VisiBroker for Java
Developer's Guide

Borland

VisiBroker® 7.0

Borland

Borland Software Corporation

20450 Stevens Creek Blvd., Suite 800
Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance with the
License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of
applicable patents. The furnishing of this document does not give you any license to these patents.

Copyright 1992-2006 Borland Software Corporation. All rights reserved. All Borland brand and
product names are trademarks or registered trademarks of Borland Software Corporation in the
United States and other countries. All other marks are the property of their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB70JavaDevGd R1
March 2006
PDF

Contents

Chapter 1
Introduction to Borland VisiBroker 1
VisiBroker Overview 1
VisiBroker features. 2
VisiBroker Documentation 2
Accessing VisiBroker online help topics in
the standalone Help Viewer 3

Accessing VisiBroker online help topics
from within the VisiBroker Console. 3

Documentation conventions 4
Platform conventions 4
Contacting Borland support. 4
Onlineresources. 5
World WideWeb. 5
Borland newsgroups. L. 5
Chapter 2
Understanding the CORBA model 7
WhatisCORBA? 7
Whatis VisiBroker? 8
VisiBroker Features. 9
VisiBroker's Smart Agent (osagent)
Architecture 9
Enhanced Object Discovery Using the
Location Service L. 9
Implementation and Object Activation
Support. 9
Robust thread and connection management . . . 9
IDL compilers oL 10
Dynamic invocation with DIland DSI 10
Interface and implementation repositories. 10
Server-side portability 10
Customizing the VisiBroker ORB with
interceptors and object wrappers 11
EventQueue. 11
Backing stores in the Naming Service. 11
Defining interfaces without IDL 11
GateKeeper o oo 11
VisiBroker CORBA compliance. 11
VisiBroker Development Environment 12
Programmer'stools 12
CORBA servicestools. 12
Administration Tools 12
Java Development Environment 13
Java 2 Standard Edition 13
Java Runtime Environment 13
What's Required for GateKeeper 13
Java-enabled Web browser 13
Interoperability with VisiBroker 14

Interoperability with other ORB products 14
IDL to Java mapping

Chapter 3
Developing an example application

with VisiBroker

Development process
Step 1: Defining object interfaces
Writing the account interface in IDL
Step 2: Generating client stubs and server
servants
Files produced by the idl compiler
Step 3: Implementing the client
Client.java
Binding to the AccountManager object
Obtaining an Account object
Obtaining the balance.
AccountManagerHelperjava
Other methods
Step 4: Implementing the server.
Server programs
Step 5: Building the example
Compilingtheexample
Step 6: Starting the server and running the
example
Starting the Smart Agent.
Starting the server
Running the client
Deploying applications with VisiBroker
VisiBroker Applications.
Deploying applications
Environment variables.
Support service availability
Using vbj
Running the application.
Executing client Applications
Executing server applications in Java.

Chapter 4

Programmer tools for Java
Options
Generaloptions. L.
idl2ir
ir2idl
idi2java.
java2idl.
javaziiop
vbj
vhjc
Specifying the classpath.
Specifying the JVM
idl2ws;j

15
15
16
17

17
17
18
18

19
19
19
19
20
20
21
21

21
21
21
22
22
23
23
23
23
24
24
24
25

Chapter 5
IDL to Java mapping

Names
Reserved names
Reserved words
Modules
Basic types
IDL type extensions
Holderclasses.

String
WString
Integer types
Floating point types
Helper classes
Constants.,
Constants within an interface
Constants NOT within an interface
Constructed types
Enum
Struct
Union

Abstract interfaces.
Local interfaces
Passing parameters
Server implementation with inheritance
Server implementation with delegation
Interface scope
Mapping for exceptions
User-defined exceptions
System exceptions
Mapping for the Any type
Mapping for certain nested types.
Mapping for Typedef
Simple IDL types
Complex IDL types

Chapter 6

VisiBroker properties
JAVA RMI over IIOP properties.
Smart Agent properties.
Smart Agent Communication properties
VisiBroker ORB properties
POA properties
ServerManager properties

Additional Properties
Location Service properties
Event Service properties
Naming Service (VisiNaming) properties.
Object Clustering Related Properties.
VisiNaming Service Cluster Related properties . . .

Pluggable Backing Store Properties.
JDBC Adapter properties
DataExpress Adapter properties

JNDI adapter properties. 78
OAD propertieso oo 79
Interface Repository properties 79
Client-side IIOP connection properties 80
URL Naming properties. 81
QoS-related Properties 81
Server-side server engine properties 81
Server-side thread session [IOP_TS/IIOP_TS
connection properties 82
Server-side thread session BOA_TS/BOA_TS
connection properties L. 82
Server-side thread pool IIOP_TP/IIOP_TP
connection properties L. 83
Server-side thread pool BOA_TP/BOA_TP
connection properties L. 84
Properties that support bi-directional
communication. 84
Debug Logging properties. 85
Enabling and Filtering. 85
Appending and Formatting 86
Deprecated Properties 87
Setting Propertiesinan Applet 87
Web Services Runtime Properties 87
Web Services HTTP Listener properties. 87
Web Services Connection Manager
properties. 88
SOAP Request Dispatcher properties 88
Getting the ORB version programmatically 88
Chapter 7
Handling exceptions 89
Exceptions in the CORBAmodel 89
Systemexceptions L. 89
SystemExceptionclass 90
Obtaining completion status 91
Catching system exceptions 91
Downcasting exceptions to a system
exception 92
Catching specific types of system
exceptions 92
Userexceptions. 93
Defining user exceptions. 93
Modifying the object to raise the
exception 94
Catching user exceptions. 94
Adding fields to user exceptions 95
Chapter 8
Server basics 97
Ooverview 97
Initializing the VisiBrokerORB 97
Creatingthe POA 98
Obtaining a reference to the root POA. 98

Creatingthechild POA. 98

Implementing servant methods 99
Creating and Activating the Servant. 100
Activatingthe POA. 100
Activatingobjectso 100
Waiting for clientrequests. 100
Completeexample 101

Chapter 9

Using POAs 103
What is a Portable Object Adapter? 103
POA terminology. 104
Steps for creating and using POAs 105
POApolicies 105
CreatingPOAs 107
POA naming convention. 107
Obtaining the rootPOA. 108
Setting the POA policies. 108
Creating and activating the POA. 108
Activatingobjects 109
Activating objects explicitly 109
Activating objectsondemand 109
Activating objects implicitly 110
Activating with the default servant 110
Deactivating objects 111
Using servants and servant managers 112
ServantActivators 113
ServantLocators 115
Managing POAs with the POA manager 117
Getting the current state. 118
Holdingstate. 118
Activestate 118
Discardingstate 118
Inactive state. 119
Listening and Dispatching: Server Engines,
Server Connection Managers, and their
propertieso 119
Server Engineand POAs 120
Associating a POA with a Server
Engine 120
Defining Hosts for Endpoints for the
ServerEngine. 121
Server Connection Managers 122
Manager 122
Listener., 122
Dispatcher 123
When to use these properties 123
Adapter activators. 125
Processingrequests 125
Chapter 10
Managing threads and connections 127
Usingthreads 127
Listener thread, dispatcher thread, and
workerthreads. 128
Thread policies 129
Thread pool policy 129
Thread-per-session policy 133
Connection management. 134
ServerEngines 134
ServerEngine properties. 135
Setting dispatch policies and properties 135
Thread pool dispatch policy 135
Thread-per-session dispatch policy 137
Coding considerations. 137

Setting connection management properties. 137
Valid values for applicable properties. 138
Effects of property changes 138
Dynamically alterable properties 139
Determining whether property value

changestakeeffect. 139

Impact of changing property values 139
High scalability configuration for VisiBroker

for Java (usingJavaNIO) 140

Garbage collection. 140
How ORB garbage collection works 140

Properties related to ORB garbage
collection. 141

Chapter 11

Using the tie mechanism 143

How does the tie mechanism work?. 143

Example program 144
Location of an example program using the

tie mechanism 144
Changestotheserverclass 144
Changes to the AccountManager 145
Changes to the Accountclass 146
Building the tie example 146

Chapter 12

Client basics 147

Initializing the VisiBroker ORB. 147

Bindingtoobjects 148
Action performed during the bind process148

Invoking operations on an object 149

Manipulating object references 149
Converting areferencetoastring 149
Obtaining object and interface names 149
Determining the type of an object reference . . .150
Determining the location and state of

bound objects. 150
Narrowing object references 150
Widening object references. 151

Using Quality of Service (QoS) 151

Understanding Quality of Service (QoS) 151

Policy overrides and effective policies. 151
QoSinterfaces 152

org.omg.CORBA.Object. 152
com.borland.vbroker. CORBA.Object

(Borland).o 152
org.omg.CORBA.PolicyManager 152
org.omg.CORBA.PolicyCurrent 153
com.borland.vbroker.QoSEXxt.

DeferBindPolicy 153
com.borland.vbroker.QoSEXt.

ExclusiveConnectionPolicy 153
com.borland.vbroker.QoSEXxt::

RelativeConnectionTimeoutPolicy 154
org.omg.Messaging.RebindPolicy. 154
org.omg.CORBA.Messaging.

RelativeRequestTimeoutPolicy 156

org.omg.CORBA.Messaging.

RelativeRoundTripTimeoutPolicy 156
org.omg.CORBA.Messaging.
SyncScopePolicy 157
Exceptions.o 157
Code Setsupport. 158
TypesofCode Sets 158
Native Code Set 158
Conversion Code Set(CCS) 158
Transmission Code Set (TCS) 158
Code Set Negotiation 158
SupportedCode Sets 159
Deploying client-only applications using
Client Runtime 159
Usage« oo 160
Chapter 13
Using IDL 161
IntroductiontoIDL 161
How the IDL compiler generates code 162
Example IDL specification. 162
Looking at the generatedcode 162
_<interface_name>Stub.java 162
<interface_name>java 163
<interface_name>Helperjava. 163
<interface_name>Holderjava. 164
<interface_name>Operations.java 164
<interface_name>POAjava. 165
<interface_name>POATie.java 165
Defining interface attributesinIDL 166
Specifying one-way methods with no
returnvalueo 166
Specifying an interface in IDL that inherits
from another interface. 166
Chapter 14
Using the Smart Agent 169
What is the Smart Agent? 169
Best practices for Smart Agent
configuration and synchronization. 169
General guidelines. 170
Load balancing/ fault tolerance
guidelines. L. 170
Location service guidelines 171
When not to use a Smart Agent 171
Locating Smart Agents 171
Locating objects through Smart Agent
cooperation 171
Cooperating with the OAD to connect
withobjects 172
Starting a Smart Agent (osagent) 172
Verboseoutput. 173
Disablingtheagent. 173
Ensuring Smart Agent availability 173
Checking client existence 173
Working within VisiBroker ORB domains. 174
Connecting Smart Agents on different local
networks L 175
How Smart Agents detect each other. 175

Working with multihomed hosts
Specifying interface usage for Smart
Agents
Using point-to-point communications
Specifying a host as a runtime parameter
Specifying an IP address with an
environment variable
Specifying hosts with the agentaddr file
Ensuring object availability
Invoking methods on stateless objects
Achieving fault-tolerance for objects that
maintainstate. L.
Replicating objects registered with the OAD. .
Migrating objects between hosts
Migrating objects that maintain state
Migrating instantiated objects
Migrating objects registered with the OAD. . .
Reporting all objects and services
Binding to Objects

Chapter 15
Using the Location Service

Obtaining addresses of all hosts
running Smart Agents
Finding all accessible interfaces
Obtaining references to instances of an
interface
Obtaining references to like-named
instances of an interface

What is a trigger?
Looking at trigger methods
Creating triggers
Looking at only the first instance found

by a trigger
Queryinganagent.
Finding all instances of an interface
Finding interfaces and instances known

to Smart Agents
Writing and registering a trigger handler

Chapter 16

Using the VisiNaming Service
Overview
Understanding the namespace
Naming contexts
Naming context factories
Names and NameComponent
Name resolution
Stringified names
Simple and complex names.
Running the VisiNaming Service
Installing the VisiNaming Service
Configuring the VisiNaming Service
Starting the VisiNaming Service
Starting the VisiNaming Service with the

vbj command

178
178
179
179

179

. 179

180
180
180

. 180

181
181

183
183
185
185

186
186

186

186
187
187
187

188
188
188

189
191

Invoking the VisiNaming Service from the
commandline
Configuring nsutil
Running nsutil
Shutting down the VisiNaming Service
usingnsutil.
Bootstrapping the VisiNaming Service
Calling resolve_initial_references
Using -DSVCnameroot
Using -DORBInitRef
Using a corbaloc URL
Usingacorbaname URL
-DORBDefaultinitRef.
Using -DORBDefaultinitRef with a
corbalocURL
Using -DORBDefaultInitRef with
corbaname
NamingContext
NamingContextExt
Default naming contexts
Obtaining the default naming context
Obtaining naming context factories
VisiNaming Service properties
Pluggable backing store
Types of backing stores
In-memory adapter
JDBC adapter
DataExpress adapter.
JNDladapter
Configurationanduse
Propertiesfile.
JDBC Adapter properties.
DataExpress Adapter properties
JNDI adapter properties
Configuration for OpenLDAP
Caching facility.
Important Notes for users of Caching
Facility.
Object Clusters
Object Clustering criteria
Cluster and ClusterManager interfaces
IDL Specification for the Cluster
interface. oL
IDL Specification for the ClusterManager
interface.
IDL Specification for the
NamingContextExtExtended interface . . .
Creating an objectcluster
Explicit and implicit object clusters
Load balancing
Obiject failover
Pruning stale object references in
VisiNaming object clusters.

VisiNaming Service Clusters for Failover and

Load Balancing. 218
Configuring the VisiNaming Service
Cluster 219
Configuring the VisiNaming Service in
Master/Slave mode 220
Starting up with a large number of
connectingclients. 220
VisiNaming service federation 221
VisiNaming Service Security 222
Naming client authentication 222
Configuring VisiNamingtouse SSL 222
Method Level Authorization. 223
Import statements 224
Sample programs 225
Binding aname example 225
Configuring VisiNaming with JdataStore HA .227
Create a DB for the Primary mirror. 227
Invoke JdsServer for each listening
connection 227
Configure JDataStore HA 228
Run the VisiNaming Explicit Clustering
example. 229
Run the VisiNaming Naming Failover
example. 230
Chapter 17
Using the Event Service 233
Ooverview. e 233
Proxy consumers and suppliers 234
OMG Common Object Services
specification. L. 235
Communicationmodels 235
Pushmodel. 236
Pullmodel 236
Using eventchannels 237
Creating eventchannels. 238
Examples of push supplier and consumer. 238
Push supplier and consumer example 238
Running the Push model example 239
Running the PullModel example. 239
Running the PullView example 239
PullSupply.o 239
Executing PullSupply 240
Implementation of the pull and try_pull
methods 240
Main method of PullSupply 241
PullConsume 241
Executing PullConsume. 242
Starting the Event Service. 244
Setting the queuelength 244
In-process eventchannel 245
Using the in-process Event Channel 246
Java EventLibraryclass. 246
Javaexample 246

Importstatements L. 246

Chapter 18
Using the VisiBroker

Server Manager
Getting Started with the Server Manager.
Enabling the Server Manager on a server. . . .
Obtaining a Server Manager reference
Working with Containers
The Storage Interface
The Container Interface
Container class
Container Methods for Java
Methods related to property
manipulation and queries
Methods related to operations
Methods related to children containers. . . .
Methods related to storage
The Storage Interface
Storage Interface Class and Methods
Storage Class
Storage Interface Methods
Limiting access to the Server Manager.
Server Manager IDL
Server Manager examples
Obtaining the reference to the top-level
container
Getting all the containers and their
properties
Getting and Setting properties and saving
them into the file
Invoking an operation in a Container
Custom Containers

Chapter 19

Using VisiBroker Native Messaging
Introduction
Two-phase invocation (2PI)
Polling-Pulling and Callback models
Non-native messaging and IDL mangling
Native Messaging solution
Request Agent
Native Messaging Current
Core operations
StockManager example
Polling-pulling model
Callback model
Advanced Topics
Group polling
Cookie and reply de-multiplexing in reply
recipients
Evolving invocations into two-phases
Reply dropping
Manual trash collection
Unsuppressed premature return mode
Suppress poller generation in callback
model

247
247
247
248
248
249
249
249
249

250
250
251
251
252
25
252
252
253
253
255

N

255
255

256
257
257

259
259
259
260
260
260
261
261
262
262
263
264
267
267

268
269
271
272
272

273

vi

Native Messaging API Specification.
Interface RequestAgentEx
create_request_proxy()
destroy_request()
Interface RequestProxy
the_receiver

suppress_mode()
wait_timeout
the_cookie
request_tag
the_poller
reply_not_available
Interface ReplyRecipient
reply_available()
Semantics of core operations
Native Messaging Interoperability
Specification
Native Messaging uses native GIOP
Native Messaging service context
NativeMessaging tagged component
Using Borland Native Messaging
Using request agent and client model
Start the Borland Request Agent
Borland Request Agent URL
Using the Borland Native Messaging
client model
Borland Request Agent vbroker properties . . .
vbroker.requestagent.maxThreads
vbroker.requestagent.
maxOutstandingRequests
vbroker.requestagent.blockingTimeout
vbroker.requestagent.router.ior
vbroker.requestagent.listener.port
vbroker.requestagent.requestTimeout
Interoperability with CORBA Messaging

Chapter 20
Using the Object Activation
Daemon (OAD)

Automatic activation of objects and servers
Locating the Implementation Repository

Activating servers
Using the OAD
Starting the OAD
Using the OAD utilities
Converting interface names to
repository IDs
Listing objects with oadutil list
Registering objects with oadutil
Example: Specifying repository 1D
Example: Specifying IDL interface name . .

282
283
283
283
283
283

285
285

285
286
286
286
287

287
288
289
290

. 290

IDL interface to the OAD

Remote registrationto an OAD.
Using the OAD without using the
SmartAgent.
Using the OAD with the Naming Service . .
Distinguishing between multiple instances
ofanobject. L.
Setting activation properties using the
CreationlmplDef class
Dynamically changing an ORB
implementation
OAD Registration using OAD::
reg_implementation
Example of object creation and registration . .
Arguments passed by the OAD

Un-registering objects.

Un-registering objects using the oadutil tool. . .
Unregistration example.
Unregistering with the OAD operations
Displaying the contents of the
Implementation Repository.

Chapter 21
Using Interface Repositories

What does an Interface Repository
contain?
How many Interface Repositories can
you have?

Creating and viewing an Interface Repository

with irep

Creating an Interface Repository with irep. . .

Viewing the contents of the Interface
Repository

Updating an Interface Repository with idl2ir . . .

Understanding the structure of the Interface

Repository.o oL

Identifying objects in the Interface
Repository
Types of objects that can be stored in the
Interface Repository
Inherited interfaces
Accessing an Interface Repository
Interface Repository example program

Chapter 22
Using the Dynamic Invocation
Interface

What is the dynamic invocation interface?

Introducing the main DIl concepts.
Using request objects
Encapsulating arguments with the

Anytype.
Options for sending requests.
Options for receiving replies

Steps for invoking object operations

dynamically.

Example programs for using the DII

Using the idl2java compiler

291

. 291

292

292

293

293

. 294

294
295
295
296
296

296
297

299
299

300
300

300

. 301

301

. 302

302
303

303
304
305
305

307
307
308
308

309
309
310

310
310
310

Vil

Obtaining a generic object reference

Creating and initializing arequest
Requestinterface.
Ways to create and initialize a DIl request

Using the create_request method

Using the _request method.

Example of creating a Request object
Setting arguments for the request
Implementing a list of arguments with
the NVList
Setting input and output arguments with
the NamedValue Class

Passing type safely with the Any class

Representing argument or attribute types
with the TypeCode class
Sending DIl requests and receiving results
Invoking a request
Sending a deferred DIl request with the
send_deferred method
Sending an asynchronous DIl request with

the send_oneway method.

Sending multiple requests
Receiving multiple requests

Using the interface repository with the DII. . . .

Chapter 23
Using the Dynamic Skeleton
Interface

Using the idl2java compiler.

Steps for creating object implementations

dynamically.

Example program for using the DSI

Extending the Dynamiclmplementation class

Example of designing objects for dynamic

requests.o

Specifying repository ids

Looking at the ServerRequestclass.

Implementing the Account object
Implementing the AccountManager object

Processing input parameters.
Setting the returnvalue.
Server implementation.

Chapter 24

Using Portable Interceptors
Portable Interceptors overview
Types of interceptors
Types of Portable Interceptors

Portable Interceptor and Information interfaces . . .

Interceptor class
Request Interceptor
ClientRequestinterceptor

Client-siderules.
ServerRequestinterceptor.

Server-side rules

IOR Interceptor
Portable Interceptor (PI) Current

Codec 335
CodecFactory 335
Creating a Portable Interceptor 335
Example: Creating a
Portableinterceptor 336
Registering Portable Interceptors 336
Registering an ORBlnitializer 337
Example: Registering ORBInitializer. 338
VisiBroker extensions to Portable
Interceptors 338
POA scoped Server Request
Interceptors. 338
Inserting and extracting system
exceptions 339
Limitations of VisiBroker Portable
Interceptors implementation. 339
ClientRequestinfo limitations. 339
ServerRequestinfo limitations 339
Portable Interceptors examples. 339
Example: client_server 340
Objective ofexample 340
Importing required packages 340
Client-side request interceptor initialization
and registrationtothe ORB 341
Implementing the ORBInitializer for a
server-side Interceptor. 342
Implementing the Requestinterceptor for
client- or server-side Request Interceptor . . . 343
Implementing the ClientRequestinterceptor
forClient. 343
Implementation of the public void
send_request(ClientRequestinfo ri)
interface 343
Implementation of the void
send_poll(ClientRequestinfo ri)
interface 0L 343
Implementation of the void
receive_reply(ClientRequestinfo ri)
interface 344
Implementation of the void
receive_exception(ClientRequestinfo ri)
interface 0L 344
Implementation of the void
receive_request_service_contexts
(ServerRequestinfo ri) interface 346
Implementation of the void
receive_request (ServerRequestinfo
riyinterfaceo 346
Implementation of the void
receive_reply (ServerRequestinfo
riyinterface L. 346
Implementation of the void
receive_exception (ServerRequestinfo
riyinterfaceo 347
Implementation of the void
receive_other (ServerRequestinfo
riyinterface 347

Developing the Client and Server
Application
Implementation of the client application
Implementation of the server
application.
Compilation procedure.
Execution or deployment of Client and
Server Applications.

