontrols:SpinnerClass>

2. Define the implementation of the custom control.
For example, for the spinner control type:

package customcontrols
{
 import flash.events.MouseEvent;

 import mx.containers.HBox;
 import mx.controls.Button;
 import mx.controls.TextInput;
 import mx.core.UIComponent;
 import mx.events.FlexEvent;

 [Event(name="increment", type="customcontrols.SpinnerEvent")]
 [Event(name="decrement", type="customcontrols.SpinnerEvent")]

 public class SpinnerClass extends HBox
 {
 public var downButton : Button;
 public var upButton : Button;
 public var text : TextInput;
 public var ssss: SpinnerAutomationDelegate;
 private var _lowerBound : int = 0;
 private var _upperBound : int = 5;

 private var _value : int = 0;
 private var _stepSize : int = 1;

 public function SpinnerClass() {
 addEventListener(FlexEvent.CREATION_COMPLETE,
creationCompleteHandler);
 }

138 | Testing Specific Environments

 private function creationCompleteHandler(event:FlexEvent) : void {
 downButton.addEventListener(MouseEvent.CLICK,
downButtonClickHandler);
 upButton.addEventListener(MouseEvent.CLICK,
upButtonClickHandler);
 updateText();
 }

 private function downButtonClickHandler(event : MouseEvent) : void {
 if(Value - stepSize >= lowerBound) {
 Value = Value - stepSize;
 }
 else {
 Value = upperBound - stepSize + Value - lowerBound + 1;
 }

 var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent.DECREMENT);
 spinnerEvent.steps = _stepSize;
 dispatchEvent(spinnerEvent);
 }

 private function upButtonClickHandler(event : MouseEvent) : void {
 if(cValue <= upperBound - stepSize) {
 Value = Value + stepSize;
 }
 else {
 Value = lowerBound + Value + stepSize - upperBound - 1;
 }

 var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent.INCREMENT);
 spinnerEvent.steps = _stepSize;
 dispatchEvent(spinnerEvent);
 }

 private function updateText() : void {
 if(text != null) {
 text.text = _value.toString();
 }
 }

 public function get Value() : int {
 return _value;
 }

 public function set Value(v : int) : void {
 _value = v;
 if(v < lowerBound) {
 _value = lowerBound;
 }
 else if(v > upperBound) {
 _value = upperBound;
 }
 updateText();

 }

 public function get stepSize() : int {
 return _stepSize;
 }

 public function set stepSize(v : int) : void {

Testing Specific Environments | 139

 _stepSize = v;
 }

 public function get lowerBound() : int {
 return _lowerBound;
 }

 public function set lowerBound(v : int) : void {
 _lowerBound = v;
 if(Value < lowerBound) {
 Value = lowerBound;
 }
 }

 public function get upperBound() : int {
 return _upperBound;
 }

 public function set upperBound(v : int) : void {
 _upperBound = v;
 if(Value > upperBound) {
 Value = upperBound;
 }
 }
 }
}

3. Define the events that the control uses.
For example, for the spinner control type:

package customcontrols
{
 import flash.events.Event;

 public class SpinnerEvent extends Event
 {
 public static const INCREMENT : String = "increment";
 public static const DECREMENT : String = "decrement";

 private var _steps : int;

 public function SpinnerEvent(eventName : String) {
 super(eventName);
 }

 public function set steps(value:int) : void {
 _steps = value;
 }

 public function get steps() : int {
 return _steps;
 }

 }
}

The next step is to implement automation support for the test application.

Testing a Flex Custom Control Using Dynamic Invoke
Silk4NET provides record and playback support for custom controls using dynamic invoke to interact with
the custom control during replay. Use this low-effort approach when you want to access properties and
methods of the custom control in the test application that Silk4NET does not expose. The developer of the
custom control can also add methods and properties to the custom control specifically for making the
control easier to test.

140 | Testing Specific Environments

1. To retrieve a list of supported dynamic methods for a control, use the GetDynamicMethodList
method.

2. Call dynamic methods on objects with the Invoke method.

3. Call multiple dynamic methods on objects with the InvokeMethods method.

4. To retrieve a list of supported dynamic properties for a control, use the GetPropertyList method.

5. Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method.

Example

The following example tests a spinner custom control that includes two buttons and a
textfield, as shown in the following graphic.

The user can click Down to decrement the value that is displayed in the textfield and
click Up to increment the value in the textfield.

The custom control offers a public "Value" property that can be set and retrieved.

To set the spinner's value to 4, type the following:

Dim spinner = Desktop.Find("//
FlexBox[@className=customcontrols.Spinner]")
spinner.SetProperty("Value", 4)

Testing a Custom Control Using Automation Support
You can create specific automation support for the custom control. This additional automation support
provides recording support and more powerful play-back support. To create automation support, the test
application must be modified and the Open Agent must be extended.

Before you can test a custom control in Silk4NET, perform the following steps:

• Define the custom control in the test application
• Implement automation support

After the test application has been modified and includes automation support, perform the following steps:

For scripts, record the script and make manual modifications to fit the custom control.
For example, the following code shows how to increment the spinner's value by 3 by using the
"Increment" method that has been implemented in the automation delegate:

_desktop.TestObject("//FlexSpinner[@caption='index:
1']").Invoke("Increment", 3)

The following example shows how to set the value of the spinner to 3.

_desktop.TestObject("//FlexSpinner[@caption='index:
1']").SetProperty("Value", 3)

Implementing Automation Support for a Custom Control

Before you can test a custom control, implement automation support (the automation delegate) in
ActionScript for the custom control and compile that into the test application.

The following procedure uses a custom Flex spinner control to demonstrate how to implement automation
support for a custom control. The spinner custom control includes two buttons and a textfield, as shown in
the following graphic.

Testing Specific Environments | 141

The user can click Down to decrement the value that is displayed in the textfield and click Up to increment
the value in the textfield.

The custom control offers a public "Value" property that can be set and retrieved.

1. Implement automation support (the automation delegate) in ActionScript for the custom control.
For further information about implementing an automation delegate, see the Adobe Live Documentation
at http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html.
In this example, the automation delegate adds support for the methods "increment", "decrement". The
example code for the automation delegate looks like this:

package customcontrols
{
 import flash.display.DisplayObject;
 import mx.automation.Automation;
 import customcontrols.SpinnerEvent;
 import mx.automation.delegates.containers.BoxAutomationImpl;
 import flash.events.Event;
 import mx.automation.IAutomationObjectHelper;
 import mx.events.FlexEvent;
 import flash.events.IEventDispatcher;
 import mx.preloaders.DownloadProgressBar;
 import flash.events.MouseEvent;
 import mx.core.EventPriority;

 [Mixin]
 public class SpinnerAutomationDelegate extends BoxAutomationImpl
 {

 public static function init(root:DisplayObject) : void {
 // register delegate for the automation
 Automation.registerDelegateClass(Spinner,
SpinnerAutomationDelegate);
 }

 public function SpinnerAutomationDelegate(obj:Spinner) {
 super(obj);
 // listen to the events of interest (for recording)
 obj.addEventListener(SpinnerEvent.DECREMENT, decrementHandler);
 obj.addEventListener(SpinnerEvent.INCREMENT, incrementHandler);
 }

 protected function decrementHandler(event : SpinnerEvent) : void {
 recordAutomatableEvent(event);
 }

 protected function incrementHandler(event : SpinnerEvent) : void {
 recordAutomatableEvent(event);
 }

 protected function get spinner() : Spinner {
 return uiComponent as Spinner;
 }

 //----------------------------------
 // override functions
 //----------------------------------

 override public function get automationValue():Array {

142 | Testing Specific Environments

http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html

 return [spinner.Value.toString()];
 }

 private function replayClicks(button : IEventDispatcher, steps :
int) : Boolean {
 var helper : IAutomationObjectHelper =
Automation.automationObjectHelper;
 var result : Boolean;
 for(var i:int; i < steps; i++) {
 helper.replayClick(button);
 }
 return result;
 }

 override public function
replayAutomatableEvent(event:Event):Boolean {

 if(event is SpinnerEvent) {
 var spinnerEvent : SpinnerEvent = event as SpinnerEvent;
 if(event.type == SpinnerEvent.INCREMENT) {
 return replayClicks(spinner.upButton,
spinnerEvent.steps);
 }
 else if(event.type == SpinnerEvent.DECREMENT) {
 return replayClicks(spinner.downButton,
spinnerEvent.steps);
 }
 else {
 return false;
 }

 }
 else {
 return super.replayAutomatableEvent(event);
 }
 }

 // do not expose the child controls (i.e the buttons and the
textfield) as individual controls
 override public function get numAutomationChildren():int {
 return 0;
 }

 }
}

2. To introduce the automation delegate to the Open Agent, create an XML file that describes the custom
control.

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

The XML file for the spinner custom control looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<TypeInformation>
 <ClassInfo Name="FlexSpinner" Extends="FlexBox">
 <Implementation
 Class="customcontrols.Spinner" />
 <Events>
 <Event Name="Decrement">
 <Implementation
 Class="customcontrols.SpinnerEvent"
 Type="decrement" />
 <Property Name="steps">

Testing Specific Environments | 143

 <PropertyType Type="integer" />
 </Property>
 </Event>
 <Event Name="Increment">
 <Implementation
 Class="customcontrols.SpinnerEvent"
 Type="increment" />
 <Property Name="steps">
 <PropertyType Type="integer" />
 </Property>
 </Event>
 </Events>
 <Properties>
 <Property Name="lowerBound" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 <Property Name="upperBound" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 <!-- expose read and write access for the Value property -->
 <Property Name="Value" accessType="both">
 <PropertyType Type="integer" />
 </Property>
 <Property Name="stepSize" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 </Properties>
 </ClassInfo>
</TypeInformation>

3. Include the XML file for the custom control in the folder that includes all the XML files that describe all
classes and their methods and properties for the supported Flex controls.

Silk Test contains several XML files that describe all classes and their methods and properties for the
supported Flex controls. Those XML files are located in the <<Silk Test_install_directory>
\ng\agent\plugins\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

If you provide your own XML file, you must copy your XML file into this folder. When the Open Agent
starts and initializes support for Apache Flex, it reads the contents of this directory.

To test the Flex Spinner sample control, you must copy the CustomControls.xml file into this folder. If the
Open Agent is currently running, restart it after you copy the file into the folder.

Flex Class Definition File

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

Silk Test contains several XML files that describe all classes/events/properties for the common Flex
common and specialized controls. Those XML files are located in the <Silk
Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

If you provide your own XML file, you must copy your XML file into this folder. When the Silk Test agent
starts and initializes support for Apache Flex, it reads the contents of this directory.

The XML file has the following basic structure:

<TypeInformation>

<ClassInfo>

<Implementation />

144 | Testing Specific Environments

<Events>

<Event />

…

</Events>

<Properties>

<Property />

…

</Properties>

</ClassInfo>

</TypeInformation>

Customizing Apache Flex Scripts
You can manually customize your Flex scripts. You can insert verifications manually using the Verify
function on Flex object properties. Each Flex object has a list of properties that you can verify. For a list of
the properties available for verification, review the Flex Class Reference.

1. Record a test for your Flex application.

2. Open the script file that you want to customize.

3. Manually type the code that you want to add.

Testing Multiple Flex Applications on the Same Web
Page
When multiple Flex applications exist on the same Web page, Silk4NET uses the Flex application ID or the
application size property to determine which application to test. If multiple applications exist on the same
page, but they are different sizes, Silk4NET uses the size property to determine on which application to
perform any actions and no additional steps are necessary.

Silk4NET uses JavaScript to find the Flex application ID to determine on which application to perform any
actions if:

• Multiple Flex applications exist on a single Web page
• Those applications are the same size

Note: In this situation, if JavaScript is not enabled on the browser machine, an error occurs when a
script runs.

1. Enable JavaScript.

2. In Internet Explorer, perform the following steps:

a) Choose Tools > Internet Options.
b) Click the Security tab.
c) Click Custom level.
d) In the Scripting section, under Active Scripting, click Enable and click OK.

3. Follow the steps in Testing Apache Flex Applications.

Testing Specific Environments | 145

Note: If a frame exists on the Web page and the applications are the same size, this method will
not work.

Adobe AIR Support
Silk4NET supports testing with Adobe AIR for applications that are compiled with the Flex 4 compiler. For
details about supported versions, check the Release Notes for the latest information.

Silk Test provides a sample Adobe AIR application. You can access the sample application at http://
demo.borland.com/flex/SilkTest20.0/index.html and then click the Adobe AIR application that you want to
use. You can select the application with or without automation. In order to execute the AIR application, you
must install the Adobe AIR Runtime.

Overview of the Flex Select Method Using Name or
Index
You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk4NET records Select methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

You can record Select events using the index for the following controls:

• FlexList

• FlexTree

• FlexDataGrid

• FlexAdvancedDataGrid

• FlexOLAPDataGrid

• FlexComboBox

The default setting is ItemBasedSelection (Select event), which uses the name control. To use the index,
you must adapt the AutomationEnvironment to use the IndexBasedSelection (SelectIndex event). To
change the behavior for one of these classes, you must modify the FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml file using the following code. Those XML files are located in
the <Silk Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_< version>\config
\automationEnvironment folder. Make the following adaptations in the corresponding xml file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnableIndexBasedSelection=”true” >

…

</ClassInfo>

With this adaption the IndexBasedSelection is used for recording FlexList::SelectIndex events.
Setting the EnableIndexBasedSelection= to false in the code or removing the Boolean returns
recording to using the name (FlexList::Select events).

Note: You must re-start your application, which automatically re-starts the Silk Test Agent, in order for
these changes to become active.

Selecting an Item in the FlexDataGrid Control
Select an item in the FlexDataGrid control using the index value or the content value.

1. To select an item in the FlexDataGrid control using the index value, use the SelectIndex method.

146 | Testing Specific Environments

http://demo.borland.com/flex/SilkTest20.0/index.html
http://demo.borland.com/flex/SilkTest20.0/index.html

For example, type FlexDataGrid.SelectIndex(1).

2. To select an item in the FlexDataGrid control using the content value, use the Select method.

Identify the row that you want to select with the required formatted string. Items must be separated by a
pipe (" | "). At least one Item must be enclosed by two stars ("*"). This identifies the item where the click
will be performed.

The syntax is: FlexDataGrid.Select("*Item1* | Item2 | Item3")

Enabling Your Flex Application for Testing
To enable your Flex application for testing, your Apache Flex developers must include the following
components in the Flex application:

• Apache Flex Automation Package
• Silk Test Automation Package

Apache Flex Automation Package

The Flex automation package provides developers with the ability to create Flex applications that use the
Automation API. You can download the Flex automation package from Adobe's website, http://
www.adobe.com. The package includes:

• Automation libraries – the automation.swc and automation_agent.swc libraries are the implementations
of the delegates for the Flex framework components. The automation_agent.swc file and its associated
resource bundle are the generic agent mechanism. An agent, such as the Silk Test Agent, builds on top
of these libraries.

• Samples

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, the typekey statement in the Flex Automation API does not
support all keys. You can use the input text statement to resolve this issue. For more information
about using the Flex Automation API, see the Apache Flex Release Notes.

Silk Test Automation Package

Silk Test's Open Agent uses the Apache Flex automation agent libraries. The FlexTechDomain.swc file
contains the Silk Test specific implementation.

You can enable your application for testing using either of the following methods:

• Linking automation packages to your Flex application
• Run-time loading

Linking Automation Packages to Your Flex Application
You must precompile Flex applications that you plan to test. The functional testing classes are embedded
in the application at compile time, and the application has no external dependencies for automated testing
at run time.

When you embed functional testing classes in your application SWF file at compile time, the size of the
SWF file increases. If the size of the SWF file is not important, use the same SWF file for functional testing
and deployment. If the size of the SWF file is important, generate two SWF files, one with functional testing
classes embedded and one without. Use the SWF file that does not include the embedded testing classes
for deployment.

When you precompile the Flex application for testing, in the include-libraries compiler option, reference the
following files:

• automation.swc

Testing Specific Environments | 147

http://www.adobe.com
http://www.adobe.com

• automation_agent.swc
• FlexTechDomain.swc
• automation_charts.swc (include only if your application uses charts and Flex 2.0)
• automation_dmv.swc (include if your application uses charts and Flex > 3.x)
• automation_flasflexkit.swc (include if your application uses embedded flash content)
• automation_spark.swc (include if your application uses the new Flex 4.x controls)
• automation_air.swc (include if your application is an AIR application)
• automation_airspark.swc (include if your application is an AIR application and uses new Flex 4.x

controls)

When you create the final release version of your Flex application, you recompile the application without
the references to these SWC files. For more information about using the automation SWC files, see the
Apache Flex Release Notes.

If you do not deploy your application to a server, but instead request it by using the file protocol or run it
from within Apache Flex Builder, you must include each SWF file in the local-trusted sandbox. This requires
additional configuration information. Add the additional configuration information by modifying the
compiler's configuration file or using a command-line option.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache FlexRelease Notes.

Precompiling the Flex Application for Testing
You can enable your application for testing by precompiling your application for testing or by using run-time
loading.

1. Include the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries in the compiler’s
configuration file by adding the following code to the configuration file:

<include-libraries>

...

<library>/libs/automation.swc</library>

<library>/libs/automation_agent.swc</library>

<library>pathinfo/FlexTechDomain.swc</library>

</include-libraries>

Note: If your application uses charts, you must also add the automation_charts.swc file.

2. Specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the include-libraries compiler option with the command-line compiler.

The configuration files are located at:

Apache Flex 2 SDK – <flex_installation_directory>/frameworks/flex-config.xml

Apache Flex Data Services – <flex_installation_directory>/flex/WEB-INF/flex/flex-config.xml

148 | Testing Specific Environments

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

Note: Explicitly setting the include-libraries option on the command line overwrites, rather than
appends, the existing libraries. If you add the automation.swc and automation_agent.swc files
using the include-libraries option on the command line, ensure that you use the += operator. This
appends rather than overwrites the existing libraries that are included.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround
is to not compile the application SWF files that Explorer loads with automation libraries. For
example, compile only the Explorer main application with automation libraries. Another alternative
is to use the module loader instead of swfloader. For more information about using the Flex
Automation API, see the Apache FlexRelease Notes.

Run-Time Loading
You can load Flex automation support at run time using the Silk Test Flex Automation Launcher. This
application is compiled with the automation libraries and loads your application with the SWFLoader class.
This automatically enables your application for testing without compiling automation libraries into your SWF
file. The Silk Test Flex Automation Launcher is available in HTML and SWF file formats.

Limitations

• The Flex Automation Launcher Application automatically becomes the root application. If your
application must be the root application, you cannot load automation support with the Silk Test Flex
Automation Launcher.

• Testing applications that load external libraries – Applications that load other SWF file libraries require a
special setting for automated testing. A library that is loaded at run time (including run-time shared
libraries (RSLs) must be loaded into the ApplicationDomain of the loading application. If the SWF file
used in the application is loaded in a different application domain, automated testing record and
playback will not function properly. The following example shows a library that is loaded into the same
ApplicationDomain:

import flash.display.*;

import flash.net.URLRequest;

import flash.system.ApplicationDomain;

import flash.system.LoaderContext;

var ldr:Loader = new Loader();

var urlReq:URLRequest = new URLRequest("RuntimeClasses.swf");

var context:LoaderContext = new LoaderContext();

context.applicationDomain = ApplicationDomain.currentDomain;

loader.load(request, context);

Testing Specific Environments | 149

Loading at Run-Time

1. Copy the content of the Silk\Silk Test\ng\AutomationSDK\Flex\<version>
\FlexAutomationLauncher directory into the directory of the Flex application that you are testing.

2. Open FlexAutomationLauncher.html in Windows Explorer and add the following parameter as a
suffix to the file path:

?automationurl=YourApplication.swf

where YourApplication.swf is the name of the SWF file for your Flex application.

3. Add file:/// as a prefix to the file path.
For example, if your file URL includes a parameter, such as: ?automationurl=explorer.swf,
type: .

file:///C:/Program%20Files/Silk/Silk Test/ng/sampleapplications/Flex/3.2/
FlexControlExplorer32/FlexAutomationLauncher.html?automationurl=explorer.swf

Using the Command Line to Add Configuration Information
To specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the command-line compiler, use the include-libraries compiler option.

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

Note: If your application uses charts, you must also add the automation_charts.swc file to the
include-libraries compiler option.

Explicitly setting the include-libraries option on the command line overwrites, rather than appends, the
existing libraries. If you add the automation.swc and automation_agent.swc files using the include-
libraries option on the command line, ensure that you use the += operator. This appends rather than
overwrites the existing libraries that are included.

To add automated testing support to a Flex Builder project, you must also add the automation.swc and
automation_agent.swc files to the include-libraries compiler option.

Passing Parameters into a Flex Application
You can pass parameters into a Flex application using the following procedures.

Passing Parameters into a Flex Application Before Runtime

You can pass parameters into a Flex application before runtime using automation libraries.

1. Compile your application with the appropriate automation libraries.

2. Use the standard Flex mechanism for the parameter as you typically would.

Passing Parameters into a Flex Application at Runtime Using the Flex Automation Launcher

Before you begin this task, prepare your application for run-time loading.

1. Open the FlexAutomationLauncher.html file or create a file using
FlexAutomationLauncher.html as an example.

2. Navigate to the following section:

<script language="JavaScript" type="text/javascript">

 AC_FL_RunContent(eef

 "src", "FlexAutomationLauncher",

150 | Testing Specific Environments

 "width", "100%",

 "height", "100%",

 "align", "middle",

 "id", "FlexAutomationLauncher",

 "quality", "high",

 "bgcolor", "white",

 "name", "FlexAutomationLauncher",

 "allowScriptAccess","sameDomain",

 "type", "application/x-shockwave-flash",

 "pluginspage", "http://www.adobe.com/go/getflashplayer",

 "flashvars", "yourParameter=yourParameterValue"+
"&automationurl=YourApplication.swf"

);

 </script>

Note: Do not change the "FlexAutomationLauncher" value for "src", "id", or "name."

3. Add your own parameter to "yourParameter=yourParameterValue".

4. Pass the name of the Flex application that you want to test as value for the "&
automationurl=YourApplication.swf" value.

5. Save the file.

Creating Testable Flex Applications
As a Flex developer, you can employ techniques to make Flex applications as "test friendly" as possible.
These include:

• Providing Meaningful Identification of Objects
• Avoiding Duplication of Objects

Providing Meaningful Identification of Objects

To create "test friendly" applications, ensure that objects are identifiable in scripts. You can set the value of
the ID property for all controls that are tested, and ensure that you use a meaningful string for that ID
property.

To provide meaningful identification of objects:

• Give all testable MXML components an ID to ensure that the test script has a unique identifier to use
when referring to that Flex control.

• Make these identifiers as human-readable as possible to make it easier for the user to identify that
object in the testing script. For example, set the id property of a Panel container inside a TabNavigator
to submit_panel rather than panel1 or p1.

Testing Specific Environments | 151

When working with Silk4NET, an object is automatically given a name depending on certain tags, for
instance, id, childIndex. If there is no value for the id property, Silk4NET uses other properties, such as the
childIndex property. Assigning a value to the id property makes the testing scripts easier to read.

Avoiding Duplication of Objects

Automation agents rely on the fact that some properties of object instances will not be changed during run
time. If you change the Flex component property that is used by Silk4NET as the object name at run time,
unexpected results can occur. For example, if you create a Button control without an automationName
property, and you do not initially set the value of its label property, and then later set the value of the label
property, problems might occur. In this case, Silk4NET uses the value of the label property of Button
controls to identify an object if the automationName property is not set. If you later set the value of the
label property, or change the value of an existing label, Silk4NET identifies the object as a new object
and does not reference the existing object.

To avoid duplicating objects:

• Understand what properties are used to identify objects in the agent and avoid changing those
properties at run time.

• Set unique, human-readable id or automationName properties for all objects that are included in the
recorded script.

Custom Attributes for Apache Flex Applications

Apache Flex applications use the predefined property automationName to specify a stable identifier for
the Apache Flex control as follows:

<?xml version="1.0" encoding="utf-8"?>
 <s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx" width="400" height="300">
 <fx:Script>
 …
 </fx:Script>
 <s:Button x="247" y="81" label="Button" id="button1" enabled="true"
click="button1_clickHandler(event)"
 automationName="AID_buttonRepeat"/>
 <s:Label x="128" y="123" width="315" height="18" id="label1"
verticalAlign="middle"
 text="awaiting your click" textAlign="center"/>
 </s:Group>

Apache Flex application locators look like the following:

…//SparkApplication//SparkButton[@caption='AID_buttonRepeat'

Attention: For Apache Flex applications, the automationName is always mapped to the locator
attribute caption in Silk4NET. If the automationName attribute is not specified, Silk4NET maps the
property ID to the locator attribute caption.

Flex AutomationName and AutomationIndex Properties

The Flex Automation API introduces the automationName and automationIndex properties. If you
provide the automationName, Silk4NET uses this value for the recorded window declaration's name.
Providing a meaningful name makes it easier for Silk4NET to identify that object. As a best practice, set the
value of the automationName property for all objects that are part of the application's test.

Use the automationIndex property to assign a unique index value to an object. For instance, if two
objects share the same name, assign an index value to distinguish between the two objects.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for

152 | Testing Specific Environments

Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache Flex Release Notes.

Flex Class Definition File

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

Silk Test contains several XML files that describe all classes/events/properties for the common Flex
common and specialized controls. Those XML files are located in the <Silk
Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

If you provide your own XML file, you must copy your XML file into this folder. When the Silk Test agent
starts and initializes support for Apache Flex, it reads the contents of this directory.

The XML file has the following basic structure:

<TypeInformation>

<ClassInfo>

<Implementation />

<Events>

<Event />

…

</Events>

<Properties>

<Property />

…

</Properties>

</ClassInfo>

</TypeInformation>

Setting the Flex automationName Property

The automationName property defines the name of a component as it appears in tests. The default value
of this property varies depending on the type of component. For example, the automationName for a
Button control is the label of the Button control. Sometimes, the automationName is the same as the id
property for the control, but this is not always the case.

For some components, Flex sets the value of the automationName property to a recognizable attribute of
that component. This helps testers recognize the component in their tests. Because testers typically do not
have access to the underlying source code of the application, having a control's visible property define that

Testing Specific Environments | 153

control can be useful. For example, a Button labeled "Process Form Now" appears in the test as
FlexButton("Process Form Now").

If you implement a new component, or derive from an existing component, you might want to override the
default value of the automationName property. For example, UIComponent sets the value of the
automationName to the component's id property by default. However, some components use their own
methods for setting the value. For example, in the Flex Store sample application, containers are used to
create the product thumbnails. A container's default automationName would not be very useful because it
is the same as the container's id property. So, in Flex Store, the custom component that generates a
product thumbnail explicitly sets the automationName to the product name to make testing the
application easier.

Example

The following example from the CatalogPanel.mxml custom component sets the value
of the automationName property to the name of the item as it appears in the catalog.
This is more recognizable than the default automation name.

thumbs[i].automationName = catalog[i].name;

Example

The following example sets the automationName property of the ComboBox control to
"Credit Card List"; rather than using the id property, the testing tool typically uses
"Credit Card List" to identify the ComboBox in its scripts:

<?xml version="1.0"?>
<!-- at/SimpleComboBox.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:Script>
 <![CDATA[
 [Bindable]
 public var cards: Array = [
 {label:"Visa", data:1},
 {label:"MasterCard", data:2},
 {label:"American Express", data:3}
];

 [Bindable]
 public var selectedItem:Object;
]
]>
 </mx:Script>
 <mx:Panel title="ComboBox Control Example">
 <mx:ComboBox id="cb1" dataProvider="{cards}"
 width="150"
 close="selectedItem=ComboBox(event.target).selectedItem"
 automationName="Credit Card List"
 />
 <mx:VBox width="250">
 <mx:Text width="200" color="blue" text="Select a type of
credit card." />
 <mx:Label text="You selected: {selectedItem.label}"/>
 <mx:Label text="Data: {selectedItem.data}"/>
 </mx:VBox>
 </mx:Panel>
</mx:Application>

Setting the value of the automationName property ensures that the object name will
not change at run time. This helps to eliminate unexpected results.

154 | Testing Specific Environments

If you set the value of the automationName property, tests use that value rather than
the default value. For example, by default, Silk4NET uses a Button control's label
property as the name of the Button in the script. If the label changes, the script can
break. You can prevent this from happening by explicitly setting the value of the
automationName property.

Buttons that have no label, but have an icon, are recorded by their index number. In this
case, ensure that you set the automationName property to something meaningful so
that the tester can recognize the Button in the script. After the value of the
automationName property is set, do not change the value during the component's life
cycle. For item renderers, use the automationValue property rather than the
automationName property. To use the automationValue property, override the
createAutomationIDPart() method and return a new value that you assign to the
automationName property, as the following example shows:

<mx:List xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:Script>
 <![CDATA[
 import mx.automation.IAutomationObject;
 override public function
 createAutomationIDPart(item:IAutomationObject):Object {
 var id:Object = super.createAutomationIDPart(item);
 id["automationName"] = id["automationIndex"];
 return id;
 }
]]>
 </mx:Script>
</mx:List>

Use this technique to add index values to the children of any container or list-like
control. There is no method for a child to specify an index for itself.

Setting the Flex Select Method to Use Name or Index

You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk Test records Select methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

1. Determine which class you want to modify to use the Index.
You can record Select events using the index for the following controls:

• FlexList

• FlexTree

• FlexDataGrid

• FlexOLAPDataGrid

• FlexComboBox

• FlexAdvancedDataGrid

2. Determine which XML file is related to the class that you want to modify.
The XML files related to the preceding controls include: FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml.

3. Navigate to the XML files that are related to the class that you want to modify.
The XML files are located in the <Silk Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

4. Make the following adaptations in the corresponding XML file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnableIndexBasedSelection=”true” >

Testing Specific Environments | 155

…

</ClassInfo>

For instance, you might use "FlexList" as the " FlexControlName" and modify the
FlexCommonControls.xml file.

With this adaption the IndexBasedSelection is used for recording FlexList::SelectIndex events.

Note: Setting the EnableIndexBasedSelection= to false in the code or removing the
boolean returns recording to using the name (FlexList::Select events).

5. Re-start your Flex application and the Open Agent in order for these changes to become active.

Coding Flex Containers
Containers differ from other kinds of controls because they are used both to record user interactions (such
as when a user moves to the next pane in an Accordion container) and to provide unique locations for
controls in the testing scripts.

Adding and Removing Containers from the Automation Hierarchy

In general, the automated testing feature reduces the amount of detail about nested containers in its
scripts. It removes containers that have no impact on the results of the test or on the identification of the
controls from the script. This applies to containers that are used exclusively for layout, such as the HBox,
VBox, and Canvas containers, except when they are being used in multiple-view navigator containers, such
as the ViewStack, TabNavigator, or Accordion containers. In these cases, they are added to the automation
hierarchy to provide navigation.

Many composite components use containers, such as Canvas or VBox, to organize their children. These
containers do not have any visible impact on the application. As a result, you typically exclude these
containers from testing because there is no user interaction and no visual need for their operations to be
recordable. By excluding a container from testing, the related test script is less cluttered and easier to read.

To exclude a container from being recorded (but not exclude its children), set the container's
showInAutomationHierarchy property to false. This property is defined by the UIComponent class,
so all containers that are a subclass of UIComponent have this property. Children of containers that are
not visible in the hierarchy appear as children of the next highest visible parent.

The default value of the showInAutomationHierarchy property depends on the type of container. For
containers such as Panel, Accordion, Application, DividedBox, and Form, the default value is true; for
other containers, such as Canvas, HBox, VBox, and FormItem, the default value is false.

The following example forces the VBox containers to be included in the test script's hierarchy:

<?xml version="1.0"?>
<!-- at/NestedButton.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Panel title="ComboBox Control Example">
<mx:HBox id="hb">
<mx:VBox id="vb1" showInAutomationHierarchy="true">
<mx:Canvas id="c1">
<mx:Button id="b1" automationName="Nested Button 1" label="Click Me" />
</mx:Canvas>
</mx:VBox>
<mx:VBox id="vb2" showInAutomationHierarchy="true">
<mx:Canvas id="c2">
<mx:Button id="b2" automationName="Nested Button 2" label="Click Me 2" />
</mx:Canvas>
</mx:VBox>
</mx:HBox>
</mx:Panel>
</mx:Application>

156 | Testing Specific Environments

Multiview Containers

Avoid using the same label on multiple tabs in multiview containers, such as the TabNavigator and
Accordion containers. Although it is possible to use the same labels, this is generally not an acceptable UI
design practice and can cause problems with control identification in your testing environment.

Flex Automation Testing Workflow
The Silk4NET workflow for testing Flex applications includes:

• Automated Testing Initialization
• Automated Testing Recording
• Automated Testing Playback

Flex Automated Testing Initialization

When the user launches the Flex application, the following initialization events occur:

1. The automation initialization code associates component delegate classes with component classes.
2. The component delegate classes implement the IAutomationObject interface.
3. An instance for the AutomationManager is created in the mixin init() method. (The

AutomationManager is a mixin.)
4. The SystemManager initializes the application. Component instances and their corresponding delegate

instances are created. Delegate instances add event listeners for events of interest.
5. The Silk4NET FlexTechDomain is a mixin. In the FlexTechDomain init() method, the

FlexTechDomain registers for the SystemManager.APPLICATION_COMPLETE event. When the event
is received, it creates a FlexTechDomain instance.

6. The FlexTechDomain instance connects via a TCP/IP socket to the Silk Test Agent on the same
machine that registers for record/playback functionality.

7. The FlexTechDomain requests information about the automation environment. This information is stored
in XML files and is forwarded from the Silk Test Agent to the FlexTechDomain.

Flex Automated Testing Recording

When the user records a new test in Silk4NET for a Flex application, the following events occur:

1. Silk4NET calls the Silk Test Agent to start recording. The Agent forwards this command to the
FlexTechDomain instance.

2. FlexTechDomain notifies AutomationManager to start recording by calling beginRecording(). The
AutomationManager adds a listener for the AutomationRecordEvent.RECORD event from the
SystemManager.

3. The user interacts with the application. For example, suppose the user clicks a Button control.
4. The ButtonDelegate.clickEventHandler() method dispatches an AutomationRecordEvent

event with the click event and Button instance as properties.
5. The AutomationManager record event handler determines which properties of the click event to store

based on the XML environment information. It converts the values into proper type or format. It
dispatches the record event.

6. The FlexTechDomain event handler receives the event. It calls the
AutomationManager.createID() method to create the AutomationID object of the button. This
object provides a structure for object identification. The AutomationID structure is an array of
AutomationIDParts. An AutomationIDPart is created by using IAutomationObject. (The UIComponent.id,
automationName, automationValue, childIndex, and label properties of the Button control are read and
stored in the object. The label property is used because the XML information specifies that this property
can be used for identification for the Button.)

7. FlexTechDomain uses the AutomationManager.getParent() method to get the logical parent of
Button. The AutomationIDPart objects of parent controls are collected at each level up to the application
level.

Testing Specific Environments | 157

8. All the AutomationIDParts are included as part of the AutomationID object.
9. The FlexTechDomain sends the information in a call to Silk4NET.
10.When the user stops recording, the FlexTechDomain.endRecording() method is called.

Flex Automated Testing Playback

When the user clicks the Playback button in Silk4NET, the following events occur:

1. For each script call, Silk4NET contacts the Silk Test Agent and sends the information for the script call
to be executed. This information includes the complete window declaration, the event name, and
parameters.

2. The Silk Test Agent forwards that information to the FlexTechDomain.
3. The FlexTechDomain uses AutomaionManager.resolveIDToSingleObject with the window

declaration information. The AutomationManager returns the resolved object based on the descriptive
information (automationName, automationIndex, id, and so on).

4. Once the Flex control is resolved, FlexTechDomain calls
AutomationManager.replayAutomatableEvent() to replay the event.

5. The AutomationManager.replayAutomatableEvent() method invokes the
IAutomationObject.replayAutomatableEvent() method on the delegate class. The delegate
uses the IAutomationObjectHelper.replayMouseEvent() method (or one of the other replay
methods, such as replayKeyboardEvent()) to play back the event.

6. If there are verifications in your script, FlexTechDomain invokes
AutomationManager.getProperties() to access the values that must be verified.

Styles in Apache Flex Applications
For applications developed in Apache Flex 3.x, Silk4NET does not distinguish between styles and
properties. As a result, styles are exposed as properties. However, with Apache Flex 4.x, all new Flex
controls, which are prefixed with Spark, such as SparkButton, do not expose styles as properties. As a
result, the GetProperty() and GetPropertyList() methods for Flex 4.x controls do not return styles,
such as color or fontSize, but only properties, such as text and name.

The GetStyle(string styleName) method returns values of styles as a string. To find out which
styles exist, refer to the Adobe help located at: http://help.adobe.com/en_US/FlashPlatform/reference/
actionscript/3/package-detail.html.

If the style is not set, a StyleNotSetException occurs during playback.

For the Flex 3.x controls, such as FlexTree, you can use GetProperty() to retrieve styles. Or, you can
use GetStyle(). Both the GetProperty() and GetStyle() methods work with Flex 3.x controls.

Calculating the Color Style

In Flex, the color is represented as number. It can be calculated using the following formula:

red*65536 + green*256 + blue

Example

In the following example, the script verifies whether the buttonBar in the Spark
application uses font size 12.

 Imports SilkTest.Ntf.Flex

Public Module Main
 Dim _desktop As Desktop = Agent.Desktop

 Public Sub Main()
 Dim Application As SparkApplication
 Dim ButtonBar As SparkButtonBar

158 | Testing Specific Environments

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html

 Application = _desktop.Find("/BrowserApplication//
BrowserWindow//
 SparkApplication")
 ButtonBar = Application.SparkButtonBar()

 Workbench.Verify(ButtonBar.GetStyle("fontSize"),
"12")
 End Sub
End Module

Configuring Flex Applications for Adobe Flash Player
Security Restrictions
The security model in Adobe Flash Player 10 has changed from earlier versions. When you record tests
that use Flash Player, recording works as expected. However, when you play back tests, unexpected
results occur when high-level clicks are used in certain situations. For instance, a File Reference dialog
box cannot be opened programmatically and when you attempt to play back this scenario, the test fails
because of security restrictions.

To work around the security restrictions, you can perform a low-level click on the button that opens the
dialog box. To create a low-level click, add a parameter to the Click method.

For example, instead of using SparkButton::Click(), use
SparkButton::Click(MouseButton.Left). A Click() without parameters is a high-level click and
a click with parameters (such as the button) is replayed as a low-level click.

1. Record the steps that use Flash Player.

2. Navigate to the Click method and add a parameter.
For example, to open the Open File dialog box, specify:

SparkButton("@caption='Open File Dialog…'").Click(MouseButton.Left)

When you play back the test, it works as expected.

Attributes for Apache Flex Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Flex applications include:

• automationName
• caption (similar to automationName)
• automationClassName (e.g. FlexButton)
• className (the full qualified name of the implementation class, e.g. mx.controls.Button)
• automationIndex (the index of the control in the view of the FlexAutomation, e.g. index:1)
• index (similar to automationIndex but without the prefix, e.g. 1)
• id (the id of the control)
• windowId (similar to id)
• label (the label of the control)
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Testing Specific Environments | 159

Why Cannot Silk4NET Recognize Apache Flex
Controls?
If Silk4NET cannot recognize the controls of an Apache Flex application, which you are accessing through
a Web server, you can try the following things:

• Compile your Apache Flex application with the Adobe automation libraries and the appropriate
FlexTechDomain.swc for the Apache Flex version.

• Use runtime loading.
• Apache Flex controls are not recognized when embedding an Apache Flex application with an empty id

attribute.

Java AWT/Swing Support
Silk4NET provides built-in support for testing applications or applets that use the Java AWT/Swing controls.
When you configure an application or applet that uses Java AWT/Swing, Silk4NET automatically provides
support for testing standard AWT/Swing controls.

Note: You can also test Java SWT controls embedded in Java AWT/Swing applications or applets as
well as Java AWT/Swing controls embedded in Java SWT applications.

Note: Image click recording is not supported for applications or applets that use the Java AWT/Swing
controls.

Sample Applications

Silk Test provides a sample Swing test application. Download and install the sample applications from
http://supportline.microfocus.com/websync/SilkTest.aspx. After you have installed the sample applications,
click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Sample Applications > Java Swing
> Swing Test Application or (in Microsoft Windows 10) Start > Silk.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

For a complete list of the controls available for Java AWT/Swing testing, see JavaSwing Class Reference.

Attributes for Java AWT/Swing Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java AWT/Swing include:

• caption
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

• name
• accessibleName
• Swing only: All custom object definition attributes set in the widget with

putClientProperty("propertyName", "propertyValue")

160 | Testing Specific Environments

http://supportline.microfocus.com/websync/SilkTest.aspx
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Java Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4NET API for this control. Dynamic invoke is especially useful when you are working
with custom controls, where the required functionality for interacting with the control is not exposed through
the Silk4NET API.

Call dynamic methods on objects with the Invoke method. To retrieve a list of supported dynamic
methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the InvokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.Invoke("SetTitle", "my new title")

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4NET supports for the control.
• All public methods of the SWT, AWT, or Swing widget
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• Primitive types (boolean, integer, long, double, string)

Both primitive types, such as int, and object types, such as java.lang.Integer are supported.
Primitive types are widened if necessary, allowing, for example, to pass an int where a long is
expected.

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the enum type, java.sql.ClientInfoStatus you
can use the string values of REASON_UNKNOWN, REASON_UNKNOWN_PROPERTY,
REASON_VALUE_INVALID, or REASON_VALUE_TRUNCATED

• Lists

Allows calling methods with list, array, or var-arg parameters. Conversion to an array type is done
automatically, provided the elements of the list are assignable to the target array type.

Testing Specific Environments | 161

• Other controls

Control parameters can be passed or returned as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4NET types. These types are listed in the Supported Parameter
Types section.

• All methods that have no return value return null in C# or Nothing in VB.

Determining the priorLabel in the Java AWT/Swing
Technology Domain
To determine the priorLabel in the Java AWT/Swing technology domain, all labels and groups in the same
window as the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• If a parent of the control is a JViewPort or a ScrollPane, the algorithm works as if the parent is the
window that contains the control, and nothing outside is considered relevant.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, and one is to the left and the other above the

control, the left one is preferred.
• If no label is eligible, the caption of the closest group is used.

Oracle Forms Support
This functionality is supported only if you are using the Open Agent.

Silk4NET provides built-in support for testing applications that are based on Oracle Forms.

Note: For some controls, Silk4NET provides only low-level recording support.

For information on the supported versions and browsers for Oracle Forms, refer to the Release Notes.

Prerequisites for Testing Oracle Forms
To test an application that is built with Oracle Forms, the following prerequisites need to be fulfilled:

• The next-generation Java Plug-In needs to be enabled. This setting is enabled by default. You can
change the setting in the Java Control Panel. For additional information on the next-generation Java
Plug-In, refer to the Java documentation.

• To prevent Java security dialogs from displaying during a test run, the Applet needs to be signed.
• Micro Focus recommends that the Oracle Forms developer enables the Names property. When this

property is enabled, the Oracle Forms runtime exposes the internal name, which is the name that the
developer of the control has specified for the control, as the Name property of the control. Otherwise,
Silk4NET calculates a value for the Silk4NET Name attribute, which usually consists of the class name
of the control plus an index. This enables Silk4NET to generate stable locators for controls.

Attributes for Oracle Forms Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Oracle Forms include:

162 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a
form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

• name
• accessibleName

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Java SWT and Eclipse RCP Support
Silk Test provides built-in support for testing applications that use widgets from the Standard Widget Toolkit
(SWT) controls. When you configure a Java SWT/RCP application, Silk Test automatically provides support
for testing standard Java SWT/RCP controls.

Silk Test supports:

• Testing Java SWT controls embedded in Java AWT/Swing applications as well as Java AWT/Swing
controls embedded in Java SWT applications.

• Testing Java SWT applications.
• Any Eclipse-based application that uses SWT widgets for rendering. Silk Test supports both Eclipse

IDE-based applications and RCP-based applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

For a complete list of the widgets available for SWT testing, see Java SWT Class Reference.

Java SWT Class Reference
When you configure a Java SWT application, Silk4NET automatically provides built-in support for testing
standard Java SWT controls.

Java SWT Custom Attributes
You can add custom attributes to a test application to make a test more stable. For example, in Java SWT,
the developer implementing the GUI can define an attribute (for example, 'silkTestAutomationId')
for a widget that uniquely identifies the widget in the application. A tester using Silk4NET can then add that
attribute to the list of custom attributes (in this case, 'silkTestAutomationId'), and can identify
controls by that unique ID. Using a custom attribute is more reliable than other attributes like caption or
index, since a caption will change when you translate the application into another language, and the index
will change whenever another widget is added before the one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different text fields, both fields will return when you call the 'loginName' attribute.

Java SWT Example

If you create a button in the application that you want to test using the following code:

Button myButton = Button(parent, SWT.NONE);

myButton.setData("SilkTestAutomationId", "myButtonId");

Testing Specific Environments | 163

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

To add the attribute to your XPath query string in your test, you can use the following query:

Dim button =
desktop.PushButton("@SilkTestAutomationId='myButton'")

To enable a Java SWT application for testing custom attributes, the developers must include custom
attributes in the application. Include the attributes using the
org.swt.widgets.Widget.setData(String key, Object value) method.

Attributes for Java SWT Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java SWT include:

• caption
• all custom object definition attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Java Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4NET API for this control. Dynamic invoke is especially useful when you are working
with custom controls, where the required functionality for interacting with the control is not exposed through
the Silk4NET API.