Chapter 25

Using VisiBroker Interceptors
Interceptors overview
Interceptor interfaces and managers
Client Interceptors
BindInterceptor
ClientRequestinterceptor
Server Interceptors.
POALifeCyclelnterceptor
ActiveObjectLifeCyclelnterceptor
ServerRequestinterceptor
IORCreationinterceptor.
Service Resolver Interceptor.
Default Interceptorclasses.
Registering Interceptors with the
VisiBrokerORB.
Creating Interceptor objects
Loading Interceptors
Example Interceptors
Example code
Client-server Interceptors example
ServiceResolverinterceptor example
Code listings
SampleServerLoader.
SamplePOALifeCyclelnterceptor
SampleServerinterceptor
SampleClientinterceptor
SampleClientLoader
SampleBindinterceptor
Passing information between your
Interceptors
Using both Portable Interceptors and
VisiBroker Interceptors simultaneously
Order of invocation of interception points . . .
Client side Interceptors.
Server side Interceptors
Order of ORB events during POA creation. . .
Order of ORB events during object
reference creation

Chapter 26

Usmg ObjeC'[wrappers

Object wrappers overview.
Typed and un-typed object wrappers.
Special idl2java requirements
Object wrapper example applications

Untyped object wrappers
Using multiple, untyped object wrappers.
Order of pre_method invocation
Order of post_method invocation

. 350

351
352

352

353
353
354
354
354
355
355
355
356
356
356
357
357

357
358
358
358
358
359
360
361
361
362
363
364
365
366

367

367

. 367

367
368

. 368

368

Using untyped object wrappers
Implementing an untyped object wrapper
factory
Implementing an untyped object wrapper . . .
pre_method and post_method
parameters
Creating and registering untyped object
wrapper factories
Removing untyped object wrappers
Typed object wrappers
Using multiple, typed object wrappers
Order of invocation.
Typed object wrappers with co-located
client and servers
Using typed object wrappers
Implementing typed object wrappers
Registering typed object wrappers for
aclient. L.
Registering typed object wrappers for
a server
Removing typed object wrappers
Combined use of untyped and typed object
WIAPPETS. © . v v v v e e e e e
Command-line arguments for typed
wrappers
Initializer for typed wrappers
Command-line arguments for untyped
wrappers
Initializers for untyped wrappers
Executing the sample applications.
Turning on timing and tracing object
wrappers
Turning on caching and security object
wrappers
Turning on typed and untyped wrappers . .
Executing a CO-located client and
server

Chapter 27

Event Queue
Event types
Connection events
Event listeners
IDL definition. L.
Conninfo structure
EventListener interface
ConnEventListeners interface
EventQueueManager interface
How to return the EventQueueManager
Event Queue code samples
Registering EventListeners
Implementing EventListeners

372

. 373

373

374
375
376
376
377

377
378
378
379

379
381

381

381
382

383
383
384
384

384

. 385

385

387
387
387
388
388
388
388
389
389
389
389
390
390

Chapter 28
Using RMI over IIOP 391
Overview of RMlover lIOP 391
Setting up Java applets with RMI-IIOP 391
javaziiop and java2idltools. 391
Using javaziiop. 392
Supportedinterfaces L. 392
Running javaziiop. 392
Reverse mapping of Java classes
toIDL 393
Completing the development process 393
RMI-IIOP Bankexample. 394
Supported datatypes L. 395
Mapping primitive datatypes. 395
Mapping complex datatypes. 396
Interfaces 396
Arrays 396
Chapter 29
Using the dynamically managed
types 397
DynAny interface overview. 397
DynAny examples 397
DynAnytypes 398
DynAny usage restrictions 398
CreatingaDynAny 398
Initializing and accessing the value in
aDynAny 399
Constructed datatypes 399
Traversing the components in a
constructed datatype. 399
DynEnum.o oo 399
DynStruct. oo 400
DynUnion. 400
DynSequence and DynArray 400
DynAny exampleIDL 400
DynAny example client application 401
DynAny example server application 402
Chapter 30
Using valuetypes 407
Understanding valuetypes. 407
Valuetype IDL code sample 407
Concrete valuetypes 408
Valuetype derivation. 408
Sharing semantics. 408
Null semantics. 408
Factories., 408
Abstract valuetypes. 408

Implementing valuetypes
Defining your valuetypes
Compiling your IDL file
Inheriting the valuetype base class
Implementing the Factory class
Registering your Factory with the

VisiBroker ORB

Implementing factories
Factories and valuetypes
Registering valuetypes

Boxed valuetypes. oL

Abstract interfaces

Custom valuetypes

Truncatable valuetypes

Chapter 31

Using URL naming
URL Naming Service

URL Naming Service examples
Registering objects
Locating an object by URL

Chapter 32

Bidirectional Communication
Using bidirectional IOP.
Bidirectional VisiBroker ORB properties
About the BiDirectional examples
Enabling bidirectional 11OP for existing
applications
Explicitly enabling bidirectional 1OP
Unidirectional or bidirectional connections . . .
Enabling bidirectional 11OP for POAs
Security considerations.

Chapter 33

Using the BOA with VisiBroker
Compiling your BOA code with VisiBroker
Supporting BOA options
Limitations in using the BOA
Using object activators
Naming objects underthe BOA.
Object names

409
409
409
409
410

410
410
411
411
411
412
413
413

415
415
415
416
417

419
419
420
421

421
421
422
423
423

Chapter 34

Usmg ObjeCt activators
Deferring object activation.
Activatorinterface
Using the service activation approach
Deferring object activation using service
activators
Example of deferred object activation for
aserviceo oo
odb.idlinterface
Implementing a service activator
Instantiating the service activator.
Using a service activator to activate
anobject. L

Chapter 35

CORBA exceptions

CORBA exception descriptions
Heuristic OMG-specified exceptions
Other OMG-specified exceptions

Chapter 36

Web Services Overview
Web Services Architecture.
Standard Web Services Architecture
VisiBroker Web Services Architecture.
Web Services Artifacts.
Web Service Runtime
Exposing a CORBA object as Web Service.
Development
Deployment
SOAP/WSDL compatibility

Index

427
427
427
428

429

429
430
430
431

431

433
433
438
439

441
441
442
442
443
443
446
447
447
448

449

Introduction to Borland VisiBroker

For the CORBA developer, Borland provides VisiBroker for Java, VisiBroker for C++,
and VisiBroker for .NET to leverage the industry-leading VisiBroker Object Request
Broker (ORB). These three facets of VisiBroker are implementations of the CORBA 2.6
specification.

VisiBroker Overview

VisiBroker is for distributed deployments that require CORBA to communicate between
both Java and non-Java objects. It is available on a wide range of platforms (hardware,
operating systems, compilers and JDKs). VisiBroker solves all the problems normally
associated with distributed systems in a heterogeneous environment.

VisiBroker includes:

VisiBroker for Java, VisiBroker for C++, and VisiBroker for .NET, three
implementations of the industry-leading Object Request Broker.

VisiNaming Service, a complete implementation of the Interoperable Naming
Specification in version 1.3.

GateKeeper, a proxy server for managing connections to CORBA Servers behind
firewalls.

VisiBroker Console, a GUI tool for easily managing a CORBA environment.

Common Object Services such as VisiNotify (implementation of Notification Service
Specification), VisiTransact (implementation of Transaction Service Specification),
VisiTelcoLog (implementation of Telecom Logging Service Specification), VisiTime
(implementation of Time Service Specification), and VisiSecure.

Chapter 1: Introduction to Borland VisiBroker 1

VisiBroker Documentation

VisiBroker features

VisiBroker offers the following features:

“Out-of-the-box” security and web connectivity.

Seamless integration to the J2EE Platform, allowing CORBA clients direct access to
EJBs.

A robust Naming Service (VisiNaming), with caching, persistent storage, and
replication for high availability.

Automatic client failover to backup servers if primary server is unreachable.
Load distribution across a cluster of CORBA servers.

Full compliance with the OMG's CORBA 2.6 Specification.

Integration with the Borland JBuilder integrated development environment.

Enhanced integration with other Borland products including Borland AppServer.

VisiBroker Documentation

The VisiBroker documentation set includes the following:

Borland VisiBroker Installation Guide—describes how to install VisiBroker on your
network. It is written for system administrators who are familiar with Windows or
UNIX operating systems.

Borland Security Guide—describes Borland's framework for securing VisiBroker,
including VisiSecure for VisiBroker for Java and VisiBroker for C++.

Borland VisiBroker for Java Developer's Guide—describes how to develop
VisiBroker applications in Java. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools. Also
described is the IDL compiler, the Smart Agent, the Location, Naming and Event
Services, the Object Activation Daemon (OAD), the Quality of Service (Qo0S), the
Interface Repository, and the Interface Repository, and Web Service Support.

Borland VisiBroker for C++ Developer's Guide—describes how to develop
VisiBroker applications in C++. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools. Also
described is the IDL compiler, the Smart Agent, the Location, Naming and Event
Services, the OAD, the QoS, Pluggable Transport Interface, RT CORBA
Extensions, and Web Service Support.

Borland VisiBroker for .NET Developer's Guide—describes how to develop
VisiBroker applications in a .NET environment.

Borland VisiBroker for C++ APl Reference—provides a description of the classes
and interfaces supplied with VisiBroker for C++.

Borland VisiBroker VisiTime Guide—describes Borland's implementation of the
OMG Time Service specification.

Borland VisiBroker VisiNotify Guide—describes Borland's implementation of the
OMG Notification Service specification and how to use the major features of the
notification messaging framework, in particular, the Quality of Service (QoS)
properties, Filtering, and Publish/Subscribe Adapter (PSA).

Borland VisiBroker VisiTransact Guide—describes Borland's implementation of the
OMG Object Transaction Service specification and the Borland Integrated
Transaction Service components.

2 VisiBroker for Java Developer’'s Guide

Important

Windows

UNIX

Tip

VisiBroker Documentation

= Borland VisiBroker VisiTelcoLog Guide—describes Borland's implementation of the
OMG Telecom Log Service specification.

= Borland VisiBroker GateKeeper Guide—describes how to use the VisiBroker
GateKeeper to enable VisiBroker clients to communicate with servers across
networks, while still conforming to the security restrictions imposed by web browsers
and firewalls.

The documentation is typically accessed through the Help Viewer installed with
VisiBroker. You can choose to view help from the standalone Help Viewer or from
within a VisiBroker Console. Both methods launch the Help Viewer in a separate
window and give you access to the main Help Viewer toolbar for navigation and
printing, as well as access to a navigation pane. The Help Viewer navigation pane
includes a table of contents for all VisiBroker books and reference documentation, a
thorough index, and a comprehensive search page.

Updates to the product documentation, as well as PDF versions, are available on the
web at http: //www.borland. cony/techpubos.

Accessing VisiBroker online help topics in the standalone Help
Viewer

To access the online help through the standalone Help Viewer on a machine where the
product is installed, use one of the following methods:

= Choose Start|Programs|Borland Deployment Platform|Help Topics

= or, open the Command Prompt and go to the product installation \bindirectory,
then type the following command:

help

Open a command shell and go to the product installation /bindirectory, then enter
the command:

help

During installation on UNIX systems, the default is to not include an entry for binin
your PATH If you did not choose the custom install option and modify the default for
PATH entry, and you do not have an entry for current directory in your PATH, use ./
helpto start the help viewer.

Accessing VisiBroker online help topics from within the
VisiBroker Console

To access the online help from within the VisiBroker Console, choose Help|Help
Topics.

The Help menu also contains shortcuts to specific documents within the online help.
When you select one of these shortcuts, the Help Topics viewer is launched and the
item selected from the Help menu is displayed.

Chapter 1: Introduction to Borland VisiBroker 3

Contacting Borland support

Documentation conventions

The documentation for VisiBroker uses the typefaces and symbols described below to
indicate special text:

Table 1.1 Documentation conventions

Convention Used for

italics Used for new terms and book titles.

carputer Information that the user or application provides, sample command lines
and code.

bold computer In text, bold indicates information the user types in. In code samples, bold
highlights important statements.

[1 Optional items.

Previous argument that can be repeated.

| Two mutually exclusive choices.

Platform conventions

The VisiBroker documentation uses the following symbols to indicate platform-specific
information:

Table 1.2 Platform conventions

Symbol Indicates

Windows All supported Windows platforms.
Win2003 Windows 2003 only

WinXP Windows XP only

Win2000 Windows 2000 only

UNIX UNIX platforms
Solaris Solaris only
Linux Linux only

Contacting Borland support

Borland offers a variety of support options. These include free services on the Internet
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of telephone
support, ranging from support on installation of Borland products to fee-based,
consultant-level support and detailed assistance.

For more information about Borland's support services or contacting Borland Technical
Support, please see our web site at http: //support .borland.comand select your
geographic region.

When contacting Borland's support, be prepared to provide the following information:
= Name

= Company and site ID

= Telephone number

= Your Access ID number (U.S.A. only)

= Operating system and version

= Borland product name and version

= Any patches or service packs applied

4 VisiBroker for Java Developer’s Guide

Contacting Borland support

= Client language and version (if applicable)

= Database and version (if applicable)

= Detailed description and history of the problem
= Any log files which indicate the problem

= Details of any error messages or exceptions raised

Online resources

You can get information from any of these online sources:
World Wide Web http: //www.borland. com
Online Support http: //sugport . orland.aam (access ID required)
Listserv To subscribe to electronic newsletters, use the online form at:
http: //www.borland. con/products/newsletters

World Wide Web

Check http: //www.borland. con/bes regularly. The VisiBroker Product Team posts white
papers, competitive analyses, answers to FAQs, sample applications, updated
software, updated documentation, and information about new and existing products.

You may want to check these URLs in particular:

= http://www.borland. com/products/downlcads/downloed visibroker.html (updated
VisiBroker software and other files)

= http://www.borland. car/techpuos (documentation updates and PDFs)

= http://sugport .borland. can/entry . jsparexternal ID=4273&categoryTD=112 (VisiBroker
FAQs)

= http://cammnity.borland.can (contains our web-based news magazine for
developers)

Borland newsgroups

You can participate in many threaded discussion groups devoted to the Borland
VisiBroker. Visit http: //www.borland. com/newsgroups for information about joining user-
supported newsgroups for VisiBroker and other Borland products.

Note These newsgroups are maintained by users and are not official Borland sites.

Chapter 1: Introduction to Borland VisiBroker 5

6 VisiBroker for Java Developer’'s Guide

Understanding the CORBA model

This section introduces VisiBroker, which comprises both the VisiBroker for C++ and
the VisiBroker for Java ORBs. Both are complete implementations of the CORBA 2.6
specification. This section describes VisiBroker features and components.

What is CORBA?

The Common Object Request Broker Architecture (CORBA) allows distributed
applications to interoperate (application-to-application communication), regardless of
what language they are written in or where these applications reside.

The CORBA specification was adopted by the Object Management Group to address
the complexity and high cost of developing distributed object applications. CORBA
uses an object-oriented approach for creating software components that can be reused
and shared between applications. Each object encapsulates the details of its inner
workings by presenting a well-defined interface. Use of these interfaces, themselves
written in the standardized Interface Definition Language (IDL) reduces application
complexity. The cost of developing applications is reduced, because once an object is
implemented and tested, it can be used over and over again.

The role of the Object Request Broker (ORB) is to track and maintain these interfaces,
facilitate communication between them, and provide services to applications making
use of them. The ORB itself is not a separate process. It is a collection of libraries and
network resources that integrates within end-user applications, and allows your client
applications to locate and use disparate objects.

The Object Request Broker in the following figure connects a client application with the
objects it wants to use. The client program does not need to know whether the object it
seeks resides on the same computer or is located on a remote computer somewhere
on the network. The client program only needs to know the object's name and
understand how to use the object's interface. The ORB takes care of the details of
locating the object, routing the request, and returning the result.

Chapter 2: Understanding the CORBA model 7

What is VisiBroker?

Figure 2.1 Client program acting on an object

Clent
I Chject A
Glient P og B pquestsa ORE oo s Chject &
e race Dobpcts and bds client ot

| Object Riequa, Brcker |

What is VisiBroker?

VisiBroker provides a complete CORBA 2.6 ORB runtime and supporting development
environment for building, deploying, and managing distributed applications for both
C++ and Java that are open, flexible, and interoperable. Objects built with VisiBroker
are easily accessed by Web-based applications that communicate using the Internet
Inter-ORB Protocol (IIOP) standard for communication between distributed objects
through the Internet or through local intranets. VisiBroker has a built-in implementation
of IIOP that ensures high-performance and interoperability.

Figure 2.2 VisiBroker Architecture
Intranet

- C++ Object Client
- Naming Service

Web Server Runtime
Internet - GateKeeper VisiBroker
F I
Client irewall for Java
Runtime
Java Intranet/
Applet

Enterprise nhop

VisiBroker VisiBroker VisiBraker Enterprise
Runtime for Java for C++ Client
Runtime Runtirme
C++
- Java Object w Application
- Event Service
- SmartAgent
VisiBroker
for C++
Runtime

8 VisiBroker for Java Developer’s Guide

VisiBroker Features

VisiBroker Features

VisiBroker has several key features as described in the following sections.

VisiBroker's Smart Agent (osagent) Architecture

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory service that
provides naming facilities for both client applications and object implementations.
Multiple Smart Agents on a network cooperate to provide load-balancing and high
availability for client access to server objects. The Smart Agent keeps track of objects
that are available on a network, and locates objects for client applications at object-
invocation time. VisiBroker can determine if the connection between your client
application and a server object has been lost (due to an error such as a server crash or
a network failure). When a failure is detected, an attempt is automatically made to
connect your client to another server on a different host, if it is so configured. For
details on the Smart Agent see Chapter 14, “Using the Smart Agent” and “Using
Quality of Service (QoS)” on page 151.

Enhanced Object Discovery Using the Location Service

VisiBroker provides a powerful Location Service—an extension to the CORBA
specification—that enables you to access the information from multiple Smart Agents.
Working with the Smart Agents on a network, the Location Service can see all the
available instances of an object to which a client can bind. Using triggers, a callback
mechanism, client applications can be instantly notified of changes to an object's
availability. Used in combination with interceptors, the Location Service is useful for
developing enhanced load balancing of client requests to server objects. See
Chapter 15, “Using the Location Service.”

Implementation and Object Activation Support

The Object Activation Daemon (OAD) is the VisiBroker implementation of the
Implementation Repository. The OAD can be used to automatically start object
implementations when clients need to use them. Additionally, VisiBroker provides
functionality that enables you to defer object activation until a client request is received.
You can defer activation for a particular object or an entire class of objects on a server.

Robust thread and connection management

VisiBroker provides native support for single- and multi-threaded thread management.
With VisiBroker's thread-per-session model, threads are automatically allocated on the
server (per client connection) to service multiple requests, and then are terminated
when each connection ends. With the thread pooling model, threads are allocated
based on the amount of request traffic to and from server objects. This means that a
highly active client will be serviced by multiple threads—ensuring that the requests are
quickly executed—while less active clients can share a single thread and still have their
requests immediately serviced.

VisiBroker's connection management minimizes the number of client connections to
the server. All client requests for objects residing on the same server are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same
server, eliminating the need for clients to incur the overhead of new connections to the
same server.

Chapter 2: Understanding the CORBA model 9

VisiBroker Features

All thread and connection behavior is fully configurable. See Chapter 10, “Managing
threads and connections” for details on how VisiBroker manages threads and
connections.

IDL compilers

VisiBroker comes with three IDL compilers that make object development easier,

= idl2java: The idl2javacompiler takes IDL files as input and produces the necessary
client stubs and server skeletons in Java.

= idl2cpo The idl2gop compiler takes IDL files as input and produces the necessary
client stubs and server skeletons in C++.

= idl2ir: The idl2ir compiler takes an IDL file and populates an interface repository
with its contents. Unlike the previous two compilers, id12ir functions with both the
C++ and Java ORBs.

See Chapter 13, “Using IDL” and Chapter 21, “Using Interface Repositories” for details
on these compilers.

Dynamic invocation with DIl and DSI

VisiBroker provides implementations of both the Dynamic Invocation Interface (DIl) and
the Dynamic Skeleton Interface (DSI) for dynamic invocation. The DIl allows client
applications to dynamically create requests for objects that were not defined at compile
time. The DSI allows servers to dispatch client operation requests to objects that were
not defined at compile time. See Chapter 22, “Using the Dynamic Invocation Interface”
and Chapter 23, “Using the Dynamic Skeleton Interface” for more information.

Interface and implementation repositories

The Interface Repository (IR) is an online database of meta information about the
VisiBroker ORB objects. Meta information stored for objects includes information about
modules, interfaces, operations, attributes, and exceptions. Chapter 21, “Using
Interface Repositories” covers how to start an instance of the Interface Repository, add
information to an interface repository from an IDL file, and extract information from an
interface repository.

The Object Activation Daemon is a VisiBroker interface to the Implementation
Repository that is used to automatically activate the implementation when a client
references the object. See Chapter 20, “Using the Object Activation Daemon (OAD)”
for more information.

Server-side portability

VisiBroker supports the CORBA Portable Object Adapter (POA), which is a
replacement to the Basic Object Adapter (BOA). The POA shares some of the same
functionality as the BOA, such as activating objects, support for transient or persistent
objects, and so forth. The POA also has additional functionality, such as the POA
Manager and Servant Manager which create and manages instances of your objects.
See Chapter 9, “Using POAs” for more information.

10 VisiBroker for Java Developer's Guide

VisiBroker CORBA compliance

Customizing the VisiBroker ORB with interceptors and object
wrappers

VisiBroker's Interceptors enable developers to view under-the-cover communications
between clients and servers. The VisiBroker Interceptors are Borland's proprietary
interceptors. Interceptors can be used to extend the VisiBroker ORB with customized
client and server code that enables load balancing, monitoring, or security to meet the
specialized needs of distributed applications. See Chapter 24, “Using Portable
Interceptors” for information.

VisiBroker also includes the Portable Interceptors, based on the OMG standardized
feature, that allow you to write portable code for interceptors and use it with different
vendor ORBs. For more information, refer to the COBRA 2.6 specification.

VisiBroker's object wrappers allow you to define methods that are called when a client
application invokes a method on a bound object or when a server application receives
an operation request. See Chapter 26, “Using object wrappers” for information.

Event Queue

The event queue is designed as a server-side only feature. A server can register the
listeners to the event queue based on the event types that the server is interested in,
and the server processes those events when the need arises. See Chapter 27, “Event
Queue” for more information.

Backing stores in the Naming Service

The new interoperable Naming Service integrates with pluggable backing stores to
make its state persistent. This ensures easy fault tolerance and failover functionality in
the Naming Service. See Chapter 16, “Using the VisiNaming Service” for more
information.

Defining interfaces without IDL

VisiBroker's java2iicp compiler lets you use the Java language to define interfaces
instead of using the Interface Definition Language (IDL). You can use the java2iicp
compiler if you have existing Java code that you wish to adapt to interoperate with
CORBA distributed objects or if you do not wish to learn IDL.

GateKeeper

The GateKeeper allows client programs to issue operation requests to objects that
reside on a web server and to receive callbacks from those objects, all the while
conforming to the security restrictions imposed by web browsers. The Gatekeeper also
handles communication through firewalls and can be used as an HTTP daemon. It is
fully compliant with the OMG CORBA Firewall Specification. For more information see
Chapter 2, “Introduction to GateKeeper.”

VisiBroker CORBA compliance

VisiBroker is fully compliant with the CORBA specification (version 2.6) from the Object
Management Group (OMG). For more detalils, refer to the CORBA specification located
at http://www.arg.org/.

Chapter 2: Understanding the CORBA model 11

VisiBroker Development Environment

VisiBroker Development Environment

VisiBroker can be used in both the development and deployment phases. The
development environment includes the following components:

= Administration and programming tools
= VisiBroker ORB

Programmer's tools

The following tools are used during the development phase:

Tool Purpose

idl2ir This tool allows you to populate an interface repository with interfaces defined in an
IDL file for both the VisiBroker for Java and VisiBroker for C++.

idl2gp This tool generates C++ stubs and skeletons from an IDL file.
idl2java This tool generates Java stubs and skeletons from an IDL file

java2iigp Generates Java stubs and skeletons from a Java file. This tool allows you to define
your interfaces in Java, rather than in IDL.

java2idl Generates an IDL file from a file containing Java bytecode.

CORBA services tools

The following tools are used to administer the VisiBroker ORB during development:

Tool Purpose

irep Used to manage the Interface Repository. See Chapter 21, “Using Interface
Repositories.”

ocad Used to manage the Object Activation Daemon (OAD). See Chapter 20, “Using the

Object Activation Daemon (OAD).”

nameserv Used to start an instance of the Naming Service. See Chapter 16, “Using the
VisiNaming Service.”

Administration Tools

The following tools are used to administer the VisiBroker ORB during development:

Tool Purpose

cadutil list Lists VisiBroker ORB object implementations registered with the OAD.
cadutil reg Registers an VisiBroker ORB object implementation with the OAD.

ocadutil uweg Unregisters an VisiBroker ORB object implementation with the OAD.

osagent Used to manage the Smart Agent. See Chapter 14, “Using the Smart Agent.”
osfind Reports on objects running on a given network.

12 VvisiBroker for Java Developer's Guide

Java Development Environment

Java Development Environment

The VisiBroker uses the following components in the Java runtime environment;
= Java 2 Standard Edition

= Java runtime environment

Java 2 Standard Edition

A Java development environment, such as Borland JBuilder, is required for developing
applets or applications that use the VisiBroker ORB. JavaSoft's Java Developer's Kit
(JDK) also includes a Java runtime environment.

Sun Microsystems has made JavaSoft's JDK—including its Java runtime
environment—available for Solaris, and Windows NT platforms. You can download the
JDK from Sun Microsystems' web site:

http://java.sun.com

The JDK has also been ported to IBM AlX, 0OS/2, SGI IRIX, and HP-UX. These other
versions can be downloaded from the respective hardware vendor's web site. To see
what is available for various platforms, visit Sun Microsystems' JavaSoft web site:

http://Java.sun. can/products/jdk

Java Runtime Environment

A Java runtime environment is required for any end user who wishes to execute
VisiBroker services and tools. A Java runtime environment is an engine that interprets
and executes a Java application. Typically, Java runtime environments are bundled
with Java development environments. See “Java 2 Standard Edition” on page 13 for
details.

What's Required for GateKeeper

In order to use the VisiBroker Gatekeeper, you will need to use Servlet 2.1 API that is
obtained in JavaServer Web Development Kit 1.0.1.

Java-enabled Web browser

Applets can be run in any Java-enabled web browser—such as Netscape
Communicator, Netscape Navigator, or Microsoft's Internet Explorer. You can obtain
these Java-enabled web browsers by navigating to one of the following URLSs:

= http://www.netscape.con/
= http://microsoft.con/ie/

Chapter 2: Understanding the CORBA model 13

Interoperability with VisiBroker

Interoperability with VisiBroker

Applications created with VisiBroker for Java can communicate with object
implementations developed with VisiBroker for C++. Likewise, for applications created
with VisiBroker for C++, these applications can also communicate with objects
implementations developed with VisiBroker for Java. For example, if you want to use
Java application on VisiBroker for C++, simply use the same IDL you used to develop
your Java application as input to the VisiBroker IDL compiler, supplied with VisiBroker
for C++. You may then use the resulting C++ skeletons to develop the object
implementation. To use the C++ application on VisiBroker for Java, repeat the process.
However, you will use the VisiBroker IDL complier with VisiBroker for Java instead.

Also, object implementations written with VisiBroker for Java will work with clients
written in VisiBroker for C++. In fact, a server written with VisiBroker for Java will work
with any CORBA-compliant client; a client written with VisiBroker for Java will work with
any CORBA-compliant server. This also applies to any VisiBroker for C++ object
implementations.

Interoperability with other ORB products

CORBA-compliant software objects communicate using the Internet Inter-ORB
Protocol (IIOP) and are fully interoperable, even when they are developed by different
vendors who have no knowledge of each other's implementations. VisiBroker's use of
IIOP allows client and server applications you develop with VisiBroker to interoperate
with a variety of ORB products from other vendors.

IDL to Java mapping

VisiBroker conforms with the OMG IDL/Java Language Mapping Specification. See the
VisiBroker Programmer's Reference for a summary of VisiBroker's current IDL to Java
language mapping, as implemented by the id12java compiler. For each IDL construct
there is a section that describes the corresponding Java construct, along with code
samples.

For more information about the mapping specification, refer to the OMG IDL/Java
Language Mapping Specification.

14 VvisiBroker for Java Developer's Guide

Developing an example application
with VisiBroker

This section uses an example application to describe the development process for
creating distributed, object-based applications for both Java and C++.

The code for the example application is provided in the berk agent java.hmml file. You
can find this file in:

<install dirs/exanples/vbe/basic/bank agent/

Development process

When you develop distributed applications with VisiBroker, you must first identify the
objects required by the application. The following figure illustrates the steps to develop
a sample bank application. Here is a summary of the steps taken to develop the bank
sample:

1 Write a specification for each object using the Interface Definition Language (IDL).

IDL is the language that an implementer uses to specify the operations that an
object will provide and how they should be invoked. In this example, we define, in
IDL, the Account interface with a alance () method and the AccountManager interface
with an cpen () method.

2 Use the IDL compilers to generate the client stub code and server POA servant
code.

With the interface specification described in step 1, use the idl2java or idl2cpp
compilers to generate the client-side stubs and the server-side classes for the
implementation of the remote objects.

3 Write the client program code.

To complete the implementation of the client program, initialize the VisiBroker ORB,
bind to the Account and the AccountManager objects, invoke the methods on these
objects, and print out the balance.

Chapter 3: Developing an example application with VisiBroker 15

Step 1: Defining object interfaces

4 Write the server object code.

To complete the implementation of the server object code, we must derive from the

AccontPOA and AccountMenagerPOA classes, provide implementations of the
interfaces' methods, and implement the server's mainroutine.

5 Compile the client and server code using the appropriate stubs and skeletons.

6 Start the server.

7 Run the client program.

Figure 3.1 Developing the sample bank application

Objeet specifiations in 1DL

Add clent
- program Code

. G+ Java
compiletlinksr

E idl2epp
idl2java

Add object
implementation

classes running

hd *
Client ——— Client program Setver L = i
ﬂ prog n - Server objet

running

Client ‘

Server

YisiBroker Editen Object Request

* G If you are ersating the application in G+, you will nesd to compiks and

link the server object code.

Step 1: Defining object interfaces

The first step to creating an application with VisiBroker is to specify all of your objects
and their interfaces using the OMG's Interface Definition Language (IDL). The IDL can

be mapped to a variety of programming languages.

You then use the idl2java compiler to generate stub routines and servant code

compliant with the IDL specification. The stub routines are used by your client program
to invoke operations on an object. You use the servant code, along with code you write,

to create a server that implements the object.

16 VisiBroker for Java Developer's Guide

Step 2: Generating client stubs and server servants

Writing the account interface in IDL

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data
structures, and more.

The sample below shows the contents of the Bark.idl file for the kbenk agent example.
The Account interface provides a single method for obtaining the current balance. The
AccontMenacer interface creates an account for the user if one does not already exist.

module Bark(
interface Accomt
float balance() ;
} .

interface AccountManager {
Account open (in string name) ;
i

i

Step 2: Generating client stubs and server servants

Java

The interface specification you create in IDL is used by VisiBroker's idl2java compiler
to generate Java classes for the client program, and skeleton code for the object
implementation.

The client program uses the Java class for all method invocations.

You use the skeleton code, along with code you write, to create the server that
implements the objects.

The code for the client program and server object, once completed, is used as input to
your Java compiler to produce the client and server executables classes.

Because the Bark.1idl file requires no special handling, you can compile the file with the
following command.

pronpt> idl2java Bank.idl

For more information on the command-line options for the idl12java compiler, see
Chapter 13, “Using IDL.”

Files produced by the idl compiler

Because Java allows only one public interface or class per file, compiling the IDL file
will generate several .javafiles. These files are stored in a generated sub-directory
called Bank, which is the module name specified in the IDL and is the package to which
the generated files belong. The following is a list of .javafiles generated:

= AcoountMenagerStub.java: Stub code for the AccountManager object on the client side.
= AcoountStub.java Stub code for the Acoount object on the client side.
= Account.javal The Account interface declaration.

= AccountHelper.java: Declares the AcoountHelper class, which defines helpful utility
methods.

= AcoontHolder.java: Declares the AccountHolder class, which provides a holder for
passing Account objects.

= AccontMenager.java: The AccountManager interface declaration.

= AccountMenagerHelper.java: Declares the 2ccountManagerielper class, which defines
helpful utility methods.

Chapter 3: Developing an example application with VisiBroker 17

Step 3: Implementing the client

AccontMenagerHolder . java: Declares the AccountMenagerHolder class, which provides
a holder for passing AccomtManacger objects.

AccontMenagerOperation. java: This interface provides declares the method
signatures defined in the AccountMenager interface in the Bank. idl file.

2AccountMenagerPOA. java: POA servant code (implementation base code) for the
2AccontMenager object implementation on the server side.

AccontMenagerPORTie. java: Class used to implement the AccountManager object on
the server side using the tie mechanism, described in Chapter 11, “Using the tie
mechanism.”

2ocountOperatians. java: This interface provides declares the method signatures
defined in the Account interface in the Bark.idl file

AccontPA. java: POA servant code (implementation base code) for the 2Acoount
object implementation on the server side.

AccomntPORTie. java: Class used to implement the Acoount object on the server side
using the tie mechanism, described in Chapter 11, “Using the tie mechanism.”

Step 3: Implementing the client

Client.java

Many of the classes used in implementing the bank client are contained in the Bank
package generated by the idl2java compiler as shown in the previous example.

The Client.javafile illustrates this example and is included in the kark agent directory.
Normally, you would create this file.

The Client class implements the client application which obtains the current balance of
a bank account. The bank client program performs these steps:

1

2
3
4

Initializes the VisiBroker ORB.

Binds to an AccountMenager object.

Obtains an Acoount object by invoking cpen on the AccountManager object.
Obtains the balance by invoking kalance on the Account object.

pwblic class Client {
pblic static void mein(Strirg[] args) {
// Initialize the ORB.
org.any.CORBA.CRB orb = org.any.CORBA.CRB. init (args,rull) ;
// Get the wanager Id
byte[] menagerId = "BarkMenager" .getBytes() ;
// Locate an account menager. Give the full POA name ard the servant ID.
Bark. AccontManager nenager =
Bark. AcoountMenagerHelper . boind (orb, "/kenk agent poa", menegerId) ;
// use args[0] as the account name, or a default.
String name = args.length > 0 ? args[0] : "Jack B. Quick";
// Request the acoont menager to cpen a named acoount.
Barnk.Accomt acocount = menager.cpen (name) ;
// Get the balance of the account.
float balance = account.kalance() ;
// Print aut the kalance.
System.out .printIn("The balance in " + name + "'s accont is $" +
balance) ;

}
}

18 VisiBroker for Java Developer's Guide

Java

Step 3: Implementing the client

Binding to the AccountManager object

Before your client program can invoke the open (String name) method, the client must
first use the bind () method to establish a connection to the server that implements the
2AccountMenager object.

The implementation of the bind()method is generated automatically by the idl12java
compiler. The bind () method requests the VisiBroker ORB to locate and establish a
connection to the server.

If the server is successfully located and a connection is established, a proxy object is
created to represent the server's AcoontManagerPOR object. An object reference to the
AccontMenager object is returned to your client program.

Obtaining an Account object

Next, your client class needs to call the goen() method on the AccountMenager object to
get an object reference to the Accont object for the specified customer name.

Obtaining the balance

Once your client program has established a connection with an Account object, the
kalance () method can be used to obtain the balance. The balance () method on the
client side is actually a stub generated by the idl2java compiler that gathers all the data
required for the request and sends it to the server object.

AccountManagerHelper.java

This file is located in the Bark package. It contains an AccountManagerHelper object and
defines several methods for binding to the server that implements this object. The
bind() class method contacts the specified POA manager to resolve the object. Our
example application uses the version of the bind method that accepts an object name,
but the client may optionally specify a particular host and special bind options. For
more information about Helper classes, see the VisiBroker Programmer's Reference.

package Bark;
pwblic final class AccomntManagertelper {

public static Bark.AccomntManager bind (org.amy.CORBA.CRB arb)
retum bind(orb, rmill, rmill, mmill);

}
}

Other methods

Several other methods are provided that allow your client program to manipulate an
AccontMenacer object reference.

Many of these methods and member functions are not used in the example client
application, but they are described in detail in the VisiBroker Programmer's Reference.

Chapter 3: Developing an example application with VisiBroker 19

Step 4: Implementing the server

Step 4. Implementing the server

Just as with the client, many of the classes used in implementing the bank server are
contained in the Bark package generated by the idl2java compiler. The Server.javafile
is a server implementation included for the purposes of illustrating this example.
Normally you, the programmer, would create this file.

Server programs

This file implements the Server class for the server side of our banking example. The
code samples below are examples of server side programs for C++ and Java. The
server program does the following:

Initializes the Object Request Broker.

Creates a Portable Object Adapter with the required policies.

Creates the account manager servant object.

Activates the servant object.

Activates the POA manager (and the POA).
Waits for incoming requests.

pwblic class Server {

}

}

public static void main(String[] args) {
try {

// Initialize the CRB.
org.ang.CORBA.CRB orb = org.ang.ORRA.CRB. init (args, rull) ;
// get a reference to the root KA
BCA rootRCA =
BCAHelper.narrow (orb. resolve initial references("RootECA")) ;
// Create policies for ocur persistent PQA
org.ang.CORBA. Policy[] policies = {
TootPOA. create lifespan policy (LifespanPolicyValue . PERSISTENT)
}i
// Create myPQA with the right policies
BCA myPCOA = rootPCA. create POA("bank agent poa",
TOOtPCA. the POAVEnager () ,
policies) ;
// Create the servant
AcoontMenagerTnpl menagerServant = new AccountMenagerTnpl () ;
// Decide on the ID for the servant
byte[] menagerId = "BarkManager" .getBytes () ;
// Bctivate the servent with the ID on myRQA
myPQA. activate doject with id(menagerId, menagerServent) ;
// BActivate the POA menager
TootPCA. the POAManager () .activate() ;
System.out .printin (myPOA. servant to reference (menagerServant) + " is
ready.") ; -
// Wait for incoming requests
orb.run() ;

} catch (Exception e) {

}

e.printStackTrace() ;

20 VisiBroker for Java Developer’'s Guide

Step 5: Building the example

Step 5: Building the example

Windows

UNIX

The exanples directory of your VisiBroker release contains a vimeke.bat for this
example and other VisiBroker examples.

Compiling the example

Assuming VisiBroker is installed in C:\viorcker, type the following to compile the
example:

pronpt> vioeke

The command viareke is a batch file which runs the idl2java compiler and then
compiles each file.

If you encounter some problems while running viareke , check that your path
environment variable points to the bindirectory where you installed the VisiBroker
software.

Assuming VisiBroker is installed in /usr/local, type the following to compile the
example:

pronpt> meke Jjava

In this example, mekeis the standard UNIX facility. If you do not have it in your PATH, see
your system administrator.

Step 6: Starting the server and running the example

Windows

UNIX

Now that you have compiled your client program and server implementation, you are
ready to run your first VisiBroker application.

Starting the Smart Agent

Before you attempt to run VisiBroker client programs or server implementations, you
must first start the Smart Agent on at least one host in your local network.

The basic command for starting the Smart Agent is as follows:

prampt> osagent
The Smart Agent is described in detail in Chapter 14, “Using the Smart Agent.”

Starting the server

Open a DOS prompt window and start your server by using the following DOS
command:

prampt> start vibj Server
Start your Account server by typing:
pronpts> vbj Server&

Chapter 3: Developing an example application with VisiBroker 21

Deploying applications with VisiBroker

Windows

UNIX

Running the client

Open a separate DOS prompt window and start your client by using the following DOS
command:

pronpt> vbj Client
To start your client program, type the following command:
pronpt> vbj Client

You should see output similar to that shown below (the account balance is computed
randomly).

The balance in the accomt in $168.38.

Deploying applications with VisiBroker

VisiBroker is also used in the deployment phase. This phase occurs when a developer
has created client programs or server applications that have been tested and are ready
for production. At this point a system administrator is ready to deploy the client
programs on end-users’ desktops or server applications on server-class machines.

For deployment, the VisiBroker ORB supports client programs on the front end. You
must install the VisiBroker ORB on each machine that runs the client program. Clients
(that make use of the VisiBroker ORB) on the same host share the VisiBroker ORB.
The VisiBroker ORB also supports server applications on the middle tier. You must
install the full VisiBroker ORB on each machine that runs the server application. Server
applications or objects (that make use of the VisiBroker ORB) on the same server
machine share the VisiBroker ORB. Clients may be GUI front ends, applets, or client
programs. Server implementations contain the business logic on the middle tier.

Figure 3.2 Client and server programs deployed with VisiBroker ORBs

GUI frent | Client glfg“:am Client dava Appet | Client
end o VisiBrokar
VisiBroker WisiBroker ORB

ORB

ORB

| I nternatil ntransat

Object &
Object B
Objact ©

WisiBroker
J o

22 VisiBroker for Java Developer’'s Guide

Deploying applications with VisiBroker

VisiBroker Applications

Deploying applications

In order to deploy applications developed with VisiBroker, you must first set up a
runtime environment on the host where the application is to be executed and ensure
that the necessary support services are available on the local network.

The runtime environment required for applications developed with the Java includes
these components:

= Java Runtime Environment.

= VisiBroker Java packages archived in the vibjorb.jarfile, located in the lib
subdirectory where you installed VisiBroker.

= Availability of the support services required by the application.

A Java Runtime Environment must be installed on the host where the deployed
application is to execute, and the VisiBroker packages must be installed on the host
where the deployed application is to execute.

Environment variables

When you use the vibj executable, the environmental variables are automatically set up
for you.

If the deployed application is to use a Smart Agent (osagent) on a particular host, you
must set the OSAGENT ALTR environment variable before running the application. You can
use the vioroker.agent .addr property as a command-line argument to specify a
hostname or IP address. The table below lists the necessary command-line
arguments.

If the deployed application is to use a particular UDP port when communicating with a
Smart Agent, you must set the OSAGENT PCRT environment variable before running the
application.

You can use vbrcker.agent.port (Java) command-line argument to specify the UDP
port number.

For more information about environment variables, see the Borland VisiBroker
Installation Guide.

Support service availability

A Smart Agent must be executing somewhere on the network where the deployed
application is to be executed. Depending on the requirements of the application being
deployed, you may need to ensure that other VisiBroker runtime support services are
available, as well. These services include:

Support services Needed when:

Object Activation Daemon (cad) A deployed application is a server that implements object
which needs to be started on demand.

Interface Repository (irep) A deployed application uses either the dynamic skeleton
interface or dynamic implementation interface. See
Chapter 21, “Using Interface Repositories” for a description
of these interfaces.

GateKeeper A deployed application needs to execute in an environment
that uses firewalls for network security.

Chapter 3: Developing an example application with VisiBroker 23

Deploying applications with VisiBroker

Java

Using vbj

You can use the vioj command to start your application and enter command-line
arguments that control the behavior of your application.

vbj -Dvbrcker.agent .port=10000 <class>

Running the application

Before you attempt to run VisiBroker client programs or server implementations, you
must first start the Smart Agent on at least one host in your local network. The Smart
Agent is described in detail in “Starting the Smart Agent” on page 21.

Executing client Applications

A client application is one that uses VisiBroker ORB objects, but does not offer any
VisiBroker ORB objects of its own to other client applications.

A client may be started with the vioj command, or from within a Java-enabled web
browser.

The following table summarizes the command-line arguments that may be specified for
a Java client application.

Table3.1 Command-line arguments for Java client applications

Options Description

-DORBagentAddr=<hostrame | ip address> Specifies the hostname or IP address of the host
running the Smart Agent this client should use. If a
Smart Agent is not found at the specified address or if
this option is not specified, broadcast messages will be
used to locate a Smart Agent.