Call dynamic methods on objects with the Invoke method. To retrieve a list of supported dynamic
methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the InvokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.Invoke("SetTitle", "my new title")

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4NET supports for the control.
• All public methods of the SWT, AWT, or Swing widget
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

164 | Testing Specific Environments

Supported Parameter Types

The following parameter types are supported:

• Primitive types (boolean, integer, long, double, string)

Both primitive types, such as int, and object types, such as java.lang.Integer are supported.
Primitive types are widened if necessary, allowing, for example, to pass an int where a long is
expected.

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the enum type, java.sql.ClientInfoStatus you
can use the string values of REASON_UNKNOWN, REASON_UNKNOWN_PROPERTY,
REASON_VALUE_INVALID, or REASON_VALUE_TRUNCATED

• Lists

Allows calling methods with list, array, or var-arg parameters. Conversion to an array type is done
automatically, provided the elements of the list are assignable to the target array type.

• Other controls

Control parameters can be passed or returned as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4NET types. These types are listed in the Supported Parameter
Types section.

• All methods that have no return value return null in C# or Nothing in VB.

Troubleshooting Java SWT and Eclipse Applications

Some SWTTree methods do not replay with low-level playback

When using low-level playback, some SWTTree methods, for example Expand and Collapse, do not
replay.

To solve this problem, set the replay mode to Default. For additional information, see Setting Replay
Options.

Selecting a non-visible node in an SWTTree

When using low-level playback, Silk4NET cannot interact with non-visible nodes in an SWTTree.

To solve this problem, set the replay mode to Default. For additional information, see Setting Replay
Options.

Testing Mobile Applications
Silk4NET enables you to automatically test your native mobile applications (apps) and mobile web
applications. Automatically testing your mobile applications with Silk4NET provides the following benefits:

• It can significantly reduce the testing time of your mobile applications.
• You can create your tests once and then test your mobile applications on a large number of different

devices and platforms.
• You can ensure the reliability and performance that is required for enterprise mobile applications.
• It can increase the efficiency of QA team members and mobile application developers.

Testing Specific Environments | 165

• Manual testing might not be efficient enough for an agile-focused development environment, given the
large number of mobile devices and platforms on which a mobile application needs to function.

Note: To test native mobile applications or hybrid applications with Silk4NET, you require a native
mobile license. For additional information, see Licensing Information.

Note: Silk4NET provides support for testing mobile apps on both Android and iOS devices.

For information on the supported operating system versions and the supported browsers for testing mobile
applications, refer to the Release Notes.

Android
Silk4NET enables you to test a mobile application on an Android device or an Android emulator.

Prerequisites for Testing Mobile Applications on Android
Before you can test a mobile application (app) on an Android device or on an Android emulator, ensure that
the following prerequisites are met:

• If you have created your own hybrid app by adding a web view to a native mobile app, add the following
code to the app to make your app testable with Silk4NET:

WebView.setWebContentsDebuggingEnabled(true);
webView.getSettings().setJavaScriptEnabled(true);

• Silk4NET does not support showing a live view of the device screen for Android 4.4. Micro Focus
recommends using Android 5 or later.

Testing Mobile Applications on Android
To test a mobile application on a physical Android device or on an Android emulator, perform the following
tasks:

1. Ensure that you have met the prerequisites for testing mobile applications on Android.

For additional information, see Prerequisites for Testing Mobile Applications on Android.

2. If you want to test the mobile application on an Android emulator, configure the emulator settings for
Silk4NET.

For additional information, see Configuring the Android Emulator for Silk Test.

3. Start the Android emulator or connect the device to the machine on which Silk4NET is installed.

4. If you want to test the mobile application on a physical Android device that you are using for the first
time on this machine, install the appropriate Android USB Driver on the machine.

For additional information, see Installing a USB Driver.

5. If you want to test the mobile application on a physical Android device, enable USB-debugging on the
Android device.

For additional information, see Enabling USB-Debugging.

6. Create a Silk4NET project for your mobile application.

7. Create a test for your mobile application.

8. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

9. To test a mobile web application:

a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

10.To test a native mobile application or a Hybrid application:

166 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Note: To test native mobile applications or hybrid applications with Silk4NET, you require a native
mobile license. For additional information, see Licensing Information.

a) Select the Mobile tab.
b) Select the mobile device, on which you want to test the app, from the list.
c) Select the native mobile application.

• If you want to install the app on the mobile device or emulator, click Browse to select the app file
or enter the full path to the app file into the App file text field. Silk4NET supports HTTP and UNC
formats for the path.

• If you want to use an app that is already installed on an Android device, select the app from the
Package/Activity list or specify the package and the activity in the Package/Activity field.

• If you want to use an app that is available in Mobile Center, specify the App identifier.

11.Click OK.

An Android device or emulator must not be screen-locked during testing. To keep the device awake
while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

12.Use the Recording window to record the test against the mobile application.

For additional information, see Recording Mobile Applications.

13.When you have recorded all the actions, stop the recording.

14.Replay the test.

15.Analyze the test results.

Testing Hybrid Applications on Android
Hybrid applications (apps) are apps that are run on the device, like native applications, but are written with
web technologies, for example HTML5, CSS, and JavaScript.

Silk4NET provides full browser support for testing debug hybrid apps that consist of a single web view,
which is embedded in a native container. A common example of such a hybrid app would be an Apache
Cordova application.

To prepare a non-debug hybrid app for testing, enable remote debugging in the app by adding the following
code to the app:

WebView.setWebContentsDebuggingEnabled(true);
webView.getSettings().setJavaScriptEnabled(true);

To test non-debug hybrid apps without remote debugging enabled or hybrid apps that include more than
one web view, enable the Silk4NET fallback support by setting the option
OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT to TRUE. For additional information, see
Setting Advanced Options. With the fallback support enabled, Silk4NET recognizes and handles the

Testing Specific Environments | 167

controls in a web view as native mobile controls instead of browser controls. For example, the following
code clicks on a link when using browser support:

' VB .NET code
Agent.SetOption(Options.EnableMobileWebviewFallbackSupport, False)
_desktop.DomLink("//BrowserApplication//BrowserWindow//
INPUT[@id='email']").Click()

// C# code
Agent.SetOption(Options.EnableMobileWebviewFallbackSupport, False);
_desktop.DomLink("//BrowserApplication//BrowserWindow//
INPUT[@id='email']").Click();

With the fallback support enabled, the following code clicks on the same link:

' VB .NET code
Agent.SetOption(Options.EnableMobileWebviewFallbackSupport, True)
_desktop.Find("//BrowserApplication//BrowserWindow//MobileTextField[@resource-
id='email']").Click()

// C# code
Agent.SetOption(Options.EnableMobileWebviewFallbackSupport, True);
_desktop.Find("//BrowserApplication//BrowserWindow//MobileTextField[@resource-
id='email']").Click();

Silk4NET can detect web views that support Chrome remote debugging. Silk4NET can detect web views
with either the package com.android.webview or the package com.google.android.webview, which are the
default packages on most Android devices.

Note: Silk4NET supports testing hybrid apps on Android 4.4 or later. To test hybrid apps on Android,
Android System WebView version 51 or later is required.

The process for testing a hybrid app on Android is the same as the process for testing a mobile native
application. For additional information, see Testing Mobile Applications on Android.

Installing a USB Driver
To connect an Android device for the first time to your local machine to test your mobile applications, you
need to install the appropriate USB driver.

The device manufacturer might provide an executable with all the necessary drivers for the device. In this
case you can just install the executable on your local machine. If the manufacturer does not provide such
an executable, you can install a single USB driver for the device on the machine.

To install the Android USB driver:

1. Download the appropriate driver for your device.

For example, for information on finding and installing a USB driver for a Google Nexus device, see
http://developer.android.com/tools/extras/oem-usb.html.

2. Connect your Android device to a USB port on your local machine.

3. From your desktop or Windows Explorer, right-click Computer and select Manage.

4. In the left pane, select Device Manager.

5. In the right pane, locate and expand Other device.

6. Right-click the device name, for example Nexus 5x, and select Update Driver Software. The Hardware
Update Wizard opens.

7. Select Browse my computer for driver software and click Next.

8. Click Browse and navigate to the folder to which you have downloaded the USB driver.

9. Select the USB driver.

10.Click Next to install the driver.

168 | Testing Specific Environments

http://developer.android.com/tools/extras/oem-usb.html

Enabling USB-Debugging
To communicate with an Android device over the Android Debug Bridge (adb), enable USB debugging on
the device.

1. On the Android device, open the settings.

2. Tap Developer Settings.

The developer settings are hidden by default. If the developer settings are not included in the settings
menu of the device:

a) Depending on whether the device is a phone or a pad, scroll down and tap About phone or About
Pad.

b) Scroll down again and tap Build Number seven times.

3. In the Developer settings window, check USB-Debugging.

4. Set the USB mode of the device to Media device (MTP), which is the default setting.

For additional information, refer to the documentation of the device.

Recommended Settings for Android Devices
To optimize testing with Silk4NET, configure the following settings on the Android device that you want to
test:

• Enable USB-debugging on the Android device. For additional information, see Enabling USB-Debugging
• An Android device must be connected as a media device to the machine on which the Open Agent is

running. The USB mode of the Android device must be set to Media device (MTP).
• An Android device or emulator must not be screen-locked during testing. To keep the device awake

while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

• Make sure to enable the 3-button navigation in the Android settings. 2-button navigation and
gesture navigation are not supported.

Configuring the Android Emulator for Silk4NET
Note: When using an Android emulator, an additional adb server is running in addition to the one that
is used by Silk4NET. If the running adb servers have different versions, the connection between the
Open Agent and the device might become unstable or even break. To avoid version mismatch errors,
specify the path to the Android SDK directory by setting the environment variable
SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. If the information service was running during this change, use the Windows Service
Manager to restart the Silk Test information service with the updated environment variable. If the
environment variable is not set, Silk4NET uses the adb version that is shipped with Silk4NET.

When you want to test mobile applications on an Android emulator with Silk4NET, you have to configure
the emulator for testing:

1. Install the latest version of the Android SDK.

For information on how to install and configure the Android SDK, see Get the Android SDK.

2. Install Android Studio 2 or later.

Tip: You can skip installing Android Studio and use the emulator provided with the Android SDK.
However, Micro Focus recommends installing Android Studio for improved emulator performance.
The remaining steps in this topic require Android Studio to be installed.

3. From Android Studio, start the AVD Manager.

4. Click Create Virtual Device.

5. Select a virtual device.

Testing Specific Environments | 169

http://developer.android.com/sdk/index.html

6. Click Next.

7. Download and select a system image of Android that includes Google APIs.

8. Click Next.

9. Configure the virtual device according to your requirements.

10.Click Show Advanced Settings.

11.Adjust the RAM size and the heap space used by the emulator to an amount that is manageable by
your machine.

Tip: Micro Focus recommends using at least 1 GB RAM and 256 MB heap space.

12.Select Auto from the list in the Emulated Performance area.

13.Click Finish.

Tested Configurations for Parallel Test Execution
With Silk4NET, you can run automated tests on multiple Android devices in parallel. The amount of Android
devices that you are able to use in parallel depends on the available hardware. Micro Focus has
successfully tested the following hardware configurations:

170 | Testing Specific Environments

Configuration with a single test machine

Using a single test machine directly connected to the Android devices through USB, we tested up to 8
physical Android devices in parallel.

The test machine was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Configuration with two test machines

Here we are using two test machines, one with Silk4NET installed and another, which is configured as a
remote location for the first machine and has the Silk Test Information Service installed. Using such a
configuration, we tested up to 10 physical Android devices in parallel.

Test machine 1 was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Test machine 2 was a Dell Precision T1700 with the following hardware specifications:

Testing Specific Environments | 171

• Intel® Core™ i7 - 4770 CPU @ 3.40 GHz
• 4 cores (8 threads)
• 16 GB RAM

Configuration with a Windows machine and a Mac

Here we are using two test machines, a Windows machine with Silk4NET installed and a Mac, which is
configured as a remote location for the first machine and has the Silk Test Information Service installed.
Using such a configuration, we tested up to 10 physical Android devices in parallel.

Test machine 1 was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Test machine 2 was an Apple Mac Mini with the following hardware specifications:

• Intel® Core™ i5 - 4782U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 16 GB RAM

iOS
Silk4NET enables you to test a mobile application on an iOS device or an iOS Simulator.

Because of significant changes by Apple in iOS 9.3 in comparison to the previous versions of iOS, Silk Test
supports testing mobile applications on iOS 9.3 or later. For a list of the supported iOS versions, refer to
the Release Notes.

Note: Testing mobile applications on iOS 11 requires Xcode 9. When using Xcode 9 on a Mac, testing
on physical devices and Simulators with iOS versions prior to iOS 11 that are connected to or running

172 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

on this Mac is not supported. Use Xcode 8.3 to test physical devices and Simulators with iOS 9.3 and
iOS 10.

Prerequisites for Testing Mobile Applications on iOS
Before you can test a mobile application (app) on an iOS device or on an iOS Simulator, ensure that the
following prerequisites are met:

• The current version of the Silk Test information service is installed on the Mac. For additional
information, see Installing the Silk Test Infoservice on a Mac.

• If you want to test your application on a physical iOS device, ensure the following:

• The device is connected to the Mac.
• The device has a supported version of iOS. For a list of the supported iOS versions, refer to the

Release Notes.
• If you want to test your application on an iOS Simulator, ensure the following:

• The iOS Simulator image is installed on the Mac.
• The iOS Simulator image has a supported version of iOS. For a list of the supported iOS versions,

refer to the Release Notes.
• If you want to test your application on an physical iOS device, ensure that the same time zone is set on

the device and the Mac.
• A supported version of Xcode is installed on the Mac.
• Silk4NET is installed on a Windows machine.
• The Mac is located in the same network as the Windows machine and is added as a remote location to

the Windows machine.
• To test a native mobile app on an iOS device, ensure that the .ipa file of your app has been signed

with a developer account. For additional information, see Preparing an iOS App for Testing.
• To test a native mobile app on an iOS Simulator, ensure that the app has been zipped. For additional

information, see Testing Native Mobile Applications on an iOS Simulator.
• To test a native mobile app on both an iOS device and an iOS Simulator, ensure that the signed .ipa

file and the zipped .app directory have the same name, except for the file extension, and are located in
the same folder.

• To test a native mobile app, ensure that the ID of the iOS device is associated with the developer profile
which was used to sign the app.

• The iOS device must not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock.

• The Mac should not switch off the screen during testing, otherwise the Playback Status dialog box will
not display anything.

• To test a mobile application on an iOS Simulator, deactivate the display sleep on the Mac during testing.
• To test a native mobile app on a physical iOS device, enable the UI automation on the device. For

additional information, see Preparing an iOS Device for Testing.
• To test a mobile web application with Apple Safari on a physical iOS device, activate the Web

Inspector. For additional information, see Preparing an iOS Device for Testing.
• Micro Focus recommends using iOS devices which have a Lightning connector. Silk4NET does not

support showing a live view of the device screen for iOS devices that are not connected to a Mac
through a Lightning cable.

Testing Native Mobile Applications on a Physical iOS Device
Note: To test native mobile applications or hybrid applications with Silk4NET, you require a native
mobile license. For additional information, see Licensing Information.

For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing native mobile
applications, see Limitations for Testing Mobile Native Applications.

Testing Specific Environments | 173

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

To test a native mobile application (app) or a hybrid application on a physical iOS device, perform the
following tasks:

1. Prepare the iOS device for testing.

For additional information, see Preparing an iOS Device for Testing.

2. Prepare the app for testing.

For additional information, see Preparing an iOS App for Testing.

3. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

4. Add the Mac, to which the iOS device is connected, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

5. Create a Silk4NET project for your mobile application.

6. Create a test for your mobile application.

7. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

8. Select the Mobile tab.

9. Select the mobile device, on which you want to test the app, from the list.

10.Select the native mobile application.

• If you want to install the app on the mobile device or emulator, click Browse to select the app file or
enter the full path to the app file into the App file text field. Silk4NET supports HTTP and UNC
formats for the path.

• If you want to use an app that is already installed on an iOS device, specify the Bundle ID.
• If you want to use an app that is available in Mobile Center, specify the App identifier.

11.Click OK.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

12.When you have recorded all actions, stop recording.

13.Replay the test.

14.Analyze the test results.

Note: To test a native mobile app on both an iOS device and an iOS Simulator, ensure that the
signed .ipa file and the zipped .app directory have the same name, except for the file extension,
and are located in the same folder.

Testing Native Mobile Applications on an iOS Simulator
Note: To test native mobile applications or hybrid applications with Silk4NET, you require a native
mobile license. For additional information, see Licensing Information.

For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing native mobile
applications, see Limitations for Testing Mobile Native Applications.

To test a native mobile application (app) or a hybrid application on an iOS Simulator, perform the following
tasks:

1. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

174 | Testing Specific Environments

2. In the Xcode project of the app, compile the app for the iOS Simulator.

You can compile the app either from the Xcode UI or from the command line. For example, to compile
the app through the command line for an iOS Simulator with iOS 10.0, execute the following command:

xcodebuild -sdk iphonesimulator10.0

3. Zip up the .app directory of the app into a .zip file.

By default, the .app directory is located in the directory ~/Library/Developer/Xcode/
DerivedData. You can click File > Project Settings in Xcode to see into which location the directory
is stored.

4. Add the Mac, on which the iOS Simulator is installed, as a remote location to the Windows machine on
which Silk4NET is installed.

For additional information, see Editing Remote Locations.

Note: You can only test on one iOS Simulator that is installed on a Mac. Multiple Silk4NET users
cannot simultaneously test on multiple iOS Simulators that are installed on the same Mac.

5. Create a Silk4NET project for your mobile application.

6. Create a test for your mobile application.

7. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

8. Select the Mobile tab.

9. Select the iOS Simulator from the list.

10.Select the native mobile application.

• If you want to install the app on the iOS Simulator, click Browse to select the zipped app file or enter
the full path to the zipped app file into the App file text field. Silk4NET supports HTTP and UNC
formats for the path.

• If you want to use an app that is already installed on the iOS Simulator, specify the Bundle ID.

11.Click OK.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

12.When you have recorded all actions, stop recording.

13.Replay the test.

14.Analyze the test results.

Note: To test a native mobile app on both an iOS device and an iOS Simulator, ensure that the
signed .ipa file and the zipped .app directory have the same name, except for the file extension,
and are located in the same folder.

Testing Mobile Web Applications on a Physical iOS Device
For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing mobile web applications,
see Limitations for Testing Mobile Web Applications.

To test a mobile web application on a physical iOS device, perform the following tasks:

1. Prepare the iOS device for testing.

For additional information, see Preparing an iOS Device for Testing.

2. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

3. Add the Mac, to which the iOS device is connected, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

Testing Specific Environments | 175

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

4. Create a Silk4NET project for your mobile application.

5. Create a test for your mobile application.

6. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

7. To test a mobile web application:

a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

8. Click OK.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

9. When you have recorded all actions, stop recording.

10.Replay the test.

11.Analyze the test results.

Testing Mobile Web Applications on an iOS Simulator
For information on the known limitations when testing mobile web applications, see Limitations for Testing
Mobile Web Applications.

To test a mobile web application on an iOS Simulator, perform the following tasks:

1. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

2. Add the Mac, on which the iOS Simulator is installed, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

3. Create a Silk4NET project for your mobile application.

4. Create a test for your mobile application.

5. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

6. To test a mobile web application:

a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

7. Click OK.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

8. When you have recorded all actions, stop recording.

9. Replay the test.

10.Analyze the test results.

176 | Testing Specific Environments

Testing Hybrid Applications on iOS
Hybrid applications (apps) are apps that are run on the device, like native applications, but are written with
web technologies, for example HTML5, CSS, and JavaScript.

Silk4NET provides full browser support for testing debug hybrid apps that consist of a single web view,
which is embedded in a native container. A common example of such a hybrid app would be an Apache
Cordova application.

To test non-debug hybrid apps without remote debugging enabled or hybrid apps that include more than
one web view, enable the Silk4NET fallback support by setting the option
OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT to TRUE. For additional information, see
Setting Advanced Options. With the fallback support enabled, Silk4NET recognizes and handles the
controls in a web view as native mobile controls instead of browser controls. For example, the following
code clicks on a link when using browser support:

' VB .NET code
Agent.SetOption(Options.EnableMobileWebviewFallbackSupport, False)
_desktop.DomLink("//BrowserApplication//BrowserWindow//
INPUT[@id='email']").Click()

// C# code
Agent.SetOption(Options.EnableMobileWebviewFallbackSupport, False);
_desktop.DomLink("//BrowserApplication//BrowserWindow//
INPUT[@id='email']").Click();

With the fallback support enabled, the following code clicks on the same link:

' VB .NET code
Agent.SetOption(Options.EnableMobileWebviewFallbackSupport, True)
_desktop.Find("//BrowserApplication//BrowserWindow//MobileTextField[@resource-
id='email']").Click()

// C# code
Agent.SetOption(Options.EnableMobileWebviewFallbackSupport, True);
_desktop.Find("//BrowserApplication//BrowserWindow//MobileTextField[@resource-
id='email']").Click();

The process for testing a hybrid app on iOS is the same as the process for testing a mobile native
application. For additional information, see Testing Native Mobile Applications on a Physical iOS Device or
Testing Native Mobile Applications on an iOS Simulator.

Before testing a hybrid app on an iOS device, ensure that the Web Inspector is activated on the device.
For additional information, see Preparing an iOS Device for Testing.

Testing Specific Environments | 177

Preparing an iOS Device for Testing
Note: To test native mobile applications or hybrid applications with Silk4NET, you require a native
mobile license. For additional information, see Licensing Information.

To prepare the iOS device to test mobile applications:

1. Start Xcode on the Mac.

2. Connect the iOS device to the Mac.

3. On the iOS device, click Settings > Developer.

Tip: If the Developer menu is not displayed on the iOS device, restart the device and the Mac.

4. Activate Enable UI Automation.

5. To test a mobile web application on Apple Safari, click Settings > Safari > Advanced.

6. Activate the Web Inspector.

7. If you want to test on an iOS Simulator, enable Rotate Device Automatically.

You can enable this setting by using the Silk Test Configuration Assistant or by enabling it manually.
To open the Configuration Assistant on a Mac, click on the Silk Test icon in the status menus and
select Configuration Assistant. To enable the setting manually, perform the following actions:

a) On the Mac, start the iOS Simulator.
b) With Xcode 9 or later, expand the Hardware menu.

With prior versions of Xcode, expand the Debug menu.
c) Check Rotate Device Automatically.

Preparing an iOS App for Testing
To be able to test a specific iOS app on a specific iOS device with Silk4NET, consider the following:

• Test automation is only possible with iOS apps that can be installed manually on specific iOS devices.
To be able to sign an iOS app, you require a membership in the Apple Developer Program. For
additional information, see Choosing a Membership. To test without having a membership in the Apple
Developer Program, see Using a Personal Team Profile for Testing on Physical iOS Devices.

Note: You cannot automatically test iOS apps that are created for publication in the App Store, as
well as apps that can be installed manually on any iOS device.

• Before you can install and execute an iOS app on a specific iOS device, you have to register the iOS
device with your Apple Developer account.

• You have to use Xcode to create an IPA file of the iOS app, which you can then install on the iOS
device. To create IPA files for testing on a specific iOS device, members of the Apple Developer
Program can use the Archive mechanism of Xcode, by using one of the following two options:

• If you are a member of the Apple Developer Enterprise Program, you can use the Save for Ad Hoc
Deployment option.

• If you are a member of the Apple Developer Program, but not of the Apple Developer Enterprise
Program, you can use the Save for Development Deployment option.

For additional information, see Exporting Your App for Testing (iOS, tvOS, watchOS).

To be able to test a specific iOS app on an iOS Simulator with Silk4NET, use Xcode to create a ZIP file of
the iOS app, which you can then install on the iOS Simulator. For additional information, refer to the Xcode
documentation.

Installing the Silk Test Information Service on a Mac
Note: To install the information service on a Mac, you require administrative privileges on the Mac.

178 | Testing Specific Environments

https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html

To create and execute tests on a Mac using Apple Safari or using iOS or Android devices, install the Silk
Test information service (information service) on the Mac. Once the information service is installed and
active, you can record and replay tests from a Silk4NET client that is installed on a Windows machine.

Note: You cannot record on a Mac. To add a Mac as a test location to Silk4NET, see Editing Remote
Locations in the Silk4NET documentation. .

To install the information service on a Mac:

1. Read the information in the topic Prerequisites for Testing with Apple Safari on a Mac in the Silk4NET
documentation.

2. Ensure that a Java JDK is installed on the Mac.

3. If you want to test mobile applications on an iOS device, ensure that Xcode is installed on the Mac.

4. Access the information service setup file, SilkTestInformationService<Version>-<Build
Number>.pkg.

• If you have downloaded the information service setup file while installing Silk Test, open the folder
macOS in the Silk Test installation directory, for example C:\Program Files (x86)\Silk
\SilkTest.

• If you have not downloaded the information service setup file while installing Silk Test, you can
download the setup file from Micro Focus SupportLine.

5. Copy the file SilkTestInformationService<Version>-<Build Number>.pkg to the Mac.

6. Execute SilkTestInformationService<Version>-<Build Number>.pkg to install the
information service.

7. Follow the instructions in the installation wizard.

8. When asked for the password, provide the password of the currently signed in Mac user.

9. When Apple Safari opens and a message box asks whether to trust the SafariDriver, click Trust.

Note: If you want to test against Apple Safari 10 or prior on macOS 10.12 (Sierra) or prior,
SafariDriver needs to be installed on the Mac. You can only install the SafariDriver if you are
directly logged in to the Mac, and not connected through a remote connection.

10.To complete the installation, the installer logs the current Mac user out. To verify that the information
service was installed correctly, log in to the Mac.

11.If you are installing the information service on a Mac with macOS Mojave (10.14) or later, you might
have to enable additional automation permissions for Silk Test after logging in to the Mac.

If permissions need to be granted, Silk Test will automatically show request permission dialogs.

a) Click OK to acknowledge the information dialog.
b) Click OK in all sub-sequent request permission dialogs.

Important: If you do not enable these permissions for Silk Test, you will not be able to test web
applications against Google Chrome or mobile applications on an iOS device or on a Simulator on
this Mac. If by mistake you have clicked Don't Allow in one of the permission dialogs, open a
terminal on the Mac and type the following command:

sudo tccutil reset AppleEvents

Then restart the Mac and accept the permission dialogs by clicking OK.

12.Click on the Silk Test icon in the top-right corner of the screen to see the available devices and
browsers.

Tip: If the Silk Test icon does not appear, restart the Mac.

Preparing a Mac to Test Mobile Applications on iOS
Note: To test native mobile applications or hybrid applications with Silk4NET, you require a native
mobile license. For additional information, see Licensing Information.

Testing Specific Environments | 179

http://productlink.microfocus.com/index.asp?mode=support&prod=NE01

To test mobile applications on iOS, you require a Mac to which you can connect the iOS device, or on
which the iOS Simulator is running. This Mac requires Xcode to be installed. For additional information on
the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing Mobile Applications
on iOS.

To execute iOS tests on a physical iOS device, follow the instructions in the Silk Test Configuration
Assistant to configure the WebDriverAgentRunner Xcode project. To open the Configuration
Assistant, click on the Silk Test icon in the status menus and select Configuration Assistant.

If for any reason you want to manually build the WebDriverAgentRunner Xcode project, perform the
following actions:

1. Start Xcode on the Mac.

2. Select Xcode > Preferences.

3. In the Preferences window, select your account.

a) Select the Accounts tab.
b) Choose your Apple ID.
c) Choose your Team.
d) Click View Details.

180 | Testing Specific Environments

4. Access the Apple Member Center and retrieve your development team.

5. In a terminal, navigate to ~/.silk/silktest/conf/.

6. Rename the xcconfig file template silktest.xcconfig.sample to silktest.xcconfig.

7. Add your development team to the silktest.xcconfig file.

DEVELOPMENT_TEAM = <your development team>

8. Execute the following commands in a terminal on the Mac to verify that you have prepared the
WebDriverAgentRunner project correctly:

a) Determine the unique device id (udid) of your physical iOS device:

idevice_id -l

b) Navigate to the WebDriverAgentRunner project:

cd /Application/Silk/Mobile/common/Appium/node_modules/appium-xcuitest-
driver/WebDriverAgent

c) Test that the WebDriverAgent can be built:

xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner
–xcconfig ~/.silk/silktest/conf/silktest.xcconfig -destination
'id=<udid>' test

Replace the <udid> with the unique device id that you have determined previously.

Tip: If the xcodebuild command fails, follow the instructions in the error message.
Additionally, open the Preferences window of the WebDriverAgentRunner project and
ensure that the Automatically manage signing check box in the General tab is not checked.

9. Optional: In the infoservice.properties file, you can specify the port for the Silk Test Information
Service or capabilities which are used during all test runs on the Mac.

For additional information, see Editing the Properties of the Silk Test Information Service.

Using a Personal Team Profile for Testing on Physical iOS Devices
If you have no membership in the Apple Developer Program, you can use a personal team profile to test an
application on a physical iOS device:

1. On the Mac, navigate to /Application/Silk/Mobile/common/Appium/node_modules/
appium-xcuitestdriver/WebDriverAgent.

2. Open WebDriverAgent.xcodeproj project in Xcode.

3. From the TARGETS list, select the WebDriverAgentLib target:

a) Click the General tab.
b) Select Automatically manage signing.
c) Select your development team.

The Signing Certificate is automatically selected.

4. From the TARGETS list, select the WebDriverAgentRunner target:

a) Click the General tab.
b) Select Automatically manage signing.
c) Select your development team.

The Signing Certificate is automatically selected.

5. If Xcode fails to create a provisioning profile for the WebDriverAgentRunner target, manually change
the bundle id for the target.

a) Click the Build Settings tab.
b) Change the Product Bundle Identifier to something that Xcode accepts.

For example, if the Product Bundle Identifier is com.facebook.WebDriverAgentRunner, change it to
io.appium.WebDriverAgentRunner or io.borland.WebDriverAgentRunner.

c) Click the General tab.

Testing Specific Environments | 181

The target should now have a provisioning profile.

6. Save the WebDriverAgent.xcodeproj project.

7. To verify that everything works as expected, open a terminal and build the project:

xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner -
destination 'id=<udid>' test IPHONEOS_DEPLOYMENT_TARGET=10.3

8. To avoid problems during the reinstallation of the WebDriverAgent apps, permanently install an
additional app that uses the same provisioning profile, on the device. For example, install the
IntegrationApp of the WebDriverAgent Xcode project:

a) From the TARGETS list, select the IntegrationApp target.
b) Click the General tab.
c) Select Automatically manage signing.
d) Select your development team.

9. If Xcode fails to create a provisioning profile for the IntegrationApp target, manually change the
bundle id for the target in the same way as described above for the WebDriverAgentRunner target.

10.After successfully configuring the IntegrationApp target, install and run the IntegrationApp on
the physical iOS device:

a) Select the target and the iOS device.
b) Click Play.

Although the apps are successfully installed on the device, an error message like the following might
appear in the console or the Appium log files:
2017-01-24 09:02:18.358 xcodebuild[30385:339674] Error Domain=com.apple.platform.iphoneos
Code=-12 "Unable to launch com.apple.test.WebDriverAgentRunner-Runner"
UserInfo={NSLocalizedDescription=Unable to launch com.apple.test.WebDriverAgentRunner-Runner,
NSUnderlyingError=0x7fa839cadc60 {Error Domain=DTXMessage Code=1 "(null)"
UserInfo={DTXExceptionKey=The operation couldn't be completed. Unable to launch
com.apple.test.WebDriverAgentRunner-Runner because it has an invalid code signature, inadequate
entitlements or its profile has not been explicitly trusted by the user. : Failed to launch process with bundle
identifier 'com.apple.test.WebDriverAgentRunner-Runner'}}} 2017-01-24 09:02:18.358
xcodebuild[30385:339674] Error Domain=IDETestOperationsObserverErrorDomain Code=5 "Early
unexpected exit, operation never finished bootstrapping - no restart will be attempted"
UserInfo={NSLocalizedDescription=Early unexpected exit, operation never finished bootstrapping - no
restart will be attempted} Testing failed: Test target WebDriverAgentRunner encountered an error (Early
unexpected exit, operation never finished bootstrapping - no restart will be attempted)
The problem is that the developer is not trusted on the device. If you manually try to run the apps on the
device, you will see an Untrusted Developer message.

To solve this issue on the device, go to Settings > General > Profiles or Settings > General > Device
Management, depending on the device type and the iOS version. Then trust the developer and allow the
apps to be run.

Editing the Properties of the Silk Test Information Service
Use the infoservice.properties file to specify the port for the Silk Test Information Service, whether
to use a secure connection through HTTPS, or the capabilities that are applied each time Silk Test
executes a test on the machine on which the Silk Test Information Service is running.

1. Navigate to the directory in which the infoservice.properties.sample file is located.

• On a Windows machine, navigate to %PROGRAMDATA%\Silk\SilkTest\conf, for example C:
\ProgramData\Silk\SilkTest\conf.

• On macOS, navigate to ~/.silk/silktest/conf/.

2. Rename the file infoservice.properties.sample to infoservice.properties.

3. Specify whether Silk4NET should communicate with the information service over a secure connection
through HTTPS.

182 | Testing Specific Environments

• To use a secure connection through HTTPS, set infoservice.https.enabled to true. This is
the default setting.

• To disable using a secure connection through HTTPS, set infoservice.https.enabled to
false.

4. Optional: If you have specified that you want to use a secure connection through HTTPS, you can
specify a different port that is not in use through which Silk4NET should communicate with the
information service as the infoservice.default.https.port.

The default HTTPS port is 48561. Port numbers can be any number from 1 to 65535.

5. Optional: To redirect all HTTP requests to the HTTPS port, if you have specified that you want to use a
secure connection through HTTPS, set infoservice.http-to-https.enabled to true.

The default value is false.

6. Optional: If you have specified that you do not want to use a secure connection through HTTPS, you
can specify a different port that is not in use through which Silk4NET should communicate with the
information service as the infoservice.default.port.

The default port is 22901.

7. Optional: To replace the certificates that are used by Silk Test for the HTTPS connection with your own
certificates, see Replacing the Certificates that are Used for the HTTPS Connection to the Information
Service.

8. To specify capabilities, add the following line to the infoservice.properties file:

customCapabilities=<custom capability_1>;<custom_capability_2>;...

Example: Running an iOS Simulator in a Specified Language

To always run a specific iOS Simulator on a Mac in the same language, for example
Japanese, specify the custom capabilities language and locale. To do so, add the
following line to the infoservice.properties file:

customCapabilities=language=ja;locale=ja_JP

Uninstalling the Silk Test Information Service from a Mac
To uninstall the Silk Test information service (information service) from a Mac, for example if you no longer
want to execute tests against Apple Safari on the Mac:

1. On the Mac, create a new shell file, for example uninstallInfoService.sh.

2. Type the following code into the new file:

#!/bin/sh

if launchctl list | grep com.borland.infoservice ; then
 launchctl unload /Library/LaunchAgents/com.borland.infoservice.plist
 echo "unloading Launch Daemon"
fi

if [-d "/Applications/Silk"]
then
 sudo rm -rf /Applications/Silk
fi

if [-f "/Library/LaunchAgents/com.borland.infoservice.plist"]
then
 sudo rm /Library/LaunchAgents/com.borland.infoservice.plist
fi

if [-f "/usr/local/bin/ideviceinstaller"]
then
 sudo rm /usr/local/bin/ideviceinstaller

Testing Specific Environments | 183

fi

exit 0

3. In the command line, type chmod +x uninstallInfoService.sh to make the shell file executable.

4. Execute the shell file from the command line.

Recommended Settings for iOS Devices
To optimize testing with Silk4NET, configure the following settings on the iOS device that you want to test:

• To make the testing reflect the actions an actual user would perform, disable AutoFill and remembering
passwords for Apple Safari. Tap Settings > Safari > Passwords & AutoFill and turn off the Names
and Passwords setting.

• The iOS device must not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock.

Running Existing Scripts on iOS Using XCUITest
Attention: Prior Silk4NET versions used Instruments to automate iOS devices. With iOS 9.3, Apple
has replaced the support for Instruments with support for the XCUITest framework, causing Silk4NET
to also no longer support Instruments. Because of this change, existing iOS test scripts might break
when executed from the current version of Silk4NET.

• The behavior of the classname attribute in XCUITest is different to the behavior in Instruments. In most
cases, Silk4NET will automatically handle this change. However, if an existing test script breaks
because of such a classname attribute, you will have to record a new locator for the corresponding
object.

• The object hierarchy has changed.

Recording Mobile Applications
Once you have established the connection between Silk4NET and a mobile device or an emulator, you can
record the actions that are performed on the device. To record mobile applications, Silk4NET uses a
Recording window that provides the following functionality:

• Displays the screen of the mobile device or Android emulator which you are testing.
• When you perform an action in the Recording window, the same action is performed on the mobile

device.
• When you interact with a control on the screen, the Recording window preselects the default action.

• If the default action is a Click, and you left-click on the control, the action is executed. You can
perform a right-click to show a list of the available actions against the control. You can then select the
action that you want to perform and click OK.

• If the default action is not a Click, a list of all the available actions against the control displays, and
you can select the action that you want to perform or simply accept the preselected action by clicking
OK.

When you have selected an action from the list, you can type values for the parameters of the selected
action into the parameter fields. Silk4NET automatically validates the parameters.

• During recording, Silk4NET displays the mouse position next to the recording window. You can toggle
the location to switch between displaying the absolute mouse position on the device display and the
mouse position in relation to the active object.

• When you pause the recording, you can perform actions in the screen which are not recorded to bring
the device into a state from which you want to continue recording.

• When you stop recording, a script is generated with your recorded actions, and you can proceed with
replaying the test.

184 | Testing Specific Environments

Selecting the Mobile Device for Test Replay
You can define the mobile device that is used for the replay of a test in the following ways:

• If you execute a test from the UI of Silk4NET and the Select Mobile Device dialog box displays, the
mobile device, Android Emulator, or iOS Simulator that is selected in the dialog box is used, and
Silk4NET ignores which mobile device is set in the test script.

• If the Select Mobile Device dialog box is disabled, because the Don't show again check box is
checked, the application configurations in the individual test scripts determine the mobile device that is
used to execute the tests.

Note: To re-enable the Select Mobile Device dialog box, click Silk4NET > Edit Application
Configurations and check the Show 'Select Mobile Device' dialog before record and playback
check box

• If you execute a script from the command line or from a Continuous Integration (CI) server, specify the
connection string in the application configuration of the script.

To overwrite the mobile device that is specified in the application configuration, use the
silktest.configurationName environment variable.

• If you execute a test from Silk Central, specify the mobile device in the Mobile Device Selection area
of the Deployment tab of the execution definition in Silk Central instead of specifying a connection
string. For additional information, refer to the Silk Central Help.

You can use the connection string to specify a specific mobile device, or you can filter a subset of the
available devices, for example if you have a device pool. The first matching device is used for replay. If not
specified otherwise, mobile devices are matched by using the following rules, with declining priority:

• Matching mobile devices connected to the local machine are preferred over mobile devices connected
to remote locations.

• If the browser type is specified in the connection string, newer browser versions are preferred over older
versions.

• Newer platforms are preferred over older platforms.
• A physical device is preferred to an Emulator or Simulator.
• A device with a device name that is alphabetically later is preferred. For example, a device named

"iphone 6" is preferred to a device named "iphone 5".

Example: Connection string for an app on an Android device that is connected to
a remote machine

To test the app MyApp.apk on an Android device that is connected to a remote
machine, the connection string would look like the following:

"platformName=Android;deviceName=MotoG3;host=http://
10.0.0.1;app=MyApp.apk"

Example: Connection string for an app on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;app=MyApp.ipa;isSimulator=true"

Using Devices from Mobile Center Directly from
Silk4NET
Micro Focus Mobile Center (Mobile Center) provides an end-to-end quality lab of real devices and
emulators that help you test, monitor, and optimize your mobile apps for an enhanced user experience.

Testing Specific Environments | 185

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

Note: Silk4NET supports testing against devices that are managed by Mobile Center 3.0 or later.

You can either access the devices that are managed by Mobile Center directly from Silk4NET, or through
Silk Central.

To access the devices that are managed by Mobile Center directly from Silk4NET:

1. Add Mobile Center as a remote location.

For additional information, see Editing Remote Locations.

2. To test on iOS, ensure that the following IPA files are signed:

• HP4M-Agent.ipa
• HPMC-AgentLauncher.ipa
• WebDriverAgentRunner-Runner.ipa

Note: Silk4NET does not support testing iOS simulators through Mobile Center.

In the Select Applications dialog, you can now select the Mobile Center device on which you want to test.

Note: You cannot test the same device with Silk Test Mobile and Mobile Center at the same time.
When switching between these products, you need to remove all apps that are used for automation
and restart the mobile device.

Android Before testing an Android device with Silk Test Mobile or before installing Mobile Center,
you need to remove the following apps from the device:

• Appium Android Input Manager
• Appium Settings
• io.appium.uiautomator2.server
• io.appium.uiautomator2.server.text
• MC Agent
• Silk Screencast
• Unlock

iOS Before testing an iOS device with Silk Test Mobile or before installing Mobile Center, you
need to remove the WebDriverAgent from the device.

Mobile Center might re-install some of these apps.

If you want to replay tests from a CI server or tests from the command line on a device that is managed by
Mobile Center, you can specify the connection string for the device instead of configuring the remote
connection. The connection string should look like the following:

"deviceName=MotoG3;platformName=Android;host=http://<Mobile Center server>:
8080;hostType=MC;userName=<Mobile Center user name>;password=<Mobile Center
password>"

Note: For security reasons, Silk4NET saves an encrypted form of the Mobile Center password when
you create a new application configuration.Micro Focus recommends using the encrypted password in
the connection string.

Note: When testing on a device that is managed through the Mobile Center, Silk4NET does not
support using the methods TypeKeys or SetText to type key codes like ENTER. Additionally,
Silk4NET does not support pressing the Home button on iOS devices.

Note: When testing on an Android Emulator, disable the GPU HW Acceleration.

186 | Testing Specific Environments

Using Devices from Mobile Center through Silk Central
Micro Focus Mobile Center (Mobile Center) provides an end-to-end quality lab of real devices and
emulators that help you test, monitor, and optimize your mobile apps for an enhanced user experience.

Note: Silk4NET supports testing against devices that are managed by Mobile Center 3.0 or later.

You can either access the devices that are managed by Mobile Center directly from Silk4NET, or through
Silk Central.

To access the devices that are managed by Mobile Center through Silk Central:

1. Integrate Silk4NET with Silk Central.

For additional information, see Integrating Silk4NET with Silk Central.

2. Configure Silk Central to use Mobile Center.

Note: While installing Mobile Center, ensure that the appropriate Android SDK version is used.
Ensure that the same version is used in Silk4NET by setting the environment variable
SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. For additional information, refer to the Silk Central Help.

3. To test on iOS, ensure that the following IPA files are signed:

• HP4M-Agent.ipa
• HPMC-AgentLauncher.ipa
• WebDriverAgentRunner-Runner.ipa

Note: Silk4NET does not support testing iOS simulators through Mobile Center.

In the Select Applications dialog, you can now select the Mobile Center device on which you want to test.

Note: You cannot test the same device with Silk Test Mobile and Mobile Center at the same time.
When switching between these products, you need to remove all apps that are used for automation
and restart the mobile device.

Android Before testing an Android device with Silk Test Mobile or before installing Mobile Center,
you need to remove the following apps from the device:

• Appium Android Input Manager
• Appium Settings
• io.appium.uiautomator2.server
• io.appium.uiautomator2.server.text
• MC Agent
• Silk Screencast
• Unlock

iOS Before testing an iOS device with Silk Test Mobile or before installing Mobile Center, you
need to remove the WebDriverAgent from the device.

Mobile Center might re-install some of these apps.

Note: When testing on a device that is managed through the Mobile Center, Silk4NET does not
support using the methods TypeKeys or SetText to type key codes like ENTER. Additionally,
Silk4NET does not support pressing the Home button on iOS devices.

Note: When testing on an Android Emulator, disable the GPU HW Acceleration.

Testing Specific Environments | 187

Installing the Certificate for an HTTPS Connection to
Mobile Center
To use a secure connection through HTTPS between Silk4NET and Mobile Center, install the certificate for
Mobile Center into the installation directory of the Java that is used by the Open Agent.

1. Open a browser.

2. Navigate to the HTTPS URL of the secure Mobile Center server.

3. Export the certificate of the secure Mobile Center server.

For information about exporting the certificate, refer to the documentation of the browser that you are
using.

For example, if you are using Mozilla Firefox, perform the following actions:

a) When Mozilla Firefox informs you that the connection is not secure, click Advanced.
b) Click Add Exception...
c) In the Add Security Exception dialog, click View.
d) In the Certificate Viewer, select the Details tab.
e) Click Export.
f) In the Save Certificate To File dialog, browse to the location in which you want to store the

certificate file.
g) Specify a name for the certificate, for example mc.crt.
h) Click Save.

4. Browse to the location into which you have downloaded the certificate file.

5. Double-click the certificate file and install the certificate using the wizard.

a) Select Place all certificates in the following store, and then click Browse.
b) Select Trusted Root Certification Authorities, and then complete the wizard.

6. If a security warning appears, click Yes to confirm the installation.

7. Restart the Open Agent.

8. Refresh the Mobile Center server or connector machine URL in the browser and verify that there are no
SSL certificate-related errors..

Changing the Mobile Center Password
When your Mobile Center password changes, use the Edit Location dialog to apply the new password in
Silk4NET.

1. Click Silk4NET > Edit Remote Locations. The Remote Locations dialog box appears.

2. Select the Mobile Center remote location and click Edit. The Edit Location - Mobile Center dialog
appears.

3. Type the new password into the Password field.

4. Optional: Click Test to test if the new password woks.

5. If you are using the same Mobile Center in one or more connection strings, click Copy to copy the
password in encrypted form to the clipboard. You can then paste the copied encrypted password into
the connection strings.

6. Click OK.

Using SauceLabs Devices
SauceLabs provides an automated testing platform, enabling you to test on various mobile devices and
mobile platform versions without having to purchase and maintain your own infrastructure.

To access SauceLabs devices through Silk Central, perform the following actions:

188 | Testing Specific Environments

1. Ensure that Silk4NET is integrated with Silk Central.

For additional information, see Integrating Silk4NET with Silk Central.

2. Ensure that Silk Central is configured to use SauceLabs.

For additional information, refer to the Silk Central Help.

In the Select Applications dialog, you can now select the SauceLabs device on which you want to test.

Connection String for a Mobile Device
The connection string specifies which mobile device is used for testing. When performing mobile testing,
Silk4NET uses the connection string to connect to the mobile device. The connection string is typically part
of the application configuration. You can set the connection string when you configure your application
under test. To change the connection string, you can use the Edit Application Configuration dialog box.

Note: If you execute a test from Silk Central, specify the mobile device in the Mobile Device
Selection area of the Deployment tab of the execution definition in Silk Central instead of specifying
a connection string. For additional information, refer to the Silk Central Help.

You can use the connection string to specify a specific mobile device, or you can filter a subset of the
available devices, for example if you have a device pool. The first matching device is used for replay. If not
specified otherwise, mobile devices are matched by using the following rules, with declining priority:

• Matching mobile devices connected to the local machine are preferred over mobile devices connected
to remote locations.

• If the browser type is specified in the connection string, newer browser versions are preferred over older
versions.

• Newer platforms are preferred over older platforms.
• A physical device is preferred to an Emulator or Simulator.
• A device with a device name that is alphabetically later is preferred. For example, a device named

"iphone 6" is preferred to a device named "iphone 5".

The following components are available for the connection string:

Component Description

deviceName The name of the mobile device. When testing on a physical mobile device, the device ID
can be used instead. Supports wildcards. Case-insensitive.

platformName Android or iOS. Required.

deviceId Optional: The ID of the mobile device. Can be used instead of the device name, when
testing on a physical mobile device. Supports wildcards. Case-insensitive.

platformVersion Optional: The Android or iOS version. Specify the version to test only on mobile devices that
have a specific Android or iOS version. Supports wildcards. Case-insensitive.

browserVersion Optional: Can be used in combination with the browser type to test only on the specified
browser version. Supports wildcards. Case-insensitive.

host Optional: If not set, any specified remote location can be used as the host. Supports
wildcards. Case-insensitive.

app The full path to an app that is not installed on the mobile device yet. For example
app=MyApp.apk.

• appPackage
• appActivity

To test an app that is already installed on an Android device, specify both the package of
the app and the activity that you want to use. For example
appPackage=silktest.insurancemobile;appActivity=.LoginActivit
y .

bundleId The identifier of the bundle of an app that is already installed on an iOS device. For example
app=MyApp.ipa or bundleId=silktest.InsuranceMobile.

Testing Specific Environments | 189

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

Component Description

mobileCenterAppIdentif
ier

The identifier of an app that is already installed on a mobile device that is managed by
Mobile Center. For example
mobileCenterAppIdentifier=com.microfocus.silktest.testapp.

mobileCenterAppUploa
dNumber

The upload number of an app that is already installed on a mobile device that is managed
by Mobile Center. Can be used to identify the application uniquely when the application is
uploaded more than once. If this number is not specified, Silk4NET uses the latest upload.
For example mobileCenterAppUploadNumber=3.

noReset Optional: Can be set when testing native mobile applications. Is only valid if the app is
specified. True if the app should not be reinstalled before testing. False if the app should be
reinstalled before testing. The default value is False.

isSimulator Optional: Used to specify that the test should only be executed on an iOS Simulator. The
device name can be used instead.

isPhysicalDevice Optional: Used to specify that the test should only be executed on a physical device. The
device name can be used instead.

When using a pool of devices and to find out which device is actually used for testing, you can use the
return value of the GenerateConnectionString method of MobileDevice class.

Testing a mobile web application on a mobile device or on an Android Emulator

When testing a mobile web application on a mobile device or on an Android Emulator, the connection string
consists of the following parts:

1. The mobile device name, for example MotoG3, or the device ID, for example 11111111.

Note: If the device name is unique, Micro Focus recommends to use the device name in the
connection string, because the device ID is less readable.

2. The platform name.
3. The browser version. This can only be used in combination with setting the browser type
4. The IP address or the host name of a specific remote machine, for example 10.0.0.1. You can also use

the name of a remote location that is specified in the Edit Remote Locations dialog box as the host
name, for example MyRemoteLocation. When using the remote location name, you can also use
wildcards. To test an Android device that is connected to the local machine, specify the IP address or
the host name of the local machine.

Example: Connection string for any available Android device

"platformName=Android"

Example: Connection string for a browser on an Android device that is connected
to the local machine

To test a mobile browser on an Android device that is connected to the local machine,
the connection string should look similar to the following:

"deviceName=MotoG3;platformName=Android;host=localhost"

or

"platformName=Android;deviceId=11111111;host=localhost"

190 | Testing Specific Environments

Example: Connection string for a browser on an Android device that is connected
to a remote machine

To test a mobile browser on a remote Android device, the connection string should look
similar to the following:

"deviceName=MotoG3;platformName=Android;host=10.0.0.1"

"deviceName=MotoG3;platformName=Android;host=MyRemoteLocation*"

Example: Connection string for an Android device that is managed by Mobile
Center

If you want to replay tests from a CI server or tests from the command line on a device
that is managed by Mobile Center, you can specify the connection string for the device
instead of configuring the remote connection. The connection string should look like the
following:

"deviceName=MotoG3;platformName=Android;host=http://<Mobile
Center server>:8080;hostType=MC;userName=<Mobile Center user
name>;password=<Mobile Center password>"

Note: For security reasons, Silk4NET saves an encrypted form
of the Mobile Center password when you create a new
application configuration.Micro Focus recommends using the
encrypted password in the connection string.

Example: Connection string for a browser on an iOS device that is connected to a
Mac

To test a mobile browser on a remote iOS device, the connection string would look like
the following:

"deviceName=myiPhone6;platformName=iOS;host=10.0.0.1"

Testing a native mobile application on a mobile device or on an Android Emulator

When testing a native mobile application on a mobile device or on an Android Emulator, the connection
string consists of the following parts:

1. The mobile device name, for example MotoG3, or the device ID, for example 11111111.

Note: If the device name is unique, Micro Focus recommends to use the device name in the
connection string, because the device ID is less readable.

2. The platform name.
3. The IP address or the host name of a specific remote machine, for example 10.0.0.1. You can also use

the name of a remote location that is specified in the Edit Remote Locations dialog box as the host
name, for example MyRemoteLocation. When using the remote location name, you can also use
wildcards. To test an Android device that is connected to the local machine, specify the IP address or
the host name of the local machine.

4. The name of the file of the app that you want to test, or the URL of the file, if the file is located on a web
server. For example C:/MyApp.apk or MyApp.ipa.

• Android apps are always .apk files.
• iOS apps on a real device are always .ipa files.
• iOS apps on a Simulator are either a zipped file or a directory with the name app.

Testing Specific Environments | 191

Example: Connection string for an app on an Android device that is connected to
a remote machine

To test the app MyApp.apk on an Android device that is connected to a remote
machine, the connection string would look like the following:

"platformName=Android;deviceName=MotoG3;host=http://
10.0.0.1;app=MyApp.apk"

Example: Connection string for an app on an iOS device that is connected to a
Mac

To test the app MyApp.ipa on an iOS device that is connected to a remote machine,
the connection string would look like the following:

"platformName=iOS;deviceName=MyiPhone;host=http://
10.0.0.1;app=MyApp.ipa"

Testing a mobile web application on an iOS Simulator

When testing a mobile web application on an iOS Simulator, the connection string consists of the following
parts:

1. The platform name, which is iOS.
2. The platform version, for example 10.0.
3. The mobile device name, for example iPhone6.
4. The IP address or the host name of the Mac, on which the iOS Simulator is running.

Example: Connection string for a browser on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;isSimulator=true"

Testing a native mobile application on an iOS Simulator

When testing a native mobile application on an iOS Simulator on a Mac, the connection string consists of
the following parts:

1. The platform name, which is iOS.
2. The platform version, for example 10.0.
3. The mobile device name, for example iPhone6.
4. The IP address or the host name of the remote machine, for example 10.0.0.1.
5. The name of the app that you want to test, for example MyApp.ipa.

Example: Connection string for an app on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;app=MyApp.ipa;isSimulator=true"

Interacting with a Mobile Device
To interact with a mobile device and to perform an action like a swipe in the application under test:

1. In the Recording window, click Show Mobile Device Actions. All the actions that you can perform
against the mobile device are listed.

192 | Testing Specific Environments

2. Select the action that you want to perform from the list.

3. To record a swipe on an Android device or emulator, move the mouse while holding down the left mouse
button.

4. Continue with the recording of your test.

Releasing a Mobile Device
When recording or playing back a test against a mobile device, the Open Agent instance takes ownership
of the device. By doing so, the Open Agent is preventing other Silk Test users from using the device. To
enable other Silk Test users to use the device after you have finished recording or replaying tests on the
device, Silk Test automatically releases the device when the Silk Test client is closed, when an unattended
test process finishes, or when the Open Agent is closed. You can also manually release the device.

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Releasing a Mobile Device After Recording
Release a mobile device after recording to enable other Silk Test users to test on the device.

To release a mobile device after you have finished recording, perform one of the following actions:

• Stop the Open Agent from the System Tray.
• Close Silk4NET. The device is only released by this action when parallel testing is enabled.
• If you are testing a device that is managed by Mobile Center, you can also release the device

through the Mobile Center UI. For additional information, refer to the Mobile Center documentation.

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Releasing a Mobile Device After Replay
Release a mobile device after replay to enable other Silk Test users to test on the device.

To manually release a mobile device after replaying is complete, you can also perform one of the following:

• If you have tested a mobile web application, use the Close method or the CloseSynchron method of
the BrowserApplication class. For additional information on these methods, refer to the API
documentation.

// C# code
webBrowser.Close();

'VB .NET code
WebBrowser.Close()

• If you have tested a mobile native application, use the CloseApp method of the MobileDevice class.

For example, type the following:

// C# code
MobileDevice mobileDevice = _desktop.MobileDevice();
mobileDevice.CloseApp();

'VB .NET code
Dim mobileDevice = _desktop.MobileDevice()
mobileDevice.CloseApp()

• Add the Agent.DetachAll() statement to the test script.

A mobile device is automatically released if one of the following conditions is met:

• The Open Agent is closed.
• The test process stops during unattended testing. The device is only released by this action when

parallel testing is enabled.

Testing Specific Environments | 193

• Silk4NET is closed. The device is only released by this action when parallel testing is enabled.

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Using the setLocation Method when Testing a Mobile
Application
• When testing a native mobile application on iOS, the SetLocation method is not supported.
• When testing a native mobile application on an Android version prior to Android 6.0, you have to enable

Allow mock locations to use the SetLocation method. To do so, open the settings of the Android
device or emulator and tap Developer Options.

• When testing a native mobile application on Android 6.0 or later, you have to set the app to Appium
Settings to use the SetLocation method. To do so, open the settings of the Android device or
emulator and tap Developer Options > Select mock location app. Then choose Appium Settings.

Note: The Appium Settings entry is only available if you have already executed a test with
Appium on the Android device or emulator.

• To use the SetLocation method when testing on an Android emulator on a Windows machine:

1. On the Windows machine on which the emulator is running, navigate to the %userprofile% folder.
2. Remove the content of the file .emulator_console_auth_token. This file is created when the

emulator is started for the first time.
3. Set the .emulator_console_auth_token file to be read only.

Troubleshooting when Testing Mobile Applications
Why does the Select Application dialog not display my mobile devices?

If Silk4NET does not recognize a mobile device or emulator, the Mobile tab in the Select Application
dialog does not display the device or emulator. Additionally, the Web tab of the Select Application dialog
does not display the mobile browsers that are installed on the device or emulator.

Silk4NET might not recognize a mobile device or emulator for one of the following reasons:

Reason Solution

The emulator is not running. Start the emulator.

The Android Debug Bridge (adb) does not recognize the
mobile device.

To check if the mobile device is recognized by adb:

1. Navigate to the Android Debug Bridge (adb) in the
Android SDK installation folder. If the Android SDK is
not installed, navigate to C:\Program Files
(x86)\Silk\SilkTest\ng\Mobile
\windows\AndroidTools\platform-tools
to use the adb that is installed with Silk4NET.

2. Hold Shift and right-click into the File Explorer
window.

3. Select Open command window here.

4. In the command window, type adb devices to get
a list of all attached devices.

5. If your device is not listed, check if USB-debugging is
enabled on the device and if the appropriate USB
driver is installed.

6. If you get an error, for example adb server is
out of date, ensure that the adb version in C:

194 | Testing Specific Environments

Reason Solution

\Program Files (x86)\Silk\SilkTest
\ng\Mobile\windows\AndroidTools
\platform-tools is the same as the adb version
of your local Android SDK. For additional information,
see What can I do if the connection between the
Open Agent and my device is unstable?.

The version of the operating system of the device is not
supported by Silk4NET.

For information on the supported mobile operating
system versions, refer to the Release Notes.

The USB driver for the device is not installed on the local
machine.

Install the USB driver for the device on the local machine.
For additional information, see Installing a USB Driver.

USB-debugging is not enabled on the device. Enable USB-debugging on the device. For additional
information, see Enabling USB-Debugging.

Note: If all previous solutions do not work, you could try to restart the device.

Why does Silk4NET search for a URL in Chrome for Android instead of navigating to the URL?

Chrome for Android might in some cases interpret typing an URL into the address bar as a search. As a
workaround you can manually add a command to your script to navigate to the URL.

What do I do if the adb server does not start correctly?

When the Android Debug Bridge (adb) server starts, it binds to local TCP port 5037 and listens for
commands sent from adb clients. All adb clients use port 5037 to communicate with the adb server. The
adb server locates emulator and device instances by scanning odd-numbered ports in the range 5555 to
5585, which is the range used by emulators and devices. Adb does not allow changing those ports. If you
encounter a problem while starting adb, check if one of the ports in this range is already in use by another
program.

For additional information, see http://developer.android.com/tools/help/adb.html.

What can I do if the connection between the Open Agent and my device is unstable?

If you have installed the Android SDK or another tool that uses the Android Debug Bridge (adb), an
additional adb server might be running in addition to the one that is used by Silk4NET. If the running adb
servers have different versions, the connection between the Open Agent and the device might become
unstable or even break.

To avoid version mismatch errors, specify the path to the Android SDK directory by setting the environment
variable SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. If the information service was running during this change, use the Windows Service
Manager to restart the Silk Test information service with the updated environment variable. If the variable is
not set, Silk4NET uses the adb version that is shipped with Silk4NET.

Why do I get the error: Failed to allocate memory: 8?

This error displays if you are trying to start up the emulator and the system cannot allocate enough
memory. You can try the following:

1. Lower the RAM size in the memory options of the emulator.
2. Lower the RAM size of Intel HAXM. To lower the RAM size, run the IntelHaxm.exe again and choose

change.

Testing Specific Environments | 195

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
http://developer.android.com/tools/help/adb.html

3. Open the Task Manager and check if there is enough free memory available. If not, try to free up
additional memory by closing a few programs.

Why do I get the error "Silk Test cannot start the app that you have specified" during testing on an
iOS device?

This error might display for one or more of the following reasons:

Reason Solution

The iOS device is not in developer mode. You can enable the developer mode in one of the
following two ways:

• Connect the device to a Mac on which Xcode is
installed, and start the app that you want to test on
the device.

• Add your provisioning profiles to the device.

1. Open Xcode.

2. Select Window > Devices.

3. Right-click on the iOS device.

4. Select Show Provisioning Profiles.

5. Add your provisioning profiles.

You have recently updated the iOS version of the device. 1. Open Xcode.

2. Select Window > Devices.

3. Wait unitl Xcode has processed the symbol files.

UI automation is not enabled on the iOS device. 1. Select Settings > Developer.

2. Activate Enable UI Automation.

The Web Inspector is not activated on the iOS device,
while you are trying to test a mobile web application.

1. Click Settings > Safari > Advanced.

2. Activate the Web Inspector.

The app that you want to test was not built for the iOS
version of the iOS device on which you are testing.

Use Xcode to build the app for the iOS version of the
device.

The Software Update dialog box is currently open on the
iOS device.

Close the dialog box and disable automatic software
updates:

1. Select Settings > App and iTunes Stores >
AUTOMATIC DOWNLOADS.

2. Deactivate Updates.

Why does my Android device display only the Back button in the dynamic hardware controls?

If the Android or the Android Emulator is screen-locked when you start testing, the device or Emulator
might display only the button Back in the dynamic hardware controls.

To solve this issue, stop the Open Agent, restart the device, and change the device settings to no longer
lock the screen.

Why does my Android device or emulator no longer display a keyboard?

To support unicode characters, Silk4NET replaces the standard keyboard with a custom keyboard. When
testing is finished, the original keyboard is restored. If an error occurs during testing, the custom keyboard
might still be active and cannot be replaced.

196 | Testing Specific Environments

To solve this issue, manually reset the keyboard under Settings > Language & input > Current
Keyboard.

Why does my device not respond during testing?

If the device, emulator, or Simulator is screen-locked when you start testing, and Silk4NET is unable to
unlock the screen, the device, emulator, or Simulator might stop responding to any actions.

To solve this issue, stop the Open Agent and change the device settings to no longer lock the screen.

Why can I not install the Information Service on a Mac?

When the Allow apps downloaded from setting in the General tab of the Security & Privacy system
preferences pane is set to Mac App Store and identified developers, which is the default value, the
following error message appears when opening the Information Service setup:
"SilkTestInformationService<version>.pkg" can't be opened because it is from an unidentified developer.

To solve this issue, use one of the following:

• Right-click the setup file and select Open. A warning message will appear, but you will still be able to
open the file.

• Set the Allow apps downloaded from setting to Anywhere.
• After attempting to open the file, navigate to the General tab of the Security & Privacy system

preferences pane and click Open Anyway.

Why is the Recording window black when recording an Android app?

Android apps that require a higher level of security, for example apps that handle financial transactions,
might have the FLAG_SECURE flag set, which prevents Silk4NET from capturing the app. Silk4NET relies
on screenshots or on a video of the Android device during recording and will display a black screen of the
device in the Recording window, if the Android app that you are testing has this flag set. To test such an
app with Silk Test, you have to contact the app development team, and ask them to un-set the
FLAG_SECURE flag during testing.

Why does Silk4NET not show a video when testing on an Android emulator?

If the emulator is using the graphic card of your computer for better rendering, the video capturing of
Silk4NET might not work. To solve this, emulate the graphics in software:

1. Open the Android Virtual Device Manager.
2. Click Edit in the Actions column of the emulator.
3. Select Software from the list in the Emulated Performance area of the Virtual Device Configuration

dialog.

What can I do if Silk4NET does not show a video when testing in a cloud environment?

When testing in a cloud environment, showing a video might not work when recording or replaying a test,
for example because required ports are not open.

To solve this issue, you can specify a list of WebDriver host URLs in the infoservice.properties file.
For information on how to access this properties file, see Editing the Properties of the Silk Test Information
Service. Add the option infoservice.disableScreencastHosts to the file, by typing the following:

infoservice.disableScreencastHosts=<URL_1>,<URL_2>, ...

For example:

infoservice.disableScreencastHosts=http://my-webdriver-server-url.com:
80/wd/hub

You can specify URL patterns like *my-webdriver-server-url.com by using asterisks (*) as wildcards.

Testing Specific Environments | 197

https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#FLAG_SECURE

Silk4NET will show a series of screenshots instead of a video when recording and replaying on the
specified hosts.

How can I change the installed version of Xcode?

If the version of Xcode that you are using is not supported by Silk4NET, for example when you upgrade to
the latest version of Xcode, an error message might appear when testing on iOS.

To replace the installed version of Xcode with a supported version, download a supported Xcode version
from https://developer.apple.com/download/more/, and replace the unsupported version with the
downloaded version. For information about the supported Xcode versions, refer to the Release Notes.

What can I do if my Mac runs out of disk space?

Silk4NET uses Instruments to automate iOS devices. This tool creates large log files in the /Library/
Caches/com.apple.dt.instruments directory, which might fill up disk space on the Mac. To solve this
issue, Micro Focus recommends regularly deleting these log files, either manually or by using a cronjob.
For example, to delete the files each day at the same time, you could do the following:

1. Type sudo crontab -e into a Terminal. This opens an editor in which you can edit the crontab for
root.

2. Add the following line to the crontab:

0 2 1 * * find /Library/Caches/com.apple.dt.instruments -mtime +10 -delete

3. Save the crontab.

In this example, all log files that are older than ten days will be deleted each day at 2 AM from the directory.

Why does my test fail with the error message "Unable to sign WebDriver Agent for testing "?

When testing on a physical iOS device, this error usually means that during the build process the
WebDriverAgent app could not be signed or that there is a problem with the provisioning profile.

You can check the actual problem with the following commands, which have to be executed at the Mac
machine to which the device is connected:

cd /Applications/Silk/Mobile/common/Appium/node_modules/appium-xcuitest-driver
xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner -
destination 'id=<udid>' test

Verify that the folder Resources exists under /Applications/Silk/Mobile/common/Appium/
node_modules/appium-xcuitest-driver and that the folder contains the file
WebDriverAgent.bundle. If not, create this folder and an empty WebDriverAgent.bundle file, for
example by using the following command:

mkdir -p Resources/WebDriverAgent.bundle

What can I do to prevent the Developer Tools Access from requesting to take control of another
process?

When starting the execution of a test on iOS, a message box stating the following might appear:
Developer Tools Access needs to take control of another process for debugging to continue. Type your
password to allow this.

To avoid getting this message, execute the following command in a Terminal:

sudo /usr/sbin/DevToolsSecurity --enable

Why are the rectangles wrong while testing a mobile web application on an iPad?

If the rectangles around controls are offset when testing a mobile web application on an iPad, you might
have multiple browser tabs open and the Tab bar might be displayed. To fix this issue, close all tabs except
one.

198 | Testing Specific Environments

https://developer.apple.com/download/more/
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Why can I no longer record or replay tests on my device after updating Silk4NET?

When updating to a new version of Silk4NET, some Appium apps on any physical mobile devices that have
already been used for mobile testing with the previous version of Silk4NET are updated automatically. If for
any reason these apps are not automatically updated, you might experience difficulties when trying to
record or replay tests on the device.

If you are experiencing such issues on a specific Android device after updating Silk4NET, manually
uninstall the following apps from the device:

• Appium Android Input Manager
• Appium Settings
• io.appium.uiautomator2.server
• io.appium.uiautomator2.server.test
• Unlock

If you are experiencing such issues on a specific iOS device after updating Silk4NET, manually uninstall
the WebDriverAgentRunner from the device.

Why can I not record a mobile application?

Silk4NET uses Appium to test mobile applications. Some network proxy settings set in Appium might
interfere with recording Silk4NET. You could try to deactivate the network proxy settings on the mobile
device or Emulator.

Why can I not test on my Android device?

Some Android devices might have additional settings that prevent Silk4NET from testing mobile
applications on the device. For example, the Xiaomi Mi Mix 2 has the same prerequisites for testing as
every other device, but these are not enough. To prepare the Xiaomi Mi Mix 2 for testing, perform the
following actions:

1. Enable the developer mode on the device.
2. Navigate to Settings > Additional settings > Developer options.
3. Enable USB debugging.
4. Enable Stay awake.
5. Enable Install via USB.
6. Enable USB debugging (Security settings).
7. Disable Turn on MIUI optimizations.

Why did replay become much slower on iOS 13 compared to iOS12 when testing hybrid apps?

Testing on iOS 13 or later can result in unstable test results because the UIWebView controls have been
deprecated. Make sure to upgrade the WebView to WKWebView.

How Can I Use Chrome for Android to Replay Tests?
By default you can use the Select Browser dialog box to select the browser during replay.

If you execute a script from the command line or from a Continuous Integration (CI) server, you can specify
the connection string in the application configuration of the script. To overwrite the browser that is specified
in the application configuration, use the silktest.configurationName environment variable.

You can also use the property browsertype of the BrowserApplication class to set the type of the
browser that is used during replay. However, the browsertype does not include an explicit value for
Chrome for Android.

To specify that you want to use Chrome for Android as the browser, on which a test is replayed, set the
browsertype to GoogleChrome and specify Android as the platform. When Android is specified,
Silk4NET uses Chrome for Android instead of Google Chrome on a desktop machine to execute the test.

Testing Specific Environments | 199

Examples

The following code sample shows how you can set the base state for a test to use
Chrome for Android on a Nexus 7 by using the silktest.configurationName:

SET
silktest.configurationName="platformName=Android;deviceName=Nexu
s 7;host=10.0.0.1 - Chrome"

The following code sample shows how you can set the base state for a test to use
Chrome for Android by using the browsertype :

// C# code
var baseState = New BrowserBaseState(BrowserType.GoogleChrome,
"demo.borland.com/InsuranceWebExtJS/");
baseState.SetConnectionString("platformName=Android");
baseState.Execute();

'VB .NET code
Dim baseState = New BrowserBaseState(BrowserType.GoogleChrome,
"demo.borland.com/InsuranceWebExtJS/")
baseState.SetConnectionString("platformName=Android")
baseState.Execute()

Limitations for Testing Mobile Web Applications
The support for playing back tests and recording locators on mobile browsers is not as complete as the
support for the other supported browsers. The known limitations for playing back tests and recording
locators for mobile web applications are:

• The following classes, interfaces, methods, and properties are currently not supported for mobile web
applications:

• BrowserApplication class.

• CloseOtherTabs method
• CloseTab method
• ExistsTab method
• GetActiveTab method
• GetSelectedTab method
• GetSelectedTabIndex method
• GetSelectedTabName method
• GetTabCount method
• ImageClick method
• OpenTab method
• SelectTab method

• DomElement class.

• DomDoubleClick method
• DomMouseMove method
• GetDomAttributeList method

• IKeyable interface.

• PressKeys method
• ReleaseKeys method

• Silk4NET does not support testing HTML frames and iFrames with Apple Safari on iOS, including text
recognition in HTML frames and iFrames.

200 | Testing Specific Environments

Text recognition includes the following methods:

• TextCapture

• TextClick

• TextExists

• TextRectangle

• Recording in landscape mode is not supported for emulators that include virtual buttons in the system
bar. Such emulators do not correctly detect rotation and render the system bar in landscape mode to
the right of the screen, instead of the lower part of the screen. However, you can record against such an
emulator in portrait mode.

• Only HTML attributes in the HTML DOM are supported in XPath expressions for mobile applications.
Silk4NET does not support properties in XPath expressions.

• If you are testing a mobile web application on Android, Silk4NET does not support zooming.
• The following JavaScript alert-handling methods of the BrowserWindow class do not work when

testing on the Original Android Stock (AOSP) Browser:

• AcceptAlert method
• DismissAlert method
• GetAlertText method
• IsAlertPresent method

• At any given point in time, you can test on multiple physical iOS devices that are connected to the Mac,
but only on one iOS Simulator that is running on the Mac.

• Before starting to test a mobile web application, ensure that no browser tab is open.

Tip: On iPads you can disable tabs in Apple Safari. Navigate to Settings > Safari and disable
Show Tab Bar to do so.

• While testing a mobile web application, you can only have one browser tab open.
• Silk4NET does not support testing mobile web applications that are opened by a native mobile

application.
• Testing web or hybrid applications on iOS requires iOS version 11 or later.

Limitations for Testing Native Mobile Applications
The known limitations for playing back tests and recording locators on native mobile applications (apps)
are:

• The following classes, interfaces, methods, and properties are currently not supported for native mobile
applications:

• IKeyable interface.

• PressKeys method
• ReleaseKeys method

• MobileDevice class.

• When testing a native mobile application on iOS, the SetLocation method is not supported.
• When testing a native mobile application on an Android version prior to Android 6.0, you have to

enable Allow mock locations to use the SetLocation method. To do so, open the settings of
the Android device or emulator and tap Developer Options.

• When testing a native mobile application on Android 6.0 or later, you have to set the app to
Appium Settings to use the SetLocation method. To do so, open the settings of the Android
device or emulator and tap Developer Options > Select mock location app. Then choose
Appium Settings.

Note: The Appium Settings entry is only available if you have already executed a test with
Appium on the Android device or emulator.

Testing Specific Environments | 201

• When testing on iOS, the getValue method of the XCUIElementTypeSwitch class returns the
strings false or true depending on the checked state, instead of returning the strings 0 and 1.

• Recording in landscape mode is not supported for Android emulators that include virtual buttons in the
system bar. Such emulators do not correctly detect rotation and render the system bar in landscape
mode to the right of the screen, instead of the lower part of the screen. However, you can record against
such an emulator in portrait mode.

• Only HTML attributes in the HTML DOM are supported in XPath expressions for mobile applications.
Silk4NET does not support properties in XPath expressions.

• At any given point in time, you can test on multiple physical iOS devices that are connected to the Mac,
but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1 or later, you are
no longer required to use multiple user sessions on a Mac to test mobile applications on iOS.

• Silk4NET does not support text recognition when testing native mobile applications on both Android and
iOS.

Text recognition includes the following methods:

• TextCapture

• TextClick

• TextExists

• TextRectangle

• Silk4NET does not support testing native mobile applications with multiple web views.
• When testing on iOS, the state of the isVisible property is always true, even if the element is not

visible.
• When testing on iOS, a swipe action with multiple steps swipes to a point, releases the mouse pointer

and then swipes to the next point. On prior versions of iOS, the action does not release the mouse
pointer between the swipes.

• When testing on iOS, Silk4NET does not support any multi-touch actions except pinch.
• When testing on iOS, Silk4NET does not support the PinchIn method.
• When testing on iOS, you can only accept or dismiss alert dialog boxes. If no Cancel button is available

and Silk4NET cannot dismiss the dialog, the default action is to accept the dialog.
• When testing on Android, Silk4NET does not provide automated synchronization for controls of the

Animation class.
• When testing toasts on Android, the following limitations apply:

• During recording, Silk4NET always displays the rectangle for the toast in the lowest quarter of the
Recording window, independent of the actual position of the toast.

• During recording and replay, the detection of a toast by Silk4NET always has a duration of five
seconds, even if the toast appears in a shorter time period.

• When testing on iOS, Silk4NET does not provide automated synchronization for controls that call the
UIView.animate function or the UIView.animateWithDuration function.

You can workaround this issue by increasing the speed of the animation in the app delegate:

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
 //...
 if NSProcessInfo.processInfo().environment["automationName"] == "Silk
Test" {
 // Speed animations up (recommended)
 window!.layer.speed = 100;
 }
}

Micro Focus does not recommend disabling such animations completely, as this might change the
applications behavior. However, if speeding up the animation does not resolve the synchronization
issue, you could completely disable animations in the app delegate as follows:

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {

202 | Testing Specific Environments

https://developer.android.com/reference/android/view/animation/Animation.html

 //...
 if NSProcessInfo.processInfo().environment["automationName"] == "Silk
Test" {
 UIView.setAnimationsEnabled(false)
 }
}

• When testing on iOS, the following additional limitations apply:

• You might experience performance decreases while recording and replaying tests.
• Due to internal changes in iOS, the locators of some controls might have changed, and some of your

existing tests might break.
• Text fields that are not in focus might not be recognized as text fields. To ensure that text fields are

recognized correctly, set the focus on the text fields, for example by clicking on a text field before
trying to interact with it.

Dynamically Invoking Methods for Native Mobile Apps
Dynamic invoke enables you to directly call methods of the underlying Appium WebDriver for a mobile
native app. This is useful whenever an Appium WebDriver method is not exposed through the Silk4NET
API.

Call multiple dynamic methods on objects with the InvokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Supported Methods

• When testing a native mobile application on Android, Silk4NET supports the methods available in the
AndroidDriver class of the Appium Java-client API.

• When testing a native mobile application on iOS, Silk4NET supports the methods available in the
IOSDriver class of the Appium Java-client API.

Supported Parameter Types

The following parameter types are supported:

• Primitive types (boolean, integer, long, double, string)

Both primitive types, such as int, and object types, such as java.lang.Integer are supported.
Primitive types are widened if necessary, allowing, for example, to pass an int where a long is
expected.

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the enum ScreenOrientation, you can use the string
values LANDSCAPE or PORTRAIT.

• Lists

Allows calling methods with list, array, or var-arg parameters. Conversion to an array type is done
automatically, provided the elements of the list are assignable to the target array type.

Returned Values

The following values are returned for methods that have a return value:

• The correct value for all built-in Silk4NET types. These types are listed in the Supported Parameter
Types section.

• All methods that have no return value return null in C# or Nothing in VB.

Testing Specific Environments | 203

http://appium.github.io/java-client/
http://appium.github.io/java-client/

Example

The following code sample contains some common examples for using dynamic invoke.

' VB .NET code
' Getting the page source
Dim pageSource As String = _desktop.MobileDevice("//
MobileDevice").Invoke("getPageSource")

' Resetting an app
_desktop.MobileDevice("//MobileDevice").Invoke("resetApp")

' Changing the device orientation
_desktop.MobileDevice("//MobileDevice").Invoke("rotate",
"LANDSCAPE")
_desktop.MobileDevice("//MobileDevice").Invoke("rotate",
"PORTRAIT")

' Dynamic invoke on MobileObject (calls get redirected to the
underlying web element for WebDriver)
With _desktop.MobileDevice("//MobileDevice")
 .MobileObject("CheckBox 2").Invoke("click")
End With

// C#
MobileDevice device = _desktop.MobileDevice("//MobileDevice");

// Getting the page source
var pageSource = (string) device.Invoke("getPageSource");

// Resetting an app
device.Invoke("resetApp");

// Changing the device orientation
device.Invoke("rotate", "LANDSCAPE");
device.Invoke("rotate", "PORTRAIT");

// Dynamic invoke on MobileObject (calls get redirected to the
underlying web element for WebDriver)
device.MobileObject("//MobileObject[@caption='CheckBox
2']").Invoke("click");

Clicking on Objects in a Mobile Website
When clicking on an object during the recording and replay of an automated test, a mobile website
presents the following challenges in comparison to a desktop website:

• Varying zoom factors and device pixel ratios.
• Varying screen sizes for different mobile devices.
• Varying font and graphic sizes between mobile devices, usually smaller in comparison to a website in a

desktop browser.
• Varying pixel size and resolution for different mobile devices.

Silk4NET enables you to surpass these challenges and to click the appropriate object on a mobile website.

When recording a test on a mobile device, Silk4NET does not record coordinates when recording a Click.
However, for cross-browser testing, coordinates are allowed during replay. You can also manually add
coordinates to a Click. Silk4NET interprets these coordinates as the HTML coordinates of the object. To
click on the appropriate object inside the BrowserWindow, during the replay of a test on a mobile device,
Silk4NET applies the current zoom factor to the HTML coordinates of the object. The device pixel
coordinates are the HTML coordinates of the object, multiplied with the current zoom factor.

204 | Testing Specific Environments

If the object is not visible in the currently displayed section of the mobile website, Silk4NET scrolls to the
appropriate location in the website.

Example

The following code shows how you can test a DomButton with a fixed size of 100 x 20
px in your HTML page.

C#

DomButton domButton = _desktop.Find<DomButton>("locator for the
button");
domButton.Click(MouseButton.LEFT, new Point(50, 10));

VB

DomButton domButton = _desktop.Find(Of DomButton)("locator for
the button");
domButton.Click(MouseButton.LEFT, new Point(50, 10));

During replay on a different mobile device or with a different zoom factor, the
DomButton might for example have an actual width of 10px on the device screen.
Silk4NET clicks in the middle of the element when using the code above, independent
of the current zoom factor, because Silk4NET interprets the coordinates as HTML
coordinates and applies the current zoom factor.

Using Existing Mobile Web Tests
Silk Test 17.0 or later uses a different approach to mobile web testing than previous versions of Silk Test.
This change might result in your old mobile web tests no longer working on Silk Test 17.0 or later. This
topic describes some of the changes that were introduced with Silk Test 17.0 and provides guidance on
changing existing mobile web tests with Silk Test 17.0 or later.

The following changes for mobile web testing were introduced with Silk Test 17.0:

• With previous versions of Silk Test, you were able to test on iOS devices that were connected by USB to
a Windows machine. With Silk Test 17.0 or later, you can only test on iOS devices that are connected to
an OSX machine (Mac).

• If you have tested mobile web applications on an Android device with a previous version of Silk Test,
you have to manually remove the proxy from the Android device to test a web application with Silk Test
17.0 or later. Silk Test 17.0 or later no longer requires a proxy, and if the proxy is set, the message
Unable to connect to the proxy server displays on the device.

.NET Support
Silk Test provides built-in support for testing .NET applications including:

• Windows Forms (Win Forms) applications
• Windows Presentation Foundation (WPF) applications
• Microsoft Silverlight applications

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Windows Forms Support
Silk4NET provides built-in support for testing .NET standalone and No-Touch Windows Forms (Win Forms)
applications. However, side-by-side execution is supported only on standalone applications.

Testing Specific Environments | 205

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Object Recognition

The name that was given to an element in the application is used as automationId attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute.

Supported Controls

For a complete list of the record and replay controls available for Win Forms testing, see Windows Forms
Class Reference.

Windows Forms Class Reference
When you configure a Windows Forms application, Silk4NET automatically provides built-in support for
testing standard Windows Forms controls.

Attributes for Windows Forms Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows Forms applications include:

• automationid
• caption
• windowid
• priorlabel (For controls that do not have a caption, the priorlabel is used as the caption automatically.

For controls with a caption, it may be easier to use the caption.)

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Custom Attributes for Windows Forms Applications
Windows Forms applications use the predefined automation property automationId to specify a stable
identifier for the Windows forms control.

Silk4NET automatically will use this property for identification in the locator. Windows Forms application
locators look like the following:

/FormsWindow//PushButton[@automationId='btnBasicControls']

Dynamically Invoking Windows Forms Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4NET API for this control. Dynamic invoke is especially useful when you are working
with custom controls, where the required functionality for interacting with the control is not exposed through
the Silk4NET API.

Call dynamic methods on objects with the Invoke method. To retrieve a list of supported dynamic
methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the InvokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

206 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.Invoke("SetTitle", "my new title")

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

The Invoke Method

For a Windows Forms or a WPF control, you can use the Invoke method to call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

First Example for the Invoke Method

For an object of the Silk4NET type DataGrid, you can call all methods that MSDN
defines for the type System.Windows.Forms.DataGrid.

To call the method IsExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//VB .NET code
Dim isExpanded As Boolean = dataGrid.Invoke("IsExpanded", 3)

//C# code
bool isExpanded = (bool) dataGrid.Invoke("IsExpanded", 3);

Second Example for the Invoke Method

To invoke the static method String.Compare(String s1, String s2) inside the
AUT, use the following code:

//VB .NET code
Dim result as Integer = (Integer)
mainWindow.Invoke("System.String.Compare", "a", "b")

//C# code
int result = (int) mainWindow.Invoke("System.String.Compare",
"a", "b");

Third Example for the Invoke Method

This example shows how you can dynamically invoke the user-generated method
GetContents.

You can write code which you can use to interact with a control in the application under
test (AUT), in this example an UltraGrid. Instead of creating complex dynamic invoke
calls to retrieve the contents of the UltraGrid, you can generate a new method
GetContents and then just dynamically invoke the new method.

In Visual Studio, the following code in the AUT defines the GetContents method as a
method of the UltraGridUtil class:

//C# code, because this is code in the AUT
namespace UltraGridExtensions {
 public class UltraGridUtil {
 /// <summary>
 /// Retrieves the contents of an UltraGrid as nested list

Testing Specific Environments | 207

 /// </summary>
 /// <param name="grid"></param>
 /// <returns></returns>
 public static List<List<string>>
GetContents(Infragistics.Win.UltraWinGrid.UltraGrid grid) {
 var result = new List<List<string>>();
 foreach (var row in grid.Rows) {
 var rowContent = new List<string>();
 foreach (var cell in row.Cells) {
 rowContent.Add(cell.Text);
 }
 result.Add(rowContent);
 }
 return result;
 }
 }
}

The code for the UltraGridUtil class needs to be added to the AUT. You can do this
in the following ways:

• The application developer can compile the code for the class into the AUT. The
assembly needs to be already loaded.

• You can create a new assembly that is loaded into the AUT during test execution.

To load the assembly, you can use the following code:

FormsWindow.LoadAssembly(String assemblyFileName)

You can load the assembly by using the full path, for example:

mainWindow.LoadAssembly("C:/temp/ultraGridExtensions.dll")

You can also find the location of the assembly by using the Location method:

//VB.NET code
Dim assemblyLocation =
GetType(UltraGridExtensions.UltraGridUtil).Assembly.Location
mainWindow.LoadAssembly(assemblyLocation)

//C# code
string assemblyLocation =
typeof(UltraGridExtensions.UltraGridUtil).Assembly.Location;
mainWindow.LoadAssembly(assemblyLocation);

When the code for the UltraGridUtil class is in the AUT, you can add the following code
to your test script to invoke the GetContents method:

var contents = (IList)
mainWindow.Invoke("UltraGridExtensions.UltraGridUtil.GetContents
", ultraGrid);

The mainWindow object, on which the Invoke method is called, only identifies the
AUT and can be replaced by any other object in the AUT.

The InvokeMethods Method

For a Windows Forms or a WPF control, you can use the InvokeMethods method to invoke a sequence
of nested methods. You can call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

208 | Testing Specific Environments

Example: Getting the Text Contents of a Cell in a Custom Data Grid

To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:

string cellText = dataGrid.Rows[0].Cells[2];

Scripting the same example by using the InvokeMethods method generates a
relatively complex script, because you have to pass five methods with their
corresponding parameters to the InvokeMethods method:

// C# code
var dataGrid = mainWindow.WPFControl("@automationId='Custom
Data Grid'");
// Get text contents of third cell in first row.
var rowIndex = 0;
var columnIndex = 2;

var methodNames = new List<string>();
methodNames.Add("Rows");
 // Get the list of rows from the grid.
methodNames.Add("get_Item"); //
Get a specific row from the list of rows by using the indexer
method.
methodNames.Add("Cells");
 // Get the list of cells from the the row.
methodNames.Add("get_Item"); //
Get a specific cell from the list of cells by using the indexer
method.
methodNames.Add("Text");
 // Get the text of the cell.

var parameters = new List<List<object>>();
parameters.Add(new List<object>()); //
Parameters for the Rows property.
parameters.Add(new List<object>() { rowIndex }); //
Parameters for the get_Item method.
parameters.Add(new List<object>()); //
Parameters for the Cells property.
parameters.Add(new List<object>() { columnIndex }); //
Parameters for the get_Item method.
parameters.Add(new List<object>()); //
Parameters for the Text property.

string cellText = (string)dataGrid.InvokeMethods(methodNames,
parameters);

' VB .NET code
Dim dataGrid = mainWindow.WPFControl("@automationId='Custom
Data Grid'")

' Get text contents of third cell in first row.
Dim rowIndex = 0
Dim column = 2

Dim methodNames = New List(Of String)()
methodNames.Add("Rows") ' Get the list of
rows from the grid.
methodNames.Add("get_Item") ' Get a specific row
from the list of rows by using the indexer method.

Testing Specific Environments | 209

methodNames.Add("Cells") ' Get the list of
cells from the the row.
methodNames.Add("get_Item") ' Get a specific cell
from the list of cells by using the indexer method.
methodNames.Add("Text") ' Get the text of the
cell.

Dim parameters = New List(Of List(Of Object))()
parameters.Add(New List(Of Object)()) '
Parameters for the Rows property.
parameters.Add(New List(Of Object) From {rowIndex}) '
Parameters for the get_Item method.
parameters.Add(New List(Of Object)()) '
Parameters for the Cells property.
parameters.Add(New List(Of Object) From {columnIndex}) '
Parameters for the get_Item method.
parameters.Add(New List(Of Object)()) '
Parameters for the Text property.

Dim cellText As String = dataGrid.InvokeMethods(methodNames,
parameters)

A better approach in such a case is to add code to the application under test and then
to use the InvokeMethods method. For this example, add the GetCellText method
to the AUT:

// C# code, if the AUT is implemented in C#.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

' VB code, if the AUT is implemented in VB.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

To get the text contents of the cell, dynamically invoke the GetCellText method from
your test script:

// C# code
string cellText = (string) mainWindow.Invoke("GetCellText",
dataGrid, rowIndex, columnIndex);

'VB .NET code
Dim cellText As String = mainWindow.Invoke("GetCellText",
dataGrid, rowIndex, columnIndex)

For additional information, see Adding Code to the Application Under Test to Test
Custom Controls.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4NET supports for the control.
• All public methods and properties that the MSDN defines for the control.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

210 | Testing Specific Environments

• All built-in Silk4NET types

Silk4NET types includes primitive types (such as boolean, int, string), lists, and other types (such as
Point and Rect).