-DORBagentPort=<part ruoer> Specifies the port number of the Smart Agent. This
option is useful if multiple ORB domains are required. If
the port number is not specified, the default value is set
to 14000.

-DORBroufSize=Jdouffer size> Specifies the size of the intermediate buffer used by
VisiBroker for operation request processing. To improve
performance, the VisiBroker ORB does more complex
buffer management than in previous versions of
VisiBroker. The default size of send and receive buffers
is 4—4kb. If data sent or received is larger than the
default, new buffers will be allocated for each request/
reply. If your application frequently sends data larger
than 4kb and you wish to take advantage of buffer
management, you may use this system property to a
specify a larger number of bytes for a default buffer size.

-DORBtcpNaDel ay=<false |true> When set to true, all network connections will send data
immediately. The default is false, which allows a
network connection to send data in batches, as the
buffer fills.

-DORBoarmectianVex=<integer> Specifies the maximum number of connections allowed
for an object implementation when Qaid TSessionis
selected. If you do not specify a value, the default is
unlimited.

-DORBaamectianMexIdle=<integers Specifies the number of milliseconds which a network
connection can be idle before being shutdown by
VisiBroker. By default, this is set to 360 which means
that connections will never time-out. This option should
be set for Internet applications.

24 VisiBroker for Java Developer’'s Guide

Deploying applications with VisiBroker

Executing server applications in Java

A server application is one that offers one or more VisiBroker ORB objects to client
applications. A server application may be started with the vioj command or it may be
activated by the Object Activation Daemon (cad).

The following table summarizes the command-line arguments that may be specified for

a Java server application.

Table3.2 Command-line arguments for Java server applications

Options
-DOAiIAddr <hostnane|ip address>

-DORport <port_number>

-DORid <TPool | TSessian>

-DAthreadVex <integers>

-DAcamectiaMex <integers>>

-DOAcomectiaMexIdle <integers

Description

Specifies the hostname or IP address to be used for the
Object Adaptor. Use this option if your host has multiple
network interfaces and the BOA is associated with only one
of those interfaces. If no option is specified, the host's
default address is used.

Specifies the port number to be used by the object adapter
when listening for a new connection.

Specifies the thread policy to be used by the BOA. The
default is TPool unless you are in backward compatibility
mode; if you are in backward compatibility, the default is
TSession

Specifies the maximum number of threads allowed when
OAid TPool is selected. If you do not specify or you specify
0, this selects unlimited number of threads or, to be more
precise, a number of threads limited only by your system
resources.

Specifies the minimum number of threads available in the
thread pool. If you do not specify, the default is 0. You can
specify this only when qaid Trool is selected.

This specifies the time in seconds during which a thread can
exist without servicing any requests. Threads that idle
beyond the time specified can be returned to the system. By
default, this is set to 300.

Specifies the maximum number of connections allowed
when Qdid Tsessionis selected. If you do not specify, the
default is unlimited.

This specifies the time which a connection can idle without
any traffic. Connections that idle beyond this time can be
shutdown by VisiBroker. By default, this is set to 0, meaning
that connections will never automatically time-out. This
option should be set for Internet applications.

Chapter 3: Developing an example application with VisiBroker 25

26 VisiBroker for Java Developer’'s Guide

Options

Programmer tools for Java

This chapter describes the programmer tools offered by VisiBroker for Java. In this
section, command syntax consists of the commands, the arguments necessary to
execute them, and command-line options. Some commands take no arguments, but
their options are provided.

VisiBroker, version 6.5 and later, provides additional features in the VisiBroker for Java
tools. Using these features, users have greater flexibility in configuring their
applications, such as setting classpath and ORB properties. VisiBroker provides a
configuration file-based system that lets the user specify the configuration. In addition,
starting with VisiBroker version 6.5, all of these tools are invoked using launchers that
are natively built. Previously, UNIX-based launchers were script-based and provided
very limited functionality for configuration.

All VisiBroker for Java programmer's tools have both general and specific options. The
specific options for each tool are listed in the section for the tool. All the options in the
list are enabled by default and they are preceded by a hyphen (-). To turn-off the
default value, you can either prepend -no_or remove the hyphen. For example, to
display a “warning” if a #oragma is not recognized, the default value is:

wam unrecognized pregmes
To turn-off the default, use the following option:

-no warm unrecognized pragmas
The general options available to all programmer tools are provided in the following
section.

Chapter 4: Programmer tools for Java 27

idl2ir

General options

The following options are common to all programmer tools:

Table4.1 General programmer's tools options

Option Description

-VBIdehug Outputs VisiBroker for Java debugging information.

-J<java optian> Passes the java optiandirectly to the Java Virtual Machine.

-VBJversion Outputs the VisiBroker for Java version in use.

~VBJprop <pr =<value> Passes the specified property to VBJ executable.

-VBJjavavm <vm-names> Specifies the path, flags to the Java VM. If not specified, the
default value javais used.

-VBJclasspath <classpath> Specifies the classpath. The value entered here precedes the
aasspATH ENV variable.

-VBJaddJar <jarfile> <jarfile> to the CrLASSPATH before executing the VM. If no

absolute path is specified, the jarfile is assumed to be relative
to <launcher-locations/. . /1lib.

-VBJonfig <amnfig-file-name> The path to the configuration file to be used by the launcher. If
not specified, the default location is <install-dir>/bin/
vbj .amfig (or vbjc.cmfigfor launcher viojo).

-help|-h|-?|-usace Prints usage information.

idI2ir

This tool allows you to populate an interface repository (IR) with objects defined in an
Interface Definition Language (IDL) source file. It is executed using the id12ir
command.

Syntax idl2ir [cptions] {filename}
Example idl2ir -irep my repository -replace java examples/bark/Bank.idl

Description The idl2ir command takes an IDL file as input, binds itself to an interface repository
server and populates the repository with the IDL constructs contained in filerare. If the
repository already contains an item with the same name as an item in the IDL file, the
old item will be modified.

Keywords The keyword contains both the options listed below and the IDL input files to be
processed.

Options The following options are available for idl2ir.

Table 4.2 idl2ir options

Option Description

-D, -defire foo[=har] Defines a preprocessor macro foo, optionally with a value
bar.

-I, -include <dirs> Specifies an additional directory for #include searching.

-P, -1o line directives Suppresses the generation of line number information.
The default is off.

-H, -list includes Prints the full paths of included files on the standard error
output. The default is off.

-U, -undefine <foo> Undefines a preprocessor macro foo.

-C, -retain coments Retain comments in preprocessed output. The default is
off.

-[o 1idl strict Specifies a strict OMG standard interpretation of IDL

source. The default is off.

- [no Jbuiltin (TypeCode|Principal) Create built-in Type ::TypeCodeor : :Principal. The default
is o

28 VisiBroker for Java Developer’'s Guide

Table4.2 idI2ir options (continued)
Option

- [no Jwerm unrecognized pragmes
- o Jlack compat mepping

- [0 Jpreprocess
- [no]preprocess anly

-[mo Jwem all
-irep <ivep name>
_(EP

-replace

filel [file2]...
-h, -help, -usage, -?

ir2idl

Description

Displays a warning that appears if a #pragma is not
recognized. The default is on

Specifies the use of mapping that is compatible with
VisiBroker 3.x.

Preprocess the input file before parsing. The default is an.

Stop parsing the input file after preprocessing. The default
is off.

Turn all warnings on/off simultaneously. The default is o
Specifies the name of the interface repository.
Applies a deep (versus shallow) merge. The default is off.

Replaces entire repository instead of merging. The default
is off.

One or more files to process, or “~” for stdin.
Prints help information.

ir2idl

This tool allows you to create an Interface Definition Language (IDL) source file with
objects from an interface repository. It is executed with the ir2idl command.

The ir2idl command binds to the IR and prints the contents in IDL format.

Syntax ir2idl [options] filename
Example ir2idl -irep my repository -o my file
Description
Keywords The keyword contains both the options listed below.
Options The following options are available for ir2idl.
Table4.3 Options for ir2idl
Option Description

-irep <ivep name>
-0 <file>
-strict

Specifies the name of the interface repository.
Specifies the name of the output file, or “~" for stdout.
Specifies strict adherence to OMG-standard code generation. The

default is an. The compiler will complain upon occurrences of Borland-
proprietary syntax extensions in input IDL.

-version

Displays or prints out the version of Borland VisiBroker that you are

currently running.

-h, -help, -usage, -?

Prints help information.

idI2java

This tool generates Java source code from an IDL source file. It is executed using the

idl2java command.
Syntax idl2java [optians] {filename}
Example idl2java -no tie Bark.idl
Description

The idl2java command, a Java-based preprocessor, compiles an IDL source file and

creates a directory structure containing the Java mappings for the IDL declarations.
Typically, one IDL file will be mapped to many Java files because Java allows only one
public interface or class per file. IDL file names must end with the .idl extension.

Keywords
processed.

The keyword contains both the options listed below and the IDL source file(s) to be

Chapter 4: Programmer tools for Java 29

idl2java

Options The following options are available for idI2java:
Table4.4 idI2java options
Option

-D, -define foo[=bar]
-I, -include <dirs

-P, -no line directives
-H, -list includes
-conpilerflags

-copiler <full name>
-U, -undefine fco
- o Jbuiltin (TypeCode |Principal)

- [no] preprocess
- o Jpreprocess anly

-[mo Jwem all
filel [file2]...
- o Joopy local values

-sealed <pkg> <dest pko>

-0 _classloader aware
-backaompat carpile

-[mo]idl strict
- [no Jwerm unrecognized pragmes

- o Jlack campat mepping

- [no]exanples

-gen _included files
-list files

- [no 1doj_wrapper
-root dir <path>
- [no 1servant
-tie

- [no Jwerm missing define

30 VisiBroker for Java Developer’s Guide

Description

Defines a preprocessor macro foo, optionally with a value
kar.

Specifies the full or relative path to the directory for
#include files. Used in searching for include files.

Suppresses the generation of line number information in
the generated code. The default is off.

Prints the full paths of included files on the standard error
output.

Specifies the Java compiler flags. FFirst “-" is escaped,
comma separated.

Specify full name of Java Compiler class name.
Undefines a preprocessor macro foo.

Create built-in Type ::TypeCode or ::Principal. The default
is

Preprocess the input file before parsing. The default is an

Stop parsing the input file after preprocessing. The default
is off.

Turn all warnings on/off simultaneously. The default is off.
One or more files to process, or “~” for stdin.

Copy values when making colocated calls on CORBA
methods. The default is off.

Mark this package as sealed. Code will be generated in
dest pkg or default location.

Generate classloader aware Java code. The default is an.

Use the deprecated compile option of jdk1.4.1. The
default is off.

Specifies strict adherence to OMG standard interpretation
of idl source. The default is off.

Displays a warning that appears if a #pragma is not
recognized. The default is aon.

Specifies the use of IDL mapping that is compatible with
VisiBroker 3.x caffeine compiles.

Specifies BOA-compatible code generation. The default is
off.

Suppresses the generation of comments in the code. The
default is on

Suppresses the generation of the _example classes. The
default is off.

Generates code for #included files. The default is off.

Lists files written during code generation. The default is
off.

Generates support for object wrappers. The default is off.
Specifies the directory in which the generated files reside.
Generates servant (server-side) code. The default is on.
Generates _tie classes. The default is on

Warns if any forward declared interfaces were not defined.
The default is o

Suppresses the generation ofbind() methods in the
generated Helper class. The default is off.

When set to on, automatically compiles the Java files. The
default is off.

Specifies that marshalling use DSI/DII model. The default
is off.

javazidl

javazidl

Table4.4 idI2java options (continued)

Option Description

-idl2package <IDL name> <gkg> Overrides default package for a given IDL container type.

- [mo Jirwvcke hardler Generates invocation handler class for EJB. Default is off.

- o Jnarrow conpliance Generated code for narrow is compliant (versus 3.x
compatible). The default is an

- [no] Qbject methods Generate all methods on Objects. The default is an

-package <pka> Specifies the root package for generated code.

-stream marshal Specifies that marshaling use the stream model. The
default is on.

-strict Specifies strict adherence to OMG standard for code
generation. The default is off.

-version Displays the software version number of Borland
VisiBroker.

-trep keyword <kwd> <replacerent> Specifies the keyword to avoid and designates its
replacement.

-h, -help, -usage, -? Prints help information.

Note
Syntax
Example

Description

Keywords

This command generates an IDL from a Java class file (in Java byte code). You can
enter one or more Java classes (in byte codes). If you enter more than one class name,
make sure you include spaces in between the class names.

If you use a class that extends org.ang.CORBA. IDLEntity in some Java remote interface
definition, it must have the following:

= an IDL file that contains the IDL definition for that type because the
org.arg.QORBA. IDLEntity interface is a signature interface that marks all IDL data
types mapped to Java.

= all related (supporting) classes according to the CORBA 2.6 IDL2Java Specification
from the Object Management Group (OMG).

If you use a class that extends org.ang.QORRA. IDLEntity in some Java remote interface
definition, use the -import <IDL filess directive in the java2idl tool's command line.

For more information, refer to the CORBA 2.6 IDL2Java Specification located at
http://www.ang.org/.
To use this command, you must have a virtual machine supporting JDK 1.3 or later.
java2idl [cptions] {filename}
Jjava2idl -o final.idl Accomt Client Server
Use this command when you want to generate an IDL from your Java byte code. You
might want to use this when you have existing Java byte code and want to create an

IDL file from it so it can be used with some other programming language like C++,
COBOL, or Smalltalk.

Using the option “—0” as shown in the above example, the three Java byte code files
(Account, Client, Server) are output to a file, firal.idl By default, the output is
displayed on the screen.

The keyword contains both the options listed below and the Java byte code file(s) to be
processed.

Chapter 4: Programmer tools for Java 31

javaz2iiop

Options The following options are available for java2idl.
Table45 java2idl options

Option Description

-D, -define foo[=har] Defines a preprocessor macro foo, optionally with a value
bar.

-I, -include <dirs Specifies the full or relative path to the directory for #include
files. Used in searching for include files.

-P, -ro line directives Suppresses the generation of line number information in the
generated code. The default is off.

-H, -list includes Prints the full paths of included files on the standard error
output.

-U, -undefine foo Undefines a preprocessor macro fco.

-[o]idl strict Specifies strict adherence to OMG standard interpretation of
idl source. The default is off.

- o Jwarm unrecognized pragres Displays a warning that appears if a #pragma is not
recognized. The default is an

- [no Jback conpat mepping Specifies the use of mapping that is compatible with
VisiBroker 3.x caffeine compile.

-exported <pkg> The type definitions in the specified package will be exported.

- [mo Jexport all Exports the type definitions in all packages. The default is
off.

-inport <I0L file names> Loads extra IDL definitions.

-imported <pkg> <ITL file name> The type definitions in the specified package should be
considered imported from the specified IDL file and should
not be code generated

-o <file> Specifies the name of an output file, or “—” for stdout.

-strict Specifies strict adherence to OMG standard for code
generation. The default is off.

classl [class2] ... One or more Java Classes to process.

-version Displays the software version nhumber of Borland VisiBroker.

-h, -help, -usage, -? Prints help information.

javaziiop
This command allows you to use the Java language to define IDL interfaces instead of
using IDL. You can enter one or more Java class names (in Java byte code). If you
enter more than one class name, make sure you include spaces in between the class
names. Use fully scoped class names.
Note To use this command, you must have a Java Virtual Machine supporting JDK 1.3 or
later.
If you use a class that extends org.ang.CORBA. IDLEntity in some Java remote interface
definition, it must have the following:
= an IDL file that contains the IDL definition for that type because the
org.arg.QORBA. IDLEntity interface is a signature interface that marks all IDL data
types mapped to Java.
= all related (supporting) classes according to the CORBA 2.6 IDL2Java Specification
from the Object Management Group (OMG).
If you use a class that extends org.ang.QORRA. IDLEntity in some Java remote interface
definition, use the -import <IDL files> directive in the javaziiop tool's command line.
For more information, refer to the CORBA 2.6 IDL2Java Specification located at
http: / /www.arg.org/.
Syntax jave2iicp [optins] {class name}

32 VisiBroker for Java Developer’s Guide

Example

Description

Note

Keywords

Options

javaz2iiop

java2iicp -no tie Accont Client Server

Use java2iicpif you have existing Java byte code that you wish to adapt to use
distributed objects or if you do not want to write IDL. By using java2iicp, you can
generate the necessary container classes, client stubs, and server skeletons from Java

byte code.

The java2iicp compiler does not support overloaded methods on CORBA interfaces.

The keyword contains both the options listed below and the Java byte code file(s) to be

processed.

The following options are available for java2iicp.

Table4.6 javaZiiop options

Option
-D, define foo[=bar]

-I, -include <dir>
-P, -mo line directives
-H, -list includes

-U, -undefine fco
-[mo]idl strict

- [no Jwerm unrecognized pregmes
- [no_Jback corpat mepping

-exported <pkg>

-[mo Jexport all

-import <IOL file name>
-imported <pkg> <idl file name>
- [no Jkca

- o Jcaments
- [mo Jexanples

-gen included files
-list files

- [no_]doj_wrapper

-root dir <path>

- [no]servant

-tie

- [mo_Iwerm missing define
- [no bind

-[no Jcarpile

-conpiler

-acapilerflags "\-flag,argl, .]

Description

Defines a preprocessor macro foo, optionally with a value
bar.

Specifies the full or relative path to the directory for
#include files. Used in searching for include files.

Suppresses the generation of line number information in
the generated code. The default is off.

Prints the full paths of included files on the standard error
output.

Undefines a preprocessor macro foo.

Specifies strict adherence to OMG standard interpretation
of idl source. The default is off.

Displays a warning that appears if a #pragma is not
recognized. The default is on.

Specifies the use of mapping that is compatible with
VisiBroker 3.x. The default is off.

Specifies the name of an exported package.
Exports all packages. The default is off.
Loads extra IDL definitions.

Specifies the name of an imported package.

Specifies BOA-compatible code generation. The default is
off.

Suppresses the generation of comments in the code. The
default is on.

Suppresses the generation of the _exanple classes. The
default is off.

Generates code for #included files. The default is off.

Lists files written during code generation. The default is
off.

Generates support for object wrappers. The default is off.
Specifies the directory in which the generated files reside.
Generates servant (server-side) code. The default is an
Generates _tieclasses. The default is on

Warns if any forward declared file names were never
defined. The default is on

Suppresses the generation of bind() methods in the
generated Helper class. The default is on

Automatically generates Java files. When set to on, also
automatically compiles the Java files. The default is off.

Specifies the Java compiler to be used. This option is
ignored if the -corpile option is not set.

Specifies the Java compiler flags to be passed to the Java
compiler. First “~" is escaped, comma separated.

Chapter 4: Programmer tools for Java 33

vbj

vDbj

Table4.6 java2iiop options (continued)

Option

-C, -retain caments

- o Jbuiltin (TypeCode|Principal)

- [o Jpreprocess
- [no]preprocess anly

-[o Jwem all
- [mo Joopy local values

-no _classloader aware
-backaompat carpile

- [no lidlentity array mepping

classl [class2] ...

~dynamic mershal

-idl2package <IDL name> <pkg>
- o Jinvcke handler

- [no Inarrow compliance

- [no_]bject methods

-package <pkg>

-sealed <pkg> <destination pkg>

-stream marshal
-strict

-version

-mep keyword <kwd> <replacement>

-h, -help, -usage, -?

Description

Retain comments in preprocessed output. The default is
off.

Create built-in Type ::TypeGode Or ::Principal. The default
is o
Preprocess the input file before parsing. The default is an.

Stop parsing the input file after preprocessing. The default
is off.

Turn all warnings on/off simultaneously. The default is off.

Copy values when making colocated calls on CORBA
methods. The default is off.

Generate classloader aware Java code. The default is an.

Use the deprecated compile option of jdk1.4.1. The
default is off.

Map array of IDLEntity to baxedIDLin boxedRMI. The default
is off.

One or more Java classes to process.

Specifies that marshalling use DSI/DII model. The default
is off.

Overrides default package for a given IDL container type.
Generates invocation handler class for EJB. Default is on

Generated code is compliant (versus 3.x compatible). the
default is on.

Generates all methods defined in java.lang.Qoject
methods, such as string and equals. The default is cn.

Specifies the root package for generated code.

Generates stubs and skeletons for remote interfaces in
the specified package to the arg.arg.stuband the
destination package respectively.

Specifies that marshaling use the stream model. The
default is on.

Specifies strict adherence to OMG standard for code
generation. The default is off.

Displays the software version number of Borland
VisiBroker.

Specifies the keyword to avoid and designates its
replacement.

Prints help information.

This command starts the local Java interpreter.
vbj [options] [argurents nomelly sent to java W] {class} [argl ar2 ...]

Where:

Argument Description

{class} Specifies the name of the class to be executed.
largl argR ...] Specific arguments to be passed to the class.

34 VisiBroker for Java Developer’s Guide

Example
Description

Code sample 4.1 vbj Server

vbj

Java applications have certain limitations not faced by applications written in other
languages. The vibj command provides options to work around some of these
limitations, and it is the preferred method to launch Borland VisiBroker applications.
The vibj command performs the following actions:

= Passes CLASSPATH and arguments to the Java VM according to command line
options and configuration file definition.

= Customized launching behavior for each application using customized configuration

files.

= Embedded JVM within the same process as the launcher.

= Runs application as daemon in Windows platforms only.

The following options are available for vij.

Table4.7 vbjoptions
Argument

-debug, -VBIdebug

-h, -help, -usage, -?
-version

-install <server-rame>
-renoVe <Server-rare>
-Javahore <jvm-directory>
-classicvm

-hotspotvm/ -clientvm
-servervin

-classpath

-classpath/a

-classpath/p

-classpath/r

-VBJclasspath

-VBJaddJar

-veriose

-VBRJomnfig <config-file-name>

~Jpdal: [{paused|ruming}]
[, address=[<host>:] <port#>]]

-Javaand

Description

Turns on launcher debug output.
Prints launcher command help.

Displays or prints out the version of Borland VisiBroker for Java
that you are currently running.