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects

.NET struct and object parameters must be passed as a list. The elements in the list must match one
constructor for the .NET object in the test application. For example, if the method expects a parameter
of the .NET type System.Windows.Vector, you can pass a list with two integers. This works
because the System.Windows.Vector type has a constructor with two integer arguments.

• Other controls

Control parameters can be passed or returned as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4NET types. These types are listed in the Supported Parameter
Types section.

• All methods that have no return value return null in C# or Nothing in VB.

Windows Presentation Foundation (WPF) Support
Silk4NET provides built-in support for testing Windows Presentation Foundation (WPF) applications.
Silk4NET supports standalone WPF applications and can record and play back controls embedded in .NET
version 3.5 or later.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

For a complete list of the controls available for WPF testing, see WPF Class Reference.

All supported WPF classes for Silk4NET WPF support start with the prefix WPF, such as WPFWindow and
WPFListBox.

Supported methods and properties for WPF controls depend on the actual implementation and runtime
state. The methods and properties may differ from the list that is defined for the corresponding class. To
determine the methods and properties that are supported in a specific situation, use the following code:

• GetPropertyList()

• GetDynamicMethodList()

For additional information abut WPF, refer to MSDN.

WPF Class Reference
When you configure a WPF application, Silk4NET automatically provides built-in support for testing
standard WPF controls.

Attributes for Windows Presentation Foundation (WPF) Applications
Supported attributes for WPF applications include:

• automationId

Testing Specific Environments | 211

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
http://msdn.microsoft.com

• caption
• className
• name
• All dynamic locator attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Object Recognition

To identify components within WPF scripts, you can specify the automationId, caption, className, or
name. The name that is given to an element in the application is used as the automationId attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute. For
example, a locator with an automationId might look like: //
WPFButton[@automationId='okButton']".

If you define an automationId and any other attribute, only the automationId is used during replay. If there is
no automationId defined, the name is used to resolve the component. If neither a name nor an
automationId are defined, the caption value is used. If no caption is defined, the className is used. We
recommend using the automationId because it is the most useful property.

Attribute Type Description Example

automationId An ID that was provided by
the developer of the test
application.

//WPFButton[@automationId='okButton']"

name The name of a control. The
Visual Studio designer
automatically assigns a
name to every control that is
created with the designer.
The application developer
uses this name to identify
the control in the application
code.

//WPFButton[@name='okButton']"

caption The text that the control
displays. When testing a
localized application in
multiple languages, use the
automationId or name
attribute instead of the
caption.

//WPFButton[@automationId='Ok']"

className The simple .NET class
name (without namespace)
of the WPF control. Using
the class name attribute can
help to identify a custom
control that is derived from
a standard WPF control that
Silk4NET recognizes.

//WPFButton[@className='MyCustomButton']"

During recording, Silk4NET creates a locator for a WPF control by using the automationId, name, caption,
or className attributes in the order that they are listed in the preceding table. For example, if a control has
a automationId and a name, Silk4NET uses the automationId when creating the locator.

212 | Testing Specific Environments

The following example shows how an application developer can define a name and an automationId for a
WPF button in the XAML code of the application:

<Button Name="okButton" AutomationProperties.AutomationId="okButton"
Click="okButton_Click">Ok</Button>

Custom Attributes for WPF Applications
WPF applications use the predefined automation property AutomationProperties.AutomationId to
specify a stable identifier for the WPF control as follows:

<Window x:Class="Test.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <Button AutomationProperties.AutomationId="AID_buttonA">The
Button</Button>
 </Grid>
</Window>

Silk4NET automatically uses this property for identification in the locator. WPF application locators look like
the following:

/WPFWindow[@caption='MainWindow']//WPFButton[@automationId='AID_buttonA']

Classes that Derive from the WPFItemsControl Class
Silk4NET can interact with classes that derive from WPFItemsControl, such as WPFListBox,
WPFTreeView, and WPFMenu, in two ways:

• Working with the control

Most controls contain methods and properties for typical use cases. The items are identified by text or
index.

• Working with individual items, such as WPFListBoxItem, WPFTreeViewItem, or WPFMenuItem

For advanced use cases, use individual items. For example, use individual items for opening the context
menu on a specific item in a list box, or clicking a certain position relative to an item.

Custom WPF Controls
Generally, Silk4NET provides record and playback support for all standard WPF controls.

Silk4NET handles custom controls based on the way the custom control is implemented. You can
implement custom controls by using the following approaches:

• Deriving classes from UserControl

This is a typical way to create compound controls. Silk4NET recognizes these user controls as
WPFUserControl and provides full support for the contained controls.

• Deriving classes from standard WPF controls, such as ListBox

Silk4NET treats these controls as an instance of the standard WPF control that they derive from.
Record, playback, and recognition of children may not work if the user control behavior differs
significantly from its base class implementation.

• Using standard controls that use templates to change their visual appearance

Low-level replay might not work in certain cases. Switch to high-level playback mode in such cases.

Silk4NET filters out certain controls that are typically not relevant for functional testing. For example,
controls that are used for layout purposes are not included. However, if a custom control derives from an
excluded class, specify the name of the related WPF class to expose the filtered controls during recording
and playback.

Testing Specific Environments | 213

Dynamically Invoking WPF Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4NET API for this control. Dynamic invoke is especially useful when you are working
with custom controls, where the required functionality for interacting with the control is not exposed through
the Silk4NET API.

Call dynamic methods on objects with the Invoke method. To retrieve a list of supported dynamic
methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the InvokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.Invoke("SetTitle", "my new title")

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

The Invoke Method

For a Windows Forms or a WPF control, you can use the Invoke method to call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

First Example for the Invoke Method

For an object of the Silk4NET type DataGrid, you can call all methods that MSDN
defines for the type System.Windows.Forms.DataGrid.

To call the method IsExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//VB .NET code
Dim isExpanded As Boolean = dataGrid.Invoke("IsExpanded", 3)

//C# code
bool isExpanded = (bool) dataGrid.Invoke("IsExpanded", 3);

Second Example for the Invoke Method

To invoke the static method String.Compare(String s1, String s2) inside the
AUT, use the following code:

//VB .NET code
Dim result as Integer = (Integer)
mainWindow.Invoke("System.String.Compare", "a", "b")

//C# code
int result = (int) mainWindow.Invoke("System.String.Compare",
"a", "b");

214 | Testing Specific Environments

Third Example for the Invoke Method

This example shows how you can dynamically invoke the user-generated method
GetContents.

You can write code which you can use to interact with a control in the application under
test (AUT), in this example an UltraGrid. Instead of creating complex dynamic invoke
calls to retrieve the contents of the UltraGrid, you can generate a new method
GetContents and then just dynamically invoke the new method.

In Visual Studio, the following code in the AUT defines the GetContents method as a
method of the UltraGridUtil class:

//C# code, because this is code in the AUT
namespace UltraGridExtensions {
 public class UltraGridUtil {
 /// <summary>
 /// Retrieves the contents of an UltraGrid as nested list
 /// </summary>
 /// <param name="grid"></param>
 /// <returns></returns>
 public static List<List<string>>
GetContents(Infragistics.Win.UltraWinGrid.UltraGrid grid) {
 var result = new List<List<string>>();
 foreach (var row in grid.Rows) {
 var rowContent = new List<string>();
 foreach (var cell in row.Cells) {
 rowContent.Add(cell.Text);
 }
 result.Add(rowContent);
 }
 return result;
 }
 }
}

The code for the UltraGridUtil class needs to be added to the AUT. You can do this
in the following ways:

• The application developer can compile the code for the class into the AUT. The
assembly needs to be already loaded.

• You can create a new assembly that is loaded into the AUT during test execution.

To load the assembly, you can use the following code:

FormsWindow.LoadAssembly(String assemblyFileName)

You can load the assembly by using the full path, for example:

mainWindow.LoadAssembly("C:/temp/ultraGridExtensions.dll")

You can also find the location of the assembly by using the Location method:

//VB.NET code
Dim assemblyLocation =
GetType(UltraGridExtensions.UltraGridUtil).Assembly.Location
mainWindow.LoadAssembly(assemblyLocation)

//C# code
string assemblyLocation =
typeof(UltraGridExtensions.UltraGridUtil).Assembly.Location;
mainWindow.LoadAssembly(assemblyLocation);

Testing Specific Environments | 215

When the code for the UltraGridUtil class is in the AUT, you can add the following code
to your test script to invoke the GetContents method:

var contents = (IList)
mainWindow.Invoke("UltraGridExtensions.UltraGridUtil.GetContents
", ultraGrid);

The mainWindow object, on which the Invoke method is called, only identifies the
AUT and can be replaced by any other object in the AUT.

The InvokeMethods Method

For a Windows Forms or a WPF control, you can use the InvokeMethods method to invoke a sequence
of nested methods. You can call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

Example: Getting the Text Contents of a Cell in a Custom Data Grid

To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:

string cellText = dataGrid.Rows[0].Cells[2];

Scripting the same example by using the InvokeMethods method generates a
relatively complex script, because you have to pass five methods with their
corresponding parameters to the InvokeMethods method:

// C# code
var dataGrid = mainWindow.WPFControl("@automationId='Custom
Data Grid'");
// Get text contents of third cell in first row.
var rowIndex = 0;
var columnIndex = 2;

var methodNames = new List<string>();
methodNames.Add("Rows");
 // Get the list of rows from the grid.
methodNames.Add("get_Item"); //
Get a specific row from the list of rows by using the indexer
method.
methodNames.Add("Cells");
 // Get the list of cells from the the row.
methodNames.Add("get_Item"); //
Get a specific cell from the list of cells by using the indexer
method.
methodNames.Add("Text");
 // Get the text of the cell.

var parameters = new List<List<object>>();
parameters.Add(new List<object>()); //
Parameters for the Rows property.
parameters.Add(new List<object>() { rowIndex }); //
Parameters for the get_Item method.
parameters.Add(new List<object>()); //
Parameters for the Cells property.
parameters.Add(new List<object>() { columnIndex }); //

216 | Testing Specific Environments

Parameters for the get_Item method.
parameters.Add(new List<object>()); //
Parameters for the Text property.

string cellText = (string)dataGrid.InvokeMethods(methodNames,
parameters);

' VB .NET code
Dim dataGrid = mainWindow.WPFControl("@automationId='Custom
Data Grid'")

' Get text contents of third cell in first row.
Dim rowIndex = 0
Dim column = 2

Dim methodNames = New List(Of String)()
methodNames.Add("Rows") ' Get the list of
rows from the grid.
methodNames.Add("get_Item") ' Get a specific row
from the list of rows by using the indexer method.
methodNames.Add("Cells") ' Get the list of
cells from the the row.
methodNames.Add("get_Item") ' Get a specific cell
from the list of cells by using the indexer method.
methodNames.Add("Text") ' Get the text of the
cell.

Dim parameters = New List(Of List(Of Object))()
parameters.Add(New List(Of Object)()) '
Parameters for the Rows property.
parameters.Add(New List(Of Object) From {rowIndex}) '
Parameters for the get_Item method.
parameters.Add(New List(Of Object)()) '
Parameters for the Cells property.
parameters.Add(New List(Of Object) From {columnIndex}) '
Parameters for the get_Item method.
parameters.Add(New List(Of Object)()) '
Parameters for the Text property.

Dim cellText As String = dataGrid.InvokeMethods(methodNames,
parameters)

A better approach in such a case is to add code to the application under test and then
to use the InvokeMethods method. For this example, add the GetCellText method
to the AUT:

// C# code, if the AUT is implemented in C#.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

' VB code, if the AUT is implemented in VB.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

Testing Specific Environments | 217

To get the text contents of the cell, dynamically invoke the GetCellText method from
your test script:

// C# code
string cellText = (string) mainWindow.Invoke("GetCellText",
dataGrid, rowIndex, columnIndex);

'VB .NET code
Dim cellText As String = mainWindow.Invoke("GetCellText",
dataGrid, rowIndex, columnIndex)

For additional information, see Adding Code to the Application Under Test to Test
Custom Controls.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4NET supports for the control.
• All public methods and properties that the MSDN defines for the control.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4NET types

Silk4NET types includes primitive types (such as boolean, int, string), lists, and other types (such as
Point and Rect).

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects

.NET struct and object parameters must be passed as a list. The elements in the list must match one
constructor for the .NET object in the test application. For example, if the method expects a parameter
of the .NET type System.Windows.Vector, you can pass a list with two integers. This works
because the System.Windows.Vector type has a constructor with two integer arguments.

• WPF controls

WPF control parameters can be passed as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4NET types. These types are listed in the Supported Parameter
Types section.

• All methods that have no return value return null in C# or Nothing in VB.
• A string for all other types

Call ToString on returned .NET objects to retrieve the string representation

Example

For example, when an application developer creates a custom calculator control that
offers the following methods and the following property:

public void Reset()
public int Add(int number1, int number2)

218 | Testing Specific Environments

public System.Windows.Vector StrechVector(System.Windows.Vector
vector, double
factor)
public String Description { get;}

The tester can call the methods directly from his test. For example:

customControl.Invoke("Reset")
Dim sum as Integer = customControl.Invoke("Add", 1, 2)
' the vector can be passed as list of integer
Dim vector = New List(Of Integer)
vector.Add(3)
vector.Add(4)
' returns "6;8" because this is the string representation of
the .NET object
Dim strechedVector As String =
customControl.Invoke("StrechVector", vector, 2.0)
Dim description As String =
customControl.GetProperty("Description")

Setting WPF Classes to Expose During Recording and Playback
Silk4NET filters out certain controls that are typically not relevant for functional testing. For example,
controls that are used for layout purposes are not included. However, if a custom control derives from an
excluded class, specify the name of the related WPF class to expose the filtered controls during recording
and playback.

Specify the names of any WPF classes that you want to expose during recording and playback. For
example, if a custom class called MyGrid derives from the WPF Grid class, the objects of the MyGrid
custom class are not available for recording and playback. Grid objects are not available for recording and
playback because the Grid class is not relevant for functional testing since it exists only for layout
purposes. As a result, Grid objects are not exposed by default. In order to use custom classes that are
based on classes that are not relevant to functional testing, add the custom class, in this case MyGrid, to
the OPT_WPF_CUSTOM_CLASSES option. Then you can record, playback, find, verify properties, and
perform any other supported actions for the specified classes.

1. Click Silk4NET > Edit Options.

2. Click the WPF tab.

3. In the Custom WPF class names grid, type the name of the class that you want to expose during
recording and playback.

Separate class names with a comma.

4. Click OK.

Setting Pre-Fill During Recording and Replaying
Defines whether items in a WPFItemsControl, like WPFComboBox or WPFListBox, are pre-filled during
recording and playback. WPF itself lazily loads items for certain controls, so these items are not available
for Silk4NET if they are not scrolled into view. Turn pre-filling on, which is the default setting, to additionally
access items that are not accessible without scrolling them into view. However, some applications have
problems when the items are pre-filled by Silk4NET in the background, and these applications can
therefore crash. In this case turn pre-filling off.

1. Click Silk4NET > Edit Options.

2. Click the WPF tab.

3. In the Pre-fill items area, check the OPT_WPF_PREFILL_ITEMS check box.

4. Click OK.

Testing Specific Environments | 219

Silverlight Application Support
Microsoft Silverlight (Silverlight) is an application framework for writing and running rich internet
applications, with features and purposes similar to those of Adobe Flash. The run-time environment for
Silverlight is available as a plug-in for most web browsers.

Silk4NET provides built-in support for testing Silverlight applications. Silk4NET supports Silverlight
applications that run in a browser as well as out-of-browser and can record and play back controls in .NET
version 3.5 or later.

The following applications, that are based on Silverlight, are supported:

• Silverlight applications that run in Internet Explorer.
• Out-of-Browser Silverlight applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

Silk4NET includes record and replay support for Silverlight controls.

For a complete list of the controls available for Silverlight testing, see the Silverlight Class Reference.

Note: With Silk Test 14.0 or later, Silk4NET recognizes only Silverlight controls that are available for
interaction and visible on the screen. This change might change the behavior of tests that were
recorded with a Silk Test version prior to Silk Test 14.0. To run such tests with Silk Test 14.0 or later,
remove all invisible or not yet available Silverlight controls from the tests.

Prerequisites

The support for testing Silverlight applications in Microsoft Windows XP requires the installation of Service
Pack 3 and the Update for Windows XP with the Microsoft User Interface Automation that is provided in
Windows 7. You can download the update from http://www.microsoft.com/download/en/details.aspx?
id=13821.

Note: The Microsoft User Interface Automation needs to be installed for the Silverlight support. If you
are using a Windows operating system and the Silverlight support does not work, you can install the
update with the Microsoft User Interface Automation, which is appropriate for your operating system,
from http://support.microsoft.com/kb/971513.

Silverlight Class Reference
When you configure a Silverlight application, Silk4NET automatically provides built-in support for testing
standard Silverlight controls.

Locator Attributes for Identifying Silverlight Controls
Supported locator attributes for Silverlight controls include:

• automationId
• caption
• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

220 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
http://www.microsoft.com/download/en/details.aspx?id=13821
http://www.microsoft.com/download/en/details.aspx?id=13821
http://support.microsoft.com/kb/971513

To identify components within Silverlight scripts, you can specify the automationId, caption, className,
name or any dynamic locator attribute. The automationId can be set by the application developer. For
example, a locator with an automationId might look like //SLButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
SLButton[@automationId="okBu
tton"]

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//SLButton[@caption="Ok"]

className The simple .NET class name (without namespace) of
the Silverlight control. Using the className attribute
can help to identify a custom control that is derived
from a standard Silverlight control that Silk4NET
recognizes.

//
SLButton[@className='MyCusto
mButton']

name The name of a control. Can be provided by the
developer of the application under test.

//SLButton[@name="okButton"]

Attention: The name attribute in XAML code maps to the locator attribute automationId, not to the
locator attribute name.

During recording, Silk4NET creates a locator for a Silverlight control by using the automationId, name,
caption, or className attributes in the order that they are listed in the preceding table. For example, if a
control has an automationId and a name, Silk4NET uses the automationId, if it is unique, when creating the
locator.

The following table shows how an application developer can define a Silverlight button with the text "Ok" in
the XAML code of the application:

XAML Code for the Object Locator to Find the Object from Silk Test

<Button>Ok</Button> //SLButton[@caption="Ok"]

<Button Name="okButton">Ok</Button> //SLButton[@automationId="okButton"]

<Button
AutomationProperties.AutomationId="okB
utton">Ok</Button>

//SLButton[@automationId="okButton"]

<Button
AutomationProperties.Name="okButton">O
k</Button>

//SLButton[@name="okButton"]

Dynamically Invoking Silverlight Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4NET API for this control. Dynamic invoke is especially useful when you are working
with custom controls, where the required functionality for interacting with the control is not exposed through
the Silk4NET API.

Call dynamic methods on objects with the Invoke method. To retrieve a list of supported dynamic
methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the InvokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Testing Specific Environments | 221

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.Invoke("SetTitle", "my new title")

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4NET types.

Silk4NET types include primitive types, for example boolean, int, and string, lists, and other types, for
example Point and Rect.

• Enum types.

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects.

Pass .NET struct and object parameters as a list. The elements in the list must match one constructor
for the .NET object in the test application. For example, if the method expects a parameter of the .NET
type System.Windows.Vector, you can pass a list with two integers. This works because the
System.Windows.Vector type has a constructor with two integer arguments.

• Other controls.

Control parameters can be passed as TestObject.

Supported Methods and Properties

The following methods and properties can be called:

• All public methods and properties that the MSDN defines for the AutomationElement class. For
additional information, see http://msdn.microsoft.com/en-us/library/
system.windows.automation.automationelement.aspx.

• All methods and properties that MSUIA exposes. The available methods and properties are grouped in
"patterns". Pattern is a MSUIA specific term. Every control implements certain patterns. For an overview
of patterns in general and all available patterns see http://msdn.microsoft.com/en-us/library/
ms752362.aspx. A custom control developer can provide testing support for the custom control by
implementing a set of MSUIA patterns.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4NET types.
• All methods that have no return value return null in C# or Nothing in VB.
• A string for all other types.

To retrieve this string representation, call the ToString method on returned .NET objects in the
application under test.

222 | Testing Specific Environments

http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx

Example

A TabItem in Silverlight, which is an item in a TabControl.

tabItem.Invoke("SelectionItemPattern.Select")
mySilverligtObject.GetProperty("IsPassword")

Scrolling in Silverlight
Silk4NET provides two different sets of scrolling-related methods and properties, depending on the
Silverlight control.

• The first type of controls includes controls that can scroll by themselves and therefore do not expose the
scrollbars explicitly as children. For example combo boxes, panes, list boxes, tree controls, data grids,
auto complete boxes, and others.

• The second type of controls includes controls that cannot scroll by themselves but expose scrollbars as
children for scrolling. For example text fields.

This distinction in Silk4NET exists because the controls in Silk4NET implement scrolling in those two ways.

Controls that support scrolling

In this case, scrolling-related methods and property are available for the control that contains the
scrollbars. Therefore, Silk4NET does not expose scrollbar objects.

Examples

The following command scrolls a list box to the bottom:

listBox.SetVerticalScrollPercent(100)

The following command scrolls the list box down by one unit:

listBox.ScrollVertical(ScrollAmount.SmallIncrement)

Controls that do not support scrolling

In this case the scrollbars are exposed. No scrolling-related methods and properties are available for the
control itself. The horizontal and vertical scrollbar objects enable you to scroll in the control by specifying
the increment or decrement, or the final position, as a parameter in the corresponding API functions. The
increment or decrement can take the values of the ScrollAmount enumeration. For additional information,
refer to the Silverlight documentation. The final position is related to the position of the object, which is
defined by the application designer.

Examples

The following command scrolls a vertical scrollbar within a text box to position 15:

 textBox.SLVerticalScrollBar().ScrollToPosition(15)

The following command scrolls a vertical scrollbar within a text box to the bottom:

 textBox.SLVerticalScrollBar().ScrollToMaximum()

Troubleshooting when Testing Silverlight Applications

Silk4NET cannot see inside the Silverlight application and no green rectangles are drawn during
recording

The following reasons may cause Silk4NET to be unable to see inside the Silverlight application:

Testing Specific Environments | 223

Reason Solution

You use a Silverlight version prior to 3. Use Silverlight 3 (Silverlight Runtime 4) or Silverlight 4
(Silverlight Runtime 4).

Your Silverlight application is running in windowless
mode.

Silk4NET does not support Silverlight applications that
run in windowless mode. To test such an application, you
need to change the Web site where your Silverlight
application is running. Therefore you need to set the
windowless parameter in the object tag of the HTML
or ASPX file, in which the Silverlight application is hosted,
to false.

The following sample code sets the windowless
parameter to false:

<object ...>
 <param name="windowless"
value="false"/>
 ...
</object>

Visual COBOL Support
Silk4NET supports recording and replaying tests against Visual COBOL applications. You can also use the
Silk4NET APIs from .NET COBOL to script automated tests for the following Visual COBOL applications:

• Dialog system applications.
• CGI applications.
• Cobol Win32 applications.
• .NET COBOL - WPF and Windows Forms applications.
• COBOL JVM - Swing applications.
• Non-COBOL front-end applications calling back-end COBOL.

Note: For some controls, Silk4NET provides only low-level recording support.

For information on the supported versions of Visual COBOL, refer to the Release Notes.

Example: Testing a Visual COBOL Application
This topic describes how you can test a Visual COBOL application with Silk4NET. For this example we test
the WPF Book, which is a .NET COBOL sample application.

When you install Visual COBOL, you also install the Visual COBOL sample applications. You can use the
Samples Browser to open the sample applications in Visual Studio. For additional information on the
Samples Browser, refer to the Visual COBOL documentation.

224 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Note: The following example was performed with Visual Studio 2015 and Micro Focus Visual COBOL
for Visual Studio 2015. In other versions of these projects, the user interfaces might look slightly
different.

1. To open the WPF Book in Visual Studio, open the Samples Browser, select Windows Presentation
Foundation, and select WPF Book from the list. Then click Open sample in Visual Studio.

2. In Visual Studio, open the Solution Explorer to access the WPF Book solution.

3. Right-click on the WPFBook project in the solution an click Build to build the project.

4. Open the Samples Browser again to access the newly built executable.

5. Select the WPF Book and click Open sample folder.

6. Navigate to WPFBook\Bin\Debug.

7. Double-click WPFBook.exe.

8. Create a new Silk4NET project in Visual Studio.

Testing Specific Environments | 225

9. Start recording a new Silk4NET test.

10.In the Select Application dialog box, select the Windows tab.

11.Click WPFForm Book Demo.

226 | Testing Specific Environments

12.Click OK.

13.In the WPFForm Book Demo, click Show List of Books.

14.Move the mouse cursor over the RetailPrice column of Oliver Twist and click Ctrl+Alt to verify that the
retail price is 10.00.

Testing Specific Environments | 227

15.Click OK in the Verify Properties dialog box.

16.Click Close in the WPFListView window.

17.Click Stop in the Recorder window.

18.In Visual Studio, right-click on the recorded test method and select Run Tests.

The test should pass, and you can now explore the test results.

228 | Testing Specific Environments

Rumba Support
Rumba is the world's premier Windows desktop terminal emulation solution. Silk Test provides built-in
support for recording and replaying Rumba.

When testing with Rumba, please consider the following:

• The Rumba version must be compatible to the Silk Test version. Versions of Rumba prior to version 8.1
are not supported.

• All controls that surround the green screen in Rumba are using basic WPF functionality (or Win32).
• The supported Rumba desktop types are:

• Mainframe Display
• AS400 Display
• Unix Display

For a complete list of the record and replay controls available for Rumba testing, see the Rumba Class
Reference.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Rumba Class Reference
When you configure a Rumba application, Silk4NET automatically provides built-in support for testing
standard Rumba controls.

Enabling and Disabling Rumba
Rumba is the world's premier Windows desktop terminal emulation solution. Rumba provides connectivity
solutions to mainframes, mid-range, UNIX, Linux, and HP servers.

Enabling Support

Before you can record and replay Rumba scripts, you need to enable support:

1. Install Rumba desktop client software version 8.1 or later.
2. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Administration > Rumba plugin

> Enable Silk Test Rumba plugin or (in Microsoft Windows 10) Start > Silk > Enable Silk Test
Rumba plugin.

Testing Specific Environments | 229

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Disabling Support

Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Administration > Rumba plugin >
Disable Silk Test Rumba plugin or (in Microsoft Windows 10) Start > Silk > Disable Silk Test Rumba
plugin.

Locator Attributes for Identifying Rumba Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. Supported attributes include:

caption The text that the control displays.

priorlabel Since input fields on a form normally have a label explaining the purpose of the input,
the intention of priorlabel is to identify the text input field, RumbaTextField, by the
text of its adjacent label field, RumbaLabel. If no preceding label is found in the same
line of the text field, or if the label at the right side is closer to the text field than the left
one, a label on the right side of the text field is used.

StartRow This attribute is not recorded, but you can manually add it to the locator. Use
StartRow to identify the text input field, RumbaTextField, that starts at this row.

StartColumn This attribute is not recorded, but you can manually add it to the locator. Use
StartColumn to identify the text input field, RumbaTextField, that starts at this
column.

All dynamic
locator
attributes.

For additional information on dynamic locator attributes, see Dynamic Locator
Attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Testing a Unix Display
Unix displays in Rumba are completely text-based, and provide no UI controls except the main RUMBA
screen control. To replay a test on a Unix display, you can use the SendKeys method to send keys to the
Unix display. Silk4NET does not support recording on a Unix display.

SAP Support
Silk4NET provides built-in support for testing SAP client/server applications based on the Windows-based
GUI module.

Note: You can only test SAP applications with Silk4NET if you have a Premium license for Silk4NET.
For additional information on the licensing modes, see Licensing Information.

Note: If you use SAP NetWeaver with Internet Explorer or Firefox, Silk4NET tests the application
using the xBrowser technology domain.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

For a complete list of the record and replay controls available for SAP testing, see the SAP Class
Reference.

For a list of supported attributes, see Attributes for SAP Applications.

230 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

SAP Class Reference
When you configure a SAP application, Silk4NET automatically provides built-in support for testing
standard SAP controls.

Note: To enable Silk4NET to recognize SAP controls, enable SAP GUI Scripting on the server. For
information on enabling SAP GUI scripting, see Introduction to SAP Gui Scripting. If SAP GUI
Scripting is not enabled, Silk4NET recognizes all controls as Win32 and custom controls.

The classes included in the SAP class reference, along with all included properties and methods, are part
of the SAP Automation module that is directly accessible through Silk4NET.

Note: The interface, including the underlying algorithms and the behavior of the interface, is not under
the control of Silk4NET.

Attributes for SAP Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for SAP include:

• automationId
• caption

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking SAP Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4NET API for this control. Dynamic invoke is especially useful when you are working
with custom controls, where the required functionality for interacting with the control is not exposed through
the Silk4NET API.

Call dynamic methods on objects with the Invoke method. To retrieve a list of supported dynamic
methods for a control, use the GetDynamicMethodList method.

Call multiple dynamic methods on objects with the InvokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the GetDynamicMethodList method.

Retrieve dynamic properties with the GetProperty method and set dynamic properties with the
SetProperty method. To retrieve a list of supported dynamic properties for a control, use the
GetPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.Invoke("SetTitle", "my new title")

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

Testing Specific Environments | 231

http://scn.sap.com/community/gui/blog/2012/10/08/introduction-to-sap-gui-scripting

• Methods and properties that Silk4NET supports for the control.
• All public methods that the SAP automation interface defines
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4NET types

Silk4NET types includes primitive types (such as boolean, int, string), lists, and other types (such as
Point and Rect).

• UI controls

UI controls can be passed or returned as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4NET types. These types are listed in the Supported Parameter
Types section.

• All methods that have no return value return null in C# or Nothing in VB.

Dynamically Invoking Methods on SAP Controls
When Silk4NET cannot record actions against an SAP control, you can record the actions with the recorder
that is available in SAP and then dynamically invoke the recorded methods in a Silk4NET script. By doing
so, you can replay actions against SAP controls that you cannot record.

1. To record the actions that you want to perform against the control, use the SAP GUI Scripting tool that
is available in SAP.

For additional information on the SAP GUI Scripting tool, refer to the SAP documentation.

2. Open the recorded actions from the location to which the SAP GUI Scripting tool has saved them and
see what methods were recorded.

3. In Silk4NET, dynamically invoke the recorded methods from your script.

Examples

For example, if you want to replay pressing a special control in the SAP UI, which is
labeled Test and which is a combination of a button and a list box, and selecting the
sub-menu subsub2 of the control, you can record the action with the recorder that is
available in SAP. The resulting code will look like the following:

session.findById("wnd[0]/usr/cntlCONTAINER/shellcont/
shell").pressContextButton "TEST"
session.findById("wnd[0]/usr/cntlCONTAINER/shellcont/
shell").selectContextMenuItem "subsub2"

Now you can use the following code to dynamically invoke the methods
pressContextButton and selectContextMenuItem in your script in Silk4NET:

.SapToolbarControl("shell
ToolbarControl").Invoke("pressContextButton", "TEST")
.SapToolbarControl("shell
ToolbarControl").Invoke("selectContextMenuItem", "subsub2")

Replaying this code will press the control in the SAP UI and select the sub-menu.

232 | Testing Specific Environments

Configuring Automation Security Settings for SAP
Before you launch an SAP application, you must configure the security warning settings. Otherwise, a
security warning, A script is trying to attach to the GUI, displays each time a test plays
back an SAP application.

1. In Windows Control Panel, choose SAP Configuration. The SAP Configuration dialog box opens.

2. In the Design Selection tab, uncheck the Notify When a Script Attaches to a Running SAP GUI.

Universal Windows Platform Support
Describes the built-in support for testing Microsoft Windows 10 apps that are using the Universal Windows
Platform API.

UWP is an API created by Microsoft that allows developing apps that can be purchased and downloaded
through the Microsoft Store.

Silk4NET provides built-in support for testing UWP apps on the following operating systems:

• Microsoft Windows 10
• Microsoft Windows Server 2019

Note: Silk Test does not support testing Universal Windows Platform (UWP) apps (also known as
Windows Store apps or Metro-style apps) on Microsoft Windows 8 and Microsoft Windows 8.1.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported controls

Silk4NET includes record and replay support for UWP controls that are based on UIA controls, as well as
for the following controls:

• UWPComboBoxItem

• UWPComboBox

Application configuration

The application configuration for a UWP app includes the following:

Executable The executable for a UWP app is a combination of the name of the app, the publisher ID,
and a part of the app identifier that uniquely identifies the app in the context of the
package. For example, a UWP app with the name Microsoft.WindowsCalculator, the
publisher ID 8wekyb3d8bbwe, and the app identifier App has the executable
Microsoft.WindowsCalculator_8wekyb3d8bbwe!App.

Executable
pattern

The executable pattern for a UWP app is similar to the executable. For example, a UWP
app could have the executable pattern Microsoft.WindowsCalculator_8wekyb3d8bbwe!App
or *\Microsoft.WindowsCalculator_8wekyb3d8bbwe!App.

An individual window of a UWP app can often be another UWP app. To test such a window, you need to
configure an additional application configuration. If Silk4NET does not recognize a window in a UWP app,
open the Select Application dialog box while the window is open and check whether the Windows tab
includes an entry for the window that is not recognized. Then add an application configuration for the
window.

Testing Specific Environments | 233

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Troubleshooting when Testing UWP Apps

Why does Silk4NET not recognize a window in a UWP app?

An individual window of a UWP app can often be another UWP app. To test such a window, you need to
configure an additional application configuration. If Silk4NET does not recognize a window in a UWP app,
open the Select Application dialog box while the window is open and check whether the Windows tab
includes an entry for the window that is not recognized. Then add an application configuration for the
window.

Windows API-Based Application Support
Silk4NET provides built-in support for testing Microsoft Windows API-based applications. Several objects
exist in Microsoft applications that Silk4NET can better recognize if you enable Accessibility. For example,
without enabling Accessibility Silk4NET records only basic information about the menu bar in Microsoft
Word and the tabs that appear in Internet Explorer versions later than version 7.0. However, with
Accessibility enabled, Silk4NET fully recognizes those objects. You can also improve Silk4NET object
recognition by defining a new window, if necessary.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

For a complete list of the record and replay controls available for Windows-based testing, see Win32 Class
Reference.

Win32 Class Reference
When you configure a Win32 application, Silk4NET automatically provides built-in support for testing
standard Windows API-based controls.

Attributes for Windows API-based Client/Server
Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows API-based client/server applications include:

• caption
• windowid
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text box, the caption of the closest label at the left side or above the control is used.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

234 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Determining the priorLabel in the Win32 Technology
Domain
To determine the priorLabel in the Win32 technology domain, all labels and groups in the same window as
the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, the priorLabel is determined based upon the

following criteria:

• If one label is to the left and the other above the control, the left one is preferred.
• If both levels are to the left of the control, the upper one is preferred.
• If both levels are above the control, the left one is preferred.

• If the closest control is a group control, first all labels within the group are considered according to the
rules specified above. If no labels within the group are eligible, then the caption of the group is used as
the priorLabel.

Testing Embedded Chrome Applications
An embedded Chrome application is a desktop application with an embedded web browser engine that is
based on the Chromium core. Such applications enable you to add web browser capabilities to a desktop
application. You can create such an app by using for example the Chromium Embedded Framework (CEF)
or the Electron framework.

Silk4NET provides full support for testing embedded Chrome applications that allow remote debugging
through the --remote-debugging-port command line argument. Silk4NET does not support testing
embedded Chrome applications that are based on Java, for example Java AWT and Swing applications.

To test an embedded Chrome application with Silk4NET, you have to set the debugging ports for the
executable of the application. Start the application from the command line and set the remote debugging
port.

• Silk4NET checks if the -remote-debugging-port argument is set in the command line arguments
of the embedded Chrome application. If the argument is set, Silk4NET automatically sets the Enable
embedded Chrome support field to the appropriate executable and debugging port.

• If the -remote-debugging-port argument is not set in the command line arguments of the
embedded Chrome application, you have to manually specify the executable and the port in the Enable
embedded Chrome support field:

1. In the Silk4NET UI, select Edit Options.
2. In the Options dialog, select the Advanced tab.
3. In the Enable embedded Chrome support option, specify the executable and the port as a comma-

separated value pair:

<application name>.exe=<port number>

Note: You cannot test embedded Chrome applications that do not allow remote debugging with
Silk4NET.

Note: Silk4NET does not support testing non-browser menus of Electron apps.

Example

For example, you can start the application myApp from the command line as follows:

myApp.exe --remote-debugging-port=9222

Testing Specific Environments | 235

You can then specify the executable and port in the Enable embedded Chrome
support option as follows:

myApp.exe=9222

Microsoft Foundation Class Support
The class ID of a Microsoft Foundation Class (MFC) control might change over time and therefore cannot
be used to generate a stable locator. To avoid generating unstable locators, Silk4NET uses the following
attributes for the locators:

• The MFC class name, if the Windows class name of the MFC control starts with Afx:.
• The Windows class name, if the Windows class name of the MFC control does not start with Afx:.

Silk4NET only supports MFC version 140, and only supports the following combinations:

• Release, x86, MBCS
• Release, x86, Unicode
• Debug, x86, MBCS
• Debug, x86, Unicode
• Release, x64, MBCS
• Release, x64, Unicode
• Debug, x64, MBCS
• Debug, x64, Unicode

Note: To execute existing tests with MFC control locators that have been generated with Silk4NET
18.5 or prior, set the OPT_COMPATIBILITY option in the affected test scripts to version 18.5.0 or
prior:

'VB .NET code
Agent.SetOption("OPT_COMPATIBILITY", "18.5.0")

Cross-Browser Testing
With Silk4NET, you can easily verify the functionality of even the most advanced web application across a
variety of browsers, with a single, portable test script. Silk4NET provides leading support for effective and
maintainable cross-browser testing with modern web technologies.

One of the main challenges in test automation is to create and maintain test cost effectively. As different
browsers behave differently, web application validation is hard to carry out productively. Silk4NET enables
you to focus on writing tests, as it handles the following three areas of cross-browser testing:

Built-in
synchronization

This enables you to create scripts that run on all supported browsers, without the
need to manually synchronize against asynchronous events, which are typical of
highly dynamic web applications such as AJAX, or HTML5. Silk4NET supports
synchronization modes for HTML or AJAX as well as all major web environments
including Apache Flex, Microsoft Silverlight, and HTML5/AJAX. For additional
information, see Page Synchronization for xBrowser.

Unified object model Silk4NET enables you to create and maintain a test which runs across a wide
range of different browsers. A unified object model across all browsers gives you
the ability to focus on a single browser when you create or maintain a test.
Silk4NET ensures that the object you interact with is accessible in the same way
on all the other browsers, which saves time and enables you to focus on testing
rather than on finding workarounds for different browsers.

236 | Testing Specific Environments

Out-of-the-box
recording of a cross-
browser script

Record a script once and replay it in all the other browsers, without any
modifications. This significantly reduces the time and effort it takes to create and
maintain test scripts. Nothing is simulated - testing is carried out across real
browsers, which ensures that the test behaves exactly as it does for your end
user.

With Silk4NET, you can replay tests against web applications that use:

• Internet Explorer.
• Mozilla Firefox, both on Microsoft Windows and on macOS.
• Google Chrome, both on Microsoft Windows and on macOS.
• Microsoft Edge.
• Chrome for Android on an Android device.
• Apple Safari, both on macOS and on an iOS device.
• Embedded browser controls.

Note: You can record tests for web applications using one of the following browsers:

• Internet Explorer.
• Microsoft Edge.
• Mozilla Firefox, both on Microsoft Windows and on macOS.
• Google Chrome, both on Microsoft Windows and on macOS.
• A mobile browser on a mobile device.

When recording a script for cross-browser testing, Micro Focus recommends using Google Chrome,
Mozilla Firefox, or Microsoft Edge, as a script recorded with Silk4NET against Internet Explorer might
slightly differ in comparison to a script recorded on one of the other browsers.

Note: Before you record or playback web applications, disable all browser add-ons that are installed
in your system. To disable add-ons in Internet Explorer, click Tools > Internet Options, click the
Programs tab, click Manage add-ons, select an add-on and then click Disable.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Sample Applications

To access the Silk Test sample web applications, go to:

• http://demo.borland.com/InsuranceWebExtJS/
• http://demo.borland.com/gmopost
• http://demo.borland.com/gmoajax

Selecting the Browser for Test Replay
You can define the browser that is used for the replay of a test in the following ways:

• If you execute a test from the UI of Silk4NET and the Select Browser dialog box displays, the browser
selected in the dialog box is used, and Silk4NET ignores which browser is set in the test script.

• If the Select Browser dialog box is disabled, because the Don't show again is checked, the application
configurations in the individual test scripts determine the browser that is used to execute the tests.

Note: To re-enable the Select Browser dialog box, click Silk4NET > Edit Application
Configurations and check the Show 'Select Browser' dialog before record and playback
check box

• If you execute a script from the command line or from a Continuous Integration (CI) server, specify the
connection string in the application configuration of the script.

To overwrite the browser that is specified in the application configuration, use the
silktest.configurationName environment variable.

Testing Specific Environments | 237

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/gmopost
http://demo.borland.com/gmoajax

• If you execute a test from Silk Central, create a configuration suite with a configuration for each browser
that you want to test. Then specify the appropriate configuration name. For additional information, refer
to the Silk Central Help.

Examples of setting the browser by using the silktest.configurationName
environment variable

• To use Internet Explorer as the browser, type:

SET silktest.configurationName=InternetExplorer

Note: Internet Explorer

• To use Microsoft Edge as the browser, type:

SET silktest.configurationName=Edge

• To use Mozilla Firefox as the browser, type:

SET silktest.configurationName=Firefox

• To use Google Chrome as the browser, type:

SET silktest.configurationName=GoogleChrome

• To use Apple Safari on a Mac as the browser, type:

SET silktest.configurationName=host=10.0.0.1 - Safari

In this example, the host is the Mac, on which you want to test Apple Safari. The host
needs to be connected as a remote location to the machine on which Silk4NET is
running. For additional information, see Editing Remote Locations.

• To use Google Chrome on an Android device as the browser, use a connection
string. For example, if the device ID is 11111111 and the device is connected to the
remote machine with the IP address 10.0.0.1, type:

SET
silktest.configurationName="platformName=Android;deviceName=Mo
toG3;deviceId=11111111;host=10.0.0.1 - Chrome"

• To use the Original Android Stock (AOSP) Browser on an Android device, use a
connection string. For example, if the device ID is 11111111 and the device is
connected to the remote machine with the IP address 10.0.0.1, type:

SET
silktest.configurationName="platformName=Android;deviceName=Mo
toG3;deviceId=11111111;host=10.0.0.1 - AndroidBrowser"

• To use Apple Safari on an iOS device as the browser, use a connection string. For
example, if the device ID is 11111111 and the device is connected to the remote
machine with the IP address 10.0.0.1, type:

SET
silktest.configurationName="platformName=iOS;deviceName=iPad
mini;deviceId=11111111;host=10.0.0.1"

Additionally, you have to specify the browser in the application configuration.

Tip: For all examples, you can also set the browser by setting
the Java System property -Dsilktest.configurationName instead
of setting the environment variable silktest.configurationName.
For example, to use Apple Safari on a Mac as the browser, you
can also type:

-Dsilktest.configurationName=host=10.0.0.1 -
Safari

Tip: Open the Select Browser dialog box, for example by
starting to replay or record from the Silk4NET UI, to see a list of
the browsers that are currently available on your system.

238 | Testing Specific Environments

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

Test Objects for xBrowser
Silk4NET uses the following classes to model a web application:

Class Description

BrowserApplication Exposes the main window of a web browser and provides
methods for tabbing.

BrowserObject Represents the base class for all objects that are
contained within a BrowserApplication.

BrowserWindow Provides access to tabs and embedded browser controls
and provides methods for navigating to different pages.

DomElement Exposes the DOM tree of a web application, including
frames, and provides access to all DOM attributes.
Specialized classes are available for several DOM
elements.

DomButton Represents the top-level container for a web page. It
exposes the DOM tree through DomElement.

DomCheckBox Represents all DOM elements that were specified using
the <input type='checkbox'> tag.

DomForm Represents all DOM elements that are specified using the
<form> tag.

DomLink Represents all DOM elements that were specified using
the <a> tag.

DomListBox Represents all DOM elements that were specified using
the <select> tag.

DomRadioButton Represents all DOM elements that were specified using
the <input type='radio'> tag.

DomTable Represents all DOM elements that were specified using
the <table> tag.

DomTableRow Represents all DOM elements that were specified using
the <tr> tag.

DomTextField Represents all DOM elements that were specified using
one of the following tags:

• <input type='text'>

• <input type='password'>

• <input type='file'>

• <textarea>

Object Recognition for xBrowser Objects
The xBrowser technology domain supports dynamic object recognition.

Test cases use locator strings to find and identify objects. A typical locator includes a locator name and at
least one locator attribute, such as "//LocatorName[@locatorAttribute='value']".

Locator
Names

With other technology types, such as Java SWT, locator names are created using the
class name of the test object. With xBrowser, the tag name of the DOM element can also
be used as locator name. The following locators describe the same element:

1. Using the tag name: "//a[@href='http://www.microfocus.com']"

Testing Specific Environments | 239

2. Using the class name: "//DomLink[@href='http://www.microfocus.com']"

To optimize replay speed, use tag names rather than class names.

Locator
Attributes

All DOM attributes can be used as locator string attributes. For example, the element
<button automationid='123'>Click Me</button> can be identified using the
locator "//button[@automationid='123']".