Installs a Windows NT/2000 service.
Removes a Windows NT/2000 service.
The installation directory of the Java VM.
Selects the VM type to be run. Note that you can also use the -
J flag to pass VM type. Fro example:

vibj -J-server Server
Modifies the classpath. The value of this argument is either
appended to (/a), prepended to (/p), or completely replaces (/r)
any existing classpath setting in the environment. Only the last
occurrence of the classpath family argument is honored. Note

that -vRIclasspathis equivalent to -classpath/pand -VBRJaddJar ir
equivalent to -classpath/a.

Turns on verbose output from the Java VM.
Uses an alternate configuration file and replaces the default
configuration file.
Turns on JPDA debug. For example:

-jpda: ruming, address=23456
Starts the JVM with JPDA turned on. A JPDA debugger
can then attach to this application on port 23456 to
debug the application. Also ensure that in the launcher's
configuration file (for example <install-dir>/bin/
vbj.config) the following line is present:

jpda ruming, address=23456
Prints an equivalent Java command. This is useful when bj

launcher is not required and the application is executed
through java launcher.

Chapter 4: Programmer tools for Java 35

vbjc

vbjc

This command is used to compile Java source code that can import VisiBroker classes.
When called, it:

Syntax

Example

Sets CLASSPATH, arguments to be passed to Java VM according to command line
options and configuration file definition.

Adds the VisiBroker-standard JAR files into the CLASSPATH.
Launches javac main class: com.sun.tools. javac.Main

vbjc [argurments normelly passed to javac]

vibjc Server.java

The vbjccommand supports the command line options described in the following table.

Table4.8 vbjc options

Argument Description

-VBIGEoug Displays or prints out the VisiBroker for Java debugging
information.

-VBJversion Displays or prints out the version of Borland VisiBroker for Java
that you are currently running.

-VBJjavavm <vimane> Specifies the path to the Java Virtual Machine to be used.
Default is java.

-VBJclasspath <classpath> Specifies the classpath. Precedes CLASSPATH environment
variable.

-VBJaddJar <jarfile> Appends <install-dir>/lib/<jarfile> to the cLASSPATH before

executing the VM. If no absolute path is specified, the jarfile is
assumed to be relative to <laincher-locations/. . /1lib.

-VBJanfig <amfig-file-name> The path to the configuration file to be used by the launcher. If

not specified, the default location is <install-dir>/bin/
Vbj .anfig|vbjc.amfig

-help|-h|-?|-usage Prints usage information.
-VBJcarpiler <class-names> Overwrites the default javac main class.

Specifying the classpath

The following sources are merged together in the following order:

1

o g B W N

8
9

JAR and ZIP files in the patches directory (SVBROKERDIR/1ib/patches/) (Note that the
patches directory is not automatically created under the SVBROKERDIR/1ib/ directory.
It has to be created by the user explicitly.)

The classpath specified in -VBIclasspath, -clasgpath/p, or -classpath/r

The sCrasspATH exported in the environment (if -classpath/ris not specified)
The classpath specified in -classpath/a

The default JAR files required by the launcher

JAR files added using VRJaddJar and assumed to be located in the
<launcher locatians/../libdirectory if no absolute path is specified

Classpath added using addpath directive in the configuration file
JAR files added using addjars directive in the configuration file

The current directory

The merged classpath is passed to the Java Virtual Machine using -Djava.class.path

36 VisiBroker for Java Developer’s Guide

Specifying the JVM

Specifying the JVM

By default the JVM is located as follows:

1 Searching the directories specified in the PATH.

2 Using the information specified through javahare directive in the configuration file
(the default configuration file for vioj is viboj .config).

The above procedure can be overridden using the -VBJjavavmor -javahare (only
supported in vij) option. With -VBTjavavmeither the name of the VM can be specified or
the full path to the VM can be specified. The option -javahore has same semantics as
the javahore configuration file directive. Note that if no VM is found using the -VBJjavavm
or -javahore options, no further search is carried out to locate the default JVM and
program terminates with an error.

idI2wsj

Option Description

-encoding wsi anly Generate specific WS—I encodings only. Defaults to OFF
-encading scap anly - Generate specific SOAP encodings only. Defaults to OFF

-wedl file name Name of the generated WSDL file. Defaults to the name of IDL

-wedl nemespace Namespace of the generated WSDL. Defaults to the name of the
IDL file

-gen java bridee Generate VisiBroker for Java bridge code. Defaults to OFF.

-root dir Directory in which generated files should reside

Chapter 4: Programmer tools for Java 37

38 VisiBroker for Java Developer’s Guide

Names

IDL to Java mapping

This section describes the basics of the VisiBroker for Java current IDL-to-Java
language mapping, as implemented by the id12java compiler. VisiBroker for Java
conforms with the OMG IDL/Java Language Mapping Specification.

See the latest version of the OMG IDL/Java Language Mapping Specification for
complete information about the following:

= Mapping pseudo-objects to Java
= Server-side mapping

= Java ORB portability interfaces

In general, IDL names and identifiers are mapped to Java names and identifiers with
no change.

If a name collision is generated in the mapped Java code, the name collision is
resolved by prepending an underscore (_) to the mapped name.

In addition, because of the nature of the Java language, a single IDL construct may be
mapped to several (differently named) Java constructs. The “additional” names are
constructed by appending a descriptive suffix. For example, the IDL interface
AccountMenager is mapped to the Java interface AccountMenager and additional Java

classes AccontManagerQperations, AccountManagertelper, and AccomntManagertolder.

In the exceptional cases that the “additional” names may conflict with other mapped
IDL names, the resolution rule described above is applied to the other mapped IDL
names. In other words, the naming and use of required “additional” names takes
precedence.

For example, an interface whose name is fodHelper or fodHolder is mapped to
_fodlelperor _fodHolder respectively, regardless of whether an interface named foo
exists. The helper and holder classes for interface fodHelper are named
_fodielpertielper and _fodHelpertiolder.

IDL names that would normally be mapped unchanged to Java identifiers that conflict
with Java reserved words will have the collision rule applied.

Chapter 5: IDL to Java mapping 39

Reserved names

Reserved names

The mapping reserves the use of several names for its own purposes. The use of any
of these names for a user-defined IDL type or interface (assuming it is also a legal IDL
name) will result in the mapped name having an underscore (_) prepended. Reserved
names are as follows:

= The Java class <typesHelper, where <type>is the name of an IDL user-defined type.

= The Java class <typesHolder, where <type>is the name of an IDL user-defined type
(with certain exceptions such as typedef aliases).

= The Java classes <oasiaJavaTypesHolder, where <oasiaJavaType>is one of the Java
primitive data types that is used by one of the IDL basic data types.

= The nested scope Java package name <interfacesPackage, where <interfaces>is the
name of an IDL interface.

= The Java classes <interface> Qperations, <interfaces> POA and <interface>ROATie,
when <interface> is the name of an IDL interface type.

Reserved words

Modules

The mapping reserves the use of several words for its own purposes. The use of any of
these words for a user-defined IDL type or interface (assuming it is also a legal IDL
name) will result in the mapped words having an underscore () prepended. The
reserved keywords in the Java language are as follows:

abstract abstractBase boolean break
byte case catch char
class omst amtirue default
do double else exterds
false final finally float

for goto if implarents
import instanceof int interface
local lag native new

mill package private protected
public retum short static
Super switch synchranized this
throw throws transient true

try void volatile while

An IDL module is mapped to a Java package with the same name. All IDL type
declarations within the module are mapped to corresponding Java class or interface
declarations within the generated package.

IDL declarations not enclosed in any modules are mapped into the (unnamed) Java
global scope.

The following code sample shows the Java code generated for a type declared within
an IDL module.

/* From Exanple.idl: */
module Exanple { };
// Gererated java
package Exanple;

40 VisiBroker for Java Developer’s Guide

Basic types

Basic types

The following table shows how the defined IDL types map to basic Java types.

Table5.1 Basic type mappings62

IDL type
boolean

char

wchar

octet

string
wstring

short
unsigned short
lag

wsigned lag
laglag
wsigned laglayg
flcat

double

Java type
boolean

char

char

byte
java.larg.String
java.larng.String
short

short

int

int

log

log

float

dauble

When there is a potential mismatch between an IDL type and its mapped Java type, a
standard CORBA exception can be raised. For the most part, exceptions are in two

categories,

= Range of the Java type is larger than the IDL type. For example, Java chars are a
superset of IDL chars.

= Because there is no support in Java for unsigned types, the developer is
responsible for ensuring that large unsigned IDL type values are handled correctly
as negative integers in Java.

Additional details are described in the following sections.

IDL type extensions

This section summarizes the VisiBroker for Java support for IDL type extensions. The
first table provides a summary for quick look-ups. This is followed by the IDL
extensions for new types table summarizing support for new types.

Table5.2 Summary of supported IDL extensions

Type

laglag

wsigned laglayg
lang dauble

wchar

wstring

fixed

Supported in Borland VisiBroker

yes
yes
not
yes?
yes?
not

VisiBroker for Java will support any future release of OMG standard implementation.
2UNICODE is used “on the wire.”

Chapter 5: IDL to Java mapping 41

Basic types

Table5.3 IDL extensions for new types

New types Description

laglayg 64-bit signed 2's complements integers

wsigned langlang 64-bit unsigned 2's complements integers

lag dodole IEEE Standard 754-1985 double extended floating point
wehar Wide characters

wstring Wide strings

fixed Fixed-point decimal arithmetic (31 significant digits)
Holder classes

Holder classes support OUT and INOUT parameter passing modes and are available for
all the basic IDL data types in the org.ong.CORRA package. Holder classes are generated
for all named user-defined types except those defined by typedefs. For more
information, see the Java API Reference, VisiBroker APIls, org.omg.CORBA package
section.

For user-defined IDL types, the holder class name is constructed by appending Holder
to the mapped Java name of the type.

For the basic IDL data types, the holder class name is the Java type name (with its
initial letter capitalized) to which the data type is mapped with an appended Holder, for
example, IntHolder.

Each holder class has a constructor from an instance, a default constructor, and has a
public instance member, value, which is the typed value. The default constructor sets
the value field to the default value for the type as defined by the Java language:

= falsefor boolean

= rull for values

= Ofor numeric and chartypes
= rull for strings

= mull for object references

To support portable stubs and skeletons, Holder classes for user-defined types also
implement the org.arng.QORBA. portable. Streamable interface.

The holder classes for the basic types are defined in the following code sample. They
are in the org.arg.CORBA package.

// Java
package org.ary.ORBA;
final public class ShortHolder inplements Streameble {
public short value;
public ShortHolder() {}
public ShortHolder (short initial) {
value = initial;

}

...//implenentation of the streameble interface

fimal public class IntHolder implements Streameble {
public int value;
public IntHolder() {}
pdolic IntHolder (int initial) {
value = initial;
}

...//implerentation of the streameble interface

42 VisiBroker for Java Developer’s Guide

Basic types

firal public class LangHolder inplenents Streaneble {
public lag value;
public Iongiolder() {}
public LangHolder (lag initial) {
value = initial;
}

...//implementation of the streameble interface

final public class ByteHolder inplements Streameble {
public byte value;
public ByteHolder() {}
public ByteHolder (oyte initial) {
value = initial;

...//implenentation of the streameble interface

fimal public class FloatHolder implements Streamsble {
public float value;
public FloatHolder() {}
pblic FleatHolder (float initial) {
value = initial;

...//implenentation of the streameble interface

fimal public class DodbleHolder inplenents Streaneble {
public double value;
public DoubleHolder () {}
public DoubleHolder (Gouble initial) {
value = initial;

...//implementation of the streameble interface

final public class Chartiolder inplements Streaneble {
public char value;
public Charfiolder() {}
public Ghartolder (char initial) {
value = initial;
}

...//implenentation of the streameble interface

final public class BoolearHolder implements Streameble {
public boolean value;
public BooleanHolder() {}
public BooleanHolder (boolean initial) {
value = initial;
}
...//implenentation of the streameble interface
firal public class StringHolder inplements Streaneble {
public java.larng.String value;
public StringHolder () {}
public StringHolder (java.lang.String initial) {
value = initial;

...//implementation of the streameble interface

Chapter 5: IDL to Java mapping 43

Basic types

firal public class QojectHolder inplements Streaneble {
public org.ong.CORBA.doject value;
public QojectHolder() {}
public GojectHolder (org.ang.CORBA.Cbject initial) {
value = initial;
}

...//implementation of the streameble interface

final public class ValueRaseHolder inplements Streameble {
public java.io.Serializable value;
public ValueBaseHolder () {}
public ValueBaseHolder (java.io.Serializable initial) {
value = initial;

...//implenentation of the streameble interface

fimal public class AyHolder implements Streameble {
public Ay value;
public Aytolder() {}
public AnyHolder (Any initial) {
value = initial;

...//implenentation of the streameble interface

fimal public class TypeCtodeHolder implenents Streaneble {
public TypeCode value;
public typeCodetolder () {}
public TypeCodeHolder (TypeCode initial) {
value = initial;

...//implementation of the streameble interface

final public class PrincipalHolder inplements Streameble {
public Principal value;
public Principaltolder() {}
pdolic PrincipalHolder (Principal initial) {
value = initial;
}

...//implenentation of the streameble interface

The follwing code sample shows the Holder class for a user-defined type <foos.

// Java
final public class <foosHolder
implements org.omy.QORBA.partable. Streameble {
public <foos value;
public <foosHolder() {}
public <foosHolder (<foos> initial) {}
public void _read(org.ang.QORBA. portable. IrputStream 1)
{..-}
public void _write (org.arg.QORBA. portable. QutputStream o)
I}Jubli org.arg. QORBA. TypeCode type() {...}

44 VisiBroker for Java Developer’s Guide

Note

Basic types

Java null

The Java i1l may only be used to represent null CORBA object references and
valuetypes (including recursive valuetypes). For example, a zero length string, rather
than ruill must be used to represent the empty string. This is also true for arrays and
any constructed type, except for valuetypes. If you attempt to pass a rull for a
structure, it will raise a NullPointerException.

Boolean

The IDL type booleanis mapped to the Java type boolean. The IDL constants TRUE and
FALSE are mapped to the Java constants true and false

Char

IDL characters are 8-bit quantities representing elements of a character set while Java
characters are 16-bit unsigned quantities representing Unicode characters. To enforce
type-safety, the Java CORBA runtime asserts range validity of all Java chars mapped
from IDL chars when parameters are marshaled during method invocation. If the char
falls outside the range defined by the character set, a CCRBA: :DATA CONVERSICN exception
is thrown.

The IDL wchar maps to the Java chartype.

Octet

The IDL type octet, an 8-bit quantity, is mapped to the Java type byte.

String

The IDL type string, both bounded and unbounded variants, is mapped to the Java
typejava.lang.String Range checking for characters in the string as well as bounds
checking of the string are done at marshal time.

WString

The IDL type wstring, used to represent Unicode strings, is mapped to the Java
typejava.lang.String Bounds checking of the string is done at marshal time.

Integer types

IDL short and unsigned short map to Java type short. IDL laygand unsigned langmap
to Java type int.

Because there is no support in Java for unsigned types, the developer is responsible
for ensuring that negative integers in Java are handled correctly as large unsigned
values.

Floating point types

The IDL floating point types flcat and double map to a Java class containing the
corresponding data type.

Chapter 5: IDL to Java mapping 45

Helper classes

Helper classes

All user-defined IDL types have an additional “helper” Java class with the suffix Helper
appended to the type name generated. Several static methods needed to manipulate
the type are supplied.

= Anyinsert and extract operations for the type

= Getting the repository id

= Getting the typecode

= Reading and writing the type from and to a stream

For any user-defined IDL type, <typename>, the following code sample is the Java code
generated for the type. The helper class for a mapped IDL interface has a narrow
operation defined for them.

// gererated Java helper
pblic class <typeramesHelper {

public static void insert (org.ong.CORBA.Ay a, <typenames> t) ;

public static <typename> extract (org.ang.CORRA. Ay a) ;

public static org.ang.CORRA. TypeCode type() ;

public static String id();

public static <typenames read(org.arg.CORBA.portable. TrputStream istream) ;

{...
public static void write(
org.ang.CORBA. portable. Qutput Stream ostream, <typename> value)

(..
// aily for interface helpers
public static <typenames narrow(org.org.CORRA.(oject doj) ;

The following code sample shows the mapping of a named typeto Java helper class.

// TOL - named type

struct st {log f1, String £2};

// gererated Java

pblic class stHelper {
public static void insert (org.arg.CORBA.ANy arly,

sts) {...}
public static st extract (org.ang.CORBA.Ay &) {...}
public static org.amy.CORBA. TypeCode type() {...}
public static String id() {...}
pblic static st read(org.arg.CORBA. TrputStream is) {...}
public static void write (org.ong. CORBA.QutputStream os,
st s) {...}

The following code sample shows mapping of a typedef sequence to Java helper class.

// IDL - typedef sequence
typedef sequence <lang> IntSeq;
// gererated Java helper
pblic class IntSegielper {
public static void insert (org.ong.CCORBA.Any ary,
int[] seq);
pblic static int[] extract (org.ang.CORBAAY &) {...}
public static org.amy.CORBA. TypeCode type () {. ..}
public static String id(){...}
public static int[] read(
(o) org.ang.CORBA. portable. TrputStream is)

public‘:.static void write (
org.arg.ORBA. portable. OutputStream os,
int (] seq)

46 VisiBroker for Java Developer’s Guide

Constants

Constants
Constants are mapped depending upon the scope in which they appear.
Constants within an interface
Constants declared within an IDL interface are mapped to public static final fields in
the Java interface Operatians class corresponding to the IDL interface.
The following code sample shows the mapping of an IDL constant within a module to a
Java class.
/* From Exanple.idl: */
nodile Exanple
amst lag alongerOne = -321;
}i
// Foo.java
package Exanple;
public interface Foo extends ocom.borland.viorcker.CORBA.Qoject,
Exanple. FocOperations,
org.ang. QORBA. portable. IDLENtity {
}
// FodOperations.java
package Exanple;
pblic interface FooOperatians {
public final static int alagerOne = (int)-321;
}
Constants NOT within an interface
Constants declared within an IDL module are mapped to a public interface with the
same name as the constant and containing a public static final field named value
This field holds the constant's value.
Note The Java compiler normally inlines the value when the class is used in other Java

code.

THe following code sample shows the mapping of an IDL constant within a module to a
Java class.

/* From Exanple.idl: */
modile Exanple {

amst lag alagne = -123;
/} Gererated java
package Exanple;

pwblic interface alagxe {
pdblic final static int value = (int) -123;
}

Chapter 5: IDL to Java mapping 47

Constructed types

Constructed types

IDL constructed types include erum struct, unian, sequence, and array. The types
sequence and array are both mapped to the Java arraytype. The IDL constructed types
erum, struct, and unicn are mapped to a Java class that implements the semantics of
the IDL type. The Java class generated will have the same name as the original IDL
type.

Enum

An IDL ernmis mapped to a Java final class with the same name as the enum type
which declares a value method, two static data members per label, an integer
conversion method, and a private constructor. The following code sample is an
example of an IDL erummapped to a Java final class:

// Gererated java
pblic final class <erum names> {
//ae pair for each label in the ermm
pdblic static final int <label> = <value>;
pablic static final <erum name> <label> =
new <erum name> (_<labels>) ;

pdolic int value() {...}
//get erum with specified value
public static <erum name> from int (int value) ;
//constructor
protected <erum remes (int) {...}
}

One of the members is a public static final , which has the same name as the IDL
erumlabel. The other has an underscore (L) prepended and is used in switch
statements.

The value method returns the integer value. Values are assigned sequentially starting
with 0. If the ermmhas a label named value, there is no conflict with the value () method
in Java.

There will be only one instance of an erum Since there is only one instance, pointer
equality tests will work correctly; that is, the default java.lang.Qoject implementation of
equals () and hash() will automatically work correctly for an enumeration's singleton
object.

The Java class for the erumhas an additional method, from int (), which returns the
ernmwith the specified value.

The holder class for the erumis also generated. Its name is the enumeration's mapped
Java classname with Holder appended to it as follows:

pdblic class <erum namesHolder implements
org.ang. CORBA. portable. Streaneble {
pblic <ermm name> value;
pblic <erum nemesHolder () {}
pblic <erum remesHolder (<erum names> initial) (...}
pablic void _read (org.ang.CORBA.portable. TrputStream 1)

[}
pblic void write (org.omg.QORBA. portable. QutjputStream o)
(..}

pblic org.ang.CORBA. TypeCode type() {...}

48 VisiBroker for Java Developer’s Guide

Constructed types

The following code sample shows the IDL mapped to Java for erum
// DL

module Exanple {
erum Eunype { first, secad, third };
}i
// gererated Java
public fimal class Eundlype
implements org.omg.QORBA.portable. IDLENtity
pblic static final int first = 0;
pblic static final int secad = 1;
pblic static final int third = 2;
public static final Eunffype first = new Ennilype (first);
public static final BEunilype secand = new Enniype (secad) ;
pablic static final Bunflype third = new Enniype (_third) ;
protected Eunflype (final int vis value) { ... }
pdolic int value () { ... }
public static Ennfype from int (final int vis value) { ... }
} pdolic java.lang.String toString() { ... }
public fimal class Eunilypetolder
inplerents org.omg.CORBA. portable. Streameble {
public OtherExanple.EunfType value;
pdolic EnifypeHolder () { ... }
public Enflypetolder (final Otherfxanple.Enype vis value) { ... }
pdolic void read (final org.ang.CORBA.portable. TnputStream imput) { ...

pblic void write (final org.arg.CORBA.portable.QutputStream cutput) { ...

public org.ang.QORBA. Type(ode type () { ... }
pblic boolean equals (Java.lang.Qoject o) {...}

Struct

An IDL struct is mapped to a final Java class with the same name that provides
instance variables for the fields in IDL member ordering and a constructor for all
values. A null constructor is also provided that allows the structure's fields to be
initialized later. The Holder class for the struct is also generated. Its name is the
struct's mapped Java classname with Holder appended to it as follows:

final piblic class <classsHolder inplements
org.ang. CORBA. portable. Streaneble {
public <classs> value;
pblic <classsHolder() {}
pblic <classsHolder (<class> initial) {...}
pdblic void read(org.arg.CORBA.portable. TrputStream 1)

(...}
pablic void _write (org.arng.QORBA. portable. QutputStream o)
{...}
pdolic org.ang.QRRA. TypeCode _type() {...}

Chapter 5: IDL to Java mapping 49

Constructed types

The following code sample shows the mapping of an IDL struct to Java.