Recording
Locators

Silk4NET uses a built-in locator generator when recording test cases and using the
Identify Object dialog box. You can configure the locator generator to improve the results
for a specific application.

Page Synchronization for xBrowser
Synchronization is performed automatically before and after every method call. A method call is not started
and does not end until the synchronization criteria is met.

Note: Any property access is not synchronized.

Synchronization Modes

Silk4NET includes synchronization modes for HTML and AJAX.

Using the HTML mode ensures that all HTML documents are in an interactive state. With this mode, you
can test simple Web pages. If more complex scenarios with Java script are used, it might be necessary to
manually script synchronization functions, such as:

• WaitForObject

• WaitForProperty

• WaitForPropertyNotEquals

• WaitForDisappearance

• WaitForChildDisappearance

• WaitForScreenshotStable

The AJAX mode synchronization waits for the browser to be in a kind of idle state, which is especially
useful for AJAX applications or pages that contain AJAX components. Using the AJAX mode eliminates the
need to manually script synchronization functions (such as wait for objects to appear or disappear, wait for
a specific property value, and so on), which eases the script creation process dramatically. This automatic
synchronization is also the base for a successful record and playback approach without manual script
adoptions.

Troubleshooting

Because of the true asynchronous nature of AJAX, generally there is no real idle state of the browser.
Therefore, in rare situations, Silk4NET will not recognize an end of the invoked method call and throws a
timeout error after the specified timeout period. In these situations, it is necessary to set the
synchronization mode to HTML at least for the problematic call.

Note: Regardless of the page synchronization method that you use, in tests where a Flash object
retrieves data from a server and then performs calculations to render the data, you must manually add
a synchronization method to your test. Otherwise, Silk4NET does not wait for the Flash object to
complete its calculations. For example, you might use Thread.sleep(millisecs).

Some AJAX frameworks or browser applications use special HTTP requests, which are permanently open
in order to retrieve asynchronous data from the server. These requests may let the synchronization hang
until the specified synchronization timeout expires. To prevent this situation, either use the HTML
synchronization mode or specify the URL of the problematic request in the Synchronization exclude list
setting.

240 | Testing Specific Environments

Use a monitoring tool to determine if playback errors occur because of a synchronization issue. For
instance, you can use FindBugs, http://findbugs.sourceforge.net/, to determine if an AJAX call is affecting
playback. Then, add the problematic service to the Synchronization exclude list.

Note: If you exclude a URL, synchronization is turned off for each call that targets the URL that you
specified. Any synchronization that is needed for that URL must be called manually. For example, you
might need to manually add WaitForObject to a test. To avoid numerous manual calls, exclude
URLs for a concrete target, rather than for a top-level URL, if possible.

Configuring Page Synchronization Settings

You can configure page synchronization settings for each individual test or you can set global options that
apply to all tests in the Script Options dialog box.

To add the URL to the exclusion filter, specify the URL in the Synchronization exclude list in the Script
Options dialog box.

To configure individual settings for tests, record the test and then insert code to override the global
playback value. For example, to exclude the time service, you might type:

'VB .NET code
Agent.SetOption("OPT_XBROWSER_SYNC_EXCLUDE_URLS",
Arrays.asList("timeService"))

// C# code
Agent.SetOption("OPT_XBROWSER_SYNC_EXCLUDE_URLS",
Arrays.asList("timeService"));

• OPT_XBROWSER_SYNC_MODE

• OPT_XBROWSER_SYNC_EXCLUDE_URLS

• OPT_SYNC_TIMEOUT

Comparing API Playback and Native Playback for
xBrowser
Silk4NET supports API playback and native playback for Web applications. If your application uses a plug-
in or AJAX, use native user input. If your application does not use a plug-in or AJAX, we recommend using
API playback.

Advantages of native playback include:

• With native playback, the agent emulates user input by moving the mouse pointer over elements and
pressing the corresponding elements. As a result, playback works with most applications without any
modifications.

• Native playback supports plug-ins, such as Flash and Java applets, and applications that use AJAX,
while high-level API recordings do not.

Advantages of API playback include:

• With API playback, the Web page is driven directly by DOM events, such as onmouseover or
onclick.

• Scripts that use API playback do not require that the browser be in the foreground.
• Scripts that use API playback do not need to scroll an element into view before clicking it.
• Generally API scripts are more reliable since high-level user input is insensitive to pop-up windows and

user interaction during playback.
• API playback is faster than native playback.

Differences Between API and Native Playback Functions

The DomElement class provides different functions for API playback and native playback.

Testing Specific Environments | 241

http://findbugs.sourceforge.net/

The following table describes which functions use API playback and which use native playback.

API Playback Native Playback

Mouse Actions DomClick

DomDoubleClick

DomMouseMove

Click

DoubleClick

MoveMouse

PressMouse

ReleaseMouse

Keyboard Actions not available TypeKeys

Specialized Functions Select

SetText

etc.

not available

Setting Mouse Move Preferences
Specify whether mouse move actions are recorded for Web applications, Win32 applications, and Windows
Forms applications that use mouse move events. You cannot record mouse move events for child domains
of the xBrowser technology domain, for example Apache Flex and Swing.

1. Click Silk4NET > Edit Options.

2. Click the plus sign (+) next to Record in the Options menu tree. The Record options display in the right
side panel.

3. Click Recording.

4. To record mouse move actions, check the OPT_RECORD_MOUSEMOVES option.

Silk4NET will only record mouse move events that cause changes to the hovered element or its parent
in order to keep scripts short.

5. If you record mouse move actions, in the Record mouse move delay text box, specify how many
milliseconds the mouse has to be motionless before a MoveMouse action is recorded

By default this value is set to 200.

Mouse move actions are only recorded if the mouse stands still for this time. A shorter delay will result
in more unexpected move mouse actions, a longer delay will require you to keep the mouse still to
record an action.

6. Click OK.

Browser Configuration Settings for xBrowser
Several browser settings help to sustain stable test executions. Although Silk4NET works without changing
any settings, there are several reasons that you might want to change the browser settings.

Increase replay speed Use about:blank as home page instead of a slowly loading Web
page.

Avoid unexpected behavior of the
browser

• Disable pop up windows and warning dialog boxes.
• Disable auto-complete features.
• Disable password wizards.

Prevent malfunction of the
browser

Disable unnecessary third-party plugins.

242 | Testing Specific Environments

The following sections describe where these settings are located in the corresponding browser.

Internet Explorer

The browser settings are located at Tools > Internet Options. The following table lists options that you
might want to adjust.

Tab Option Configuration Comments

General Home page Set to about:blank. Minimize start up time of new tabs.

General Tabs • Disable warning when closing multiple tabs.

• Enable to switch to new tabs when they are
created.

• Avoid unexpected dialog boxes.

• Links that open new tabs might
not replay correctly otherwise.

Privacy Pop-up
blocker

Disable pop up blocker. Make sure your Web site can open
new windows.

Content AutoComplete Turn off completely • Avoid unexpected dialog boxes.

• Avoid unexpected behavior when
typing keys.

Program
s

Manage add-
ons

Only enable add-ons that are absolutely required. • Third-party add-ons might contain
bugs.

• Possibly not compatible to
Silk4NET.

Advance
d

Settings • Disable Automatically check for Internet
Explorer updates.

• Enable Disable script debugging (Internet
Explorer).

• Enable Disable script debugging (Other).

• Disable Enable automatic crash recovery.

• Disable Display notification about every
script error.

• Disable all Warn ... settings

Avoid unexpected dialog boxes.

Note: Recording a Web application in Internet Explorer with a zoom level different to 100% might not
work as expected. Before recording actions against a Web application in Internet Explorer, set the
zoom level to 100%.

Mozilla Firefox

You do not have to change browser settings for Mozilla FirefoxSilk4NET automatically starts Mozilla Firefox
with the appropriate command-line parameters.

Note: To avoid unexpected behavior when testing web applications, disable auto updates for Mozilla
Firefox. For additional information, see Stop automatic updates.

Google Chrome

You do not have to change browser settings for Google Chrome. Silk4NET automatically starts Google
Chrome with the appropriate command-line parameters.

Note: To avoid unexpected behavior when testing web applications, disable auto updates for Google
Chrome. For additional information, see Turning Off Auto Updates in Google Chrome.

Testing Specific Environments | 243

https://support.mozilla.org/questions/1003777
http://dev.chromium.org/administrators/turning-off-auto-updates

Configuring the Locator Generator for xBrowser
The Open Agent includes a sophisticated locator generator mechanism that guarantees locators are
unique at the time of recording and are easy to maintain. Depending on your application and the
frameworks that you use, you might want to modify the default settings to achieve the best results.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

To achieve optimal results, add a custom automation ID to the elements that you want to interact with in
your test. In Web applications, you can add an attribute to the element that you want to interact with, such
as <div myAutomationId=”my unique element name” />. This approach can eliminate the
maintenance associated with locator changes.

1. Click Silk4NET > Edit Options and then click the Custom Attributes tab.

2. If you use custom automation IDs, from the Select a TechDomain list box, select xBrowser and then
add the IDs to the list.

The custom attributes list contains attributes that are suitable for locators. If custom attributes are
available, the locator generator uses these attributes before any other attribute. The order of the list also
represents the priority in which the attributes are used by the locator generator. If the attributes that you
specify are not available for the objects that you select, Silk4NET uses the default attributes for
xBrowser.

3. Click the Browser tab.

4. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.

For example, use this list to specify attributes that change frequently, such as size, width, height, and
style. You can include the wildcards ‘*’ and ‘?’ in the Locator attribute name blacklist.

Separate attribute names with a comma.

5. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.

Some AJAX frameworks generate attribute values that change every time the page is reloaded. Use this
list to ignore such values. You can also use wildcards in this list.

Separate attribute values with a comma.

6. Click OK.

You can now record or manually create a test case.

Connection String for a Remote Desktop Browser
The connection string specifies the remote desktop browser that is used for testing. When testing a web
application in a remote browser, Silk4NET uses the connection string to connect to the remote location.
The connection string is typically part of the application configuration. You can set the connection string
when you configure the web application that you want to test. To change the connection string, you can use
the Edit Application Configuration dialog box.

When testing a web application in a remote browser, the connection string includes only the host, which
means the IP address or the host name of the remote machine, for example 10.0.0.1. To select the correct
browser, Silk4NET uses the connection string in combination with the browser type, which you can also
specify in the Edit Application Configuration dialog box.

The host name is case-insensitive.

Note: Remote desktop browser testing is only supported for Microsoft Edge on a remote Microsoft
Windows machine, and for Apple Safari on a remote Mac.

244 | Testing Specific Environments

Connection string example

"host=10.0.0.1"

Testing Browsers on a Remote Windows Machine
To test Microsoft Edge, Google Chrome, or Mozilla Firefox on a remote Windows machine, Silk4NET needs
to be installed on the remote machine. Microsoft Edge does only run on a Microsoft Windows 10 machine.
Silk4NET supports testing Mozilla Firefox 55 or prior on a remote Windows machine.

1. On the local machine, from which you want to test the browser, add the remote Windows machine as a
remote location.

For additional information, see Editing Remote Locations.

2. If the Silk Test information service is already running with administrator privileges on the remote
machine, disable the Silk Test information service.

a) Sign in to the remote machine as an administrator.
b) Open the Control Panel (icons view).
c) Click Administrative Tools.
d) Double-click Services.
e) Double click on the Silk Test information service.
f) If the service shows a status of running, click Stop and wait until the service status shows as

stopped.
g) Change the Startup type to Disabled.
h) Click OK.

3. Start the Silk Test information service with medium integrity level, which means without administrator
privileges.

a) Open a file explorer and navigate to %OPEN_AGENT_HOME%/InfoService.

For example, C:\Program Files (x86)\Silk\SilkTest\ng\InfoService.
b) Double-click infoservice_start.bat.

4. You can now select the browser on the remote machine in the Select Application dialog box.

Note: Ensure that the Silk Test information service is running in a user session, and not in the
services session. The Silk Test information service requires UI interaction to be enabled. The services
session, which is session 0, does not enable UI interaction.

Testing Google Chrome or Mozilla Firefox on a Mac
To test Google Chrome or Mozilla Firefox on a remote macOS machine, the Silk Test information service
needs to be installed on the remote machine. For additional information, see Installing the Silk Test
Information Service on a Mac.

1. On the local machine, from which you want to test Google Chrome or Mozilla Firefox, add the remote
macOS machine as a remote location.

For additional information, see Editing Remote Locations.

2. You can now select Google Chrome or Mozilla Firefox on the remote macOS machine in the Select
Application dialog box.

Note: Ensure that the Silk Test information service is running in a user session, and not in the
services session. The Silk Test information service requires UI interaction to be enabled. The services
session, which is session 0, does not enable UI interaction.

Testing Specific Environments | 245

For information on the prerequisites and limitations when testing on Google Chrome, refer to the topics in
the section Testing with Google Chrome. For information on the prerequisites and limitations when testing
on Mozilla Firefox, refer to the topics in the section Testing with Mozilla Firefox.

Setting Capabilities for WebDriver-Based Browsers
If you are testing a web application on a WebDriver-based browser, you can customize and configure the
browser session by setting the capabilities.

In Silk4NET, you can specify WebDriver capabilities in the connection string for the following browser
types:

• Google Chrome
• Mozilla Firefox

For information on the available options and capabilities for Mozilla Firefox 48 or later, see https://
github.com/mozilla/geckodriver. For information on the available options and capabilities for Google
Chrome, see Capabilities & ChromeOptions.

To set the capabilities in Silk4NET:

1. Select the project which corresponds to the web application for which you want to change the
capabilities.

2. Edit the connection string in the base state of the project.

You can edit the connection string in the following ways:

• By using the Edit Application Configurations dialog, for example if you want to record actions
against a customized browser.

• In a script, if you only want to execute the tests in the script against the customized browser.

For additional information, see Base State.

3. Execute the script to start the browser with the specified options and capabilities.

Examples

You can add the following code to the base state in a script to automatically download
executables from Mozilla Firefox:

' VB .NET code - No linebreaks, this is a single line of code.
 baseState.ConnectionString = "moz:firefoxOptions={\"prefs\":
{ \"browser.download.folderList\": 2,
\"browser.helperApps.neverAsk.saveToDisk\": \"application/octet-
stream\"}};"

// C# code - No linebreaks, this is a single line of code.
 baseState.ConnectionString = "moz:firefoxOptions={\"prefs\":
{ \"browser.download.folderList\": 2,
\"browser.helperApps.neverAsk.saveToDisk\": \"application/octet-
stream\"}};";

You can add the following code to the base state in a script to specify the download
folder for Mozilla Firefox:

' VB .NET code
baseState.ConnectionString = "moz:firefoxOptions={\"prefs\":
{ \"browser.download.dir\" : \"C:/Download\"}};"

// C# code
baseState.ConnectionString = "moz:firefoxOptions={\"prefs\":
{ \"browser.download.dir\" : \"C:/Download\"}};";

246 | Testing Specific Environments

https://github.com/mozilla/geckodriver
https://github.com/mozilla/geckodriver
https://sites.google.com/a/chromium.org/chromedriver/capabilities

You can add the following code to the base state in a script to set a command line
argument for Mozilla Firefox:

' VB .NET code
baseState.ConnectionString = "moz:firefoxOptions={\"args\":[\"--
devtools\"]};"

// C# code
baseState.ConnectionString = "moz:firefoxOptions={\"args\":[\"--
devtools\"]};";

You can add the following code to the base state in a script to automatically download
executables from Google Chrome to a specific folder:

' VB .NET code - No linebreaks, this is a single line of code.
baseState.ConnectionString = "chromeOptions={\"prefs\":
{\"profile.default_content_setting_values.automatic_downloads\":
1, \"download.default_directory\":\"c:/Download\",
\"download.prompt_for_download\":false}};"

// C# - No linebreaks, this is a single line of code.
baseState.ConnectionString = "chromeOptions={\"prefs\":
{\"profile.default_content_setting_values.automatic_downloads\":
1, \"download.default_directory\":\"c:/Download\",
\"download.prompt_for_download\":false}};";

You can add the following code to the base state in a script to disable the password
manager from showing messages in Google Chrome:

' VB .NET code - No linebreaks, this is a single line of code.
baseState.ConnectionString = "chromeOptions={\"args\": [\"--
disable-save-password-bubble\"], \"prefs\":
{\"profile.password_manager_enabled\":false,
\"credentials_enable_service\":false}};"

// C# code - No linebreaks, this is a single line of code.
baseState.ConnectionString = "chromeOptions={\"args\": [\"--
disable-save-password-bubble\"], \"prefs\":
{\"profile.password_manager_enabled\":false,
\"credentials_enable_service\":false}};";

Testing with Apple Safari on a Mac
This section describes how you can enhance your cross-browser test set by testing Apple Safari on Mac
machines that are connected to a Windows machine on which Silk4NET is installed.

Prerequisites for Testing with Apple Safari on a Mac
Before you can test with Apple Safari on a Mac, ensure that the following prerequisites are met:

• The Mac is connected as a remote location to a Windows machine, on which Silk4NET is installed. For
additional information, see Editing Remote Locations.

• If you are testing with Apple Safari 9, the SafariDriver, which is the WebDriver extension for Apple Safari
that inverts the traditional client/server relationship and communicates with the WebDriver client using
WebSockets, needs to be installed on the Mac. With Apple Safari 10.1, Safari features a built-in driver
implementation.

• Java JDK is installed on the Mac.
• The information service is installed on the Mac. To get the files that are required for the information

service, use the Silk Test installer. For additional information, see Installing the Silk Test Information
Service on a Mac.

• To run tests on Apple Safari, the user that has installed the information service needs to be logged in on
the Mac.

Testing Specific Environments | 247

Tip: Micro Focus recommends to set the Mac to automatically log in the correct user during
startup. For additional information, see Set your Mac to automatically log in during startup.

• To run unattended tests against Apple Safari on a Mac, adjust the following energy-related settings in
the Energy Saver pane of the System Preferences:

• Set Turn display off after to Never.
• Check the Prevent computer from sleeping automatically when the display is off check box.

Note: You can use the Silk Test Configuration Assistant to easily configure such settings. To
open the Configuration Assistant on a Mac, click on the Silk Test icon in the status menus and
select Configuration Assistant.

• To run unattended tests against Apple Safari on a Mac, disable the screen saver.

1. Navigate to System Preferences > Desktop & Screen Saver.
2. Click the Screen Saver tab.
3. Set Start screen saver to Never.

Note: You can use the Silk Test Configuration Assistant to easily configure such settings. To
open the Configuration Assistant on a Mac, click on the Silk Test icon in the status menus and
select Configuration Assistant.

• If you are testing with Apple Safari 10.1, enable the Safari developer menu. Choose Safari >
Preferences , click Advanced, and check Show develop menu in menu bar.

• If you are testing with Apple Safari 10.1, enable remote automation. In the Safari developer menu,
check Allow Remote Automation.

• When executing a test for the first time against Apple Safari 10.1, you need to provide a password.

Preparing Apple Safari for Testing
To test web applications on Apple Safari 10.1 or later, you can use the Silk Test Configuration Assistant
to easily configure Apple Safari. To open the Configuration Assistant on a Mac, click on the Silk Test icon
in the status menus and select Configuration Assistant. As an alternative, you can also perform the
following preparation steps in addition to fulfilling the requirements listed in Prerequisites for Testing with
Apple Safari on a Mac:

1. Enable remote automation in Apple Safari, by opening the Develop menu and checking Allow Remote
Automation.

The Develop menu is hidden by default. To open the menu:

a) In the Safari menu, choose Preferences.
b) In the Preferences window, select the Advanced tab.
c) Check the Show Develop menu in menu bar check box.
d) Close the Preferences window.

2. When running a test for the first time on Apple Safari, a dialog box appears, stating that the browser
window is remotely controlled by an automated test. Click Continue Session.

For additional information on Apple Safari and Selenium WebDriver, see https://webkit.org/blog/6900/
webdriver-support-in-safari-10/.

Installing the Silk Test Information Service on a Mac
Note: To install the information service on a Mac, you require administrative privileges on the Mac.

To create and execute tests on a Mac using Apple Safari or using iOS or Android devices, install the Silk
Test information service (information service) on the Mac. Once the information service is installed and
active, you can record and replay tests from a Silk4NET client that is installed on a Windows machine.

Note: You cannot record on a Mac. To add a Mac as a test location to Silk4NET, see Editing Remote
Locations in the Silk4NET documentation. .

248 | Testing Specific Environments

https://support.apple.com/en-us/HT201476
https://webkit.org/blog/6900/webdriver-support-in-safari-10/
https://webkit.org/blog/6900/webdriver-support-in-safari-10/

To install the information service on a Mac:

1. Read the information in the topic Prerequisites for Testing with Apple Safari on a Mac in the Silk4NET
documentation.

2. Ensure that a Java JDK is installed on the Mac.

3. If you want to test mobile applications on an iOS device, ensure that Xcode is installed on the Mac.

4. Access the information service setup file, SilkTestInformationService<Version>-<Build
Number>.pkg.

• If you have downloaded the information service setup file while installing Silk Test, open the folder
macOS in the Silk Test installation directory, for example C:\Program Files (x86)\Silk
\SilkTest.

• If you have not downloaded the information service setup file while installing Silk Test, you can
download the setup file from Micro Focus SupportLine.

5. Copy the file SilkTestInformationService<Version>-<Build Number>.pkg to the Mac.

6. Execute SilkTestInformationService<Version>-<Build Number>.pkg to install the
information service.

7. Follow the instructions in the installation wizard.

8. When asked for the password, provide the password of the currently signed in Mac user.

9. When Apple Safari opens and a message box asks whether to trust the SafariDriver, click Trust.

Note: If you want to test against Apple Safari 10 or prior on macOS 10.12 (Sierra) or prior,
SafariDriver needs to be installed on the Mac. You can only install the SafariDriver if you are
directly logged in to the Mac, and not connected through a remote connection.

10.To complete the installation, the installer logs the current Mac user out. To verify that the information
service was installed correctly, log in to the Mac.

11.If you are installing the information service on a Mac with macOS Mojave (10.14) or later, you might
have to enable additional automation permissions for Silk Test after logging in to the Mac.

If permissions need to be granted, Silk Test will automatically show request permission dialogs.

a) Click OK to acknowledge the information dialog.
b) Click OK in all sub-sequent request permission dialogs.

Important: If you do not enable these permissions for Silk Test, you will not be able to test web
applications against Google Chrome or mobile applications on an iOS device or on a Simulator on
this Mac. If by mistake you have clicked Don't Allow in one of the permission dialogs, open a
terminal on the Mac and type the following command:

sudo tccutil reset AppleEvents

Then restart the Mac and accept the permission dialogs by clicking OK.

12.Click on the Silk Test icon in the top-right corner of the screen to see the available devices and
browsers.

Tip: If the Silk Test icon does not appear, restart the Mac.

Limitations for Testing with Apple Safari
The following are the known limitations for testing with Apple Safari on a Mac:

• The following classes, interfaces, methods, and properties are currently not supported when testing web
applications with Apple Safari on a Mac:

• BrowserApplication class.

• ClearCache method
• CloseOtherTabs method

Testing Specific Environments | 249

http://productlink.microfocus.com/index.asp?mode=support&prod=NE01

• CloseTab method
• ExistsTab method
• GetHorizontalScrollbar method
• GetNextCloseWindow method
• GetSelectedTab method
• GetSelectedTabIndex method
• GetSelectedTabName method
• GetTabCount method
• GetVerticalScrollbar method
• IsActive method
• Minimize method
• OpenContextMenu method
• OpenTab method
• Restore method
• SelectTab method
• SetActive method
• WindowState property

• BrowserWindow class.

• AcceptAlert method
• DismissAlert method
• GetAlertText method
• IsAlertPresent method
• MouseMove method
• PressKeys method
• PressMouse method
• ReleaseKeys method
• ReleaseMouse method

• IMoveable class.

• GetFocus method.
• Silk4NET does not support the CMD key for the TypeKeys method.
• Silk4NET does not support testing Apache Flex.
• Silk4NET does not support testing iframes with a JavaScript source on Apple Safari.
• To test secure web applications over HTTPS on Apple Safari, ensure that any required server

certificates are trusted.
• Silk4NET does not provide native support for Apple Safari. You cannot test internal Apple Safari

functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar. As a workaround, you can use API calls to navigate between web pages.

• Silk4NET does not support JavaScript dialog API functions for Apple Safari. As a workaround, you
could patch such functions so that they are ignored. For additional information, see https://
groups.google.com/forum/#!topic/selenium-developer-activity/qsovJw93g9c.

• Silk4NET does not support tabbing on Apple Safari.
• To test a multi window application, disable the Apple Safari pup-up blocker. To do so, start Apple Safari

and navigate to Safari Preferences > Security > Block pop-up window.
• Silk4NET does not support testing the dialog box for saving a password. To avoid this dialog box, start

Apple Safari, navigate to Safari Preferences > AutoFill, and check the User names and passwords
check box.

• Silk4NET does not support properties in XPath expressions for Apple Safari. Only attributes are
supported in XPath expressions.

250 | Testing Specific Environments

https://groups.google.com/forum/#!topic/selenium-developer-activity/qsovJw93g9c
https://groups.google.com/forum/#!topic/selenium-developer-activity/qsovJw93g9c

• Silk4NET does not support testing web applications which include a Content-Security-Policy HTTP
header.

• With Apple Safari 10.1, Silk4NET does not support navigating back in the browser.
• With Apple Safari 10.1, Silk4NET does not support using control keys in the TypeKeys method.
• With Apple Safari 10.1, Silk4NET only supports dom actions in Frames and IFrames.
• With Apple Safari 10.1, Silk4NET does not support navigating with Frames and IFrames.
• With Apple Safari 10.1, Silk4NET does not support direct scrolling during recording. As a workaround,

you could use the executeJavaScript method.

Running Multiple Apple Safari Tests at the Same Time
To execute a test on Apple Safari, you require a Mac that is connected to the Windows machine on which
Silk Testis installed. If multiple Apple Safari want to execute tests on Apple Safari, these tests can be
executed simultaneously on the same Mac.

Note: Each test that is executed against Apple Safari on the Mac opens an individual instance of
Apple Safari. Having too many instances of Apple Safari running simultaneously might reduce the
performance of the Mac.

Uninstalling the Silk Test Information Service from a Mac
To uninstall the Silk Test information service (information service) from a Mac, for example if you no longer
want to execute tests against Apple Safari on the Mac:

1. On the Mac, create a new shell file, for example uninstallInfoService.sh.

2. Type the following code into the new file:

#!/bin/sh

if launchctl list | grep com.borland.infoservice ; then
 launchctl unload /Library/LaunchAgents/com.borland.infoservice.plist
 echo "unloading Launch Daemon"
fi

if [-d "/Applications/Silk"]
then
 sudo rm -rf /Applications/Silk
fi

if [-f "/Library/LaunchAgents/com.borland.infoservice.plist"]
then
 sudo rm /Library/LaunchAgents/com.borland.infoservice.plist
fi

if [-f "/usr/local/bin/ideviceinstaller"]
then
 sudo rm /usr/local/bin/ideviceinstaller
fi

exit 0

3. In the command line, type chmod +x uninstallInfoService.sh to make the shell file executable.

4. Execute the shell file from the command line.

Testing with Google Chrome
This section describes how you can enhance your cross-browser test set by testing with Google Chrome.

Silk4NET supports recording actions and replaying tests on Google Chrome.

Testing Specific Environments | 251

• When starting to test on Google Chrome, with no running instance of Google Chrome open, Silk4NET
starts a new instance of Google Chrome. This new browser uses a temporary profile without add-ons
and with an empty cache.

• When starting to test on an instance of Google Chrome, which is already running, Silk4NET restarts
Google Chrome with the same command line arguments that were used when the instance was initially
started. This restart is required to enable the Silk4NET automation support.

• When testing with Google Chrome, the Google Chrome instance is closed when shutting down the
Open Agent or when starting to test another application outside Google Chrome.

Tip: If you want to execute an existing test script with Google Chrome, Micro Focus recommends that
you use a base state or that you add a command to the test script to navigate to the URL.

Example 1

If the running instance of Google Chrome was initially started with the command C:/
Program Files (x86)/Google/Chrome/Application/chrome.exe
www.borland.com, Google Chrome opens to www.borland.com after the restart.

Example 2

If the running instance of Google Chrome was initially started with the command C:/
Program Files (x86)/Google/Chrome/Application/chrome.exe, Google
Chrome opens to about:blank after the restart.

Prerequisites for Replaying Tests with Google Chrome

Command-line parameters

When you use Google Chrome to replay a test or to record locators, Google Chrome is started with the
following command:

%LOCALAPPDATA%\Google\Chrome\Application\chrome.exe
 --enable-logging
 --log-level=1
 --disable-web-security
 --disable-hang-monitor
 --disable-prompt-on-repost
 --dom-automation
 --full-memory-crash-report
 --no-default-browser-check
 --no-first-run
 --homepage=about:blank
 --disable-web-resources
 --disable-preconnect
 --enable-logging
 --log-level=1
 --safebrowsing-disable-auto-update
 --test-type=ui
 --noerrdialogs
 --metrics-recording-only
 --allow-file-access-from-files
 --disable-tab-closeable-state-watcher
 --allow-file-access
 --disable-sync
 --testing-channel=NamedTestingInterface:st_42

When you use the wizard to hook on to an application, these command-line parameters are automatically
added to the base state. If an instance of Google Chrome is already running when you start testing, without
the appropriate command-line parameters, closes Google Chrome and tries to restart the browser with the
command-line parameters. If the browser cannot be restarted, an error message displays.

252 | Testing Specific Environments

Note: The command-line parameter disable-web-security is required when you want to record
or replay cross-domain documents.

Note: To test a web application that is stored in the local file system, navigate to the chrome://
extensions in Google Chrome and check the Allow access to file URLs check box for the Silk
Test Chrome Extension.

Testing Google Chrome Extensions
You can use one of the following two approaches to test a Google Chrome extension (add-on) with
Silk4NET:

Install the
extension as a .crx
file when starting
Google Chrome

To test a Google Chrome extension that is installed as a .crx file, add the following
command line to the base state:

chrome.exe --load-extension=C:/myExtension/myExtension.crx

Note: You can only install a single extension in Google Chrome as a .crx file.
To install multiple extensions in Google Chrome, use a comma separated list
of .crx files. For example:

chrome.exe --load-extension=C:/myExtension/
myExtension.crx,C:/myExtension2/myExtension2.crx

For information on adding command line arguments to a browser, see Modifying the
Base State.

Add the extension
to a profile

Add the extension to a Google Chrome user data directory and use that profile for
testing. For additional information, see Testing Google Chrome with User Data
Directories.

Testing Google Chrome with User Data Directories
All changes that you make in Google Chrome, for example your home page, what toolbars you use, any
saved passwords, and your bookmarks, are all stored in a special folder, which is called a user data
directory.

With Silk4NET, you can test Google Chrome user data directories by specifying the path to the user data
directory in the base state of the application under test. The following command line includes the path to
the profile:

chrome.exe "--user-data-dir=C:/Users/MyUser/AppData/Local/Google/Chrome/User
Data"

To set the profile directory for our sample web application, you can use the following code:

' VB code
Dim baseState = New BrowserBaseState(BrowserType.GoogleChrome,
"demo.borland.com/InsuranceWebExtJS")
Dim myProfileDir = "--user-data-dir=D:\\temp\\SilkTest --profile-
directory=Profile1"
baseState.CommandLineArguments = myProfileDir
baseState.Execute()

// C# code
BrowserBaseState baseState = new BrowserBaseState(BrowserType.GoogleChrome,
"demo.borland.com/InsuranceWebExtJS");
String myProfileDir = "--user-data-dir=D:\\temp\\SilkTest --profile-
directory=Profile1";
baseState.CommandLineArguments=myProfileDir;
baseState.Execute();

Note: When Google Chrome is started by Silk4NET, an empty user data directory is used. This
ensures that the test starts at a clean state.

Testing Specific Environments | 253

Limitations for Testing with Google Chrome
The following list lists the known limitations for playing back tests and recording locators with Google
Chrome on a local Windows machine:

• Silk Test does not support testing child technology domains of the xBrowser domain with Google
Chrome. For example Apache Flex or Microsoft Silverlight are not supported with Google Chrome.

• Silk4NET does not support recording a test in an HTTP Basic Authentication dialog.
• Silk Test does not provide native support for Google Chrome. You cannot test internal Google Chrome

functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

• Silk4NET does not support the GetFocus method of the IMoveable class.
• Silk Test does not recognize opening the Print dialog box in Google Chrome by using the Google

Chrome menu. To add opening this dialog box in Google Chrome to a test, you have to send Ctrl+Shift
+P using the TypeKeys method. Internet Explorer does not recognize this shortcut, so you have to first
record your test in Internet Explorer, and then manually add pressing Ctrl+Shift+P to your test.

• Testing on multiple Google Chrome windows at the same time is only supported if the additional
windows are opened from the initial Google Chrome window by the AUT itself. If the additional Google
Chrome windows are opened manually, Silk4NET does not recognize the elements on these Google
Chrome windows. For example, Silk4NET recognizes the elements in a Google Chrome window that is
opened by clicking on a link or a button in the AUT during recording, but Silk4NET does not recognize
the elements in a Google Chrome window that was opened by pressing CTRL+N during recording.

• When using Internet Explorer to replay a test, you can use the following code to test executeJavaScript:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("function foo() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("foo();");

When replaying tests on Google Chrome, the scripts are not executed in the global context (window),
but in a closure. Everything is executed within a function. The first ExecuteJavaScript call in the
previous code sample will not work with Google Chrome, because the function foo is only available as
long as the ExecuteJavaScript call lasts.

To replay the same test on Google Chrome, you can use the following function expression:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo = function() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo();");

The previous code samples will work in Silk4J. The code for the other Silk Test clients is similar. For
additional information, refer to the documentation of the ExecuteJavaScript method in the Help of
your Silk Test client.

• Parallel testing on Google Chrome does not work if the user data directory for Google Chrome is set
through a group policy. As a workaround, ask your administrator to remove the registry key
HKEY_LOCAL_MACHINE\Software\Policies\Google\Chrome\UserDataDir or
HKEY_CURRENT_USER\Software\Policies\Google\Chrome\UserDataDir.

• Google Chrome version 73 and newer does not allow to create small browser windows in testing mode.
The exact allowed minimum size depends on the operating system. 550 pixels width and 440 pixels
height is the smallest size that works on all operating systems.

Limitations for Testing with Google Chrome on macOS
The following list lists the known limitations for playing back tests and recording locators with Google
Chrome on macOS:

254 | Testing Specific Environments

• Silk4NET does not support the CMD key for the TypeKeys method.
• Silk Test does not support testing child technology domains of the xBrowser domain with Google

Chrome. For example Apache Flex or Microsoft Silverlight are not supported with Google Chrome.
• Silk4NET does not support recording a test in an HTTP Basic Authentication dialog.
• Silk Test does not provide native support for Google Chrome. You cannot test internal Google Chrome

functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

• Silk4NET does not support the GetFocus method of the IMoveable class.
• Testing on multiple Google Chrome windows at the same time is not supported on macOS.
• Attaching to an already opened Google Chrome window on macOS is not supported.
• When using Internet Explorer to replay a test, you can use the following code to test executeJavaScript:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("function foo() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("foo();");

When replaying tests on Google Chrome, the scripts are not executed in the global context (window),
but in a closure. Everything is executed within a function. The first ExecuteJavaScript call in the
previous code sample will not work with Google Chrome, because the function foo is only available as
long as the ExecuteJavaScript call lasts.

To replay the same test on Google Chrome, you can use the following function expression:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo = function() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo();");

The previous code samples will work in Silk4J. The code for the other Silk Test clients is similar. For
additional information, refer to the documentation of the ExecuteJavaScript method in the Help of
your Silk Test client.

Testing with Mozilla Firefox
This section describes how you can enhance your cross-browser test set by testing with Mozilla Firefox.

Silk4NET supports recording actions and replaying tests on Mozilla Firefox.

• When starting to test on Mozilla Firefox, with no running instance of Mozilla Firefox open, Silk4NET
starts a new instance of Mozilla Firefox. This new browser uses a temporary profile without add-ons and
with an empty cache.

• When starting to test on an instance of Mozilla Firefox which is already running, Silk4NET restarts
Mozilla Firefox with the same command line arguments that were used when the instance was initially
started. This restart is required to enable the Silk4NET automation support.

• The Mozilla Firefox instance is closed when shutting down the Open Agent or when starting to test
another application outside Mozilla Firefox.

Tip: If you want to execute an existing test script with Mozilla Firefox, Micro Focus recommends that
you use a base state or that you add a command to the test script to navigate to the URL.

While recording against Mozilla Firefox, Mozilla Firefox opens external links in a new tab, instead of a new
window. Disable the OPT_FIREFOX_SINGLE_WINDOW_MODE option in the Browser options to open
external links in a new window.

Testing Specific Environments | 255

Example 1

If the running instance of Mozilla Firefox was initially started with the command C:/
program files/Mozilla/firefox.exe www.borland.com, Mozilla Firefox
opens to www.borland.com after the restart.

Example 2

If the running instance of Mozilla Firefox was initially started with the command C:/
program files/Mozilla/firefox.exe, Mozilla Firefox opens to about:blank after
the restart.

Testing Mozilla Firefox with Profiles
All changes that you make in Mozilla Firefox, for example your home page, what toolbars you use, any
saved passwords, and your bookmarks, are all stored in a special folder, which is called a profile.

To test Mozilla Firefox profiles, you can specify either the name of the profile or the path to the profile as
custom browser command line arguments in the Edit Application Configurations dialog box:

1. Select the project from which you want to test Mozilla Firefox profiles.
2. Click Edit Application Configuration in the menu. The Edit Application Configuration dialog box

appears.
3. Uncheck the Show 'Select Browser' dialog before record and playback check box.
4. Click Edit to edit the existing Browser: Firefox application configuration.
5. Select Custom as the browser type.
6. Type the path to the Mozilla Firefox executable into the Executable field. For example C:\Program

Files (x86)\Mozilla Firefox\firefox.exe.
7. Type the Firefox profile name or the path to the Firefox profile into the Command Line Arguments field.

For example -p myProfile or -profile C:/Temp

Using the name of
the profile

The following command line argument specifies the name of the profile:

-p myProfile

You can configure the named profile in the Profile Manager. To start the Profile
Manager, type firefox.exe -P into a command window.

256 | Testing Specific Environments

Using the path to
the profile

The following command line argument specifies the path to the profile:

-profile C:/<path to profile folder>

Note: If Mozilla Firefox is started by Silk4NET, an empty profile is used. This ensures that the test
starts at a clean state. If the user manually starts Mozilla Firefox, the default profile is used.

Note: As profiles need to be deployed to the test machine are and have high memory consumption,
you might face some issues when testing profiles. If you only want to change a few browser settings,
you can use capabilities instead of profiles. For additional information, see Setting Capabilities for
Web-Driver Based Browsers.

Testing Mozilla Firefox Extensions
To test a Mozilla Firefox extension (add-on) with Silk4NET, add the extension to a Mozilla Firefox profile
and use that profile for testing. For additional information, see Testing Mozilla Firefox with Profiles.

Limitations for Testing with Mozilla Firefox
The following limitations are known when testing web applications with Silk4NET on Mozilla Firefox:

• Testing on multiple Mozilla Firefox windows at the same time is only supported if the additional windows
are opened from the initial Mozilla Firefox window by the AUT itself. If the additional Mozilla Firefox
windows are opened manually, Silk4NET does not recognize the elements on these Mozilla Firefox
windows. For example, Silk4NET recognizes the elements in a Mozilla Firefox window that is opened by
clicking on a link or a button in the AUT during recording, but Silk4NET does not recognize the elements
in a Mozilla Firefox window that was opened by pressing CTRL+N during recording.

• Silk4NET does not support testing modal browser windows, which are windows that can be displayed
with the window.showmodaldialog command. These modal browser windows have been officially
deprecated, and are disabled with Google Chrome 37 or later, while they are planned to no longer be
supported in future versions of Mozilla Firefox. You can workaround this issue by using low-level
actions, for example native clicks with coordinates to click on an object or typekeys to fill out text fields.

• Silk4NET does not support testing Silverlight with Mozilla Firefox.
• Silk4NET does not support testing some browser dialogs, for example the About dialog, with Mozilla

Firefox.
• Silk4NET does not support testing about:* pages with Mozilla Firefox.
• Silk4NET does not support recording a click on the Print button in Mozilla Firefox. To click on this button

during replay, you can manually add a desktop click with coordinates to your test script. For example:

'VB .NET code
_desktop.Click(printButton.GetRect(true).Center)

// C# code
_desktop.Click(printButton.GetRect(true).Center);

• Silk Test does not provide native support for Mozilla Firefox. You cannot test internal Mozilla Firefox
functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

• Silk4NET does not support recording locators on JavaScript alert boxes with Mozilla Firefox.
Additionally, you cannot use the following methods to handle Javascript alert boxes with Mozilla Firefox:

• AcceptAlert

• DismissAlert

• GetAlertText

• IsAlertPresent

• Silk4NET does not support Java applets for Mozilla Firefox.
• Silk4NET does not support properties in XPath expressions for Mozilla Firefox. Only attributes are

supported in XPath expressions.

Testing Specific Environments | 257

• Silk4NET does not support the GetFocus method of the IMoveable class.
• Silk Test does not support testing child technology domains of the xBrowser domain with Mozilla

Firefox. For example Apache Flex or Microsoft Silverlight are not supported with Mozilla Firefox.
• With Mozilla Firefox, the following methods are not supported:

• PressKeys

• ReleaseKeys

• With Mozilla Firefox, native playback for the following is not supported:

• Double-click.
• Right and middle mouse button click.

• With Mozilla Firefox, the DomClick method is not supported on controls that open an alert.

Limitations for Testing with Mozilla Firefox on macOS
The following limitations are known when testing web applications with Mozilla Firefox on macOS:

• Silk4NET has been tested on macOS with Mozilla Firefox 54 or later.
• Testing on multiple Mozilla Firefox windows at the same time is only supported if the additional windows

are opened from the initial Mozilla Firefox window by the AUT itself. If the additional Mozilla Firefox
windows are opened manually, Silk4NET does not recognize the elements on these Mozilla Firefox
windows. For example, Silk4NET recognizes the elements in a Mozilla Firefox window that is opened by
clicking on a link or a button in the AUT during recording, but Silk4NET does not recognize the elements
in a Mozilla Firefox window that was opened by pressing CTRL+N during recording.

• Silk4NET does not support testing modal browser windows, which are windows that can be displayed
with the window.showmodaldialog command. These modal browser windows have been officially
deprecated, and are disabled with Google Chrome 37 or later, while they are planned to no longer be
supported in future versions of Mozilla Firefox. You can workaround this issue by using low-level
actions, for example native clicks with coordinates to click on an object or typekeys to fill out text fields.

• Silk4NET does not support testing Silverlight with Mozilla Firefox.
• Silk4NET does not support testing some browser dialogs, for example the About dialog, with Mozilla

Firefox.
• Silk4NET does not support testing about:* pages with Mozilla Firefox.
• Silk4NET does not support recording a click on the Print button in Mozilla Firefox. To click on this button

during replay, you can manually add a desktop click with coordinates to your test script. For example:

'VB .NET code
_desktop.Click(printButton.GetRect(true).Center)

// C# code
_desktop.Click(printButton.GetRect(true).Center);

• Silk Test does not provide native support for Mozilla Firefox. You cannot test internal Mozilla Firefox
functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

• Silk4NET does not support recording locators on JavaScript alert boxes with Mozilla Firefox.
Additionally, you cannot use the following methods to handle Javascript alert boxes with Mozilla Firefox:

• AcceptAlert

• DismissAlert

• GetAlertText

• IsAlertPresent

• Silk4NET does not support Java applets for Mozilla Firefox on macOS.
• Silk4NET does not support properties in XPath expressions for Mozilla Firefox. Only attributes are

supported in XPath expressions.
• Silk4NET does not support the GetFocus method of the IMoveable class.

258 | Testing Specific Environments

• Silk Test does not support testing child technology domains of the xBrowser domain with Mozilla
Firefox. For example Apache Flex or Microsoft Silverlight are not supported with Mozilla Firefox.

• The following methods are not supported:

• PressKeys

• ReleaseKeys

• Native playback for the following is not supported:

• Double-click.
• Right and middle mouse button click.

• The DomClick method is not supported on controls that open an alert.
• With Mozilla Firefox 55, uploading a file does not work. For additional information, see File upload no

longer works with geckodriver 0.18.0 and Firefox 55.

Testing with Microsoft Edge
This section describes how you can enhance your cross-browser test set by testing with Microsoft Edge.

Limitations for Testing with Microsoft Edge
The following are the known limitations for testing with Microsoft Edge:

• The following classes, interfaces, methods, and properties are currently not supported when testing web
applications on Microsoft Edge:

• BrowserApplication class.

• ClearCache method
• CloseOtherTabs method
• CloseTab method
• ExistsTab method
• GetHorizontalScrollbar method
• GetNextCloseWindow method
• GetSelectedTab method
• GetSelectedTabIndex method
• GetSelectedTabName method
• GetTabCount method
• GetVerticalScrollbar method
• IsActive method
• Minimize method
• OpenContextMenu method
• OpenTab method
• Restore method
• SelectTab method
• SetActive method
• WindowState method

• The following methods of the BrowserWindow class are not supported for Microsoft Edge versions
prior to build 38.14393, the Microsoft Edge version for Microsoft Windows 10 Anniversary Update.

• PressKeys method
• ReleaseKeys method

• Silk4NET does not automatically bring the browser into the foreground when recording actions against
Microsoft Edge.