/* From Exanple.idl: */
module Exanple {
struct StructType {
lag fieldl;
string field;
}i
}i

// generated Java
public final class StructType
implements org.ong.CORBA. portable. ILENtity

pdblic int fieldl;

public java.larg.String field2;

public StructType () { ... }

public StructType (fFimal int Fieldl,

final java.lang.String field2) { ... }

public java.lang.String toString() { ... }

pblic boolean equals (java.larng.Goject o) {...}
public fimal class StructTypeHolder implements
org.arg. CORBA. portable. Streameble {

public Example.StructType value;

public StructTypetolder () { ... }

public StructTypeHolder (final Exenple.StructType vis value)

{...}
pdblic void read (final org.arg.QORRA.portable. TrputStream irput)
pblic void write (final org.amy.CORBA.portable.OutputStream cutput)
} public org.amy.CORBA. Typetde _type () { ... }
Union

An IDL wnimis given the same name as the final Java class and mapped to it; it
provides the following:

= Default constructor

= Accessor method for the union's discriminator, named discrimirator ()
= Accessor method for each branch

= Modifier method for each branch

= Modifier method for each branch having more than one case label

= Default modifier method, if needed

If there is a name clash with the mapped union type name or any of the field names,
the normal name conflict resolution rule is used: prepend an underscore for the
discriminator.

The branch accessor and modifier methods are overloaded and named after the
branch. Accessor methods shall raise the CORBA: :BAD OPERATIQN system exception if the
expected branch has not been set.

If there is more than one case label corresponding to a branch, the simple modifier
method for that branch sets the discriminant to the value of the first case label. In
addition, an extra modifier method which takes an explicit discriminator parameter is
generated.

If the branch corresponds to the default case label, then the modifier method sets the
discriminant to a value that does not match any other case labels.

50 VisiBroker for Java Developer’s Guide

Constructed types

Itis illegal to specify a union with a default case label if the set of case labels
completely covers the possible values for the discriminant. It is the responsibility of the
Java code generator (for example, the IDL compiler, or other tool) to detect this
situation and refuse to generate illegal code.

A default method _default () is created if there is no explicit default case label, and the
set of case labels does not completely cover the possible values of the discriminant. It
will set the value of the union to be an out-of-range value.

The holder class for the union is also generated. Its name is the union's mapped Java
classname with Holder appended to it as follows:

This code sample shows the Holder class for a union.

final public class <union classsHolder
inplements org.amny.(ORBA. portable. Streameble {
pablic <union class> value;
pblic <nion classsHolder () {}
pblic «nion classsHolder («union classs> initial) {...}
public void _read(org.ang.QORBA. portable. IrputStream 1)

public void _write (org.arg.QORBA. portable. QutputStream o)
pblic org.ang.CORBA. TypeCode type() {...}

}

The following code sample shows the mapping of an IDL wnionto Java.

/* From Exanple.idl: */
module Exanple {
erum Eunype { first, secad, third, fourth, fifth, sixth };
union UnianType switch (Ernifype)
case first: log win;
case secad: short place;
case third:
case fourth: octet show;
default: boolean other;

}i
}i

// Generated java

final public class Uniailype {
//onstructor
public thiafmype() {...}
//discriminator accessor
pblic int discriminator() { ... }

//win

pbolic int winO) { ...}

public void win(int value) { ... }
//place

pdolic short place() { ... }

pblic void place (short value) { ... }
//show

public byte show() { ... }

pblic void show(oyte value) { ... }

public void show(int discriminator, byte value) { ... }
//other

public boolean other() {...}

pdolic void other (bcolean value) { ... }

public java.lang.String to String () { ...}
public boolesn equals (Java.lang.Qoject o) { ...}

Chapter 5: IDL to Java mapping 51

Constructed types

fimal public class UniaflypeHolder
implements org.amy.CORBA.portable. Streameble {
public thiailype value;
public UniailypeHolder () {}
pdolic UnianTypeHolder (UhiaiType initial) {...}
pblic void read (org.amy.CORBA.portable. TrputStream 1)

{...}
public void _write (org.arg.QORBA. portable. QutputStream o)
{...}
} pdblic org.amy.CORBA. TypeCode type() {...}
Sequence

An IDL sequenceis mapped to a Java array with the same name. In the mapping,
anywhere the sequence type is needed, an array of the mapped type of the sequence
element is used.

The holder class for the sequence is also generated. Its name is the sequence's
mapped Java classname with Holder appended to it as follows:

final public class <sequence classsHolder {
puablic <sequence element type>[] value;
pdolic <sequence classsHolder () {};
pablic <sequence class>Holder (
<sequence elarent type>[] initial) {...};
public void _read(org.ang.CQORBA. portable. IrputStream 1)

{...}

public void _write (org.arg.QORBA. portable. QutputStream o)
{...}

pdblic org.amy.CORBA. Typetode _type() {...}

}

The following code sample shows the mapping of an IDL sequence to Java.

// DL
typedef sequence<lagsUnboundedbata;
typedef sequence<lang, 42>BoundedData;
// generated Java
final public class UnboundedDataHolder
implements org.ong.CORBA. portable. Streameble {
public int[] value;
public UhboundedDatabolder () {};
public UhboundedDatabblder (Firal int[] initial) { ... };
pblic void read (org.amy.CORBA.portable. TrputStream 1)
public void _write (org.omg.CORBA. portable. QutputStream o)
{ ...}
} pblic org.ang.CORBA. TypeCode type() { ... }
final public class BourdedbataHolder
implements org.ong.CORBA. portable. Streameble {
pdblic int[] value;
public Boundedbatabolder () {};
public BoundedDetaHolder (final int[] initial) { ... };
pablic void read (org.ang.CORBA.portable. TrputStream 1)

public void _write (org.omg.CORBA. portable. QutputStream o)
pdolic org.any.CORRA. TypeCode type() { ... }

52 VisiBroker for Java Developer’s Guide

Interfaces

Interfaces

Array

An IDL array is mapped the same way as an IDL bounded sequence. In the mapping,
anywhere the array type is needed, an array of the mapped type of array element is
used. In Java, the natural Java subscripting operator is applied to the mapped array.
The length of the array can be made available in Java, by bounding the array with an
IDL constant, which will be mapped as per the rules for constants.

The holder class for the array is also generated. Its name is the array's mapped Java
classname with Holder appended to it as follows:

final public class <array classsHolder
implements org.amy.CORBA.portable. Streameble {
pablic <array element type>[] value;
pblic <array classsHolder() {}
pblic <array classsHolder (
<array elerent type>[] initial) {...}
public void _read (org.ary.CORBA.portable. IrputStream 1)
{-..}
pablic void _write (org.arng.QORBA. portable. QutputStream o)
public org.ong.QORBA. TypeGode type() {...}
}

The following code sample shows the mapping for an array.

// DL
amst lang ArrayBourd = 42;
typedef lag larray [ArrayBourd] ;
// gererated Java
final pdblic class larraytolder
inplerents org.arny.ORBA.portable. Streamsble
public int[] value;
public larraytolder() {}
public larrayHolder (int[] initial) {...}
pblic void read(org.amy.CORBA.portable. TrputStream i)

{..-}
pdblic void write (org.omg.QORBA. portable . QutputStream o)
public org.ong.QORBA. TypeGode type() {...}

IDL interfaces are mapped to the two following public Java interfaces:

= Operations interface, which contains only the operations and constants declared in
the IDL interfaces.

= CORBA Object declaration that extends all base interface operations, this interface
operation, and org.omg.CORRA.doject.

An additional “helper” Java class with the suffix Helperis appended to the interface
name. The Java interface extends the mapped, base org.ang.CORRA.Cject interface.

The Java interface contains the mapped operation signatures. Methods can be invoked
on an object reference to this interface.

Chapter 5: IDL to Java mapping 53

Interfaces

The helper class declares a static narrow method that allows an instance of
org.arg.QORBA.(oject to be narrowed to the object reference of a more specific type.
The IDL exception CORBA: :BAD PARAMIs thrown if the narrow fails because the object
reference doesn't support the request type. A different system exception is raised to
indicate other kinds of errors. Trying to narrow a null will always succeed with a return
value of null.

There are no special “nil” object references. Java rull can be passed freely wherever
an object reference is expected.

Attributes are mapped to a pair of Java accessor and modifier methods. These
methods have the same name as the IDL attribute and are overloaded. There is no
modifier method for IDL “readonly” attributes.

The holder class for the interface is also generated. Its name is the interface's mapped
Java classname with Holder appended to it as follows:

final public class <interface classsHolder
inplerents org.ong.QORBA.portable. Streaneble {
pblic <interface class> value;
public <interface classsHolder() {}
public <interface classsHolder (
<interface class> initial) {
value = initial;

public void _read(org.ang.QORBA. portable. IrputStream 1)

public void _write (org.arg.QORBA. portable. QutputStream o)
{...}

\ prllcorgcxrgCIRBA'IypeOode _type() {...}

The following code sample shows the mapping of an IDL interface to Java.

/* From Exanple.idl: */
module Exanple {
interface Foo
lag method (in lang arg) raises (AnException) ;
attrilbute lag assignable;
readmly attribute lag nonassignable;

}i
};

// Generated java

package Exanple;

public interface Foo extends com.borland.viroker.CORRA.Qoject,
Exanple. FooOperations,

org.arg.(ORBA. porteble. INLENtity {

pblic interface FooOperatians {
public int method (int arg) throws Exanple.ArExosption;
public int assignable ();
public void assignable (int assignable) ;
public int nonassignable () ;
}
pblic final class FocHelper {
// ... other standard helper methods
public static Foo narrow(org.ong.CORBA.Qoject doj)
(...
public static Example.Foo bind (org.arg.CORBA.CRB orb,
java.lang.String name,
java.lang.String host,
com.borlard. vioroker . CORBA. BindOptions _optians) { ... }

54 VisiBroker for Java Developer’s Guide

Interfaces

public static Example.Foo bind (org.arg.CORBA.CRB orb,
java.lang.String fullPosNere, byte[] oid) { ... }
public static Example.Foo bind (org.arg.CORBA.CRB orb,
java.lang.String fullPoeName, byte[] oid,
java.lang.String host,
com.borlard. vioroker . CORBA. BindOptions _optians) { ... }
public Foo read (org.arg.CORBA.porteble. ImputStream in) { ... }
pdolic void write (org.amg.CORBA.portable.QutputStream aut, Foo foo) { ... }
piblic Foo extract (org.arg.CORBAAy ary) { ... }
public void insert (org.army.CORBA.ANy arny, Foo foo) { ... }

public final class FodHolder
implements org.omy.QORBA.portable. Streameble {
public Foo value;
public Foctolder () {}
public FodHolder (final Foo initial) { ... }
pblic void read (org.amy.CORBA.portable. TrputStream 1)

pblic void write (org.omg.CORBA. portable . QutputStream o)
{ ...}
pblic org.ang.CORBA. TypeCode type() { ... }

}

Abstract interfaces

An IDL abstract interface is mapped into a single public Java interface with the same
name as the IDL interface. The mapping rules are similar to the rules for generating the
Java operations interface for a non-abstract IDL interface. However, this interface also
serves as the signature interface, and hence extends

org.arg.CQORBA. protable. IDLEntity: The mapped Java interface has the same name as
the IDL interface and is also used as the signature type in method declarations when
interfaces of the specified types are used in other interfaces. It contains the methods
which are the mapped operations signatures.

A holder class is generated as for non-abstract interfaces. See “Holder classes” on
page 42 for more information.

A helper class is also generated according to the normal rules. See “Helper classes” on
page 46 for more information.

Local interfaces

An IDL local interface is mapped similarly to that of a non-local interface except that a
local interface is marked by org.omg.QORRA.LocalInterface. A local interface may not be
marshaled and its implementation must extend a special base

org.ong.CQORRA. LocalOoject and implement the generated signature interface. In Java
mapping, the IocalCoject class is used as a base class of implementations of a local
interface. Creating an instance of local interface implementation is the same as
creating normal Java object; that is using the new Java operator.

A holder class is generated as for non-local interfaces. See “Holder classes” on
page 42 for more information.

A helper class is also generated according to the normal rules. See “Helper classes” on
page 46 for more information.

The VisiBroker ORB implementation will detect any attempt to marshal local objects
and throw a CORBA: :MARSHAL exception.

Chapter 5: IDL to Java mapping 55

Interfaces

Passing parameters

IDL inparameters are mapped to normal Java actual parameters. The results of IDL
operations are returned as the result of the corresponding Java method.

IDL out and inout parameters cannot be mapped directly into the Java parameter
passing mechanism. This mapping defines additional holder classes for all the IDL
basic and user-defined types which are used to implement these parameter modes in
Java. The client supplies an instance of the appropriate holder Java class that is
passed (by value) for each IDL out or inout parameter. The contents of the holder
instance (but not the instance itself) are modified by the invocation, and the client uses
the (possibly) changed contents after the invocation returns.

This code sample show the INparameter mapping to Java actual parameters.

/* From Exanple.idl: */
module Exanple {
interface Modes

lag goeration (in long infrg, out log ocutArg, inout long incutArg) ;

}i

// Generated Java:

package Exanple;

public interface Modes extends com.borland.viorcker. CORBA.Qoject,
Exanple.ModesOperatians,
org.arg.(ORBA. portable. INLENtity {

}
pwblic interface ModesOperatians
public int cperation (int inArg,
org.ang.CORRA. IntHolder cutArg,
org.ang.QORRA. TntHolder inoutArg) ;

}

In the above, the result comes back as an ordinary result and the actual in parameters
only an ordinary value. But for the cut and incut parameters, an appropriate holder
must be constructed. A typical use case might look as follows:

// user Java code
// select a target doject
Exanple.Modes target = ...;
// get the in actual value
int inArg = 57;
// prepare to receive cut
IntHolder cutHolder = new IntHolder () ;
// set up the in side of the inout
IntHolder inocutHolder = new IntHolder (131);
// make the irvocation
int result =target.cperation(infArg, cutHolder, inoutHolder) ;
// use the value of the ocutHolder
// use the value of the inoutHolder
. inoutHolder.value ...

Before the invocation, the input value of the inout parameter must be set in the holder
instance that will be the actual parameter. The inout holder can be filled in either by
constructing a new holder from a value, or by assigning to the value of an existing
holder of the appropriate type. After the invocation, the client uses the cutHolder.value
to access the value of the out parameter, and the inocurHolder.valueto access the
output value of the inout parameter. The return result of the IDL operation is available
as the result of the invocation.

56 VisiBroker for Java Developer’s Guide

Note

Note

Interfaces

Server implementation with inheritance

Using inheritance is the simplest way to implement a server because server objects
and object references look the same, behave the same, and can be used in exactly the
same contexts. If a server object happens to be in the same process as its client,
method invocations are an ordinary Java function call with no transport, indirection, or
delegation of any kind.

Each IDL interface is mapped to a Java POA abstract class that implements the Java
version of the IDL interface.

The R class does not “truly” extend the IDL interface, meaning that POA is not a
CORBA object. It is a CORBA servant and it can be used to create a “true” CORBA
object. For more information on the POA class, go to the Java API Reference,
VisiBroker APls, org.omg.PortableServer package section. For more information about
POAs, see Chapter 9, “Using POAs.”

User-defined server classes are then linked to the VisiBroker ORB by extending the
<interface>PQA class, as shown in the following code sample.

The R class itself is abstract and cannot be instantiated. To instantiate it, your
implementation must implement its declared IDL interface operations.

The following code sample shows the Server implementation in Java using inheritance.

/* Fram Bark.idl: */
module Bark
interface Accont {

.}'

// Generated java
package Bark;
public abstract class AccomtPA extends org.arg.PortableServer. Servant
implements
org.ang.CORRA. portable. IrvokeHardler,
Bark.AccomntOperatians { ... }
// Lirking an implementation to the ORB :
pblic class AccomntInpl extends Bark.AccomtFA { ... }

Server implementation with delegation

The use of inheritance to implement a server has one drawback: since the server class
extends the POA skeleton class, it cannot use implementation inheritance for other
purposes because Java only supports single inheritance. If the server class needs to
use the sole inheritance link available for another purpose, the delegation approach
must be used.

When server classes are implemented using delegation some extra code is generated.

= Each interface is mapped to a Tieclass that extends the POA skeleton and provides
the delegation code.

= Each interface is also mapped to an Operatians interface that is used to defined the
type of object the Tieclass is delegating.

Chapter 5: IDL to Java mapping 57

Mapping for exceptions

The delegated implementation must implement the Operationinterface and has to be
stored in a Tieclass instance. Storing the instance of the Qperaticninterface in the Tie
object is done through a constructor provided by the Tieclass. The code sample below
shows an example of how delegation is used.

/* Fram Bark.idl: */
module Bark {
interface AccontManager {
} Account open (in string name) ;

i
// Gererated java
package Bark;
pblic interface AccontMenagerCperations {
public Example.Accomt geen(java.lang.String nane) ;

// Gererated java
package Bark;
pblic class AccomntManagerPiTie extends AccomntManagerPA {
puablic AccomntManagerPOATie (final Bank.AccontManagerOperations delegate)
{ ...}
pablic AccomntManagerPOATie (final Bank.AccontMenagerOperations delecate,
fimal org.arg.PortableServer . FA poa) { ... }
public Bark.AccomntMernagerOperations delegate () { ..
pblic void delegate (final Bark. Aooami:lvbnageIOperatlms delegate) { ... }
public org.amy.PortableServer . FOA default POA () { ... }
pdolic float cpen () { ... }
}

// Lirking an implementation to the ORB :

classAcoontTnpl implements AccountMenager Operatians
public class Server {
pblic static main(String args) {
/] ...
AcoountMenagerPOAtie menagerServant = new AccontMenagerPOATie (new
AccomtManagerTnpl ())
} /...

Interface scope

OMG IDL to Java mapping specification does not allow declarations to be nested within
an interface scope, nor does it allow packages and interfaces to have the same name.
Accordingly, interface scope is mapped to a package with the same name with a
“Package” suffix.

Mapping for exceptions

IDL exceptions are mapped very similarly to structs. They are mapped to a Java class
that provides instance variables for the fields of the exception and constructors.

CORBA system exceptions are unchecked exceptions. They inherit (indirectly) from
java.lang.RuntimeException

User defined exceptions are checked exceptions. They inherit (indirectly) from
Jjava.lang.Exception

58 VisiBroker for Java Developer’s Guide

User-defined exceptions

User-defined exceptions

User-defined exceptions are mapped to final Java classes that extend
org.arg.QORBA. UserExceptian and are otherwise mapped just like the IDL struct type,
including the generation of Helper and Holder classes.

If the exception is defined within a nested IDL scope (essentially within an interface)
then its Java class name is defined within a special scope. Otherwise its Java class
name is defined within the scope of the Java package that corresponds to the
exception's enclosing IDL module.

The following code sample shows the mapping of user-defined exceptions.

// DL
module Exanple {
exception AnException {
string reasm;
}i

// Generated Java
package Exanple;
pblic final class AnException extends org.ary.CORBA. UserException {
public java.larng.String extra;
pdolic AnException () { ... }
pdolic AnException (java.lang.String extra) { ... }
pblic ArException (java.larg.String reasm, java.larg.String extra) { ...

public java.lang.String to String () { ... }
pblic boolean equals (Java.larg.Ooject o) { ... }
}
public fimal class AnExceptianHolder implements
org.ang. CORBA. portable. Streaneble {
public Example.AnException value;
public AnFxceptiantolder () { }
public AnExceptiatblder (final Example.AnException vis value) { ... }
pdolic void read (final org.ang.CORBA.portable. TnputStream imput) { ... }
pblic void write (final org.arg.CORBA.portable.QutputStream cutput) { ...

public org.ang.QORBA. Type(ode type () { ... }

System exceptions

The standard IDL system exceptions are mapped to final Java classes that extend
org.ong.CORRA. SystenExoepticn and provide access to the IDL major and minor
exception code, as well as a string describing the reason for the exception. There are
no public constructors for org.ang.QORRA. SystenExceptian; only classes that extend it
can be instantiated.

The Java class name for each standard IDL exception is the same as its IDL name and
is declared to be in the org.ang.CORRA package. The default constructor supplies 0 for
the minor code, COMPLETED NOfor the completion code, and the empty string (**) for the
reason string. There is also a constructor which takes the reason and uses defaults for
the other fields, as well as one which requires all three parameters to be specified.

Chapter 5: IDL to Java mapping 59

Mapping for the Any type

Mapping for the Any type

The IDL type Aty maps to the Java class org.omg.QORBA.Any: This class has all the
necessary methods to insert and extract instances of predefined types. If the extraction
operations have a mismatched type, the CORRA: :BAD CPERATICN exception is thrown.

In addition, insert and extract methods which take a holder class are defined to provide
a high speed interface for use by portable stubs and skeletons. There is an insert and
extract method defined for each primitive IDL type as well as a pair for a generic
streamable to handle the case of non-primitive IDL types.

The insert operations set the specified value and reset the ary's type if necessary.

Setting the typecode via the type () accessor wipes out the value. An attempt to extract
before the value is set will result in a CORBA: :RAD OPERATIQN exception being raised. This
operation is provided primarily so that the type may be set properly for IDL cut
parameters.

Mapping for certain nested types

IDL allows type declarations nested within interfaces. Java does not allow classes to
be nested within interfaces. Hence those IDL types that map to Java classes and that
are declared within the scope of an interface must appear in a special “scope” package
when mapped to Java.

IDL interfaces that contain these type declarations generate a scope package to
contain the mapped Java class declarations. The scope package name is constructed
by appending Packageto the IDL type name.

This code sample shows the mapping for certain nested types.

// DL
module Exanple {
interface Foo
exception el {};
}

// gererated Java

package Exanple.FooPackage;
fimal public class el exterds org.ang.CORBA. UserException {...}

Mapping for Typedef

Java does not have a typedef construct.

Simple IDL types

IDL types that are mapped to simple Java types may not be subclassed in Java.
Therefore, any typedefs that are type declarations for simple types are mapped to the
original (mapped type) any where the typedef type appears. For simple types, Helper
classes are generated for all typedefs.