• When testing with Microsoft Edge, the rectangle for the BrowserApplication is not absolute.

Testing Specific Environments | 259

https://github.com/mozilla/geckodriver/issues/858
https://github.com/mozilla/geckodriver/issues/858

• Silk4NET does not support testing Apache Flex.
• Silk4NET does not provide native support for Microsoft Edge. You cannot test internal Microsoft Edge

functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar. As a workaround, you can use API calls to navigate between web pages.

• Silk4NET does not support handling alerts and similar dialog boxes for Microsoft Edge.
• Image clicks are only supported for Microsoft Edge Threshold 2 (build 25.10586) or later. If you are

testing a web application on a prior version of Microsoft Edge, you can only use image verifications.
• Silk4NET does not support tabbing on Microsoft Edge. Tabs are recognized as windows.
• When testing web applications on Microsoft Edge, Silk4NET cannot locate meta-tags which include the

http-equiv attribute. For example, Silk4NET cannot locate the following meta-tag:

<meta http-equiv="content-type" content="text/html; charset=utf-8">

• With Microsoft Edge, Silk4NET does not support directly reading the currentStyle attribute of a
DOM element. You can use the GetCssStyle method of the DomElement class to retrieve the
computed CSS style with the specified style name.

• When starting the interaction with a web application on Microsoft Edge, Silk4NET closes any open
instance of Microsoft Edge and starts a new browser. This new browser uses a temporary profile
without add-ons and with an empty cache. This instance of Microsoft Edge is closed when shutting
down the Open Agent or when starting to test another application outside Microsoft Edge.

• With Microsoft Edge, Silk4NET does not recognize the textContents attribute while recording actions
or locators. However, you can use the textContents attribute in object maps and when replaying a
test on Microsoft Edge.

• Silk4NET does not support properties in XPath expressions for Microsoft Edge. Only attributes are
supported in XPath expressions.

• Silk4NET does not support the GetFocus method of the IMoveable class.
• Silk4NET does not support testing web applications which include a Content-Security-Policy HTTP

header.

Responsive Web Design Testing
Desktop web applications which are built based upon responsive web design might change their
appearance in response to the size of the screen or web browser in which these applications are displayed.
Choosing the appropriate size of the replay window might have significant impact on the stability of such
tests.

Silk4NET enables you to specify the exact size of the browser window in the following situations:

• When you create a new project for a web application.
• When you record a new test.
• When you record actions into an existing test.
• When you replay a test against a web application.

You can use the following settings to specify the size of the browser window:

• The Browser size list contains a mix of predefined and custom browser window sizes, enabling you to
select the size on which you want to test.

• The Orientation list enables you to select whether you want the browser window to use landscape or
portrait orientation.

• Click Edit Browser Sizes to add custom browser sizes to the Browser size list or to specify which
browser sizes are displayed in the list.

• To add a new custom browser size to the list, click Add Browser Size.
• To exclude a size from the list, uncheck the corresponding check box.
• To add the visual breakpoints of a specific web application to the Browser size list, click Detect

Visual Breakpoints.

260 | Testing Specific Environments

When replaying a test against a web application from the command line or from Silk Central, you can
specify the size of the browser viewport by setting the silktest.browserViewportSize environment variable.
You can either specify the name of a browser from the Browser Size list or a specific size.

You can change the size of the browser directly in a test script, if Imports SilkTest.ntf.Mobile or
using SilkTest.Ntf.XBrowser; is defined in the test script:

' VB .NET code
With .BrowserWindow("BrowserWindow")
 .SetViewportName("Google Pixel 2")
 .SetViewportSize(800, 300)
End With

// C# code
BrowserApplication webBrowser =
_desktop.BrowserApplication("demo_borland_com");
BrowserWindow browserWindow = webBrowser.BrowserWindow("BrowserWindow");
browserWindow.SetViewportName("Google Pixel 2",
SilkTest.Ntf.Mobile.DisplayOrientation.Landscape);
browserWindow.SetViewportSize(800, 300);

Example: Setting the browser size for automated replay by using the name

The following code sample sets the browser size to SVGA (800, 600) by using the
SVGA entry of the Browser size list:

SET silktest.browserViewportSize=name=SVGA;orientation=landscape

Example: Setting the browser size for automated replay by using the width and
height

The following code sample sets the browser size to SVGA (800, 600) by using the
width and height parameters:

SET
silktest.browserViewportSize=width=800;height=600;orientation=la
ndscape

Detecting Visual Breakpoints
Before detecting the visual breakpoints in a responsive web application, ensure that Mozilla Firefox 56 or
later or Google Chrome 60 or later is installed on the machine on which Silk4NET is running.

Many web applications that are implemented with responsive web design techniques change their layout in
response to the size of the browser or device in which they are displayed. The specific resolutions on which
the layout changes are called visual breakpoints.

Silk4NET supports testing such applications by detecting the visual breakpoints, and by allowing you to
resize the recording window to the specific size of such a visual breakpoint.

Silk4NET enables you to specify the exact size of the browser window in the following situations:

• When you create a new project for a web application.
• When you record a new test.
• When you record actions into an existing test.
• When you replay a test against a web application.

To find the visual breakpoints in a web application, and to display the corresponding resolutions in the
Browser size list, perform the following actions:

1. Click Edit Browser Sizes. The Edit Browser Sizes dialog appears.

Testing Specific Environments | 261

2. Click Detect Visual Breakpoints. If no URL for the web application is specified in an application
configuration or base state, the Visual Breakpoint Detection URL dialog appears.

3. If no URL for the web application has been specified in an application configuration or base state, the
Visual Breakpoint Detection URL dialog appears. Type the URL into the text field and click OK.
Silk4NET detects all visual breakpoints for the web application and adds them to the Browser sizes list.

4. Click OK to close the Edit Browser Sizes dialog.

You can now select any of the visual breakpoints as the size of the browser window or mobile device for
testing.

Improving iframe Performance
Replaying tests against web applications that contain many iframes on browsers other than Internet
Explorer might sometimes be slow. This topic provides some performance optimization suggestions when
using the following browsers:

• Google Chrome
• Mozilla Firefox
• Microsoft Edge
• Apple Safari
• A supported mobile browser on a mobile device or on an emulator.

If you are facing such performance issues, you could try to apply some performance optimizations to your
test scripts.

For example, assume that you are testing against a web application with an iframe structure that looks
similar to the following:

BrowserWindow
 iframe name=1
 iframe name=2
 iframe name=3
 iframe name=4
 iframe name=5
 iframe name=6
 iframe name=7
 iframe name=8
 iframe name=9

You could try to apply one or more of the following performance optimizations:

Using the
Whitelist for
iframe support
to enable only
the iframes that
you are
interested in

For example, in the previous iframe structure, assume you only want to interact with
elements in the iframe with the name 8. A locator for such an element would look like
the following:

//BrowserApplication//BrowserWindow//IFRAME[@name='6']//
IFRAME[@name='8']//input[@name='username']

Note: All supported browsers except Internet Explorer include iframes in the
locator.

To interact with the elements from the iframe with the name 8, you need to also include
all parent iframes in the Whitelist for iframe support. For this example, type name:6,
name:8 into the Whitelist for iframe support field.

Using the
Blacklist for
iframe support
to disable the
iframes that

You can use the Blacklist for iframe support to disable iframes that you are not
interested in, for example iframes for ads.

For example, in the previous iframe structure, if you know that you will never test
elements in the iframe with the name 1 or in its child iframes, type name:1 into the
Blacklist for iframe support field.

262 | Testing Specific Environments

you are not
interested in

Completely
disabling
iframe support

You can completely disable the iframe support by unchecking the option
OPT_XBROWSER_ENABLE_IFRAME_SUPPORT.

For example, if all iframes in your application are only used for ads, and you do not
want to test any of these iframes, you can use this option.

Adapt locators
to reduce the
number of
iframe
searches

To enhance the replay performance of find actions, you can adapt the locators to
reduce the number of iframe searches. Applying this performance optimization might
work very well in combination with using the Blacklist for iframe support or Whitelist
for iframe support.

For example, in the previous iframe structure, assume you only want to interact with
elements in the iframe with the name 8. You can adapt the Xpath locators or the object
map entries to reduce the number of iframe searches.

The following sample script searches multiple times for the iframe with the name 8.

' VB code
With _desktop.BrowserApplication("//BrowserApplication")
 With .BrowserWindow("//BrowserWindow")
 .DomElement("//IFRAME[@name='6']//IFRAME[@name='8']//
input[@name='username']").TypeKeys("my user name")
 .DomElement("//IFRAME[@name='6']//IFRAME[@name='8']//
input[@name='password']").TypeKeys("top secret")
 .DomElement("//IFRAME[@name='6']//IFRAME[@name='8']//
input[@name='loginButton']").Click()
 End With
End With

// C# code
browserWindow.DomElement("//IFRAME[@name='6']//
IFRAME[@name='8']//input[@name='username']").TypeKeys("my user
name");
browserWindow.DomElement("//IFRAME[@name='6']//
IFRAME[@name='8']//input[@name='password']").TypeKeys("top
secret");
browserWindow.DomElement("//IFRAME[@name='6']//
IFRAME[@name='8']//input[@name='loginButton']").Click();

You can adapt the locators in the previous sample script to only search once for the
iframe with the name 8.

' VB code
With _desktop.BrowserApplication("//BrowserApplication")
 With .BrowserWindow("//BrowserWindow")
 With .DomElement("//IFRAME[@name='6']//IFRAME[@name='8']")
 .DomElement("//input[@name='username']").TypeKeys("my
user name")
 .DomElement("//input[@name='password']").TypeKeys("top
secret")
 .DomElement("//input[@name='loginButton']").Click()
 End With
 End With
End With

// C# code
DomElement iframe = browserWindow.DomElement("//
IFRAME[@name='6']//IFRAME[@name='8']");
browserWindow.DomElement("//
input[@name='username']").TypeKeys("my user name");

Testing Specific Environments | 263

browserWindow.DomElement("//
input[@name='password']").TypeKeys("top secret");
browserWindow.DomElement("//
input[@name='loginButton']").Click();

Testing Additional Browser Versions
This topic describes how you can test on additional versions of WebDriver-based browsers, which are not
automatically included in your Silk4NET version.

Note: Silk4NET should be able to automatically support the newest version of a browser. However, if
the browser vendor has introduced changes which require an update to Silk4NET, the procedure
described in this topic might not enable testing on the new browser version.

The functionality described in this topic is supported for the following browsers:

• Google Chrome
• Microsoft Edge
• Mozilla Firefox

1. Download the appropriate driver for the browser version that you want to test.

• For Google Chrome, you can download additional ChromeDriver versions from Downloads -
ChromeDriver.

• For Mozilla Firefox, you can download additional geckodriver versions from Releases - mozilla/
geckodriver.

• For Microsoft Edge, you can download additional Microsoft WebDriver versions from WebDriver -
Microsoft Edge.

2. In the Silk4NET installation folder, navigate to the folder \ng\WebDrivers\.

3. Open the folder that corresponds to the operating system on which you want to use the new browser
version:

• For Microsoft Windows, open the folder Windows.
• For macOS, open the folder osx64.

4. Open the appropriate folder for the browser.

• For Google Chrome, open Chrome.
• For Mozilla Firefox, open Gecko.
• For Microsoft Edge, open Edge.

5. Create a new folder for the new driver version.
For example, if the driver is ChromeDriver 2.26, create the new folder 2.26.

6. Extract the downloaded driver into the new folder.

7. In the Silk4NET installation folder, navigate to the folder \ng\WebDrivers\Common\Config\.

8. Open the appropriate folder for the browser.

• For Google Chrome, open Chrome.
• For Mozilla Firefox, open Gecko.
• For Microsoft Edge, open Edge.

9. Open the properties file in a text editor.
For example, for Google Chrome, open Chrome.properties.

10.Add the new browser version and the new driver version as follows:

<browser version>=<driver version>

264 | Testing Specific Environments

https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://developer.microsoft.com/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/microsoft-edge/tools/webdriver/

For example, if you want to test on Google Chrome 53, you require ChromeDriver 2.26 and you have to
add the following line to the Chrome.properties file:

53=2.26

11.Save the properties file.

Cross-Browser Testing: Frequently Asked Questions
This section includes questions that you might encounter when testing your Web application on various
browsers.

Dialog is Not Recognized During Replay
When recording a script, Silk4NET recognizes some windows as Dialog. If you want to use such a script
as a cross-browser script, you have to replace Dialog with Window, because some browsers do not
recognize Dialog.

For example, the script might include the following line:

/BrowserApplication//Dialog//PushButton[@caption='OK']

Rewrite the line to enable cross-browser testing to:

/BrowserApplication//Window//PushButton[@caption='OK']

DomClick(x, y) Is Not Working Like Click(x, y)
If your application uses the onclick event and requires coordinates, the DomClick method does not
work. Try to use Click instead.

FileInputField.DomClick() Will Not Open the Dialog
Try to use Click instead.

How Can I Maximize the Browser Window when Starting to Test?
To maximize a browser inside a test script, for example when starting to test, you can use the Maximize
method of the BrowserApplication class.

To maximize your browser, add the following to your test script:

'VB code
With _desktop.BrowserApplication("demo_borland_com")

 .Maximize()

End With

// C# code
webBrowser.Maximize();

How can I scroll in a browser?
Silk4NET provides the following ways to scroll controls in a browser into view during replay:

ExecuteJavaScript method
(DomElement)

Use the ScrollIntoView method to scroll a specific DOM element
into the visible area of the browser window.

Testing Specific Environments | 265

ExecuteJavaScript method
(BrowserWindow)

Use the ExecuteJavaScript method to scroll the entire page up or
down by a specified range.

Examples

The following command scrolls one page down:

'VB .NET code
browserWindow.ExecuteJavaScript("window.scrollBy(0,
window.innerHeight)")

// C# code
browserWindow.ExecuteJavaScript("window.scrollBy(0,
window.innerHeight)");

The following command scrolls down 100 pixels:

'VB .NET code
browserWindow.ExecuteJavaScript("window.scrollBy(0, 100)")

// C# code
browserWindow.ExecuteJavaScript("window.scrollBy(0, 100)");

The following command scrolls up 100 pixels:

'VB .NET code
browserWindow.ExecuteJavaScript("window.scrollBy(0, -100)")

// C# code
browserWindow.ExecuteJavaScript("window.scrollBy(0, -100)");

How Can I See Which Browser I Am Currently Using?
The BrowserApplication class provides a property "browsertype" that returns the type of the
browser. You can add this property to a locator in order to define which browser it matches.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Examples

To get the browser type, type the following into the locator:

browserApplication.GetProperty("browsertype")

Additionally, the BrowserWindow provides a method GetUserAgent that returns the user agent string of
the current window.

How do I Verify the Font Type Used for the Text of an Element?
You can access all attributes of the currentStyle attribute of a DOM element by separating the attribute
name with a ":".

Internet Explorer 8 or earlier wDomElement.GetProperty("currentStyle:fontName")

All other browsers, for example
Internet Explorer 9 or later and
Mozilla Firefox

wDomElement.GetProperty("currentStyle:font-name")

266 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

I Configured innerText as a Custom Class Attribute, but it Is Not Used
in Locators
A maximum length for attributes used in locator strings exists. InnerText tends to be lengthy, so it might
not be used in the locator. If possible, use textContents instead.

I Need Some Functionality that Is Not Exposed by the xBrowser API.
What Can I Do?
You can use ExecuteJavaScript() to execute JavaScript code directly in your Web application. This
way you can build a workaround for nearly everything.

Link.Select Does Not Set the Focus for a Newly Opened Window in
Internet Explorer
This is a limitation that can be fixed by changing the Browser Configuration Settings. Set the option to
always activate a newly opened window.

Logging Output of My Application Contains Wrong Timestamps
This might be a side effect of the synchronization. To avoid this problem, specify the HTML synchronization
mode.

My Test Script Hangs After Navigating to a New Page
This can happen if an AJAX application keeps the browser busy (open connections for Server Push /
ActiveX components). Try to set the HTML synchronization mode. Check the Page Synchronization for
xBrowser topic for other troubleshooting hints.

Recorded an Incorrect Locator
The attributes for the element might change if the mouse hovers over the element. Silk4NET tries to track
this scenario, but it fails occasionally. Try to identify the affected attributes and configure Silk4NET to ignore
them.

Rectangles Around Elements in Internet Explorer are Misplaced
• Make sure the zoom factor is set to 100%. Otherwise, the rectangles are not placed correctly.
• Ensure that there is no notification bar displayed above the browser window. Silk4NET cannot handle

notification bars.

The Move Mouse Setting Is Turned On but All Moves Are Not
Recorded. Why Not?
In order to not pollute the script with a lot of useless MoveMouse actions, Silk4NET does the following:

• Only records a MoveMouse action if the mouse stands still for a specific time.
• Only records MoveMouse actions if it observes activity going on after an element was hovered over. In

some situations, you might need to add some manual actions to your script.
• Silk4NET supports recording mouse moves only for Web applications, Win32 applications, and

Windows Forms applications. Silk4NET does not support recording mouse moves for child technology
domains of the xBrowser technology domain, for example Apache Flex and Swing.

Testing Specific Environments | 267

What is the Difference Between textContents, innerText, and
innerHtml?
• textContents is all text contained by an element and all its children that are for formatting purposes

only.
• innerText returns all text contained by an element and all its child elements.
• innerHtml returns all text, including html tags, that is contained by an element.

Consider the following html code.

<div id="mylinks">
 This is my link collection:

 Bye bye Borland
 Welcome to Micro Focus

</div>

The following table details the different properties that return.

Code Returned Value

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("textContents")

This is my link collection:

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("innerText")

This is my link collection:Bye bye Borland
Welcome to Micro Focus

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("innerHtml")

This is my link collection:

 Bye bye
Borland
 Welcome to
Micro Focus

Note: In Silk Test 13.5 or later, whitespace in texts, which are retrieved through the textContents
property of an element, is trimmed consistently across all supported browsers. For some browser
versions, this whitespace handling differs to Silk Test versions prior to Silk Test 13.5. You can re-
enable the old behavior by setting the OPT_COMPATIBILITY option to a version lower than 13.5.0.
For example, to set the option to Silk Test 13.0, type the following into your script:

'VB .NET code
Agent.SetOption("OPT_COMPATIBILITY", "13.0.0")

// C# code
Agent.SetOption("OPT_COMPATIBILITY", "13.0.0");

What Should I Take Care Of When Creating Cross-Browser Scripts?
When you are creating cross-browser scripts, you might encounter one or more of the following issues:

• When recording a script for cross-browser testing, Micro Focus recommends using Google Chrome,
Mozilla Firefox, or Microsoft Edge, as a script recorded with Silk4NET against Internet Explorer might
slightly differ in comparison to a script recorded on one of the other browsers.

• Different attribute values. For example, colors in Internet Explorer are returned as "# FF0000" and in
Mozilla Firefox as "rgb(255,0,0)".

268 | Testing Specific Environments

• Different attribute names. For example, the font size attribute is called "fontSize" in Internet Explorer
8 or earlier and is called "font-size" in all other browsers, for example Internet Explorer 9 or later
and Mozilla Firefox.

• Some frameworks may render different DOM trees.

Which Locators are Best Suited for Stable Cross Browser Testing?
The built in locator generator attempts to create stable locators. However, it is difficult to generate quality
locators if no information is available. In this case, the locator generator uses hierarchical information and
indices, which results in fragile locators that are suitable for direct record and replay but ill-suited for stable,
daily execution. Furthermore, with cross browser testing, several AJAX frameworks might render different
DOM hierarchies for different browsers.

To avoid this issue, use custom IDs for the UI elements of your application.

Why Are the Class and the Style Attributes Not Used in the Locator?
These attributes are on the ignore list because they might change frequently in AJAX applications and
therefore result in unstable locators. However, in many situations these attributes can be used to identify
objects, so it might make sense to use them in your application.

Why Are Clicks Recorded Differently in Internet Explorer 10?
When you record a Click on a DomElement in Internet Explorer 10 and the DomElement is dismissed
after the Click, then the recording behavior might not be as expected. If another DomElement is located
beneath the initial DomElement, Silk Test records a Click, a MouseMove, and a ReleaseMouse, instead
of recording a single Click.

A possible workaround for this unexpected recording behavior depends on the application under test.
Usually it is sufficient to delete the unnecessary MouseMove and ReleaseMouse events from the
recorded script.

Why Do I Get an Invalidated-Handle Error?
This topic describes what you can do when Silk4NET displays the following error message: The handle
for this object has been invalidated.

This message indicates that something caused the object on which you called a method, for example
Click, to disappear. For example, if something causes the browser to navigate to a new page, during a
method call in a web application, all objects on the previous page are automatically invalidated.

When testing a web application, the reason for this problem might be the built-in synchronization. For
example, suppose that the application under test includes a shopping cart, and you have added an item to
this shopping cart. You are waiting for the next page to be loaded and for the shopping cart to change its
status to contains items. If the action, which adds the item, returns too soon, the shopping cart on the
first page will be waiting for the status to change while the new page is loaded, causing the shopping cart
of the first page to be invalidated. This behavior will result in an invalidated-handle error.

As a workaround, you should wait for an object that is only available on the second page before you verify
the status of the shopping cart. As soon as the object is available, you can verify the status of the shopping
cart, which is then correctly verified on the second page.

Starting a Browser from a Script
Instead of selecting a browser for replay at the start of a test, you might require to start a specific browser
out of the test script during replay.

Testing Specific Environments | 269

Using the BrowserBaseState class

Using the BrowserBaseState class to start a browser out of a test script ensures that the browser that is
specified by the Executable property is running and ready for testing. The base state additionally navigates
to the URL that is specified by the Url property and brings the browser to the front.

The following code sample uses the BrowserBaseState class to start Internet Explorer.

' VB . NET code
Dim MyBrowserBaseState As New BrowserBaseState(BrowserType.InternetExplorer,
"http://www.borland.com")
MyBrowserBaseState.Execute()

Using multiple instances of a browser

If you have more then one browser windows or tabs open, Silk4NET handles each browser window or tab
as a distinct object with a unique locator. The locators are indexed, for example WebBrowser ,
WebBrowser[1] , WebBrowser[2] , and so on.

Finding Hidden Input Fields
Hidden input fields are HTML fields for which the tag includes type="hidden". To enable a Find to
locate hidden input fields, you can use the OPT_XBROWSER_FIND_HIDDEN_INPUT_FIELDS option.
The default value of the option is TRUE.

'VB .NET code
Agent.SetOption("OPT_XBROWSER_FIND_HIDDEN_INPUT_FIELDS", true)

Attributes for Web Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Web applications include:

• caption (supports wildcards ? and *)
• all DOM attributes (supports wildcards ? and *)

Note: Empty spaces are handled differently by each browser. As a result, the textContent and
innerText attributes have been normalized. Empty spaces are skipped or replaced by a single
space if an empty space is followed by another empty space. Empty spaces are detected spaces,
carriage returns, line feeds, and tabs. The matching of such values is normalized also. For example:

<a>abc
abc

Uses the following locator:

//A[@innerText='abc abc']

Custom Attributes for Web Applications
HTML defines a common attribute ID that can represent a stable identifier. By definition, the ID uniquely
identifies an element within a document. Only one element with a specific ID can exist in a document.

However, in many cases, and especially with AJAX applications, the ID is used to dynamically identify the
associated server handler for the HTML element, meaning that the ID changes with each creation of the
Web document. In such a case the ID is not a stable identifier and is not suitable to identify UI controls in a
Web application.

A better alternative for Web applications is to introduce a new custom HTML attribute that is exclusively
used to expose UI control information to Silk4NET.

270 | Testing Specific Environments

Custom HTML attributes are ignored by browsers and by that do not change the behavior of the AUT. They
are accessible through the DOM of the browser. Silk4NET allows you to configure the attribute that you
want to use as the default attribute for identification, even if the attribute is a custom attribute of the control
class. To set the custom attribute as the default identification attribute for a specific technology domain,
click Silk4NET > Edit Options > Custom Attributes and select the technology domain.

The application developer just needs to add the additional HTML attribute to the Web
element.

Original HTML code:

<A HREF="http://abc.com/control=4543772788784322..."

HTML code with the new custom HTML attribute AUTOMATION_ID:

<A HREF="http://abc.com/control=4543772788784322..."
AUTOMATION_ID = "AID_Login" <IMG src="http://abc.com/xxx.gif"
width=16 height=16>

When configuring the custom attributes, Silk4NET uses the custom attribute to
construct a unique locator whenever possible. Web locators look like the following:

…//DomLink[@AUTOMATION_ID='AID_Login'

Example: Changing ID

One example of a changing ID is the Google Widget Toolkit (GWT), where the ID often
holds a dynamic value which changes with every creation of the Web document:

ID = 'gwt-uid-<nnn>'

In this case <nnn> changes frequently.

xBrowser Class Reference
When you configure an xBrowser application, Silk4NET automatically provides built-in support for testing
standard xBrowser controls.

Limitations for Testing on Microsoft Windows 8 and
Microsoft Windows 8.1

The following list lists the known limitations for testing on Microsoft Windows 8 and Microsoft Windows 8.1:

• Silk Test does not support testing Universal Windows Platform (UWP) apps (also known as Windows
Store apps or Metro-style apps) on Microsoft Windows 8 and Microsoft Windows 8.1.

Supported Attribute Types
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. If necessary, you can change the attribute type in one of the following ways:

• Manually typing another attribute type and value.
• Specifying another preference for the default attribute type by changing the Preferred attribute list

values.

Testing Specific Environments | 271

Attributes for Apache Flex Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Flex applications include:

• automationName
• caption (similar to automationName)
• automationClassName (e.g. FlexButton)
• className (the full qualified name of the implementation class, e.g. mx.controls.Button)
• automationIndex (the index of the control in the view of the FlexAutomation, e.g. index:1)
• index (similar to automationIndex but without the prefix, e.g. 1)
• id (the id of the control)
• windowId (similar to id)
• label (the label of the control)
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Attributes for Java AWT/Swing Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java AWT/Swing include:

• caption
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

• name
• accessibleName
• Swing only: All custom object definition attributes set in the widget with

putClientProperty("propertyName", "propertyValue")

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for Java SWT Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java SWT include:

• caption

272 | Testing Specific Environments

• all custom object definition attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for SAP Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for SAP include:

• automationId
• caption

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Locator Attributes for Identifying Silverlight Controls
Supported locator attributes for Silverlight controls include:

• automationId
• caption
• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

To identify components within Silverlight scripts, you can specify the automationId, caption, className,
name or any dynamic locator attribute. The automationId can be set by the application developer. For
example, a locator with an automationId might look like //SLButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
SLButton[@automationId="okBu
tton"]

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//SLButton[@caption="Ok"]

className The simple .NET class name (without namespace) of
the Silverlight control. Using the className attribute
can help to identify a custom control that is derived
from a standard Silverlight control that Silk4NET
recognizes.

//
SLButton[@className='MyCusto
mButton']

Testing Specific Environments | 273

Attribute Type Description Example

name The name of a control. Can be provided by the
developer of the application under test.

//SLButton[@name="okButton"]

Attention: The name attribute in XAML code maps to the locator attribute automationId, not to the
locator attribute name.

During recording, Silk4NET creates a locator for a Silverlight control by using the automationId, name,
caption, or className attributes in the order that they are listed in the preceding table. For example, if a
control has an automationId and a name, Silk4NET uses the automationId, if it is unique, when creating the
locator.

The following table shows how an application developer can define a Silverlight button with the text "Ok" in
the XAML code of the application:

XAML Code for the Object Locator to Find the Object from Silk Test

<Button>Ok</Button> //SLButton[@caption="Ok"]

<Button Name="okButton">Ok</Button> //SLButton[@automationId="okButton"]

<Button
AutomationProperties.AutomationId="okB
utton">Ok</Button>

//SLButton[@automationId="okButton"]

<Button
AutomationProperties.Name="okButton">O
k</Button>

//SLButton[@name="okButton"]

Locator Attributes for Identifying Controls with UI
Automation
The supported locator attributes for controls in Windows-based applications that have implemented UI
Automation provider interfaces include:

• automationId
• caption
• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

To identify controls in Windows-based applications that have implemented UI Automation provider
interfaces within scripts, you can specify the automationId, caption, className, name or any dynamic
locator attribute. The automationId can be set by the application developer. For example, a locator with an
automationId might look like //UIAButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application

//
UIAButton[@automationId="okB
utton"]

274 | Testing Specific Environments

Attribute Type Description Example

developer uses this ID to identify the control in the
application code.

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//UIAButton[@caption="Ok"]

className The class name (without namespace) of the UI
Automation control. Using the className attribute can
help to identify a custom control that is derived from a
standard UI Automation control that Silk4NET
recognizes.

//
UIAButton[@className='MyCust
omButton']

name The name of a control. Can be provided by the
developer of the application under test.

//
UIAButton[@name="okButton"]

During recording, Silk4NET creates a locator for a UI Automation control by using the automationId, name,
caption, or className attributes in the order that they are listed in the preceding table. For example, if a
control has an automationId and a name, Silk4NET uses the automationId, if it is unique, when creating the
locator.

To find out which additional custom attributes you could use for the UI Automation controls in your AUT, you
can use the Verify Properties dialog box. To do so, hover the mouse cursor over a UI Automation control
during recording, and click Ctrl+Alt. You can then see which properties are available for the control. For
example, for some applications, the attribute value is useful.

Locator Attributes for Identifying Rumba Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. Supported attributes include:

caption The text that the control displays.

priorlabel Since input fields on a form normally have a label explaining the purpose of the input,
the intention of priorlabel is to identify the text input field, RumbaTextField, by the
text of its adjacent label field, RumbaLabel. If no preceding label is found in the same
line of the text field, or if the label at the right side is closer to the text field than the left
one, a label on the right side of the text field is used.

StartRow This attribute is not recorded, but you can manually add it to the locator. Use
StartRow to identify the text input field, RumbaTextField, that starts at this row.

StartColumn This attribute is not recorded, but you can manually add it to the locator. Use
StartColumn to identify the text input field, RumbaTextField, that starts at this
column.

All dynamic
locator
attributes.

For additional information on dynamic locator attributes, see Dynamic Locator
Attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for Web Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Testing Specific Environments | 275

Supported attributes for Web applications include:

• caption (supports wildcards ? and *)
• all DOM attributes (supports wildcards ? and *)

Note: Empty spaces are handled differently by each browser. As a result, the textContent and
innerText attributes have been normalized. Empty spaces are skipped or replaced by a single
space if an empty space is followed by another empty space. Empty spaces are detected spaces,
carriage returns, line feeds, and tabs. The matching of such values is normalized also. For example:

<a>abc
abc

Uses the following locator:

//A[@innerText='abc abc']

Attributes for Windows Forms Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows Forms applications include:

• automationid
• caption
• windowid
• priorlabel (For controls that do not have a caption, the priorlabel is used as the caption automatically.

For controls with a caption, it may be easier to use the caption.)

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for Windows Presentation Foundation (WPF)
Applications
Supported attributes for WPF applications include:

• automationId
• caption
• className
• name
• All dynamic locator attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Object Recognition

To identify components within WPF scripts, you can specify the automationId, caption, className, or
name. The name that is given to an element in the application is used as the automationId attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute. For
example, a locator with an automationId might look like: //
WPFButton[@automationId='okButton']".

276 | Testing Specific Environments

If you define an automationId and any other attribute, only the automationId is used during replay. If there is
no automationId defined, the name is used to resolve the component. If neither a name nor an
automationId are defined, the caption value is used. If no caption is defined, the className is used. We
recommend using the automationId because it is the most useful property.

Attribute Type Description Example

automationId An ID that was provided by
the developer of the test
application.

//WPFButton[@automationId='okButton']"

name The name of a control. The
Visual Studio designer
automatically assigns a
name to every control that is
created with the designer.
The application developer
uses this name to identify
the control in the application
code.

//WPFButton[@name='okButton']"

caption The text that the control
displays. When testing a
localized application in
multiple languages, use the
automationId or name
attribute instead of the
caption.

//WPFButton[@automationId='Ok']"

className The simple .NET class
name (without namespace)
of the WPF control. Using
the class name attribute can
help to identify a custom
control that is derived from
a standard WPF control that
Silk4NET recognizes.

//WPFButton[@className='MyCustomButton']"

During recording, Silk4NET creates a locator for a WPF control by using the automationId, name, caption,
or className attributes in the order that they are listed in the preceding table. For example, if a control has
a automationId and a name, Silk4NET uses the automationId when creating the locator.

The following example shows how an application developer can define a name and an automationId for a
WPF button in the XAML code of the application:

<Button Name="okButton" AutomationProperties.AutomationId="okButton"
Click="okButton_Click">Ok</Button>

Attributes for Windows API-based Client/Server
Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows API-based client/server applications include:

• caption
• windowid

Testing Specific Environments | 277

• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a
form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text box, the caption of the closest label at the left side or above the control is used.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Dynamic Locator Attributes
In a locator for identifying a control during replay you can use a pre-defined set of locator attributes, for
example caption and automationId, which depend on the technology domain. But you can also use every
property, including dynamic properties, of a control as locator attribute. A list of available properties for a
certain control can be retrieved with the GetPropertyList method. All returned properties can be used
for identifying a control with a locator.

Note: You can use the GetProperty method to retrieve the actual value for a certain property of
interest. You can then use this value in your locator.

Example

If you want to identify the button that has the user input focus in a Silverlight application,
you can type:

browser.Find("//SLButton[@IsKeyboardFocused=true]")

or alternatively

Dim button = dialog.SLButton("@IsKeyboardFocused=true")

This works because Silk4NET exposes a property called IsDefault for the Silverlight
button control.

Example

If you want to identify a button in a Silverlight application with the font size 12 you can
type:

Dim button = browser.Find("//SLButton[@FontSize=12]")

or alternatively

Dim button = browser.SLButton("@FontSize=12")

This works because the underlying control in the application under test, in this case the
Silverlight button, has a property called FontSize.

278 | Testing Specific Environments

Keyword-Driven Tests
Keyword-driven testing is a software testing methodology that separates test design from test development
and therefore allows the involvement of additional professional groups, for example business analysts, in
the test automation process. Silk Central and Silk Test support the keyword-driven testing methodology and
allow a very close collaboration between automation engineers and business analysts by having
automation engineers develop a maintainable automation framework consisting of shared assets in the
form of keywords in Silk Test. These keywords can then be used by business analysts either in Silk Test to
create new keyword-driven tests or in Silk Central to convert their existing manual test assets to automated
tests or to create new keyword-driven tests.

• A keyword-driven test is an executable collection of keywords. A keyword-driven test can be played back
just like any other test.

• A keyword sequence is a keyword that is a combination of other keywords. Keyword sequences bundle
often encountered combinations of keywords into a single keyword, enabling you to reduce
maintenance effort and to keep your tests well-arranged.

• A keyword is a defined combination of one or more actions on a test object. The implementation of a
keyword can be done with various tools and programming languages, for example Java or .NET.

There are two phases required to create keyword-driven tests:

1. Designing the test.
2. Implementing the keywords.

For a complete list of the record and replay controls available for keyword-driven testing, see the Keyword-
Driven Testing Class Reference.

Advantages of Keyword-Driven Testing
The advantages of using the keyword-driven testing methodology are the following:

• Keyword-driven testing separates test automation from test case design, which allows for better division
of labor and collaboration between test engineers implementing keywords and subject matter experts
designing test cases.

• Tests can be developed early, without requiring access to the application under test, and the keywords
can be implemented later.

• Tests can be developed without programming knowledge.

Keyword-Driven Tests | 279

• Keyword-driven tests require less maintenance in the long run. You need to maintain the keywords, and
all keyword-driven tests using these keywords are automatically updated.

• Test cases are concise.
• Test cases are easier to read and to understand for a non-technical audience.
• Test cases are easy to modify.
• New test cases can reuse existing keywords, which amongst else makes it easier to achieve a greater

test coverage.
• The internal complexity of the keyword implementation is not visible to a user that needs to create or

execute a keyword-driven test.

Keywords
A keyword is a defined combination of one or more actions on a test object. The implementation of a
keyword can be done with various tools and programming languages, for example Java or .NET. In
Silk4NET, a keyword is a method with the attribute Keyword before the method name. Keywords are saved
as keyword assets.

You can define keywords and keyword sequences during the creation of a keyword-driven test and you can
then implement them as test methods. You can also mark existing test methods as keywords with the
Keyword attribute.Keywords are defined as follows:

'VB .NET code
<Keyword("keyword_name")>

// C# code
[Keyword("keyword_name")]

A keyword sequence is a keyword that is a combination of other keywords. Keyword sequences bundle
often encountered combinations of keywords into a single keyword, enabling you to reduce maintenance
effort and to keep your tests well-arranged.

A keyword or a keyword sequence can have a combined total of 20 input and output parameters. Any
parameter of the test method that implements the keyword is a parameter of the keyword. To specify a
different name for a parameter of a keyword, you can use the following:

'VB .NET code
Argument("parameter_name")

// C# code
[Argument("parameter_name")]

Example

A test method that is marked as a keyword can look like the following:

'VB .NET code
<Keyword("Login")>
Public Sub Login()
 ... // method implementation
End Sub

// C# code
[Keyword("Login")]
public void Login(){
 ... // method implementation
}

or

'VB .NET code
<Keyword("Login", Description:="Logs in with the given name and
password.")>
Public Sub Login(<Argument("UserName")> username As String,

280 | Keyword-Driven Tests

<Argument("Password")> password As String)
 ... // method implementation
End Sub

// C# code
[Keyword("Login", Description="Logs in with the given name and
password.")]
public void Login([Argument("UserName")] string userName,
[Argument("Password")] string password) {
 ... // method implementation
}

where the keyword logs into the application under test with a given user name and
password.

Note: If you are viewing this help topic in PDF format, this code
sample might include line-breaks which are not allowed in
scripts. To use this code sample in a script, remove these line-
breaks.

• The keyword name parameter of the Keyword attribute is optional. You can use the
keyword name parameter to specify a different name than the method name. If the
parameter is not specified, the name of the method is used as the keyword name.

• The Argument attribute is also optional. If a method is marked as a keyword, then
all arguments are automatically used as keyword arguments. You can use the
Argument attribute to specify a different name for the keyword argument, for
example UserName instead of userName.

Creating a Keyword-Driven Test in Silk4NET
Before you can create a keyword-driven test in Silk4NET, you have to select a project.

Use the Keyword-Driven Test Editor to combine new keywords and existing keywords into new keyword-
driven tests. New keywords need to be implemented as automated test methods in a later step.

1. Select the project in which the new test should be included.

By default, if a project is active, the new test is created in the active project.

Note: To optimally use the functionality that Silk4NET provides, create an individual project for
each application that you want to test, except when testing multiple applications in the same test.

2. Click Silk4NET > New Keyword-Driven Test. The Add New Item dialog box opens.

3. Type a name for the test into the Name field and click Add. The Create a Silk4NET Test dialog box
opens.

Note: If a security warning displays, stating that running this text template might potentially harm
your computer, check the check box to no longer display this message and click OK to run the
template, as the template is required by Silk4NET.

4. Select Create an empty Silk4NET test. To record a new keyword-driven test, see Recording a
Keyword-Driven Test.

5. Click OK. The Keyword-Driven Test Editor opens.

6. Perform one of the following actions:

• To add a new keyword, type a name for the keyword into the New Keyword field.
• To add an existing keyword, expand the list and select the keyword that you want to add.

7. Press Enter.

8. Repeat the previous two steps until the test includes all the keywords that you want to execute.

Keyword-Driven Tests | 281

9. Click File > Save.

Continue with implementing the keywords or with executing the test, if all keywords are already
implemented.

Recording a Keyword-Driven Test in Silk4NET
Before you can create a keyword-driven test in Silk4NET, you have to select a project.

To record a single keyword, see Recording a Keyword.

To record a new keyword-driven test:

1. Click Silk4NET > New Keyword-Driven Test. The Add New Item dialog box opens.

2. Type a name for the test into the Name field and click Add. The Create a Silk4NET Test dialog box
opens.

3. Select Record a Silk4NET test and click OK.

4. If you have not set an application configuration for the current project, select the tab that corresponds to
the type of application that you are testing:

• If you are testing a standard application that does not run in a browser, select the Windows tab.
• If you are testing a web application or a mobile web application, select the Web tab.
• If you are testing a native mobile application, select the Mobile tab.

5. To test a standard application, select the application from the list.

6. To test a web application or a mobile web application, if you have not set an application configuration for
the current project, select one of the installed browsers or mobile browsers from the list.

a) Specify the web page to open in the Enter URL to navigate text box. If an instance of the selected
browser is already running, you can click Use URL from running browser to record against the
URL currently displayed in the running browser instance. For the tutorial, select Internet Explorer
and specify http://demo.borland.com/InsuranceWebExtJS/ in the Enter URL to navigate text box.

b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

7. To test a native mobile application (app) if you have not set an application configuration for the current
project:

a) Select the mobile device, on which you want to test the app, from the list.
b) Select the native mobile application.

• If you want to install the app on the mobile device or emulator, click Browse to select the app file
or enter the full path to the app file into the App file text field. Silk4NET supports HTTP and UNC
formats for the path.

• If you want to use an app that is already installed on an Android device, select the app from the
Package/Activity list or specify the package and the activity in the Package/Activity field.

• If you want to use an app that is already installed on an iOS device, specify the Bundle ID.
• If you want to use an app that is available in Mobile Center, specify the App identifier.

8. If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:

a) Select the browser.
b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,

select the browser size from the Browser size list.

282 | Keyword-Driven Tests

http://demo.borland.com/InsuranceWebExtJS/

For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

9. Depending on the dialog that is open, perform one of the following:

• In the Select Application dialog box, click OK.
• In the Select Browser dialog box, click Record.

10.In the application under test, perform the actions that you want to include in the first keyword.

For information about the actions available during recording, see Actions Available During Recording.

11.To specify a name for the keyword, hover the mouse cursor over the keyword name in the Recording
window and click Edit.

Note: Silk4NET automatically adds the keyword Start application to the start of the keyword-driven
test. In this keyword, the applications base state is executed to enable the test to replay correctly.
For additional information on the base state, see Base State.

12.Type a name for the keyword into the Keyword name field.

13.Click OK.

14.To record the actions for the next keyword, type a name for the new keyword into the New keyword
name field and click Add. Silk4NET records any new actions into the new keyword.

15.Create new keywords and record the actions for the keywords until you have recorded the entire
keyword-driven test.

16.Click Stop. The Record Complete dialog box opens.

Silk4NET creates the new keyword-driven test with all recorded keywords.

Setting the Base State for a Keyword-Driven Test in
Silk4NET

When you execute a keyword-driven test with Silk4NET and the keyword-driven test calls a base state
keyword, Silk4NET starts your AUT from the base state.

During the recording of a keyword-driven test, Silk4NET searches in the current project for a base state
keyword, which is a keyword for which the IsBaseState property is set to True.

• If a base state keyword exists in the current project, Silk4NET inserts this keyword as the first keyword
of the keyword-driven test.

• If there is no base state keyword in the project, Silk4NET creates a new base state keyword with the
name Start application and inserts it as the first keyword of the keyword-driven test.

To manually mark a keyword as a base state keyword, add the IsBaseState property to the Keyword
attribute, and set the value of the property to True:

' VB .NET code
<Keyword("Start application", IsBaseState:=True)>
Public Sub Start_application()
 ' Base state implementation
End Sub

// C# code
[Keyword("Start application", IsBaseState=true)]
public void Start_application()
{
 // Base state implementation
}

Keyword-Driven Tests | 283

Implementing a Keyword in Silk4NET
Before implementing a keyword, define the keyword as part of a keyword-driven test.

To implement a keyword for reuse in keyword-driven tests:

1. Open a keyword-driven test that includes the keyword that you want to implement.

2. In the Keyword-Driven Test Editor, click Implement Keyword to the left of the keyword that you want
to implement. The Create a Keyword dialog box opens.

3. Perform one of the following actions:

• To record the keyword, click Record a keyword.
• To create an empty keyword method, click Create an empty keyword method stub.

4. Click OK.

5. In the Save Keyword Implementation dialog box, define the name and location of the file into which
you want to save the keyword implementation code and click Save.

6. If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:

a) Select the browser.
b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,

select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

7. Click Record.

For additional information on recording, see Recording a Keyword.

Recording a Keyword in Silk4NET
You can only record actions for a keyword that already exists in a keyword-driven test, not for a keyword
that is completely new. To record a new keyword-driven test, see Recording a Keyword-Driven Test.

To record the actions for a new keyword:

1. Open a keyword-driven test that includes the keyword that you want to record.

2. In the Keyword-Driven Test Editor, click Implement Keyword to the left of the keyword that you want
to implement. The Create a Keyword dialog box opens.

3. Click OK.

4. If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:

a) Select the browser.
b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,

select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

284 | Keyword-Driven Tests

5. In the application under test, perform the actions that you want to test.

For information about the actions available during recording, see Actions Available During Recording.

6. Click Stop. The Record Complete dialog box opens.

Marking a Test Method in a Script as a Keyword
Mark an existing test method in a script as a keyword to reuse the method in keyword-driven tests.

1. Open the script which includes the test method that you want to mark as a keyword.

2. Add <Keyword()> or [Keyword], depending on whether you are editing a VB .NET or a C# script, to
the start of the test method.

By default, the keyword name is the name of the test method.

3. Optional: You can set a different name for the keyword by adding <Keyword("KeywordName")> or
[Keyword("KeywordName")], depending on whether you are editing a VB .NET or a C# script, to
the start of the test method.

You can now use the test method as a keyword in a keyword-driven test.

Examples

To mark the test method Login as a new keyword with the name Login, type the
following before the start of the test method:

'VB .NET code
<Keyword("Login")>

// C# code
[Keyword("Login")]

To mark the test method Login as a new keyword with the name Login and with the two
input parameters UserName and PassWord, type the following:

// VB .NET code
<Keyword("Login", Description="Logs in with the given name and
password.")>
Public Sub Login(Argument("UserName") As String,
Argument("PassWord") As String)
 ... //
End Sub

// C# code
[Keyword("Login", Description:="Logs in with the given name and
password.")]
public void Login([Argument("UserName")] string UserName,
[Argument("PassWord")] string PassWord)
{
 ... // method implementation
}

Note: If you are viewing this help topic in PDF format, this code
sample might include line-breaks which are not allowed in
scripts. To use this code sample in a script, remove these line-
breaks.

Keyword-Driven Tests | 285

Editing a Keyword-Driven Test
Note: In Silk4NET, you can edit and execute keyword-driven tests that are located in Silk4NET, and
you can execute keyword-driven tests that are stored in Silk Central. To edit a keyword-driven test,
which is stored in Silk Central, open the keyword-driven test in the Keyword-Driven Test Editor and
click Edit.

To edit a keyword-driven test:

1. Open the keyword-driven test in the Keyword-Driven Test Editor.

a) In the Solution Explorer, expand the project in which the keyword-driven test resides.
b) Expand the Keyword Driven Tests folder.
c) Double-click the keyword-driven test that you want to edit.

2. To add a new keyword to the keyword-driven test:

a) Click into the New Keyword field.
b) Type a name for the new keyword.
c) Press Enter.

3. To edit an existing keyword, click Open Keyword to the left of the keyword.

Note: Silk Central has the ownership of any keyword that has been created in Silk Central, which
means any changes that you make to such keywords are saved in Silk Central, not in Silk4NET.

4. To copy a keyword into the keyword-driven test:

a) Select the keyword.

Tip: Use Ctrl+Click or Shift+Click on the row number column to select multiple keywords.

b) Press Ctrl+C.
c) Select the row above which you want to insert the keyword.
d) Press Ctrl+V.

5. To move a keyword to another location in the keyword-driven test, click on the keyword and drag it to the
new location, or:

a) Select the keyword.

Tip: Use Ctrl+Click or Shift+Click on the row number column to select multiple keywords.

b) Press Ctrl+X.
c) Select the row above which you want to insert the keyword.
d) Press Ctrl+V.

6. To remove the keyword from the keyword-driven test, click Delete Keyword to the left of the keyword.

The keyword is still available in the Keywords window and you can re-add it to the keyword-driven test
at any time.

7. To save your changes, click File > Save.

Managing Keywords in a Test in Silk Central
The Keywords page enables you to manage the keywords of the selected keyword-driven test. The
following actions are possible:

286 | Keyword-Driven Tests

Task Steps

Opening a test or keyword
sequence in Silk Test

Click Open with Silk Test to open the selected test or keyword sequence in Silk
Test.

Adding a keyword 1. Click New Keyword at the bottom of the keywords list, or right-click a
keyword and select Insert Keyword Above from the context menu.

Note: You can let Silk Test recommend keywords based on their
usage. Toggle the recommendations on or off with Enable
Recommendations or Disable Recommendations in the context
menu. For additional information, see Which Keywords Does Silk4NET
Recommend?.

2. Select a keyword from the list of available keywords or type a new name to
create a new keyword.

3. Click Save.

Alternatively, double click an existing keyword in the All Keywords pane on the
right or drag and drop it.

Tip: You can select multiple keywords with Ctrl+Click. When dropping
them, they will be sorted in the order that you selected them in.

Deleting a keyword
Click in the Actions column of the keyword that you want to delete. Click
Save.

Changing the order of keywords Drag and drop a keyword to the desired position. Click Save.

Creating a keyword sequence (a
keyword consisting of other
keywords)

1. Select the keywords that you want to combine in the keywords list. Use Ctrl
+Click or Shift+Click on the row number column to select multiple keywords.

2. Right-click your selection and click Combine.

3. Specify a Name and Description for the new keyword sequence.

Extracting keywords from a
keyword sequence

Right-click a keyword sequence and click Extract keywords. The original
keyword sequence is then replaced by the keywords that it contained, but it is not
removed from the library. Click Save.

Copying and pasting keywords
into tests or keyword sequences

1. Select the keywords that you want to copy in the keywords list. Use Ctrl
+Click or Shift+Click on the row number column to select multiple keywords.

2. Press Ctrl+C to copy your selection, or Ctrl+X if you want to move the
keywords.

3. Open the test or keyword sequence that you want to copy the keywords to
and select the row above which the keywords will be inserted.

4. Press Ctrl+V.

Tip: You can also paste your selected keywords into Excel, and copy and
paste them from there into your tests or keyword sequences.

Defining parameters for a
keyword sequence

1. Click Parameters above the keywords list. The Parameters dialog box
appears.

2. Click Add Parameter.

3. Specify a Name for the new parameter. If the parameter is an outgoing
parameter (delivers a value, instead of requiring an input value), check the
Output checkbox.

4. Click OK.

5. Click Save.

Keyword-Driven Tests | 287

Task Steps

Note: A keyword or a keyword sequence can have a combined total of 20
input and output parameters.

Editing a draft keyword 1. Click in the Actions column of the draft keyword that you want to edit.

2. Select a Group or specify a new group for the keyword.

3. Type a Description for the keyword. This information is valuable for the
engineer who will implement the keyword.

4. Click OK.

5. Optional: Click into a parameter field to add parameters for the keyword. If the
keyword is implemented with Silk Test, these parameters will appear in the
generated code stub.

6. Click Save.

Searching for a keyword Use the search field in the Keywords window to find a specific keyword. When
you enter alphanumeric characters, the list is dynamically updated with all
existing matches. Tips for searching:

• The search is case-insensitive: doAction will find doaction and
DOAction.

• Enter only capital letters to perform a so-called CamelCase search: ECD will
find Enter Car Details, Enter Contact Details and
EnterContactDetails.

• Keyword and group names are considered: test will find all keywords that
contain test and all keywords in groups where the group name contains
test.

• ? replaces 0-1 characters: user?test will find userTest and
usersTest.

• * replaces 0-n characters: my*keyword will find myKeyword,
myNewKeyword and my_other_keyword.

• <string>. only searches in group names: group. will find all keywords
in groups where the group name contains group.

• .<string> only searches in keyword names: .keyword will find all
keywords that contain keyword.

• <string>.<string> searches for a keyword in a specific group:
group.word will find myKeyword in the group myGroup.

• Use quotes to search for an exact match: 'Keyword' will find Keyword
and MyKeyword, but not keyword.

Which Keywords Does Silk4NET Recommend?
When you add keywords to a keyword-driven test or a keyword sequence in the Keyword-Driven Test
Editor, Silk4NET recommends existing keywords which you might want to use as the next keyword in your
test. The recommended keywords are listed on top of the keywords list, and are indicated by a bar graph,
with the filled-out portion of the graph corresponding to how much Silk4NET recommends the keyword.

Silk4NET recommends the keywords based on the following:

• When you add the first keyword to a keyword-driven test or a keyword sequence, Silk4NET searches for
similar keywords that are used as the first keyword in other keyword-driven tests or keyword sequences.
The keywords that are used most frequently are recommended higher.

288 | Keyword-Driven Tests

• When you add additional keywords to a keyword-driven test or a keyword sequence, which already
includes other keywords, Silk4NET recommends keywords as follows:

• If there are keywords before the position in the keyword-driven test or the keyword sequence, to
which you add a new keyword, Silk4NET compares the preceding keywords with keyword
combinations in all other keyword-driven tests and keyword sequences and recommends the
keywords that most frequently follow the preceding combination of keywords.

• If there are no keywords before the position in the keyword-driven test or the keyword sequence, but
there are keywords after the current position, then Silk4NET compares the succeeding keywords
with keyword combinations in all other keyword-driven tests and keyword sequences and
recommends the keywords that most frequently precede the succeeding combination of keywords.

• Additionally, Silk4NET takes into account how similar the found keywords are. For example, if both the
name and group of two keywords match, then Silk4NET recommends these keywords higher in
comparison to two keywords for which only the name matches.

• If you have established a connection with Silk Central, any keywords included in keyword-driven tests,
which belong to the keyword library that corresponds to the current project, are also considered.

Using Parameters with Keywords
A keyword or a keyword sequence can have a combined total of 20 input and output parameters. This topic
describes how you can handle these parameters with Silk4NET.

In the Keyword-Driven Test Editor, you can view any defined parameters for a keyword or a keyword
sequence and you can edit the parameter values.

In the Keywords window, you can see which parameters are assigned to a keyword or a keyword
sequence when you hover the mouse cursor over the keyword or keyword sequence.

Input parameters for simple keywords

You can define and use input parameters for keywords in the same way as for any other test method.

The following code sample shows how you can define the keyword SetUserDetails with the two input
parameters userName and password:

// C# code
[Keyword]
public void SetUserDetails(string userName, string password) {
 ...
}

' VB .NET code
<Keyword>
public Sub SetUserDetails(userName As String, password As String)
 ...
End Sub

Output parameters for simple keywords

You can define a return value or one or more output parameters for a keyword. You can also use a
combination of a return value and one ore more output parameters.

The following code sample shows how you can define the keyword GetText that returns a string:

// C# code
[Keyword]
public string GetText() {
 return "text";
}

' VB .NET code
<Keyword>

Keyword-Driven Tests | 289

public Function GetText As String
 Return "text"
End Function

The following code sample shows how you can define the keyword GetUserDetails with the two output
parameters userName and password:

// C# code
[Keyword]
public void GetUserDetails(out string userName, out string password) {
 userName="name";
 password="password";
}

' VB .NET code
<Keyword>
public Sub GetUserDetails(ByRef userName As String, ByRef password As String)
 userName="name"
 password="password"
End Sub

Parameters for keyword sequences

You can define or edit the parameters for a keyword sequence in the Parameters dialog box, which you
can open if you click Parameters in the Keyword Sequence Editor.

Example: Keywords with Parameters
This topic provides an example of how you can use keywords with parameters. A keyword or a keyword
sequence can have a combined total of 20 input and output parameters.

As a first step, create a keyword-driven test which contains the keywords that you want to use. You can do
this by recording an entire keyword-driven test, or by creating a new keyword-driven test and by adding the
keywords in the keyword-driven test editor.

In this example, the keyword-driven test includes the following keywords:

Start application This is the standard keyword that starts the AUT and sets the base state.

Login This keyword logs into the AUT with a specific user, identified by a user name and a
password.

GetCurrentUser This keyword returns the name of the user that is currently logged in to the AUT.

AssertEquals This keyword compares two values.

Logout This keyword logs the user out from the AUT.

The next step is to add the parameters to the keywords. To do this, open the test scripts of the keywords
and add the parameters to the methods.

To add the input parameters UserName and Password to the keyword Login, change

// C# code
[Keyword]
public void Login() {
 ...
}

' VB .NET code
<Keyword>
public Sub Login()
 ...
End Sub

290 | Keyword-Driven Tests

to

// C# code
[Keyword]
public void Login(string UserName, string Password) {
 ...
}

' VB .NET code
<Keyword>
public Sub Login(UserName As String, Password As String)
 ...
End Sub

To add the output parameter UserName to the keyword GetCurrentUser, change

// C# code
[Keyword]
public void GetCurrentUser() {
 ...
}

' VB .NET code
<Keyword>
public Sub GetCurrentUser()
 ...
End Sub

to

// C# code
[Keyword]
public void GetCurrentUser(out string CurrentUser) {
 ...
}

' VB .NET code
<Keyword>
public Sub GetCurrentUser(ByRef CurrentUser As String)
 ...
End Sub

The keyword-driven test in the Keyword-Driven Test Editor should look similar to the following:

Now you can specify actual values for the input parameters in the Keyword-Driven Test Editor. To retrieve
the value of the output parameter UserName of the keyword GetCurrentUser, provide a variable, for
example ${current user}. You can then pass the value that is stored in the variable to subsequent keywords.

Keyword-Driven Tests | 291

Combining Keywords into Keyword Sequences
Use the Keyword-Driven Test Editor to combine keywords, which you want to execute sequentially in
multiple keyword-driven tests, into a keyword sequence.

1. Open the keyword-driven test that includes the keywords that you want to combine.

2. In the Keyword-Driven Test Editor, press and hold down the Ctrl key and then click the keywords
that you want to combine.

3. Right-click on the selection and click Combine. The Combine Keywords dialog box opens.

4. Type a name for the new keyword sequence into the Name field.

5. Optional: Type a description for the new keyword sequence into the Description field.

6. Click Combine.

The new keyword sequence opens and is also displayed in the Keywords window. You can use the
keyword sequence in keyword-driven tests.

Note: Like any other keyword, you cannot execute a keyword sequence on its own, but only as part of
a keyword-driven test.

Replaying a Keyword-Driven Test with Specific Variables
Before you can set the values of variables for the execution of a keyword-driven test, you have to create the
project.

1. In the Solution Explorer, expand the project which includes the keyword-driven tests that you want to
execute based on the variables.

2. Right-click the project node and select Add > New Item. The Add New Item dialog box opens.

3. Select Installed > Common Items > General from the item tree.

4. Select Text File from the item list.

5. Type globalvariables.properties into the Name field.

6. Click Add. The new properties file opens.

7. Add new lines to the file to specify the variables.

The format for a new variable is:

name=value

For example, to specify the two variables user and password, type the following:

user=John
password=john5673

292 | Keyword-Driven Tests

For information about the format of a properties file and how you can enter UNICODE characters, for
example a space, see Properties File Format.

8. Save the globalvariables.properties file.

9. In the Solution Explorer, right-click the globalvariables.properties file and select Properties.
The Properties view opens.

10.In the Properties view, expand the Build Action list and select Embedded Resource.

11.Open the keyword-driven test that you want to execute.

12.In theKeyword-Driven Test Editor, edit the parameters to use the new variables.

Use the following annotation:

${variable name}

For example, in the following keyword-driven test, the ${current user} parameter uses a global
variable:

Whenever a keyword-driven test in the project is executed from Silk4NET, the variables are used.

Integrating Silk4NET with Silk Central
Integrate Silk4NET and Silk Central to enable collaboration between technical and less-technical users.

When Silk4NET and Silk Central are integrated and a library with the same name as the active Silk4NET
project exists in Silk Central, the Keywords view under Silk4NET > Show Keywords Window displays all
keywords from the Silk Central library in addition to any keywords defined in the active Silk4NET project.

Note: The Silk Central connection information is separately stored for every Silk4NET user, which
means every Silk4NET user that wants to work with keywords and keyword sequences from Silk
Central must integrate Silk4NET with Silk Central.

Integrating Silk4NET with Silk Central provides you with the following advantages:

• Test management and execution is handled by Silk Central.
• Keywords are stored in the Silk Central database (upload library) and are available to all projects in Silk

Central.
• Manual tests can be directly automated in Silk Central and the created keyword-driven tests can be

executed in Silk4NET from Silk Central.

Note: In Silk4NET, you can edit and execute keyword-driven tests that are located in Silk4NET, and
you can execute keyword-driven tests that are stored in Silk Central. To edit a keyword-driven test,
which is stored in Silk Central, open the keyword-driven test in the Keyword-Driven Test Editor and
click Edit.

1. From the menu, select Silk4NET > Silk Central Configuration. The Script Options dialog box opens.

2. Type the URL of your Silk Central server into the URL field.

Keyword-Driven Tests | 293

http://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204propertiesfileformat01.html

For example, if the Silk Central server name is sctm-server, and the port for Silk Central is 13450, type
http://sctm-server:13450.

3. Specify the web-service token for authentication.

You can generate a web-service token in the User Settings page of Silk Central, which you can access
by clicking on the user name in the Silk Central menu.

Note: To authenticate with your Silk Central user name and password, you could select User
name and password from the Authentication list. However, for security reasons, Micro Focus
recommends using a web-service token for authentication instead of sending your user name and
password over the network.

4. Click Verify to verify if Silk4NET can access the Silk Central server with the specified user.

5. Click OK.

Implementing Silk Central Keywords in Silk4NET
Before implementing Silk Central keywords, define the keywords as part of a keyword-driven test in Silk
Central.

To implement a Silk Central keyword in Silk4NET:

1. Create a project in Silk4NET with the same name as the keyword library in Silk Central, which includes
the keyword-driven test.

2. If the keyword library in Silk Central has no type assigned, click Silk4NET > Upload Keyword Library
to set the library type.

3. Optional: To implement a specific keyword in Silk4NET from Silk Central, open the Keywords tab of the
library in Silk Central and click Implement with Silk Test in the Actions column of the keyword.

4. In the Silk4NET menu, click Silk4NET > Show Keywords Window.

5. In the Keywords window, double-click the keyword-driven test.

To update the Keywords window with any changes from Silk Central, click Refresh.

6. In the toolbar, click Record Actions.

7. If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:

a) Select the browser.
b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,

select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

8. Click Record.

For additional information on recording, see Recording a Keyword.

9. Record the actions for the first unimplemented keyword.

10.When you have recorded all the actions for the current keyword, click Next Keyword.

11.To switch between keywords in the Recording window, click Previous Keyword and Next Keyword.

12.Click Stop. The Record Complete dialog box opens.

Note: You cannot delete keywords or change the sequence of the keywords in a keyword-driven test
from Silk Central, as these tests are read only in Silk4NET.

294 | Keyword-Driven Tests

Uploading a Keyword Library to Silk Central
To work with Silk Central, ensure that you have configured a valid Silk Central location. For additional
information, see Integrating Silk4NET with Silk Central.

To automate manual tests in Silk Central, upload keywords that you have implemented in a Silk4NET
project as a keyword library to Silk Central, where you can then use the keywords to automate manual
tests.

1. In Silk4NET, select the project in which the keyword-driven tests reside.

2. Ensure that a library with the same name exists in Silk Central (Tests > Libraries).

3. In the menu, select Silk4NET > Upload Keyword Library.

4. Optional: Provide a description of the changes to the keyword library.

5. Optional: Click Configure to configure the connection to Silk Central.

6. Optional: To see which libraries are available in the connected Silk Central instance, click on the link.

7. Click Upload.

Caution: If the keyword library in Silk Central is already assigned to a different automation tool or
another Silk Test client, you are asked if you really want to change the type of the keyword library.
Upload the library only if you are sure that you want to change the type.

Silk4NET creates a keyword library out of all the keywords that are implemented in the project. Then
Silk4NET saves the keyword library with the name library.zip into the output folder of the project. The
library is validated for consistency, and any changes which might break existing tests in Silk Central are
listed in the Upload Keyword Library to Silk Central dialog box. Finally, Silk4NET uploads the library to
Silk Central. You can now use the keywords in Silk Central. Any keyword-driven tests in Silk Central, which
use the keywords that are included in the keyword library, automatically use the current implementation of
the keywords.

Uploading a Keyword Library to Silk Central from the
Command Line

Upload an external keyword library to Silk Central from a Java-based command line to integrate Silk
Central and your keyword-driven tests into your continuous integration build system, for example Jenkins.

To upload your keyword library to Silk Central from a Java-based command line:

1. Select Help > Tools in Silk Central and download the Java Keyword Library Tool.

2. Call the command line tool that is contained in the downloaded jar file with the following arguments:

• java

• -jar com.borland.silk.keyworddriven.jar

• -upload

• Library name of the library in Silk Central to be updated, or created if it does not yet exist.
• Package name of the library package (zip archive) to be uploaded.
• Hostname:port of the Silk Central front-end server.
• Web-service token of the Silk Central user. Required for authentication. You can generate a

web-service token in the User Settings page of Silk Central, which you can access by clicking on
the user name in the Silk Central menu.

Note: For security reasons, Micro Focus recommends using a web-service token for
authentication instead of sending your user name and password over the network.

Keyword-Driven Tests | 295

• Username of the Silk Central user. Not required when using a web-service token for authentication.
• Password of the Silk Central user. Not required when using a web-service token for authentication.
• Update information, describing the changes that were applied to the library, in quotes.
• [-allowUsedKeywordDeletion], an optional flag to allow the deletion of keywords that are used

in a test or keyword sequence. By default, an error is raised if used keywords are attempted to be
deleted.

The following example outlines the command line to upload a library to Silk Central with Java 9 or later:

java --add-modules=java.activation,java.xml.ws -jar
com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scLogin
scPassword "Build xy: Implemented missing keywords"

Examples

The following example outlines the command line to upload a library to Silk Central with
Java 8 or prior by using a web-service token for authentication:

java -jar com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scToken
"Build xy: Implemented missing keywords"

To upload the same library with Java 8 or prior by using user name and password for
authentication, use a command like the following:

java -jar com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scLogin
scPassword "Build xy: Implemented missing keywords"

The corresponding commands with Java 9 or later are:

java --add-modules=java.activation,java.xml.ws -jar
com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scToken
"Build xy: Implemented missing keywords"

java --add-modules=java.activation,java.xml.ws -jar
com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scLogin
scPassword "Build xy: Implemented missing keywords"

Note: When uploading a keyword-driven library with Java 9 or
later, ensure JAVA_HOME is defined on the execution servers
and points to a JDK with the corresponding Java version.

Searching for a Keyword
Use the search field in the Keywords window to find a specific keyword. When you enter alphanumeric
characters, the list is dynamically updated with all existing matches. Tips for searching:

• The search is case-insensitive: doAction will find doaction and DOAction.
• Enter only capital letters to perform a so-called CamelCase search: ECD will find Enter Car

Details, Enter Contact Details and EnterContactDetails.
• Keyword and group names are considered: test will find all keywords that contain test and all

keywords in groups where the group name contains test.
• ? replaces 0-1 characters: user?test will find userTest and usersTest.
• * replaces 0-n characters: my*keyword will find myKeyword, myNewKeyword and

my_other_keyword.

296 | Keyword-Driven Tests

• <string>. only searches in group names: group. will find all keywords in groups where the group
name contains group.

• .<string> only searches in keyword names: .keyword will find all keywords that contain keyword.
• <string>.<string> searches for a keyword in a specific group: group.word will find myKeyword in

the group myGroup.
• Use quotes to search for an exact match: 'Keyword' will find Keyword and MyKeyword, but not

keyword.

Filtering Keywords
To find a specific keyword in the current project, you can filter the keywords that are displayed in the
Keywords window. If an integration with Silk Central is configured, the result includes the relevant
keywords from Silk Central.

1. In the menu, click Silk4NET > Show Keywords Window. The Keywords window opens.

2. In the Keywords window, type the name of the keyword that you are searching for into the search field.
The Keywords window lists all keywords in the current project with the given name.

3. Optional: To edit a keyword, hover the mouse cursor over the keyword in the Keywords window and
click Go to implementation.

Grouping Keywords
To better structure the keywords in a library, you can group them.

This topic shows how you can add a keyword to a specific group These group names are also used by Silk
Central and your keywords are grouped accordingly.

To add a keyword to a specific group:

1. Open the implementation of the keyword.

a) Open the project in which the keyword is implemented.
b) Open the Keywords window.
c) In the Keywords window, select the keyword.
d) Click Go to implementation.

2. To add all methods in a class to the keyword group, add the keyword group before the start of the class.

For example, to add the group calculator to the keywords, type:

// VB .NET code
<KeywordGroup("Calculator")>

// C# code
[KeywordGroup("Calculator")]

In the Keywords window, the displayed keyword name now includes the group. For example, the keyword
Addition in the group Calculator is displayed as Calculator.Addition.

Troubleshooting for Keyword-Driven Testing

Why do I get the error "No application configuration present" when trying to replay a keyword-
driven test from Silk Central?

If you get this error, your keyword-driven test does not include a Start application keyword as the first
keyword. Silk4NET requires the Start application keyword to apply the application configuration of your

Keyword-Driven Tests | 297

project to the keyword-driven test. When you record a new keyword-driven test, Silk4NET automatically
adds the Start application keyword as the first keyword to the keyword-driven test.

With Silk4NET 19.5 or later, parallel testing is enabled by default. When you upgrade from a Silk4NET
version prior to Silk4NET 19.5 to a more recent Silk4NET version, previously executing keyword-driven
tests might no longer execute because each individual test is now expected to specify the application under
test (AUT).

To workaround this issue, disable parallel testing on the machine on which Silk4NET is running by setting
the environment variable SILKTEST_ENABLE_PARALLEL_TESTING to false.

How can I prevent my browser or mobile app from closing between tests?

When replaying multiple keyword-driven tests from Silk Central with Silk4NET 19.5 or later, parallel testing
is enabled by default. When you upgrade from a Silk4NET version prior to Silk4NET 19.5 to a more recent
Silk4NET version, Silk4NET will by default close the browser or the mobile app whenever a keyword-driven
test is finished.

This issue does not occur when testing a browser application against Internet Explorer. To workaround this
issue, disable parallel testing on the machine on which Silk4NET is running by setting the environment
variable SILKTEST_ENABLE_PARALLEL_TESTING to false.

298 | Keyword-Driven Tests

Known Issues
This section identifies any known issues with Silk4NET and their resolutions.

General Issues

Object Map Takes a Long Time to Open

If you have a large object map asset it takes a long time to load when you are using .NET 4. Install .NET
4.5 to resolve this issue.

When a remote desktop or remote desktop connection (RDC) is minimized, Silk Test does not
function

When you connect through the remote desktop protocol (RDP) to a desktop, you take ownership of the
desktop by attaching to the desktop with your mouse and keyboard. If the desktop is minimized without
ownership of the desktop being released, any playback of mouse clicks or keystrokes is undefined.

As a workaround, you could use a VNC-based remote viewing tool. This would allow replay to continue
even if the client window is minimized.

The Open Agent does not start when the Check Point firewall is installed

When you have a Check Point firewall or a Check Point ZoneAlarm firewall installed on your system, the
Open Agent cannot be started, because the firewall interrupts the communication between the Agent and
the infoservice.

To start the Open Agent, you have to uninstall the Check Point firewall from your system.

The modifiers parameter in the domDoubleClick method is ignored

You cannot specify the modifier in the overloaded domDoubleClick method. The modifier will not be
double-clicked, although you have specified the parameter. The overloaded domDoubleClick method,
which allows you to specify the modifier, is deprecated. To specify the modifier, you can use the
doubleClick method, if you are using a client that supports an overloaded method with the modifiers
parameter, or the PressKeys and ReleaseKeys methods.

Silk Test does not support testing Metro-style apps

Silk Test does not support testing Metro-style apps on Microsoft Windows 8, Microsoft Windows 8.1, or
Microsoft Windows 10. Metro-style apps are also known as Windows 8 style, Modern UI style, Windows
Store style, or Universal Windows Platform (UWP) apps.

The built-in spell checking in Microsoft Windows 8 might interfere with the replay of tests

The built-in spell checking in Microsoft Windows 8 can be enabled in applications like Internet Explorer 10.

If a word was incorrectly spelled during recording, and you replay typing this word, the spell checker will
either mark it, or for commonly misspelled words will automatically fix it, which is the same behaviour a real
user would get. If your tests were created on an operating system that did not include the spell checking
feature, you might get unexpected results when replying the tests on Microsoft Windows 8. To disable the
spell checking, you can do the following:

1. Press Windows Key + C.

Known Issues | 299

2. On the Charm bar, click Settings.
3. Select More PC Settings.
4. Select General to see the Spelling selections.

Note: These are system-wide settings, not settings specific to Internet Explorer.

5. Set Autocorrect misspelled words to off.
6. Set Highlight misspelled words to off.

When a .NET application is started from DevPartner Studio (DPS), Silk Test might not recognize it

To resolve the issue, perform the following steps:

1. Go to the Silk Test installation folder (by default, it's located at: C:\Program Files\Silk
\SilkTest).

2. For Windows Forms applications, go to ng\agent\plugins
\com.borland.fastxd.techdomain.windowsforms.agent_<version number>.

3. For Windows Presentation Foundation (WPF) applications, go to ng\agent\plugins
\com.microfocus.silktest.techdomain.wpf.agent_<version number>.

4. In Notepad, open the file plugin.xml, and add the following line to the <loadparameters> section:

<param name="frameworkAssembly">mscoree.dll</param>

5. Log out of the computer, and then log back in. Silk Test works as expected with the application that was
started by DevPartner Studio.

The highlighting rectangle is out of place when recording clicks on an area of an image

When you record a click on a part of a complex image, for example an area map, the green highlighting
rectangle does not highlight the appropriate area of the image. However, the click will be executed correctly
during replay.

The Open Agent might not start if Windows Defender is enabled during the installation of Silk Test

If Windows Defender is enabled on your system during the Silk Test installation, you might not be able to
start the Open Agent after the installation is complete. Windows Defender might prevent the hotfix setup
from performing some required actions. As a workaround, disable Windows Defender during the Silk Test
installation.

The IME editor opens out of place when opened from specific locations

The IME editor opens on the top-left corner of the current screen instead of opening near the text field from
which it is opened.

This behavior occurs when opening the IME editor from the following locations:

• The Silk Recorder.
• The Keyword-Driven Test Editor.
• The Keywords window.

Silk Test help freezes when you enter characters in the Search box

The Silk Test help might freeze when you enter characters in the Search box on the Index tab in a
Compiled HTML Help (.chm) file in Microsoft Windows 8.1, Microsoft Windows RT 8.1, or Microsoft
Windows Server 2012 R2. To fix this issue, you have to install a Windows update. The update is available
from https://support.microsoft.com/kb/3080042.

Cannot use Shift+Insert when the Numeric Lock key is active

Using the TypeKeys method to paste the contents of the clipboard with Left Shift+Insert or Right Shift
+Insert does not work when the Numeric Lock (Num Lock) key is active.

300 | Known Issues

https://support.microsoft.com/kb/3080042

You can workaround this issue by deactivating the Num Lock in your test script before calling the
TypeKeys method.

Why do I get the error Windows DLL failed to load during installation?

If you are using Java 8 update 212 or a later update of Java 8, installing Silk Test on a Windows Server
2019 machine will fail with the following error: Windows DLL failed to load.

You can workaround this issue by downgrading to a Java 8 version prior to update 212 and by starting the
installer with a command line call similar to the following:

SilkTest<Version>.exe LAX_VM "[path to java.exe]"

For example:

SilkTest200_64bit.exe LAX_VM "c:\java\bin\java.exe"

For additional information on installing Silk Test through the command line, refer to the Silk Test Installation
Guide.

Mobile Web Applications

Silk4NET does not support frames on Apple Safari

Silk4NET does not support HTML frames and iframes on Apple Safari on iOS.

Chrome for Android 43 or later: Silk4NET does not support zooming and scrolling at the same time

Recording a mobile web application on Chrome for Android 43 or later, while the mobile web application is
zoomed and the top-left corner is not visible on the screen, might not work as expected. If the green
rectangles for the controls in a mobile web application are not correctly displayed during recording, zoom-
out the mobile web application completely, scroll to the top-left corner of the mobile web application, and
refresh the Recording window.

Web Applications

Recording with a zoom level different to 100% might not work properly

Recording a Web application with a zoom level different to 100% might not work as expected. Before
recording actions against a Web application, set the zoom level in the browser to 100%.

Google Chrome

Locator recording in windows fails with Google Chrome

When you are testing a Web application in Google Chrome, locator recording in windows fails when
multiple windows are open during application configuration in the Google Chrome instance, in which the
application is running. If you close the other Google Chrome windows during application configuration, the
error will not appear.

Background applications in Google Chrome prevent automation support from loading

When you want to test a Web application with Google Chrome and the Continue running background
apps when Google Chrome is closed check box is checked, Silk Test cannot restart Google Chrome to
load the automation support.

Known Issues | 301

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-installguide-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-installguide-en.pdf

Silk Test cannot record locators in modal dialogs when Windows Aero is disabled

If Windows Aero functionality is disabled, modal dialogs are not recognized and locators in such dialogs
cannot be selected. As a workaround, use the Locator Spy or the Identify Object dialog box to manually
create and verify locators while a modal dialog is displayed.

Silk Test does not display embedded PDFs

With Google Chrome 42 or later, Google Chrome by default blocks the NPAPI plug-in, which is used to
display embedded PDFs. Because of this, Silk Test does not display embedded PDFs in Google Chrome
42 or later, but instead downloads the embedded PDFs.

• If you are using Google Chrome 44 or prior, you can unblock the NPAPI plug-in in Google Chrome, by
typing the following into the address bar:

chrome://flags/#enable-npapi

• If you are using Google Chrome 45 or later, the NPAPI plug-in is completely removed from Google
Chrome, without an option to re-enable it, and all PDFs are downloaded.

Connection timeouts when executing tests against Google Chrome 49 or prior

When executing tests against Google Chrome 49 or prior on a slow machine, you might experience
connection timeouts, causing the tests to fail. The following error message is displayed:
Error executing '*'. Communication with browser automation timed out.

To avoid such connection timeouts, ensure that the test machine has enough processing power. For
example, if you are testing on a slow virtual machine (VM), you could enhance the processing power by
adding an additional CPU core to the VM.

Setting the UserDataDir through the registry breaks the Google Chrome support when using
Google Chrome 66 or later

If the user data directory is set as a policy in the registry through the key HKEY_LOCAL_MACHINE
\Software\Policies\Google\Chrome\UserDataDir or the key HKEY_CURRENT_USER\Software
\Policies\Google\Chrome\UserDataDir, and you are testing a web application on Google Chrome
66 or later, the base state might fail with the following error message: Failed to start application
'GoogleChrome'. unknown error: DevToolsActivePort file doesn't exist . This is a
known issue in ChromeDriver: https://bugs.chromium.org/p/chromedriver/issues/detail?id=2513.

As a workaround, perform one of the following:

• Remove the registry key.

Note: This is the only way to enable parallel testing with Google Chrome if this issue occurs.

• Set the user data directory in Google Chrome to the same directory as in the registry key.

1. Open the Edit Browser Application Configuration dialog.
2. Select Google Chrome as the browser type.
3. Set the user data directory in the Connection String field: goog:chromeOptions={"args":

["--user-data-dir=<user data directory>"]}. For example, if the value in the registry is
C:/temp/chromeUserData, type goog:chromeOptions={"args":["--user-data-
dir=C:/temp/chromeUserData"]}.

Note: Parallel testing with Google Chrome will not work, even if you apply this workaround.

302 | Known Issues

https://bugs.chromium.org/p/chromedriver/issues/detail?id=2513

Internet Explorer

Using Google toolbar interferes with recording Web applications

Using the Google toolbar with Internet Explorer 8 interferes with recording locators for Web applications.

Turn off the Google toolbar before you record Web applications.

Microsoft Silverlight Applications

Some Microsoft Silverlight applications cause Internet Explorer to hang when interacting with Silk Test. On
32-bit platforms, refer to MS KB 2564958 (an update to Active Accessibility) to help prevent the issue.

Locators recorded with Silk Test versions prior to Silk Test 13.5 might no longer work in Internet
Explorer

In Silk Test 13.5, we have adapted the normalization of white spaces of the textContents attribute in
Internet Explorer. This change was made to improve the cross-browser capabilities of Silk Test, and might
affect locators which rely on the textContents attribute, and which are used in scripts that were
recorded with releases prior to Silk Test 13.5.

The Open Agent cannot have high elevation enabled when UAC is enabled on Microsoft Windows 8
or later and Internet Explorer 11

You cannot test a Web application in Internet Explorer 11 on Microsoft Windows 8 or later and have UAC
enabled and run both Internet Explorer and the Open Agent with high elevation.

Known issues with Input Method Editors (IMEs)

• Silk Test does not record half-width spaces for Japanese input in Internet Explorer 11.
• Silk Test does not record IME input in Internet Explorer 11 in compatibility mode.
• In Japanese IME mode, pressing Space will cause Silk Test to record the current IME candidate. Use

Convert to avoid this issue.

Internet Explorer might stop working while testing an Applet with a Java version higher that 1.7
update 71

Internet Explorer might stop working while testing an Applet with a Java version higher that 1.7 update 71
(7u71).

Internet Explorer does not respond during test execution

Internet Explorer 10 or later might become unresponsive during test execution because a thread in Internet
Explorer is suspended and creates a deadlock. The root cause of this problem is a new security feature in
Internet Explorer.

To solve this issue, disable the security feature.

1. Open the Registry Editor.
2. If the OverrideMemoryProtectionSetting entry does not exist in the key HKEY_CURRENT_USER

\SOFTWARE\Microsoft\Internet Explorer\Main, create the entry.
3. Set the value of the registry key HKEY_CURRENT_USER\SOFTWARE\Microsoft\Internet Explorer

\Main::OverrideMemoryProtectionSetting to 2.

The JavaScript alert-handling API methods do not work with an embedded Internet Explorer

The following JavaScript alert-handling methods of the BrowserWindow class do not work when testing
an embedded Internet Explorer:

Known Issues | 303

• AcceptAlert method
• DismissAlert method
• GetAlertText method
• IsAlertPresent method

Microsoft Edge

Windows opened out of Microsoft Edge are not supported

Windows which are opened as actual new Microsoft Edge windows, and not as tabs, are not supported.
Silk4NET cannot close such windows correctly, and the agent is in an invalid state after closing such a
window.

JavaScript alerts opened in an iframe or frame cannot be closed

Microsoft Edge cannot close the JavaScript alerts alert(), prompt(), and confirm(), if these alerts were
opened in an iframe or frame.

Cannot open the native browser context menu

If a test includes a right click in Microsoft Edge, which opens the native browser context menu, the test will
hang. This issue does not occur with HTML menus opened by Microsoft Edge.

Cannot execute tests against Microsoft Edge with UAC disabled

When executing tests against Microsoft Edge with UAC disabled, the following error message displays:
Failed to start application 'Edge'. Unable to parse remote response: Unknown error

To solve this issue, enable UAC.

Why do I get the error "Cannot start Edge because the Windows Feature Microsoft WebDriver is not
installed"?

If your system uses the Windows 10 October 2018 Update or a later version of Microsoft Windows 10, and
the Windows Feature Microsoft WebDriver is not installed on your system, you might get the following error
when trying to test on Microsoft Edge:
Cannot start Edge because the Windows Feature Microsoft WebDriver is not installed. See the topic
Known Issues > Microsoft Edge in the Help.

To solve this issue, ensure that the Windows update on your system is working properly. If you using an
internal Windows Update server, perform the following actions:

1. Ask your IT administrator to add the Windows Feature Microsoft WebDriver to the Windows update
server.

2. Install the Windows Feature Microsoft WebDriver. For additional information on installing the feature,
refer to Microsoft WebDriver.

Mozilla Firefox

Calls into applications using Adobe FlashPlayer do not properly synchronize when using Mozilla
Firefox

When you are using Mozilla Firefox with a recent Adobe FlashPlayer version, some calls might not
synchronize properly. The following issues might occur:

• Mozilla Firefox might falsely recognize a running script as stalled and a confirmation dialog box might
appear asking whether you want to continue the execution of the script, even though the script is
running properly.

304 | Known Issues

https://developer.microsoft.com/microsoft-edge/tools/webdriver/

• Typing characters might not work because SetFocus is no longer working correctly.
• The Adobe automation might return an old value although the UI already shows a new value.

If you face one or more of these issues with applications using Adobe FlashPlayer, turn off the
ProtectedMode in Adobe FlashPlayer. For additional information, see http://forums.adobe.com/thread/
1018071 and read the information provided under Last Resort.

SAP Applications

HierarchyHeaderWidth and ColumnOrder Properties of the SAPTree Class are write only

Other than the automation documentation indicates, the HierarchyHeaderWidth and ColumnOrder
properties of the SAPTree class are write only and cannot be read.

Ensure that your scripts use write rather than read with these properties.

GetColumnIndexFromName() of the SapTree Class May Fail with an "unspecified error"

GetColumnIndexFromName() of the SapTree class may fail with an "unspecified error". This is a known
issue in SAP automation.

Check the SAP web site to see if the issue has been resolved.

Calling the Select() method of the SAPTree Class on a Context menu item may fail

Calling the Select() method of the SAPTree class on a Context menu item may fail.

Call SelectContextMenuItem on the parent control instead. This problem is a known issue in the SAP
automation.

The position property for a horizontal scrollbar always returns 1

The position property for a horizontal scrollbar always returns 1. This is a known issue in SAP automation.

Check the SAP web site to see if the issue has been resolved.

The SAPNetPlan class is not supported

This issue will be resolved in a future release.

Replay error occurs when executing an SAP script

In certain cases, if you record an SAP test and then replay it, the following error might occur: The data
necessary to complete this operation is not yet available. This means that Silk4NET
is executing the recorded actions too fast.

To solve this issue, you can add sleeps to your test script or you can increase the post replay delay to
increase the time that Silk4NET waits after invoking a function or setting a property. For additional
information about this option, see Agent Options. You could also change the script to use SAP automation
to replay the problematic action instead of using the xBrowser technology domain. For example, you could
change the action DomLink.Select to SapHTMLViewer.SapEvent.

The method getCurrentRow returns a wrong value with SAPGUI client 7.30

If you use SAPGUI client 7.30 and you call the method getCurrentRow, the method might falsely return
-1 instead of the row number.

Known Issues | 305

http://forums.adobe.com/thread/1018071
http://forums.adobe.com/thread/1018071

The method resizeWorkingPane is not working correctly with SAPGUI client 7.30

If you use SAPGUI client 7.30 and you call the method resizeWorkingPaneEx, the method will not
resize the workingPane and calling getSapWindow().getWidth() will return a wrong value for the
window width.

Silk4NET

No TrueLog is generated

If you do not have a TrueLog result file after test execution make sure that:

• The Silk4NET project is executed in the same Visual Studio version as the version in which the project
was created. For example, you can only execute a Silk4NET project which is created in Visual Studio
2012 within a Visual Studio 2012 environment. This limitation also applies when you execute the project
through the command line or through Team Foundation Server.

• The test class contains the SilkTestClass attribute.
• You have write access to the location where the TrueLog file is created.

Silk4NET displays the message "Unit Test Adapter threw exception… "

If you get the error message Unit Test Adapter threw exception… during replay, ensure that the
Silk4NET project is executed in the same Visual Studio version as the version in which the project was
created. For example, you can only execute a Silk4NET project which is created in Visual Studio 2012
within a Visual Studio 2012 environment. This limitation also applies when you execute the project through
the command line or through Team Foundation Server.

How to migrate Silk4NET projects created in a prior version of Visual Studio to a later version of
Visual Studio:

• Open the solution in the prior version of Visual Studio.
• Change the target framework of your Silk4NET projects to the appropriate version of the .NET

Framework. For example, to migrate the projects from Visual Studio 2010 to Visual Studio 2012, set the
target framework to .NET Framework 4.5.

• Remove the reference to the UnitTestingExtension of the prior version of Visual Studio from your
Silk4NET projects. For example, if the prior version is Visual Studio 2010, remove the reference to
SilkTest.Ntf.VisualStudio2010.UnitTestingExtension from your Silk4NET projects.

• Add the reference to the later version of Visual Studio to your Silk4NET projects. For example, to
migrate the projects to Visual Studio 2012, add the reference
SilkTest.Ntf.VisualStudio2012.UnitTestingExtension to your Silk4NET projects.

When you are using object maps, existing locators that do not start with a slash will no longer work

Locators that include only a class name and that do not start with a slash, for example PushButton, will
no longer work if object maps exist. This issue might result in breaking existing scripts that were created in
a Silk Test version prior to Silk Test 14.0. For the previous example the script will fail with the following
error:
Identifier 'PushButton' was not found in the Object Map.

More complex locators that include more than a class name, for example PushButton[@caption=OK]
will continue to work, even if object maps exist.

To fix this issue, add a // to the start of any such locator. For example, if the locator PushButton in the
following code does no longer work:

PushButton button = mainWindow.find("PushButton");

306 | Known Issues

Change the code to:

PushButton button = mainWindow.find("//PushButton");

Why do I get the message "Could not load 64bit JVM..." when replaying a keyword-driven test?

When replaying a keyword-driven test with Silk4NET 19.5 or later, you might get the following error
message:
Could not load 64bit JVM. The test runner is using 32bit. For additional information, see Known Issues >
Silk4NET in the help.

To solve this issue, do one of the following:

• Compile your tests with the platform target x64.

1. Right-click on the project entry in the Solution Explorer.
2. Select Properties.
3. In the Properties Window, select the Build tab.
4. In the General area, select x64 from the Platform target list.

• Set the default processor architecture to 64bit. In the Visual Studio menu, select Test > Test Settings >
Default Processor Architecture and select X64.

• To run the keyword-driven tests from the command line with a 64bit platform target, type:

vstest.console.exe <project name>.dll /platform:x64

• To use your own 32bit JVM with Silk4NET, set the SILK_KEYWORD_DRIVEN_JAVA_HOME
environment variable to the JVM that you want to use.