Complex IDL types

Typedefs for non arrays and sequences are “unwound” to their original type until a
simple IDL type or user-defined IDL type (of the non typedef variety) is encountered.

Holder classes are generated for sequence and array typedefs.

60 VisiBroker for Java Developer’'s Guide

Mapping for Typedef

The following code sample shows the mapping of a complex idl typedef.

// L
struct Eneme {
string firstNeme;
string lastName;
i
typedef ErpNeme ErpRec;
// gererated Java
// regular struct mepping for EnpNeme
// regular helper class mepping for EnoRec
fimal public class ENare {

}
pblic class ErpRecHelper {

}

Chapter 5: IDL to Java mapping 61

62 VisiBroker for Java Developer’'s Guide

VisiBroker properties

This section describes the Borland VisiBroker properties.

JAVA RMI over lIOP properties

Table6.1 JAVA RMI over IIOP properties

Property Default Description

Vioroker . rmi. . SUpportRTSC false This property enables or disables the exchange of
SendingUntextRuntime service contexts between
clients and servers when the two are using different
(evolved) versions of a class. If the client and
server are on different versions of a JDK, the
application should make sure that this property is
set to true. This value should also be used for
cases where VBJ is talking to a foreign ORB. This
ensures that the codebase data is exchanged and
marshaling/demarshaling of evolved classes can
succeed without exceptions.

javax.mi . CORBA. StubClass com. inprise. vioroker . .. Specifies the name of the implementation of the
CORBA. StubTipl Stub base class from which all RMI-IIOP stubs
must inherit.
javax.mmi .CORRA.UtilClass aon. irprise . vioroker . rmi . Specifies the name of the implementation of the
CQORRA. UtilImpl Utility class that provides methods that can be
used by stubs and ties to perform common
operations.
javax.mi . CORBA. com. inprise. vbroker . ymi . CORBA. Specifies that the RMI-IIOP server implementation
PortableRemteCbjectClass PortableRenoteChject Tnpl objects may inherit from

javax.umi . PortableRemotedoject or simply implement
an RMI-IIOP remote interface and then use the
exportdoject method to register themselves as a
server object.

java.mi . server .codebase <ot set> Specifies where a server can locate unknown
classes. Acceptable value is semicolon (;)-
separated URLs.

java.rmi.server.useCodebasenly false Specifies if a server is allowed to locate unknown
classes, If set to true, does not allow the server to
locate remote classes even if the client sends the
location of the remote classes to the server.

Chapter 6: VisiBroker properties 63

Smart Agent properties

Smart Agent properties

Table6.2 Smart Agent properties

Property Default
viorcker . agent .addrFile mill
viorcker.agent . localFile mill

vioroker.agent .clientHandlerPort muill

vbroker . agent . keephAl iveTimer 120 seconds

vbroker . agent .keepAliveThreshold 40 seconds

vbroker . agent .mexRetries 4 times

vbroker . agent .port 14000

Old property
ORBagentAddrFile

N/A

N/A

N/A

N/A

N/A

CORBagentPort

Description

Specifies a file that stores the IP address or host
name of a host running a Smart Agent.

Specifies which network interface to use on multi-
home machines. This used to be the
OSPAGENT IOCAL FILE environment variable.

Specifies the port that the Smart Agent uses to
verify the existence of a client&mdash in this case,
a VisiBroker application. When you use the default
value, rull, the Smart Agent connects using a
random port number

Smart agent will wake up after this timeout and
based on the vbroker. agent .keepAliveThreshold
value, will compute whether to do client verification.
The logic is if the last received heart beat value is
less than current time (keepAliveTimer +
keepliveThreshold), then do client verification. The
value of this property should be greater than 1
second and less than 120 seconds. The number of
times the client verification is tried can be controlled
by viroker.agent .mexRetries property.

Refer to documentation on

vbrcker . agent . keepAl iveTimer. This value should be
greater than 0.

The number of times the agent will do client
verification on not receiving a heart beat from the
client. Values can be 1 to 10.

Specifies the port number that defines a domain
within your network. VisiBroker applications and the
Smart Agent work together when they have the
same port number. This is the same property as the
OSPAGENT ECRT environment variable.

64 VisiBroker for Java Developer’'s Guide

Smart Agent Communication properties

Smart Agent Communication properties

The properties described in the table below are used by the ORB for Smart Agent
communication.

Table6.3 Smart Agent Communication properties

Property Default Old property Description

vbroker.agent .keepAliveTiner 120 N/A The duration in seconds during which the ORB will send
keep-alive messages to the Smart Agent (applicable to
both clients and servers). Valid values are integers
between 1 and 120, inclusive.

Voroker . agent . retryDelay 0(zero) N/A The duration in seconds that the process will pause
before trying to reconnect to the Smart Agent in the event
of disconnection from the Smart Agent. If the value is -1,
the process will exit upon disconnection from the Smart
Agent. The default value of 0 (zero) means that
reconnection will be made without any pause.

voroker . agent .addr rull ORBagentAddr Specifies the IP address or host name of a host running a
Smart Agent. The default value, rull, instructs VisiBroker
applications to use the value from the OSAGENT AITR
environment variable. If this OSAGENT AITR variable is not
set, then it is assumed that the Smart Agent is running on

a local host.

voroker . agent .addrFile rull ORBagentAddrFile Specifies a file that stores the IP address or host name of
a host running a Smart Agent.

voroker . agent .debug false ORBAebug When set to true, specifies that the system will display

debugging information about communication of
VisiBroker applications with the Smart Agent.

vbroker . agent .enableCache true ORBagentCache When set to true, allows VisiBroker applications to cache
IOR.

vioroker . agent . enablel ocator true CRBdisablelocatcr When set to false, does not allow VisiBroker applications
to communicate with the Smart Agent.

vbroker . agent .port 14000 ORBagentPort Specifies the port number that defines a domain within

your network. VisiBroker applications and the Smart
Agent work together when they have the same port
number. This is the same property as the OSAGENT EORT
environment variable.

voroker .agent . failOver true CRBagentNoFailover When set to true, allows a VisiBroker application to fail
over to another Smart Agent.
viorker .agent .clientPort 0 (zero) N/A Lower bound of the range of ports for the ORB to

communicate with the OSAgent. Valid values are
between 0 to 65535. Default value of 0 (zero) means that
a random port will be selected.

voroker.agent .clientPortRange 0 (zero) N/A Range of ports within interval [clientPort,
clientPort+clientPortRange] for the ORB to communicate
with the OSAgent. This property is effective only when
clientPort is greater than 0 (zero). Valid values are
between 0 and 65535.

Chapter 6: VisiBroker properties 65

VisiBroker ORB properties

VisiBroker ORB properties

The following table describes the VisiBroker ORB properties.

Default

Table6.4 VisiBroker ORB properties
Property

voroker.orb.activationTOR

viorcker .orb. adDir

viroker . orb. enablekeyTd

vbroker . orb. enableServerManager

viroker . orb. keyTdCacheMax

voroker . orb. keyIdCacheMin

vbroker.orb. initRef
viorcker.orb.defaul tTnitRef
viroker . orb. alwaysPraxy

vioroker.orb.gatekeeper. ior

QYD PROPS:SYS PROPS:FILE PROBS:
ORB_PROPS:DEF PROPS

0(zero)

false

16384

64

66 VisiBroker for Java Developer’'s Guide

Description

This property allows the user to override the
default precedence of properties set by the
ORB's Property Manager. The default
precedence from highest to lowest is:

1 o PROPS: command-line arguments
(specified through the first argument of
orb.init () call.

2 Sys PROPS. system or JVM properties,
including properties specified through
-VBJprop, -J, and so forth.

3 FIIE PROPS properties in the file specified
by CRBpropStorage property.

4 CORB PROPS. properties set through the
second argument of the orb.init () call.

5 DeF PROPS: default ORB properties.

This value determines the number of times
a client will try to connect to a forwarded
target. You can use this property when the
client cannot communicate with the
forwarded target (because of network
failure, for example). The default value of 0
(zero) means that the client will keep trying
to connect.

Allows the launched server to easily
establish contact with the OAD that
launched it.

Specifies the administration directory at
which various system files are located. This
property can be set using the VEROKER AIM
environment variable.

When set to true, this property enables the
use of key IDs in client requests.

When set to TRUE, this property enables
Server Manager when the server is started,
so that clients can access it.

Specifies maximum size of the object key ID
cache in a server.

Specifies minimum size of the object key ID
cache in a server.

Specifies the initial reference.
Specifies the default initial reference.

When set to true, specifies that clients must
always connect to the server using the
GateKeeper.

Forces the client application to connect to
the server through the GateKeeper whose
IOR is provided.

Table 6.4 VisiBroker ORB properties (continued)

Property
voroker. locator. ior

viorcker . orb. exportFirewallPath

vbroker . orb. praxyPassthru

viorcker.orb.bids.critical

vbroker . orb. alwaysSecure

vbroker . orb. alwaysTurmel

viroker . orb. autdl ocateStubs

viroker . orb. bidorder

viorcker.orb.bids.bar

Default
il

false

false

false

false

false

inprocess:liop:ssl:iicp:
praxy:hiop: locator

n/a

VisiBroker ORB properties

Description

Specifies the IOR of the GateKeeper that
will be used as proxy to the Smart Agent. If
this property is not set, the GateKeeper
specified by the vioroker .orb.gatekesper . ior
property is used for this purpose. For more
information, go to the VisiBroker
GateKeeper Guide, “Introduction to
GateKeeper”.

Forces the server application to include
firewall information as part of any servant's
IOR which this server exposes (use
Firewall::FirewallPolicyin your code to
force it selectively per POA).

If set to true, forces PASSTHROUGH firewall
mode globally in the application scope (use
QoSExt : : PraxyModePolicy in your code to force
it selectively per object or per ORB).

The critical bid has highest precedence no
matter where it is specified in the bid order.
If there are multiple values for critical bids,
then their relative importance is decided by
the bidorder property.

When set to true, specifies that clients must
always make secure connections to the
server.

When set to true, specifies that clients
always make http tunnel (I1OP wrapper)
connections to the server.

Turns on the ability to locate stubs when
reading object references. This is done
using read Gbject, based on the object's
repository id instead of either the generic
object or the stubs for passed formal class
argument.

You can specify the relative order of
importance for the various transports.
Transports are given precedence as follows:

1 inprocess
2 liop

3 ssl

4 iiop

5 proxy

6 hicp

7 locator

The transports that appear first have higher
precedence. For example, if an IOR
contains both LIOP and IIOP profiles, the
first chance goes to LIOP. Only if the LIOP
fails is TI0P Used. (The critical bid, specified
by the vioroker.orb.bids.critical property,
has highest precedence no matter where it
is specified in the bid order.)

This property is used to prevent specified
bidders from placing bids. For example,
setting it to irprocess will disable inprocess
bidding. This can be useful in cases when
optimized colocated invocations are not
required. Currently only inprocess bidders
can be barred.

Chapter 6: VisiBroker properties 67

VisiBroker ORB properties

Table6.4 VisiBroker ORB properties (continued)

Property
viorcker . orb. defAddrode

viorcker . orb. ouf ferCacheTimeout

vbroker . orb . ufferDebug

vbroker . orb. corbaloc. resolveHosts

vbroker . orb.debug

viorcker . orb. dynamiclLibs

vioroker . orb . embedCodeset

vbroker . orb. enableVB4backoonmpat

viroker . orb. enableBiDir

viroker . orb. enableNul1String

voroker. orb. fragrentSize

Default
0 (Key)

6000

false

false

false

false

none

false

0(zero)

68 VisiBroker for Java Developer’'s Guide

Description

The default addressing mode that client
VisiBroker ORB uses. If it is set to 0, the
addressing mode is Key, if set to 1, the
addressing mode is Profile, if set to 2, the
addressing mode is IR

Specifies the time in which a message
chunk has been cached before it is
discarded.

When set to true, this property allows the
internal buffer manager to display
debugging information.

When this property is set to truethe ORB
will try to resolve the hostnames specified in
the corbaloc URL. When false no address
resolution will take place.

When set to true, allows the ORB to display
debugging information.

Note: This property is deprecated. Refer to
Debug logger properties.

Specifies a list of available services used by
the VisiBroker ORB. Each service is
separated by a comma.

When an IOR is created, the VisiBroker
ORB embeds the codeset components into
the IOR. This may produce problems with
some non-compliant ORBs. By turning off
the erbedtodeset property, you instruct the
Visibroker ORB not to embed codesets in
IORs. When set to false, specifies that
character and wide character conversions
between the client and the server are not to
be negotiated.

This property enables work-arounds to deal
with behavior that is not GIOP 1.2-compliant
in VisiBroker 4.0 and 4.1. Any VisiBroker
client running on VisiBroker 4.1.1 or a
release previous to 4.1.1 is affected,
especially if GateKeeper is involved. To
work with a Visibroker 4.0 or 4.1 client, this
flag needs to be set to true. This is a server-
side only flag. There is no corresponding
flag on the client-side.

You can selectively make bidirectional
connections. If the client defines

vbroker . orb. enableBiDir=client and the
server defines

vbroker . orb. enableBiDir=server the value of
vbroker.orb.enableRiDir at the GateKeeper
determines the state of the connection.
Values of this property are: server, client,
both or none. For more information, go to the
GateKeeper Guide, “Callback with
GateKeeper's bidirectional support”.

If set to TRUE, enables marshaling of null
strings.

Specifies the GIOP message fragment size.
It must be a multiple of GIOP message
chunk size. Assigning a 0 (zero) to this
property will eventually turn off
fragmentation.

Table 6.4 VisiBroker ORB properties (continued)

Property
vbroker . orb. streamCimnkSize

vioroker . orb.gcTimeocut

vbroker . orb. logger . apdName

vbroker.orb. logger . catalog

vbroker.orb. logger . cutput

vbroker.orb. loglevel

voroker . orb. sendlocate

Default
409

30

VBJ-Application

stdout

false

VisiBroker ORB properties

Description

Specifies the GIOP message chunk size. It
must be a power of 2.

Specifies the time in seconds that must
pass before important resources that are
not used are cleared.

Specifies the application name that appears
in the log.

Note: This property is deprecated. Refer to
Debug logger properties.

Specifies the message catalog of messages
used by the ORB when logging is enabled.

Note: This property is deprecated. Refer to
Debug logger properties

Specifies the output of the logger. It can be
the standard output or a file name.

Note: This property is deprecated. Refer to
Debug logger properties

Specifies the logging level of message that
will be logged. The default value, energ,
means that the system logs messages
when the system is unusable, or in a panic
condition. Acceptable values are:

= emerg (0): indicates some panic
condition.

= alert (1): a condition that requires user
attention—for example, if security has
been disabled.

= Crit (2): critical conditions, such as a
device error.

= err (3): error conditions.

= warning (4): warning conditions—these
may accompany some troubleshooting
advice.

= notice (5): conditions that are not errors
but may require some attention, such as
upon the opening of a connection.

= info (6): informational, such as binding in
progress.

= debug (7): debug conditions understood
by developers.

Note: This property is deprecated. Refer to
Debug logger properties

This property takes one of the following
values: true, false, albind, or always. When
set to true, it forces the system to send a
locate request before making invocations on
an [IOP 1.2 target. When set to aibing,
causes a locate request message to be sent
when a connection is opened for the
purpose of gauging if the peer is GIOP
aware. The value always instructs the ORB
to perform both tasks-sending the locate
request before invocations and upon
opening the connection.

Chapter 6: VisiBroker properties 69

VisiBroker ORB properties

Table 6.4

Property
viroker . orb. shutdownTimecut

viorcker .orb. systeniibs.applet

voroker.orb. systenlibs.application

viorcker .orb. teIndirection

vbroker . orb. warm

vbroker . orb. procId

VisiBroker ORB properties (continued)

Default

0 (zero)

com. inprise . vioroker. ITOP. Init,

oam. inprise.viorcker . LIOP. Init,

oam. inprise.viorcker.gos. Init,

oam. inprise. viorcker . URLNaming. Tnit,

cam. inprise.viorcker . HIOP. Init,

oom. inprise.viorcker. firewall . Init,

oam. inprise. . vbroker.dynamic. Init,

oam. inprise. viorcker . naming. Init,

oam. inprise . vbroker. IOP. Init,

cam. inprise . voroker.CONV_FRAVE. Tnit,

com. inprise . vioroker. ymi . CORBA. Tnit,
PortableInterceptor. Init,

oam. orlard . vibrcker .notify. Tnit,

oam.borland. vioroker. CosTime. Init

cam. irprise.vbroker. ITOP. Init,

oam. inprise.viorcker . LIOP. Init,

oam. inprise. . vbroker.gos. Init,

oam. inprise.vibrcker.ds. Init,

com. inprise . vioroker . URINaming. Tnit,

oam. inprise.vibrcker.dynamic. Init,

oam. inprise.viorcker . ir. Init,

oam. inprise. vorcker . naming. Init,
ServerVenager. Init,

oam. inprise.viorcker. IOP. Init,

cam. inprise. vioroker.CONV_FRAVE. Init,

oam. inprise. voroker. rmi . CORBA. Tnit,
PortableInterceptor. Init,

oam.orlard. vibrcker .notify. Init,

com. borlvbrcker. CosTime. Init

true

Description

Allows an application to set a timeout for the
ORB. shudown operation in seconds. This
property is useful in cases when
ORB.ghutdown does not finish for a long time.
The process will get terminated if the
shutdown does not finish and the timeout
expires. The default value of 0 (zero) means
that process will never get terminated.

Provides a list of system libraries loaded in
applet.

Provides a list of system libraries loaded in
application.

Specifies that indirection be turned off when
writing the typecodes. May be necessary
when inter operating with ORBs from other
vendors. When set to false, it is not possible
to marshal recursive typecodes.

Specifies a value of 0, 1, or 2which indicates
the level of warning messages to be printed.

Note: This property is deprecated. Refer to
Debug logger properties.

Specifies the process ID of the server.

70 VisiBroker for Java Developer’'s Guide

POA properties

POA properties

Table6.5 POA properties

Property Default
vhroker . poa.menager . threadviin 0
vbroker . poa . menager . threadviax 0

voroker . poa.menager . threadviaxIdle 300 seconds

vbroker.poa. loglevel emerg

Description
Controls the minimum number of threads in

the auxiliary thread pool used in POA (e.g.
for etherealization of objects)

Controls the maximum number of threads in

the auxiliary thread pool used in POA

Controls the idle timeout for threads in the

auxiliary thread pool used in POA

Specifies the logging level of messages to
be logged. The default value, ererg, means

that messages are logged when the system

is unusable or during a panic condition.

Acceptable values are:

= emerg (0): indicates some panic
condition.

= alert (1): a condition that requires user
attention—for example, if security has
been disabled.

= crit (2): critical conditions, such as a
device error.

= err (3): error conditions.

= warning (4): warning conditions—these
may accompany some troubleshooting
advice.

= notice (5): conditions that are not errors
but may require some attention, such as
upon the opening of a connection.

= info (6): informational, such as binding in
progress.

= debug (7): debug conditions understood
by developers.

Note: This property is deprecated. Refer to
Debug logger properties.

ServerManager properties

This table lists the Server Manager properties.

Table6.6 ServerManager properties
Property Default

vbroker . serverManager .name mull
vioroker . serverMenager.enableOperatians true

vbroker . serverManager . enableSetProperty true

Description

Specifies the name of the Server Manager.

When set to true, enables operations,
exposed by the Server Manager, to be
invoked.

When set to true, enables properties,
exposed by the Server Manager, to be
changed.

Chapter 6: VisiBroker properties 71

ServerManager properties

Additional Properties

The following section describes the new properties supported by the Server Manager.
These properties can be queried through their containers.

Table 6.7 Properties related to Server-side resource usage

Property Description

Vioroker . se.<SE name>.san.<SM name>. The number of incoming connections for which there

menager . irllseCamections are requests executing in the ORB.

Vioroker . se.<SE name>.san.<SM name>. The number of incoming connections for which there

menager . idleCamectians are not any requests currently being executed in the
ORB.

vbrcker.se.<SE name>.san.<SOM name>. The number of idle connections which have also idled

reneger . idledTimecutComections past their idle timeout setting but have yet to be closed

(due to garbage collection restrictions, for example).
Vioroker . se.<SE name>.san.<SM name>. The number of threads currently executing requests

dispatcher. inUseThreads within the dispatcher.
Vioroker . se.<SE name>.san.<SM name>. The number of threads which are currently idle waiting
dispatcher. idleThreads for work to be assigned.

Table 6.8 Properties related to Client-side resource usage

Property Description

vibraker . ce. <CE_rames>.can. activeCamections The number of connections in the active
pool; that is, object references are using
these connections.

vioroker . ce. <CE names>. can. cachedCamections The number of connections in the cache
pool; no object references are using these
connections.

viraker . ce. <CE_names>. com. inlJseCamectians The number of outgoing connections with
pending requests.
viraker . ce. <CE_rame>.can. idleCamectians The number of outgoing connections with

no pending requests.

vbroker. ce. <CE rames>.com. idledTimecutCamections The number of idle connections which have
idled past their timeout setting, but have not

been closed.
Table 6.9 Properties related to the Smart Agent
Property Description
voroker . agent . currentAgent IP The IP address of the current ORB's Smart Agent
(Smart Agent).

voroker . agent . current2gentClientPort The port of the Smart Agent to which the ORB is
sending requests.

72 VisiBroker for Java Developer’'s Guide

Location Service properties

Location Service properties

The following table lists the Location Service properties.

Property Default Description

vbroker . locationservice.deboug false When set to true, allows the Location Service to
display debugging information.
Note: This property has been deprecated. Refer to
the new Debug Logger Properties.

voroker. locatianservice.verify false When set to true, allows the Location Service to
check for the existence of an object referred by an
object reference sent from the Smart Agent. Only
objects registered BY INSIANCE are Verified for
existence. Objects that are either registered with
OAD, or those registered BY A policy are not
verified for existence.

vbroker. locationservice.timeout 1 Specifies the connect/receive/send timeout, in
seconds, when trying to interact with the Location
Service.

Event Service properties

The following table lists the Event Service properties.