Known Issues | 307

Index
.NET support

overview 205
Silverlight 220
Windows Forms overview 205
Windows Presentation Foundation (WPF) overview

211

A
Accessibility

enabling 71
improving object recognition 117

action recording
merging object map entries 89

add-ons
Google Chrome 253
Mozilla Firefox 257

adding
keywords 286

adding keywords
keyword-driven tests 286

adding multiple images
image assets 101

adding Silk4NET tests
Silk4NET projects 20

admin rights
installing 10
running 10

Adobe Flex
adding configuration information 150
Adobe Air support 146
automationName property 153
coding containers 156
containers 156
creating applications 151
FlexDataGrid control 146
invoking methods 137
loading at run-time 150
multiview containers 157
passing parameters 150
passing parameters at runtime 150
passing parameters before runtime 150
run-time loading 149
security settings 159
select method, overview 146
select method, setting 155
testing playback 158

advanced
options 71

agent options
Open Agent 38

agents
configuring ports, information service 48
options 38
overview 38
port numbers 47
starting 38

AJAX applications
browser recording options, setting 66
script hangs 267

analyzing
test results 34

analyzing results
tests 34

Android
configuring emulator 169
enabling USB-debugging 169
hybrid applications 167
installing USB drivers 168
invoking methods 203
mobile native applications, prerequisites 166
mobile web applications, prerequisites 166
parallel testing, tested configurations 170
recommended settings 169
releasing devices 193
releasing devices, recording 193
releasing devices, replay 193
testing 166
troubleshooting 194

Android emulator
configuring 169

Apache Flex
Component Explorer 136
attributes 159, 272
automationIndex property 152
automationName property 152
class definition file 144, 153
controls are not recognized 160
custom controls 113, 136
custom controls, defining 138, 144, 153
custom controls, implementing 141
customizing scripts 145
enabling your application 147
Flash player settings 135
initializing, applications 157
invoking methods 137
invoking methods for custom controls 140
linking automation packages 147
overview 135
precompiling the application 148
recording, applications 157
select method, setting 155
styles 158
testing 136
testing multiple applications 145
workflow 157

Apache Flex applications
custom attributes 83, 152

API playback
comparing to, native playback 241

Apple Safari
connection string 244
information service, installing 178, 183, 248, 251
limitations 249
preparing 248
prerequisites 247
running multiple tests 251
support 236

308 | Index

testing 247
application configurations

definition 59
deleting 60
errors 62
keyword-driven tests 283
modifying 60
removing 60
troubleshooting 63

assets
opening from a script 102

attribute types
Apache Flex 159, 272
Java AWT 160, 272
Java Swing 160, 272
Java SWT 164, 272
Oracle Forms 162
overview 271
SAP 231, 273
Silverlight 220, 273
UI Automation 122, 274
Web applications 270, 275
Windows 211, 276
Windows Forms 206, 276
xBrowser 270, 275

attribute values
finding with Locator Spy 27

B

base state
definition 53
executing 57
keyword-driven tests 283
modifying, script 55
modifying, user interface 53

basestate
about 53

best practices
scripts, creating 26

blacklists
UI Automation, locator attributes 71

browser
defining, playback 237
maximize 265

browser configuration settings
xBrowser 242

browser testing
replay, parallel 30

browser type
Chrome for Android, setting 199
viewing current 266
viewing current, GetProperty 266

browser window
specifying size 260

browsers
options, setting 66
starting, scripts 269

browsertype
Chrome for Android, setting 199
using 266

C

calling dlls
example 106
scripts 105

capabilities
iOS 50, 182

capturing
web pages, full page 36

CEF
testing 235

certificates
installing, Mobile Center 188
replacing, information service 51

Chrome
configuration settings 242
cross-browser scripts 268
extensions, testing 253
known issues 301
locators 269
prerequisites 252
recording tests 24
testing 251
user data directories, testing 253

Chrome for Android
browser type, setting 199
support 236

Chromium Embedded Framework
testing 235

class names
finding with Locator Spy 27

classes
exposing 69
ignoring 68

Click
mobile web 204

combining
keywords 286

command line
running tests 29

Component Explorer
Apache Flex 136

Configuration Assistant
automatic signing 179

configuring ports
information service, clients 48
Open Agent 49

connection string
desktop browsers, local 246
desktop browsers, remote 244
mobile devices 189

contact information 14
continuous integration

uploading keyword libraries 295
controlling line execution

debugging, scripts 133
creating

keyword-driven tests 281
creating Silk4NET projects

Visual Studio 18
creating stable locators

overview 81

Index | 309

creating visual execution logs
TrueLog 34
TrueLog Explorer 34

cross browser testing
Apple Safari 247
Apple Safari, limitations 249
current browser type, viewing 266
FAQs 265
Google Chrome 251
Microsoft Edge 259
Microsoft Edge, limitations 259
mouse move preferences, setting 242
Mozilla Firefox 255
object maps, using 90
object recognition 239
overview 236
recording locators 269
scrolling 265
test objects 239
wrong timestamps, logs 267

cross-browser testing
Apple Safari 247
Apple Safari, limitations 249
connection string 244
current browser type, viewing 266
FAQs 265
Google Chrome 251
Microsoft Edge 259
Microsoft Edge, limitations 259
mouse move preferences, setting 242
Mozilla Firefox 255
object maps, using 90
object recognition 239
overview 236
recording locators 269
remote locations, adding 61
scrolling 265
test objects 239
wrong timestamps, logs 267

current browser type
viewing 266

custom attributes
Apache Flex applications 83, 152
controls 83
setting 67
Web applications 84, 270
Windows Forms applications 85, 206
WPF applications 85, 213

custom controls
adding code to AUT 111
adding code to AUT, FAQs 113
Apache Flex, defining 144, 153
Apache Flex, implementing 141
creating custom classes 116
dialog box 117
dynamic invoke, FAQs 110
dynamically invoking Apache Flex 140
Flex, defining 138
injected code is not used in AUT 113
invoke call returns unexpected string 110
managing 114
overview 109

supporting 116
testing (Apache Flex) 113, 136

custom properties
controls 83

Customer Care 14

D

debugging
controlling line execution, scripts 133
scripts 132
scripts, stepping through from selected point 133
scripts, stopping playback at selected points 133
stepping through, scripts 132

deleting
application configurations 60
keywords 286

deleting scripts
object map items 98

device not connected
mobile 194

Dialog
not recognized 265

dlls
aliasing names 109
calling conventions 109
calling from within a Visual Basic script 105
example call 106
function declaration syntax 106
passing arguments to functions 107
passing string arguments to functions 108

downloads 14
dynamic invoke

adding code to AUT, FAQs 113
Android 203
FAQs 110
input argument types do not match 113
iOS 203
mobile native 203
overview 110
simplify scripts 111
unexpected return value 110

dynamic locator attributes
about 278

dynamically invoking methods
Apache Flex 137
Apache Flex custom controls 140
Java AWT 161, 164
Java Swing 161, 164
Java SWT 161, 164
SAP 231
SAP controls 232
Silverlight 221
UI Automation 121
Windows Forms 206
Windows Presentation Foundation (WPF) 214

DynamicInvoke
Android 203
Apache Flex 137
iOS 203
Java AWT 161, 164
Java Swing 161, 164

310 | Index

SAP 231
Silverlight 221
UI Automation 121
Windows Forms 206
Windows Presentation Foundation (WPF) 214

E

Eclipse
troubleshooting 165

Eclipse RCP
support 163

Edge
connection string 244
known issues 304
limitations 259
locators 269
recording tests 22
remote testing 245
testing 259

editing
application configurations 60
remote locations 61

editing password
Mobile Center 188

embedded Chrome
testing 235

Emulator
defining, playback 185

emulators
testing 166

enabling TrueLog
TrueLog Explorer 35

encode
passwords 130

encrypt
passwords 130

exclude lists
UI Automation 71

excluded characters
recording 25
replay 25

executing keyword-driven tests
variables 292

exposing
WPF classes 69

extensions
Google Chrome 253
Mozilla Firefox 257

F

FAQs
adding code, AUT 113
cross-browser testing 265
dynamic invoke 110
object maps 98

filtering
keywords 297

Firefox
configuration settings 242
cross-browser scripts 268

extensions, testing 257
limitations 257, 258
locators 269
profiles, testing 256
recording tests 23
testing 255

firewalls
port numbers 48
resolving conflicts 47

Flash player
opening applications in 135
security settings 159

Flex
adding configuration information 150
Adobe Air support 146
attributes 159, 272
automationIndex property 152
automationName property 152, 153
class definition file 144, 153
Component Explorer 136
containers 156
creating applications 151
custom controls 113, 136
custom controls, defining 138, 144, 153
custom controls, implementing 141
customizing scripts 145
enabling your application 147
Flash player settings 135
FlexDataGrid control 146
initializing, applications 157
invoking methods 137
invoking methods for custom controls 140
linking automation packages 147
loading at run-time 150
multiview containers 157
overview 135
passing parameters 150
passing parameters at runtime 150
passing parameters before runtime 150
precompiling the application 148
recording, applications 157
run-time loading 149
security settings 159
select method, overview 146
select method, setting 155
styles 158
testing 136
testing multiple applications 145
testing playback 158
workflow 157

frequently asked questions
adding code, AUT 113
cross-browser testing 265
dynamic invoke 110
object maps 98

full screen
browser 265

G

getting started
Silk4NET 17

Index | 311

Google Chrome
additional versions, testing 264
capabilities, setting 246
configuration settings 242
extensions, testing 253
full screen 265
iframe performance, improving 262
known issues 301
limitations 254
limitations, macOS 254
macOS 245
options, setting 246
prerequisites 252
remote testing 245
support 236
testing 251
user data directories, testing 253

grouping
keywords 297
object map items 97

GWT
locating controls 82

H
hidden

input fields 270
HTML reports

about 34
enabling 65

HTTPS
certificates, Mobile Center 188
certificates, replacing 51
information service 50, 182

hybrid applications
Android 167
iOS 177

I
identifiers

stable 80
identifying controls

dynamic locator attributes 278
Locator Spy 86

identifying objects
overview 74

iframes
performance, improving 262

ignoring
classes 68

image assets
creating 100
multiple images, adding 101
overview 100
using in other projects 88, 103

image checks
overview 102

image click recording
overview 99

image clicks
recording 99

image recognition
enabling 99
methods 99
overview 99

image verifications
adding during recording 103
creating 102
overview 102
using in other projects 88, 103

IMEs
UI Automation 124

implementing
keywords 286

improving object recognition
Accessibility 117

information service
certificates, replacing 51
configuring ports, clients 48
editing 50, 182
HTTPS 50, 182
Mac, installing 178, 183, 248, 251
ports, configure 47

initializing
Apache Flex applications 157

innerHTML
xBrowser 268

innerText
xBrowserf 268

input argument types do not match
dynamic invoke 113

input fields
finding 270

installing
information service, Mac 178, 183, 248, 251
privileges required 10

installing USB drivers
Android 168

integrations
configuring Silk Central location 293

Internet Explorer
configuration settings 242
cross-browser scripts 268
full screen 265
known issues 303
link.select focus issue 267
locators 269
misplaced rectangles 267
support 236

Internet Explorer 10
unexpected Click behavior 269

invalidated-handle error
troubleshooting 269

invoke
Android 203
iOS 203
Java AWT 161, 164
Java SWT 161, 164
SAP 231
Silverlight 221
Swing 161, 164
UI Automation 121
Windows Forms 206
Windows Presentation Foundation (WPF) 214

Invoke method
callable methods 110

InvokeMethods

312 | Index

Android 203
Apache Flex 137
iOS 203
Java AWT 161, 164
Java Swing 161, 164
SAP 231
Silverlight 221
UI Automation 121
Windows Forms 206
Windows Presentation Foundation (WPF) 214

iOS
apps, preparing for testing 178
devices, preparing 178
hybrid applications 177
information service, installing 178, 183, 248, 251
invoking methods 203
Mac, preparing 179
mobile native applications, prerequisites 173
mobile web applications, prerequisites 173
native app, Simulator 174
native app, testing 173
recommended settings 184
releasing devices 193
releasing devices, recording 193
releasing devices, replay 193
testing 172
testing, no developer account 181
web app, Simulator 176
web app, testing 175

iOS 9.3
existing scripts, executing 184

J
Java AWT

attribute types 160, 272
attributes 160, 272
invoking methods 161, 164
overview 160

Java AWT/Swing
priorLabel 162

Java FX
support 119

Java Swing
attributes 160, 272
invoking methods 161, 164
overview 160

Java SWT
attribute types 164, 272
custom attributes 67
invoking methods 161, 164
support 163
troubleshooting 165

Java SWT Class Reference 163

K
keyword libraries

uploading 295
keyword sequences

creating 292
parameters 289

keyword-driven
testing 279

keyword-driven test editor
recommended keywords 288

keyword-driven testing
advantages 279
keyword recommendations, algorithm 288
marking test methods 285
overview 279
parameters, example 290
troubleshooting 297

keyword-driven tests
adding keywords 286
application configurations 283
base state 283
creating 281
editing 286
implementing keywords 284
implementing Silk Central keywords 294
keywords, searching 296
recording 282
removing keywords 286
specifying variables, execution 292
uploading keywords, Silk Central 295

keywords
about 280
adding 286
combining 286, 292
deleting 286
filtering 297
finding in project 297
grouping 297
implementing 284, 286
managing 286
marking test methods 285
nesting 286
opening 286
parameters 286, 289
parameters, example 290
recording 284
replacing 286
sequences 286
uploading to Silk Central 295

known issues
about 299
general issues 299
Google Chrome 301
Internet Explorer 303
Microsoft Edge 304
mobile web applications 301
Mozilla Firefox 304
SAP 305
Silk4NET 306
web applications 301

L

libraries
uploading 295

licensing
available license types 9

limitations
Apple Safari 249
Google Chrome 254

Index | 313

Google Chrome, macOS 254
Microsoft Edge 259
mobile web applications 200
Mozilla Firefox 257, 258
native mobile applications 201
Windows 8 271
Windows 8.1 271

load testing
Silk Performer 131

LoadAssembly
assembly cannot be copied 113

locating controls
GWT example 82
siblings example 81

locator attributes
dynamic 278
excluded characters 25
recording options, setting 66
Rumba controls 230, 275
Silverlight controls 220, 273
UI Automation controls 122, 274
WPF controls 211, 276

locator generator
configuring for xBrowser 244

Locator Spy
adding locators to test methods 27
adding object map items to test methods 27
overview 86

locators
basic concepts 74
customizing 80
incorrect in xBrowser 267
mapping 87
modifying in object maps 92
object types 74
search scopes 74
supported constructs 75
supported subset 77
syntax 75
unsupported constructs 75
using attributes 75
xBrowser 269

M

Mac
Apple Safari, prerequisites 247
Apple Safari, testing 247
information service, installing 178, 183, 248, 251

managing
keywords 286

manually creating
object maps 98

maximize
browser 265

merging
object maps 98

MFC
support 236

Microsoft Accessibility
improving object recognition 117

Microsoft Edge

additional versions, testing 264
connection string 244
iframe performance, improving 262
known issues 304
limitations 259
recording tests 22
remote testing 245
support 236
testing 259

Microsoft Foundation Class
support 236

Microsoft UI Automation
recording tests 120

missing peripherals
test machines 10

mobile
troubleshooting 194

mobile applications
recording 184
testing 165

mobile browsers
limitations 200

Mobile Center
certificates, installing 188
enabling 185
enabling, Silk Central 187

mobile device
defining, playback 185

mobile devices
interacting with 192
performing actions against 192

mobile native applications
limitations 201

mobile recording
about 184

mobile testing
Android 166
connection string 189
iOS 172
native app, iOS Simulator 174
overview 165
releasing devices 193
remote locations, adding 61
replay, parallel 30
web app, iOS 175
web app, iOS Simulator 176

mobile testing devices
native app, iOS 173

mobile web
Click 204
iOS 175
known issues 301
legacy tests 205

mobile web applications
Android, prerequisites 166
iOS, prerequisites 173
limitations 200

mouse move actions
recording 66

mouse move preferences
setting, cross-browser testing 242

Mozilla Firefox

314 | Index

additional versions, testing 264
capabilities, setting 246
configuration settings 242
extensions, testing 257
full screen 265
iframe performance, improving 262
known issues 304
limitations 257, 258
macOS 245
options, setting 246
profiles, testing 256
recording tests 23, 24
remote testing 245
support 236
testing 255

MSUIA
invoking methods 121
object recognition, improving 119

multiple agents
single machine 128

multiple applications
single machine 128
testing 63

multiple images
adding, image assets 101

N

native mobile
invoking methods 203

native mobile applications
Android, prerequisites 166
iOS, prerequisites 173
limitations 201

native playback
comparing to, API playback 241

native user input
advantages 241

nesting
keywords 286

O

object map items
adding 95
copying 94
deleting 97
finding errors 96
grouping 97
highlighting 96
identifying 92, 96
locating in test application 96
modifying locators 92
renaming 91
updating from test application 93

object maps
adding items 95
advantages 88
benefits 88
best practices 97
copying items 94
deleting items 97

deleting, scripts 98
FAQs 98
grouping items 97
manually creating 98
merging 98
merging during action recording 89
modifying 92
opening from a script 95
overview 87
recording 88
renaming items 91
turning off 88
turning on 88
using in other projects 88, 103
web applications 90
xBrowser 90

object recognition
creating stable locators 80
custom attributes 83
Exists method 79
FindAll method 80
identifying multiple objects 80
improving with Accessibility 117
improving, UI Automation 119
overview 74
using attributes 75
using the Find method 78
UWP, troubleshooting 234

object types
locators 74

objects
checking for existence 79
locating 74

Open Agent
configure ports, remote agent 47
configuring ports, information service 48
connection port, configuring 49
options 38
overview 38
port numbers 47
starting 38
starting from script 38
stopping from script 38
testing, remote 52

opening
keywords 286

OPT_ALTERNATE_RECORD_BREAK
options 66

OPT_ENABLE_ACCESSIBILITY
option 71

OPT_ENABLE_EMBEDDED_CHROME_SUPPORT
options 235

OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT
option 71

OPT_ENABLE_UI_AUTOMATION_SUPPORT
options 71

OPT_ENSURE_ACTIVE_OBJDEF
option 70

OPT_IMAGE_ASSET_DEFAULT_ACCURACY
option 71

OPT_IMAGE_VERIFICATION_DEFAULT_ACCURACY
option 71

Index | 315

OPT_LOCATOR_ATTRIBUTES_CASE_SENSITIVE
option 71

OPT_RECORD_MOUSEMOVE_DELAY
options 66

OPT_RECORD_MOUSEMOVES
options 66

OPT_RECORD_SCROLLBAR_ABSOLUT
options 66

OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT
option 71

OPT_REPLAY_MODE
option 70

OPT_RESIZE_APPLICATION_BEFORE_RECORDING
options 66

OPT_WAIT_RESOLVE_OBJDEF
options, synchronization 69

OPT_WAIT_RESOLVE_OBJDEF_RETRY
options, synchronization 69

OPT_XBROWSER_RECORD_LOWLEVEL
options 66

OPT_XBROWSER_SYNC_EXCLUDE_URLS
options, synchronization 69

OPT_XBROWSER_SYNC_MODE
options, synchronization 69

OPT_XBROWSER_SYNC_TIMEOUT
options, synchronization 69

options
advanced 71
OPT_ENABLE_EMBEDDED_CHROME_SUPPORT

235
Playback Status dialog box, setting 33
synchronization, setting 69

Oracle Forms
about 162
attributes 162
prerequisites 162
supported versions 162

P

page synchronization
xBrowser 240

parallel replay
browsers 30
mobile tests 30

parallel testing
tested configurations, Android 170

parameters
handling, keywords 289

password
Mobile Center, changing 188

passwords
encrypting 130

pause recording
shortcut key combination 66

performance testing
Silk Performer 131

playback
Playback Status dialog box, setting options 33
selecting browser 237
selecting device 185

ports

configuring, information service 48
Open Agent 47

pre-fill
setting during recording and replaying 219

prerequisites
Android, mobile web applications 166
Android, native mobile applications 166
Apple Safari 247
Google Chrome 252
iOS, mobile web applications 173
iOS, native mobile applications 173

printing
scripts 134

priorLabel
Java AWT/Swing technology domain 162
Win32 technology domain 235

privileges required
installing Silk Test 10
running Silk Test 10

product suite
components 12

Product Support 14
profiles

Mozilla Firefox 256
project dependencies

adding 88, 103
projects

about 18
adding Silk4NET tests 20
creating in Visual Studio 18

Q

QT
support 119

R

recognizing objects
xBrowser 239

recommendations
algorithm 288

recommended keywords
keyword-driven test editor 288

recording
actions into existing tests 105
adding image verifications 103
Apache Flex applications 157
available actions 25
keyword-driven tests 282
keywords 284
mobile applications 184
no image displayed 194
object maps 88
preferences 66
releasing devices 193
setting pre-fill 219
Silk4NET tests 21

recording actions
existing tests 105

recording options
browser, setting 66

316 | Index

recording tests
Google Chrome 24
Microsoft Edge 22
Microsoft UI Automation 120
Mozilla Firefox 23

releasing devices
mobile testing 193
recording 193
replay 193

remote agent
about 52

remote browser testing
connection string 244

remote locations
adding 61
editing 61

remote testing
Google Chrome 245
Microsoft Edge 245
Mozilla Firefox 245
Open Agent 52

removing keywords
keyword-driven tests 286

replacing
keywords 286

replay
Dialog not recognized 265
options 70
Playback Status dialog box, setting options 33
releasing devices 193
selecting browser 237
selecting device 185

replaying
setting pre-fill 219

replaying tests
remote machines 52

report types
selecting 65

responsive web design
browser window, specifying size 260
visual breakpoints, detecting 261

result comments
adding to scripts 127

results
analyzing 34
HTML reports 34
no files written 37

Rumba
about 229
enabling and disabling support 229
locator attributes 230, 275
Unix display 230

Rumba locator attributes
identifying controls 230, 275

running existing scripts
iOS 9.3 184

running multiple tests
Apple Safari 251

running tests
command line 29
Silk4NET 29
stopping 29

S

Safari
connection string 244
limitations 249
preparing 248
prerequisites 247
running multiple tests 251
testing 247

sample scripts
location 73
using 73

SAP
attribute types 231, 273
class reference 231
custom attributes 67
invoking methods 231
known issues 305
overview 230
security settings 233

SAP controls
dynamically invoking methods 232

SauceLabs
enabling 188

screencast
not working 194

scripts
adding result comments 127
adding verifications while recording 27
creating, best practices 26
debugging 132
debugging, controlling line execution 133
marking tests as keywords 285
object mapping 87
printing 134
reliability 132
specifying options 65
stepping through, debug mode 132
stepping through, from selected point 133
stopping playback, selected points 133

scroll events
recording absolute values 66

scrolling
cross-browser testing 265

search scopes
locators 74

searching
keywords, keyword-driven tests 296

sections
TrueLog 36

secure connections
information service 50, 182

security settings
SAP 233

select application
dialog box 61

Select method
Apache Flex, setting 155

serial number 14
SetLocation method

Android 194
SetText

Index | 317

browser recording options, setting 66
setting

mouse move preferences, cross-browser testing 242
setting browser

playback 237
setting browser options

SetText 66
TypeKeys 66

setting mobile device
playback 185

settings
Playback Status dialog box 33

siblings
locating 81

Silk Central
configuring location 293
Mobile Center, enabling 187
SauceLabs, enabling 188
uploading keywords 295

Silk Central keywords
implementing 294

Silk Performer
measure execution time 127

Silk4NET
about 10
basic workflow 17
known issues 306
manually creating tests 26
tests, creating 20

Silk4NET projects
adding tests 20

Silk4NET tests
manually creating 26
recording 21
running 29

Silverlight
attribute types 220, 273
class reference 220
invoking methods 221
locator attributes 220, 273
overview 220
scrolling 223
support 220
troubleshooting 223

Simulator
defining, playback 185
mobile web applications, testing 176
native app, testing 174
testing 173

sleep
adding to tests 127

slowing down
tests 127

specifying options
scripts 65

specifying size
browser window 260

stable identifiers
about 80

stable locators
creating 81

starting browsers

replay 269
starting Open Agent

scripts 38
stepping through

scripts, debug mode 132
scripts, selected point 133

stopping
running tests 29

stopping Open Agent
scripts 38

stopping playback
scripts, selected points 133

styles
in Flex applications 158

SupportLine 14
Swing

attributes 160, 272
invoking methods 161, 164
overview 160

synchronization
about 31
changing settings 31
options, setting 69
wrong timestamps 267
xBrowser 240

T

test automation
obstacles 10
synchronization 31

test machines
missing peripherals 10

test methods
adding locators 27
adding object map items 27
marking as keywords 285

test results
analyzing 34

test scripts
creating, best practices 26

testing Apple Safari
information service, installing 178, 183, 248, 251

testing custom controls
adding code to AUT 111

tests
analyzing results 34
enhancing 105
recording actions 105
running from command line 29
Silk4NET, creating 20
slowing down 127
stopping during execution 29

text click recording
overview 125

text recognition
overview 125

textContents
xBrowser 268

timestamps
wrong, cross-browser tests 267

transparent classes

318 | Index

setting 68
troubleshooting

application configurations 63
Eclipse 165
invalidated-handle error 269
Java SWT 165
keyword-driven testing 297
mobile 194
Silverlight 223
UI Automation 124
XPath 85

TrueLog
change TrueLog location 35
configuring 65
creating visual execution logs 34
enabling 35, 65
no results written 37
replacement characters for non-ASCII 37
wrong non-ASCII characters 37

TrueLog Explorer
configuring 65
creating visual execution logs 34
enabling 65
enabling TrueLog 35

TrueLogs
sections 36

TypeKeys
browser recording options, setting 66

U

UI Automation
attribute types 122, 274
exclude lists 71
invoking methods 121
limitations 124
locator attributes 122, 274
object recognition, improving 119
options, setting 71
recording tests 120
scrolling 123
troubleshooting 124

unexpected Click behavior
Internet Explorer 269

Unicode content
support 119

Universal Windows Platform
support 233
troubleshooting 234

Unix display
Rumba 230

upload app
Mac 166

uploading
keyword libraries 295
libraries 295

usage data collection
disabling 13
enabling 13

user data directories
Google Chrome 253

UWP

troubleshooting 234
UWP apps

support 233

V

variables
executing keyword-driven tests 292

verification logic
adding to scripts while recording 27

verifications
adding to scripts 27

video
not displayed 194

Visual Basic
calling dlls from within a script 105

visual breakpoints
detecting 261

Visual COBOL
about 224
example 224
supported versions 224

VSTest.console
using 29

W

web applications
known issues 301

Web applications
custom attributes 67, 84, 270
supported attributes 270, 275
xBrowser test objects 239

web pages
capturing, full page 36

WebSync 14
Win32

priorLabel 235
Win32 Class Reference 234
Windows

attribute types 211, 276
Windows 8

limitations 271
Windows 8.1

limitations 271
Windows applications

custom attributes 67
Windows Forms

attribute types 206, 276
class reference 206
custom attributes 67
invoking methods 206
overview 205

Windows Forms applications
custom attributes 85, 206

Windows Presentation Foundation (WPF)
class reference 211
custom controls 213
exposing classes 219
invoking methods 214
locator attributes 211, 276
overview 211

Index | 319

WPFItemsControl class 213
Windows-API

support 234
WinForms applications

custom attributes 85, 206
works order number 14
WPF

class reference 211
classes, exposing 69
custom controls 213
exposing classes 219
invoking methods 214
locator attributes 211, 276
WPFItemsControl class 213

WPF applications
custom attributes 67, 85, 213

WPF locator attributes
identifying controls 211, 276

wrong timestamps
logs, cross-browser tests 267

X
xBrowser

Apple Safari 247
attribute types 270, 275
browser configuration settings 242
Chrome for Android, setting 199
class and style not in locators 269
class reference 271
configuring locator generator 244
cross-browser scripts 268
current browser type, viewing 266
custom attributes 67
Dialog not recognized 265

DomClick not working like Click 265
exposing functionality 267
FAQs 265
FieldInputField.DomClick not opening dialog 265
font type verification 266
Google Chrome 251
innerHTML 268
innerText 268
innerText not being used in locators 267
Internet Explorer misplaces rectangles 267
link.select focus issue 267
Microsoft Edge 259
mouse move preferences, setting 242
mouse move recording 267
Mozilla Firefox 255
navigating to new pages 267
object maps, using 90
object recognition 239
overview 236
page synchronization 240
playback, comparing API and native 241
recording an incorrect locator 267
recording locators 269
scrolling 265
test objects 239
textContents 268
wrong timestamps, logs 267

xBrowser testing
Apple Safari, limitations 249
current browser type, viewing 266
Microsoft Edge, limitations 259

XPath
creating query strings 86
troubleshooting 85

320 | Index

	Contents
	Licensing Information
	Silk4NET
	Do I Need Administrator Privileges to Run Silk4NET?
	Automation Under Special Conditions (Missing Peripherals)
	Silk Test Product Suite
	Enabling or Disabling Usage Data Collection
	Contacting Micro Focus
	Information Needed by Micro Focus SupportLine

	What's New in Silk4NET
	Enhance Security with Java-based Encryption
	Usability Enhancements
	Technology Updates

	Getting Started with Silk4NET
	Working with Silk4NET Projects
	Creating a Silk4NET Project

	Creating Silk4NET Tests
	Adding a Silk4NET Test to a Project
	Recording a Silk4NET Test
	Recording a Test on Microsoft Edge
	Recording a Test on Mozilla Firefox
	Recording a Test on Google Chrome
	Characters Excluded from Recording and Replaying
	Actions Available During Recording
	Manually Creating a Silk4NET Test
	Best Practices for Creating Test Scripts
	Adding a Verification to a Script while Recording
	Adding a Locator or an Object Map Item to a Test Method Using the Locator Spy

	Replaying Tests
	Running Silk4NET Tests
	Replaying a Test from the Command Line
	Running Tests in Parallel
	How Does Silk4NET Synchronize Tests?
	Enabling the Playback Status Dialog Box

	Analyzing Test Results
	Analyzing Test Results
	HTML Reports
	Visual Execution Logs with TrueLog
	Enabling TrueLog
	Changing the Location of the TrueLog
	TrueLog Sections
	Capturing the Contents of a Web Page
	Why is TrueLog Not Displaying Non-ASCII Characters Correctly?
	Why Does TrueLog Not Write Result Files During Playback?

	Silk Test Open Agent
	Starting the Silk Test Open Agent
	Stopping the Open Agent After Test Execution
	Agent Options
	Configuring the Connections Between the Silk4NET Components
	Configuring the Port to Connect to the Information Service
	Configuring the Port to Connect to the Open Agent
	Editing the Properties of the Silk Test Information Service
	Replacing the Certificates that are Used for the HTTPS Connection to the Information Service

	Remote Testing with the Open Agent
	Testing with a Remote Open Agent

	Base State
	Modifying the Base State from the User Interface
	Modifying the Base State in a Script
	Running the Base State

	Application Configuration
	Modifying an Application Configuration
	Select Application Dialog Box
	Editing Remote Locations
	Application Configuration Errors
	Troubleshooting Application Configurations
	Creating a Test that Tests Multiple Applications

	Setting Script Options
	Setting TrueLog Options
	Setting Recording Preferences
	Setting Browser Recording Options
	Setting Custom Attributes
	Setting Classes to Ignore
	Setting WPF Classes to Expose During Recording and Playback
	Setting Synchronization Options
	Setting Replay Options
	Setting UI Automation Options
	Setting Advanced Options

	Silk4NET Sample Tests
	Object Recognition
	Locator Basic Concepts
	Object Type and Search Scope
	Using Attributes to Identify an Object

	Locator Syntax
	Using Locators
	Using the Find Method
	Using Locators to Check if an Object Exists
	Identifying Multiple Objects with One Locator
	Locator Customization
	Stable Identifiers
	Creating Stable Locators
	Example: Locating Siblings of a Control
	Example: Locating the Expand Icon in a Dynamic GWT Tree

	Custom Attributes
	Custom Attributes for Apache Flex Applications
	Java SWT Custom Attributes
	Custom Attributes for Web Applications
	Custom Attributes for Windows Forms Applications
	Custom Attributes for WPF Applications

	Troubleshooting Performance Issues for XPath
	Locator Spy

	Object Maps
	Advantages of Using Object Maps
	Turning Object Maps Off and On
	Using Assets in Multiple Projects
	Merging Object Maps During Action Recording
	Using Object Maps with Web Applications
	Renaming an Object Map Item
	Modifying Object Maps
	Modifying a Locator in an Object Map
	Updating Object Maps from the Test Application
	Copying an Object Map Item
	Adding an Object Map Item
	Opening an Object Map from a Script
	Highlighting an Object Map Item in the Test Application
	Finding Errors in an Object Map
	Deleting an Object Map Item
	Initially Filling Object Maps
	Grouping Elements in Object Maps
	Object Maps: Frequently Asked Questions
	Can I Merge Multiple Object Maps Into a Single Map?
	What Happens to an Object Map when I Delete a Test Script?
	Can I Manually Create an Object Map for My Application Under Test?

	Image Recognition Support
	Image Click Recording
	Image Recognition Methods
	Image Assets
	Creating an Image Asset
	Adding Multiple Images to the Same Image Asset
	Opening an Asset from a Script

	Image Verifications
	Creating an Image Verification
	Adding an Image Verification During Recording

	Using Assets in Multiple Projects

	Enhancing Tests
	Recording Additional Actions Into an Existing Test
	Calling Windows DLLs
	Calling a Windows DLL from Within a Script
	DLL Function Declaration Syntax
	DLL Calling Example
	Passing Arguments to DLL Functions
	Passing String Arguments to DLL Functions
	Aliasing a DLL Name
	Conventions for Calling DLL Functions

	Custom Controls
	Dynamic Invoke
	Frequently Asked Questions About Dynamic Invoke
	Which Methods Can I Call With the Invoke Method?
	Why Does an Invoke Call Return a Simple String when the Expected Return is a Complex Object?
	How Can I Simplify My Scripts When I Use Many Calls To InvokeMethods?

	Adding Code to the Application Under Test to Test Custom Controls
	Frequently Asked Questions About Adding Code to the AUT
	Why is Code That I Have Injected Into the AUT With the LoadAssembly Method Not Updated in the AUT?
	Why Do the Input Argument Types Not Match When I Invoke a Method?
	How Do I Fix the Compile Error when an Assembly Can Not Be Copied?

	Testing Apache Flex Custom Controls
	Managing Custom Controls
	Supporting a Custom Control
	Custom Controls Options

	Improving Object Recognition with Microsoft Accessibility
	Using Accessibility
	Enabling Accessibility

	Overview of Silk4NET Support of Unicode Content
	Microsoft UI Automation
	Recording a Test Against an Application with an Implemented UI Automation Provider Interface
	Dynamically Invoking UI Automation Methods
	Locator Attributes for Identifying Controls with UI Automation
	Scrolling in UI Automation Controls
	Limitations when Using UI Automation
	Troubleshooting when Testing with UI Automation Support Enabled

	Text Recognition Support
	Inserting a Result Comment in a Script
	Measuring Execution Time
	Slowing Down Tests
	Testing Applications in Multiple UI Sessions on a Single Machine
	Encrypting Passwords

	Using Keyword-Driven Tests as Performance Tests
	Debugging Scripts
	Script Reliability
	Stepping Through a Script in Debug Mode
	Stepping Through Script Playback from a Selected Point
	Controlling Line Execution During Script Debugging
	Stopping Script Playback at Selected Points
	Printing a Script

	Testing Specific Environments
	Apache Flex Support
	Configuring Flex Applications to Run in Adobe Flash Player
	Launching the Component Explorer
	Testing Apache Flex Applications
	Testing Apache Flex Custom Controls
	Dynamically Invoking Flex Methods
	Defining a Custom Control in the Test Application
	Testing a Flex Custom Control Using Dynamic Invoke
	Testing a Custom Control Using Automation Support
	Implementing Automation Support for a Custom Control
	Flex Class Definition File

	Customizing Apache Flex Scripts
	Testing Multiple Flex Applications on the Same Web Page
	Adobe AIR Support
	Overview of the Flex Select Method Using Name or Index
	Selecting an Item in the FlexDataGrid Control
	Enabling Your Flex Application for Testing
	Linking Automation Packages to Your Flex Application
	Precompiling the Flex Application for Testing
	Run-Time Loading
	Loading at Run-Time

	Using the Command Line to Add Configuration Information
	Passing Parameters into a Flex Application
	Passing Parameters into a Flex Application Before Runtime
	Passing Parameters into a Flex Application at Runtime Using the Flex Automation Launcher

	Creating Testable Flex Applications
	Custom Attributes for Apache Flex Applications
	Flex AutomationName and AutomationIndex Properties
	Flex Class Definition File
	Setting the Flex automationName Property
	Setting the Flex Select Method to Use Name or Index

	Coding Flex Containers
	Adding and Removing Containers from the Automation Hierarchy
	Multiview Containers

	Flex Automation Testing Workflow
	Flex Automated Testing Initialization
	Flex Automated Testing Recording
	Flex Automated Testing Playback

	Styles in Apache Flex Applications
	Configuring Flex Applications for Adobe Flash Player Security Restrictions
	Attributes for Apache Flex Applications
	Why Cannot Silk4NET Recognize Apache Flex Controls?

	Java AWT/Swing Support
	Attributes for Java AWT/Swing Applications
	Dynamically Invoking Java Methods
	Determining the priorLabel in the Java AWT/Swing Technology Domain
	Oracle Forms Support
	Prerequisites for Testing Oracle Forms
	Attributes for Oracle Forms Applications

	Java SWT and Eclipse RCP Support
	Java SWT Class Reference
	Java SWT Custom Attributes
	Attributes for Java SWT Applications
	Dynamically Invoking Java Methods
	Troubleshooting Java SWT and Eclipse Applications

	Testing Mobile Applications
	Android
	Prerequisites for Testing Mobile Applications on Android
	Testing Mobile Applications on Android
	Testing Hybrid Applications on Android
	Installing a USB Driver
	Enabling USB-Debugging
	Recommended Settings for Android Devices
	Configuring the Android Emulator for Silk4NET
	Tested Configurations for Parallel Test Execution

	iOS
	Prerequisites for Testing Mobile Applications on iOS
	Testing Native Mobile Applications on a Physical iOS Device
	Testing Native Mobile Applications on an iOS Simulator
	Testing Mobile Web Applications on a Physical iOS Device
	Testing Mobile Web Applications on an iOS Simulator
	Testing Hybrid Applications on iOS
	Preparing an iOS Device for Testing
	Preparing an iOS App for Testing
	Installing the Silk Test Information Service on a Mac
	Preparing a Mac to Test Mobile Applications on iOS
	Using a Personal Team Profile for Testing on Physical iOS Devices
	Editing the Properties of the Silk Test Information Service
	Uninstalling the Silk Test Information Service from a Mac
	Recommended Settings for iOS Devices
	Running Existing Scripts on iOS Using XCUITest

	Recording Mobile Applications
	Selecting the Mobile Device for Test Replay
	Using Devices from Mobile Center Directly from Silk4NET
	Using Devices from Mobile Center through Silk Central
	Installing the Certificate for an HTTPS Connection to Mobile Center
	Changing the Mobile Center Password
	Using SauceLabs Devices
	Connection String for a Mobile Device
	Interacting with a Mobile Device
	Releasing a Mobile Device
	Releasing a Mobile Device After Recording
	Releasing a Mobile Device After Replay

	Using the setLocation Method when Testing a Mobile Application
	Troubleshooting when Testing Mobile Applications
	How Can I Use Chrome for Android to Replay Tests?

	Limitations for Testing Mobile Web Applications
	Limitations for Testing Native Mobile Applications
	Dynamically Invoking Methods for Native Mobile Apps
	Clicking on Objects in a Mobile Website
	Using Existing Mobile Web Tests

	.NET Support
	Windows Forms Support
	Windows Forms Class Reference
	Attributes for Windows Forms Applications
	Custom Attributes for Windows Forms Applications
	Dynamically Invoking Windows Forms Methods

	Windows Presentation Foundation (WPF) Support
	WPF Class Reference
	Attributes for Windows Presentation Foundation (WPF) Applications
	Custom Attributes for WPF Applications
	Classes that Derive from the WPFItemsControl Class
	Custom WPF Controls
	Dynamically Invoking WPF Methods
	Setting WPF Classes to Expose During Recording and Playback
	Setting Pre-Fill During Recording and Replaying

	Silverlight Application Support
	Silverlight Class Reference
	Locator Attributes for Identifying Silverlight Controls
	Dynamically Invoking Silverlight Methods
	Scrolling in Silverlight
	Troubleshooting when Testing Silverlight Applications

	Visual COBOL Support
	Example: Testing a Visual COBOL Application

	Rumba Support
	Rumba Class Reference
	Enabling and Disabling Rumba
	Locator Attributes for Identifying Rumba Controls
	Testing a Unix Display

	SAP Support
	SAP Class Reference
	Attributes for SAP Applications
	Dynamically Invoking SAP Methods
	Dynamically Invoking Methods on SAP Controls
	Configuring Automation Security Settings for SAP

	Universal Windows Platform Support
	Troubleshooting when Testing UWP Apps

	Windows API-Based Application Support
	Win32 Class Reference
	Attributes for Windows API-based Client/Server Applications
	Determining the priorLabel in the Win32 Technology Domain
	Testing Embedded Chrome Applications
	Microsoft Foundation Class Support

	Cross-Browser Testing
	Selecting the Browser for Test Replay
	Test Objects for xBrowser
	Object Recognition for xBrowser Objects
	Page Synchronization for xBrowser
	Comparing API Playback and Native Playback for xBrowser
	Setting Mouse Move Preferences
	Browser Configuration Settings for xBrowser
	Configuring the Locator Generator for xBrowser
	Connection String for a Remote Desktop Browser
	Testing Browsers on a Remote Windows Machine
	Testing Google Chrome or Mozilla Firefox on a Mac
	Setting Capabilities for WebDriver-Based Browsers
	Testing with Apple Safari on a Mac
	Prerequisites for Testing with Apple Safari on a Mac
	Preparing Apple Safari for Testing
	Installing the Silk Test Information Service on a Mac
	Limitations for Testing with Apple Safari
	Running Multiple Apple Safari Tests at the Same Time
	Uninstalling the Silk Test Information Service from a Mac

	Testing with Google Chrome
	Prerequisites for Replaying Tests with Google Chrome
	Testing Google Chrome Extensions
	Testing Google Chrome with User Data Directories
	Limitations for Testing with Google Chrome
	Limitations for Testing with Google Chrome on macOS

	Testing with Mozilla Firefox
	Testing Mozilla Firefox with Profiles
	Testing Mozilla Firefox Extensions
	Limitations for Testing with Mozilla Firefox
	Limitations for Testing with Mozilla Firefox on macOS

	Testing with Microsoft Edge
	Limitations for Testing with Microsoft Edge

	Responsive Web Design Testing
	Detecting Visual Breakpoints
	Improving iframe Performance
	Testing Additional Browser Versions
	Cross-Browser Testing: Frequently Asked Questions
	Dialog is Not Recognized During Replay
	DomClick(x, y) Is Not Working Like Click(x, y)
	FileInputField.DomClick() Will Not Open the Dialog
	How Can I Maximize the Browser Window when Starting to Test?
	How can I scroll in a browser?
	How Can I See Which Browser I Am Currently Using?
	How do I Verify the Font Type Used for the Text of an Element?
	I Configured innerText as a Custom Class Attribute, but it Is Not Used in Locators
	I Need Some Functionality that Is Not Exposed by the xBrowser API. What Can I Do?
	Link.Select Does Not Set the Focus for a Newly Opened Window in Internet Explorer
	Logging Output of My Application Contains Wrong Timestamps
	My Test Script Hangs After Navigating to a New Page
	Recorded an Incorrect Locator
	Rectangles Around Elements in Internet Explorer are Misplaced
	The Move Mouse Setting Is Turned On but All Moves Are Not Recorded. Why Not?
	What is the Difference Between textContents, innerText, and innerHtml?
	What Should I Take Care Of When Creating Cross-Browser Scripts?
	Which Locators are Best Suited for Stable Cross Browser Testing?
	Why Are the Class and the Style Attributes Not Used in the Locator?
	Why Are Clicks Recorded Differently in Internet Explorer 10?
	Why Do I Get an Invalidated-Handle Error?

	Starting a Browser from a Script
	Finding Hidden Input Fields
	Attributes for Web Applications
	Custom Attributes for Web Applications
	xBrowser Class Reference

	Limitations for Testing on Microsoft Windows 8 and Microsoft Windows 8.1
	Supported Attribute Types
	Attributes for Apache Flex Applications
	Attributes for Java AWT/Swing Applications
	Attributes for Java SWT Applications
	Attributes for SAP Applications
	Locator Attributes for Identifying Silverlight Controls
	Locator Attributes for Identifying Controls with UI Automation
	Locator Attributes for Identifying Rumba Controls
	Attributes for Web Applications
	Attributes for Windows Forms Applications
	Attributes for Windows Presentation Foundation (WPF) Applications
	Attributes for Windows API-based Client/Server Applications
	Dynamic Locator Attributes

	Keyword-Driven Tests
	Advantages of Keyword-Driven Testing
	Keywords
	Creating a Keyword-Driven Test in Silk4NET
	Recording a Keyword-Driven Test in Silk4NET
	Setting the Base State for a Keyword-Driven Test in Silk4NET
	Implementing a Keyword in Silk4NET
	Recording a Keyword in Silk4NET
	Marking a Test Method in a Script as a Keyword
	Editing a Keyword-Driven Test
	Managing Keywords in a Test in Silk Central
	Which Keywords Does Silk4NET Recommend?
	Using Parameters with Keywords
	Example: Keywords with Parameters
	Combining Keywords into Keyword Sequences
	Replaying a Keyword-Driven Test with Specific Variables
	Integrating Silk4NET with Silk Central
	Implementing Silk Central Keywords in Silk4NET
	Uploading a Keyword Library to Silk Central
	Uploading a Keyword Library to Silk Central from the Command Line
	Searching for a Keyword
	Filtering Keywords
	Grouping Keywords
	Troubleshooting for Keyword-Driven Testing

	Known Issues
	General Issues
	Mobile Web Applications
	Web Applications
	Google Chrome
	Internet Explorer
	Microsoft Edge
	Mozilla Firefox

	SAP Applications
	Silk4NET