Property Default Description

voroker . events .mexQueuelength 100 Specifies the number of messages to be queued for
slow consumers.

vorcker .events. factory false When set to true, allows the event channel factory to
be instantiated, instead of an event channel.

viorcker . events . ddoug false When set to true, allows output of debugging
information.

Note: This property is deprecated. Refer to the new
Debug logger properties.

vbroker .events. interactive false When set to true, allows the event channel to be
executed in a console-driven, interactive mode.

Chapter 6: VisiBroker properties 73

Naming Service (VisiNaming) properties

Naming Service (VisiNaming) properties

The following tables list the VisiNaming Service properties.

Table 6.10 Core VisiNaming Service properties

Property Default
vioroker .naming . enableSlave 0

viorcker .namirg. factoryTorFile N/A

vioroker .naming. iorFile ns.ior
vioraker .naming. loglevel energ
viorcker .naming. logUpdate false

Description

Password required by administrative VisiBroker naming service operations.

If 1, enables master/slave naming services configuration. See “VisiNaming
Service Clusters for Failover and Load Balancing” on page 218 for information
about configuring master/slave naming services.

When this property is specified with a value specifying a file name, the Naming
Service will store the IOR of context factory in that file. The IOR file can then be
used by nsutil utility to shutdown the Naming Service remotely.

This property specifies the full path name for storing the naming service IOR. If
you do not set this property, the naming service will try to output its IOR into a
file named ns.icrin the current directory. The naming service silently ignores
file access permission exceptions when it tries to output its IOR.

This property specifies the level of log messages to be output from the naming
service. Acceptable values are:

= emerg (0): indicates some panic condition.

= alert (1): a condition that requires user attention—for example, if security
has been disabled.

= crit (2): critical conditions, such as a device error.
= err (3): error conditions.

= warning (4): warning conditions—these may include some troubleshooting
advice.

= notice (5): conditions that are not errors but may require some attention,
such as the opening of a connection.

= info (6): informational, such as binding in progress.
= debug (7): debug messages for developers.
Note: This property is deprecated. Refer to the new Debug logger properties.

This property allows special logging for all of the update operations on the
CoslNeming: :NamingCmntext, CosNemingFxt: :Cluster, and

CosNamingEixt : :ClusterManager interfaces.

The CosNaming: :NemingCntext interface operations for which this property is
effective are: bind, bind comtext, bind new amtext, destroy, rebind,
rebind context, unbind

The CosNamingExt: :Cluster interface operations for which this property is
effective are: bind, rebind, urbind, destroy.

The CosNamingExt : :ClusterManager interface operation for which this property is
effective is: create cluster

When this property value is set to true and any of the above methods is
invoked, the following log message is printed (the output shows a bind
operation being executed):

00000007,5/26/04 10:11 AM,127.0.0.1,00000000,
VBJ-Application, VBT ThreadPool Worker, INFO,

OPERATION NAME : bind

CLIENT END BOINT : Ctrmection[socket=Socket
[addr=/127.0.0.1, port=2026, localport=1993]]
PARAMETER O : [(Tom.LoanAcoount)]

PARAMETER 1 : Stub[repository id=IDL:Bank/
LoanAcoount:1.0, key=TransientId [posName=/,

id={4 bytes: (0) (0) (0) (0) },sec=505,usec=990917734,
key string=%00VB%01%00%00%00%02/%00%20%20%00%00%00%
04%00%00%00%00%00%00%01%£9;%104f] , codebase=ruil1]

74 VisiBroker for Java Developer’'s Guide

Object Clustering Related Properties

Object Clustering Related Properties

For more information see “Object Clusters” on page 213 .

Table 6.11 Object Clustering Related properties

Property Default Description

Vioroker .naming. enableClusterFailover true When set to true, it specifies that an interceptor be installed to handle
fail-over for objects that were retrieved from the VisiNaming Service. In
case of an object failure, an attempt is made to transparently reconnect
to another object from the same cluster as the original.

vbroker . naming. propBindon 0 If 1, the implicit clustering feature is turned on.

voroker .naming. snrr . pruneStaleRef 1 This property is relevant when the name service cluster uses the Smart
Round Robin criterion. When this property is set to 1, a stale object
reference that was previously bound to a cluster with the Smart Round
Robin criterion will be removed from the bindings when the name
service discovers it. If this property is set to 0, stale object reference
bindings under the cluster are not eliminated. However, a cluster with
Smart Round Robin criterion will always return an active object
reference upon a resolve() or select() call if such an object binding
exists, regardless of the value of the viorcker . naming. smrr . pruneStaleRef
property. By default, the implicit clustering in the name service uses the
Smart Round Robin criterion with the property value set to 1. If set to 2,
this property disables the clearing of stale references completely, and
the responsibility of cleaning up the bindings belongs to the application,
rather than to VisiNaming.

VisiNaming Service Cluster Related properties

For more information see “VisiNaming Service Clusters for Failover and
Load Balancing” on page 218.

Table 6.12 VisiNaming Service Cluster Related properties

Property Default Description

vbroker .naming. enableSlave 0 See “VisiNaming Service Clusters for Failover and Load Balancing”
on page 218.

viorcker .naming. slaveMode No default. This property is used to configure VisiNaming Service instances in

Can be set to the cluster mode or in the master/slave mode. The
cluster or slave. viorcker.naming.enableSlave property must be set to 1 for this property
to take effect.

Set this property to cluster to configure VisiNaming Service
instances in the cluster mode. VisiNaming Service clients will then
be load balanced among the VisiNaming Service instances that
comprise the cluster. Client failover across these instances are
enabled.

Set this property to slaveto configure VisiNaming Service instances
in the master/slave mode. VisiNaming Service clients will always be
bound to the master server if the master is running but failover to
the slave server when the master server is down.

vioroker .naming. serverClusterName ruill This property specifies the name of a VisiNaming Service cluster.
Multiple VisiNaming Service instances belong to a particular cluster
(for example, clusterxyz) when they are configured with the cluster
name using this property.

Chapter 6: VisiBroker properties 75

VisiNaming Service Cluster Related properties

Table 6.12 VisiNaming Service Cluster Related properties (continued)

Property Default
vioroker .naming . serverNames mill

vioraker .naming . serverfddresses mmll

viorcker .naming . aryServiceOrder false
(To be set an VisiNaming
Service clients)

Description

This property specifies the factory names of the VisiNaming
Service instances that belong to a cluster. Each VisiNaming
Service instance within the cluster should be configured using this
property to be aware of all the instances that constitute the cluster.
Each name in the list must be unique. This property supports the
format:

Serverl:Server2:Server3
See the related property, viorcker .namirg. server®ddresses.

This property specifies the host and listening port for the
VisiNaming Service instances that comprise a VisiNaming Service
cluster. The order of VisiNaming Service instances in this list must
be identical to that of the related property
viroker .naming . serverNanes, Which specifies the names of the
VisiNaming Service instances that comprise a VisiNaming Service
Cluster. This property supports the format:

viorcker .naming . server?ddresses=host1:

portl;host2:port2;host3 :port3
This property must be set to true on the VisiNaming Service client
to utilize the load balancing and failover features available when
VisiNaming Service instances are configured in the VisiNaming
Service cluster mode. The following is an example of how to use
this property:

client -DVbroker.naming. aryServiceOrder=true

Pluggable Backing Store Properties

The following tables show property information for the VisiNaming service pluggable

backing store types.

Table 6.13 Default properties common to all adapters

Property Default

vioroker .naming . cacheOn 0

voroker .naming.cache.camectString N/A

viorcker .naming. cache. size 2000

voroker .naming . cache.. timeout 0 (no limit)

Description

Specifies the naming service adapter type to use. This property
specifies which type of backing store you want the VisiNaming Service
to use. The valid options are IrMemory, JOBC, Dx, INDL The default is
IrMemory.

Specifies whether to use the Naming Service cache. A value of 1 (one)
enables caching.

This property is required when the Naming Service cache is enabled
(vbroker .naming. cacheOn=1) and the Naming Service instances are
configured in Cluster or Master/Slave mode. It helps locate an Event
Service instance in the format <hostramres>:<port>. For example:

viorcker .naming. cache . comectString=127.0.0.1:14500

See “Caching facility” on page 211 for details about enabling the
caching facility and setting the appropriate properties.

This property specifies the size of the Naming Service cache. Higher
values will mean caching of more data at the cost of increased memory
consumption.

This property specifies the time, in seconds, since the last time a piece
of data was accessed, after which the data in the cache will be purged
in order to free memory. The cached entries are deleted in LRU (Least
Recently Used) order.

76 VisiBroker for Java Developer’'s Guide

JDBC Adapter properties

JDBC Adapter properties

This table lists the JDBC Adapter properties.

Table 6.14 JDBC Adapter properties

Property Default Description

voroker .naming. jdocdDriver oom.borland.datastore. This property specifies the JDBC driver that is needed to access the
jdoc.DataStoreDriver database used as your backing store. The VisiNaming Service loads
the appropriate JDBC driver specified. Valid values are:

= com.borland.datastore. jdoc.DataStoreDriver
JDataStore driver

= com.sybase. jdoc. SylDriver
Sybase driver

m oracle.jdoc.driver.OracleDriver
Oracle driver

= interbase.interclient.Driver
Interbase driver

= weblogic. jdoc.mssglserverd .Driver
WebLogic MS SQLServer Driver

m CM.iom.de2.jdoc.app.DR2Driver
SBM DB2 Driver

voroker .naming. True Sets Auto Commit on the JDBC connection when doing a “resolve”

resolveAutoCommit operation.

voroker .naming. logirNeme VisiNaming The login name associated with the database.

vbroker . naming. loginPwd VisiNaming The login password associated with the database.

vooroker .naming . poolSize 5 This property specifies the number of database connections in your
connection pool when using the JDBC Adapter as your backing
store.

viorcker . naming. url jdoc:borlard:dslocal: This property specifies the location of the database which you want

rootDB. jds the Naming Service to access. The setting is dependent upon the

database in use. Acceptable values are:
= jdoc:borland:dslocal : <do-rame>
JDataStore UTL
= jdoc:sybase: Tds: <host-names : <port -rubers>/<do-nane>
Sybase URL
m jdoc:oracle: thine<host -names : <port-munoers>:<sids>
Oracle URL
= jdbc:interbase: //<server-nane>/<full-do-path>
Interbase URL
= jdbc:weblogic:mssglservers : <do-names@<host-name> : <port -rumoers
WebLogic MS SQLSever URL
m jdoc:do2: <db-name>
IBM DB2 URL
n <full-path-JbataStore-do>
DataExpress URL for the native driver
Viorcker . naming. 30 This property sets the Naming Service's database reconnection
mirReconTnterval interval time, in seconds. The default value is 30. The Naming
Service will ignore the reconnection request and throw a
CarmotProceed exception if the time interval between this request and
the last reconnection time is less than the vset value. Valid values
for this property are non-negative integers. If set to o, the Naming
Service will try to reconnect to the database for every request.

Chapter 6: VisiBroker properties 77

DataExpress Adapter properties

DataExpress Adapter properties

The following table describes the DataExpress Adapter properties:

Table 6.15 DataExpress Adapter properties

Property Description

vioroker .naming.ackingStoreType This property should be set to Dx.

vooroker .naming . loginName This property is the login name associated with the database.
The default is VisiNaming.

vooroker .naming . loginPwd This property is the login password associated with the
database. The default value is VisiNaming

vooroker . naming . url This property specifies the location of the database.

JNDI adapter properties

The following is an example of settings that can appear in the configuration file for a
JNDI adapter:

Table 6.16 JNDI adapter properties

Setting Description

voroker . naming . backingStoreType=INDI This setting specifies the backing store type which
is aNDI for the JNDI adapter.

vbroker . naming. logirName=<user. nare> The user login name on the JNDI backing server.

vbroker . naming. loginPwd=<password> The password for the JNDI backing server user.

vbroker .naming. jndiTnitial Factory=cam. This setting specifies the JNDI initial factory.

sun. jndi . 1dap . LdapCtxFactory

Vioroker . naming . jndiProvidertRL=1dap: // This setting specifies the JNDI provider URL

<hostname>:389/<initial root context>

voroker .naming. jndiAuthentication=sinple This setting specifies the JINDI authentication type
supported by the JNDI backing server.

Table 6.17 VisiNaming Service Security-related properties

Property Value Default Description

voroker .naming. security.disable boolean true This property indicates whether the security service is disabled.

Viorcker .naming. security.authDomain - string This property indicates the authorization domain name to be
used for the naming service method access authorization.

viorcker .naming. security.transport int 3 This property indicates what transport the Naming Service will

use. The available values are:

ServerQoPPolicy . SECURE ONLY=1
ServerQoPPolicy.CLEAR ONLY=0

ServerQoPPolicy.ALL=3
Vioroker .naming. security. boolean false This property indicates whether naming client authentication is
requirePMuthentication required. However, when the viorcker .naming. security.disable

property is set to true, no client authentication will be performed
regardless of the value of this requireAuthentication property.

Vioroker .naming. security. boolean false This property indicates whether method access authorization is
enablefuthorization enabled.

Vioroker .naming. security. string null This property points to the file containing the required roles that
requiredRolesFile are necessary for invocation of each method in the protected

object types. For more information see “Method Level
Authorization” on page 223.

78 VisiBroker for Java Developer’'s Guide

OAD properties

OAD properties

This following table lists the configurable OAD properties.

Property
viorcker . cad. spawnTimeOut

vbroker.cad. veriose
vbroker.cad. readonly

voroker.ced.iorFile
vbroker .cad. quoteSpaces
vioraker.cad. killOdlhregister

Default
20

false
false
Cedj.ior

false
false

viorcker.ocad.verifyRegistration false

Description

After the OAD spawns an executable, specifies how
long, in seconds, the system will wait to receive a
callback from the desired object before throwing a
NO RESEONSE exception.

Allows the OAD to print detailed information about
its operations.

When set to true, does not allow you to register,
unregister, or change the OAD implementation.

Specifies the filename for the OAD's stringified IOR.
Specifies whether to quote a command.

Specifies whether to kill spawned server processes,
once they are unregistered.

Specifies whether to verify the object registration.

This table list the OAD properties that cannot be overridden in a property file. They can
however be overridden with environment variables or from the command line.

Specifies the filename for the implementation repository.

Specifies the directory where the implementation repository

Specifies the directory for the OAD.
Specifies the root directory.
Specifies the Windows directory.

Property Default Description
viraker .cad. implName inpl rep
vbroker.cad.implPath muill

is stored.
vibraker.cad.path il
vbroker.cad. systenRoot ruill
vioroker .cad. windir rull
vibraker .cad. vioj vbj

Specifies the VisiBroker for Java directory.

Interface Repository properties

The following table lists the Interface Repository (IR) properties.

Property Default Description

vorcker.ir.debug false When set to true, allows the IR resolver to display debugging
information.
Note: This property is deprecated. Refer to the new Debug logger
properties.

viorcker.ir.ior mill

When the vbrcker. ir.name property is set to the default value, muill,

the VisiBroker ORB will try to use this property to locate the IR.

viorcker.ir.name — mill

the IR.

Specifies the name that is used by the VisiBroker ORB to locate

Chapter 6: VisiBroker properties 79

Client-side IIOP connection properties

Client-side IIOP connection properties

The table below lists the VisiBroker for Java Client-side IIOP Connection properties.

Table 6.18 Client-side IIOP connection properties

Property
viorcker . ce. 1igp. com. camectionCacheMax

viorcker.ce. 1igp.com. camectiaMax

viorcker.ce.1iigp.com.camectiaMexIdle

viorcker.ce.iicp.com. type

viorcker . ce. 1igp.com.waitForCompletion

viorcker.ce. 1igp.camection. tagNdDelay

vioroker.ce.iigp.clientPort

vioroker.ce.iigp.clientPortRange

vioroker.ce.iiop.host

Default
5

Pool

false

0 (random port)

none

Description

Specifies the maximum number of cached connections for a
client. The connection is cached when a client releases it.
Therefore, the next time a client needs a new connection, it
first tries to retrieve one from the cache, instead of just
creating a new one.

Specifies the maximum number of total connections for a
client. This is equal to the number of active connections plus
cached connections. The default value of zero specifies that
the client will not try to close any of the old active or cached
connections.

Specifies the time, in seconds, that the client uses to
determine if a cached connection should be closed. If a
cached connection has been idle longer than this time, then
the client closes the connection.

Specifies the type of client connection management used by a
client. The value Pool means connection pool. This is currently
the only valid value for this property.

This property can be set to true to specify that the application
wants to walit for all replies to be received and only after then
should the ORB should close the connection. The default

value of falseindicates that ORB will not wait for any replies.

When set to TRUE, the server's sockets are configured to send
any data written to them immediately instead of batching the
data as the buffer fills.

Specifies the client port to be used when a connection is
opened by the ORB. Allowed values range from 0 to 65535. A
range should be specified using the

vbroker . ce. iiop.clientPortRange property when this property is
used.

Specifies the range of client ports to be used when a
connection is opened by the ORB, starting with the port
specified by the vioroker.ce.iicp.clientPort property. Allowed
values range from 0 to 65535.

This property declares the client address that is to be used
when opening connections from a multihomed machine. If not
specified, the default address is used.

80 VisiBroker for Java Developer’s Guide

URL Naming properties

URL Naming properties

This table lists the URL Naming properties.

Default
viorcker .URLNaming.allowUserInteraction true

Property

viorcker . URLNaming . debug false

Description

When set to true, allows the URL Naming
Service to initiate the graphical user
interface (GUI) for user interaction.

When set to true, specifies that the
URLNaming Service display debugging
information.

QoS-related Properties

Default
0

Property

viorcker.orb.gos . relativeRTT

vbroker.gos.cache

vioroker.orb.gos . camectiaifimeodt 0 (no limit)

vbroker . gos . backaampat False

Description

This property can be used to set the
RelativeRoundtripTimecutPolicyin milliseconds.
It takes effect at the ORB level and can be
overridden programatically at other levels.
The default value of 0 means no timeout.

Specifies if QoS policies should be cached
per delegate, instead of being checked prior
to every request made by the client.

This property allows the convenience of
setting the RelativeComectiadTimecutPolicy
Qos policy at the ORB level, without requiring
explicit code to be written. The connection
timeout value should be specified in
milliseconds.

The default value of false will exhibit the
VBJ70 VB_NOTIFY_REBIND behavior. A
value of true will revert back to the VBJ65
VB_NOTIFY_REBIND behavior.

Server-side server engine properties

This table lists the server-side server engine properties.

Property Default

viorcker . se.default iiop tp

Description
Specifies the default server engine.

Chapter 6: VisiBroker properties 81

Server-side thread session IIOP_TS/IIOP_TS connection properties

Server-side thread session IIOP_TS/IIOP_TS connection properties

The following table lists the server-side thread session IIOP_TS/IIOP_TS connection
properties.

Property Default Description

viorcker.se.iicp ts.host rull Specifies the host name used by this server
engine. The default value, rull, means use
the host name from the system.

vbrcker.se.iicp ts.proxyHost rull Specifies the proxy host name used by this
server engine. The default value, ruill,
means use the host name from the system.

viorcker.se.iicp ts.sans iiop ts Specifies the list of Server Connection
Manager name(s).

vioroker. se.1icp ts.sam.iicp ts.menager.type Socket Specifies the type of Server Connection
Manager.

viorcker.se.iicp ts.sam.iicp ts.menager.camectiaMex 0 Specifies the maximum number of

connections the server will accept. The
default value, 0 (zero), implies no restriction.

vbroker.se.iicp ts.san.iicp ts.menager.comectialMexIdle 0 Specifies the time in seconds the server
uses to determine if an inactive connection
should be closed.

viorcker.se.iicp ts.sam.iicp ts.listener.type IIOP Specifies the type of protocol the listener is
using.
vbrcker.se.iiop ts.san.iicp ts.listener.port 0 Specifies the port number that is used with

the host name property. The default value, 0
(zero), specifies that the system will pick a
random port number.

viorcker.se.iicp ts.sam.iicp ts.listener.proxyPort 0 Specifies the proxy port number used with
the proxy host name property. The default
value, 0 (zero), specifies that the system will
pick a random port number.

viorcker. se.iicp ts.sam.iicp ts.listener.gicpVersion 1.2 This property can be used to resolve
interoperability problems with older
VisiBroker ORBs that cannot handle
unknown minor GIOP versions correctly.
Legal values for this property are 1.0, 1.1
and 1.2. For example, to make the
nameservice produce a GIOP 1.1 ior, start it
like this:

nameserv -VBJprcp vioroker.se.iicp tp.
sam. iiop tp.listener.giopVersion=1.1

vioroker.se.1icp ts.sam.iicp ts.dispatcher.type "ThreadSessian" Specifies the type of thread dispatcher used
in the Server Connection Manager.

Server-side thread session BOA TS/BOA TS connection properties

This protocol has the same set of properties as the thread session iiop_ts/iiop_ts
connection properties, by replacing alliicp tswith boa tsin all the properties. For
example, the viorcker.se.iiop ts.som.iicp ts.menager.camectiaiex will become
vbroker . se.boa ts.sam.boa ts.menager.camectiadMax Also, the default value for
vbrcker.se.boa ts.sansis boa ts.

82 VisiBroker for Java Developer’s Guide

Server-side thread pool IIOP_TP/IIOP_TP connection properties

Server-side thread pool IIOP_TP/IIOP_TP connection properties

Property
viroker. se.

vorcker.se.

vorcker.se.

vorcker.se.

The following table lists the server-side thread pool IIOP_TP/IIOP_TP connection

properties.

iicp tp.host

.1licp tp.proxyHost

.1licp tp.sams
.1icp tp.sam.iicp tp.mensger.type

.1icp tp.san.iicp tp.mensger.camectiaMax

.1licp tp.san.iicp tp.menager.camectioMaxIdle

.1licp tp.sam.iicp tp.listener.type

.1licp tp.san.iicp tp.listener.port

.1icp tp.san.iicp tp.listener.portRange

iiop tp.sam.iicp tp.listener.praoxyPort

iiop tp.sam.iicp tp.dispatcher.type

iiop tp.sam.iicp tp.dispatcher.threadMin

.1licp tp.sam.iicp tp.dispatcher. threadvex

Default
rll

iicp tp

Socket

I1I0P

0 (zero)

ThreadPool

Description

Specifies the host name that can be used
by this server engine. The default value,
rull, means use the host name from the
system. Host names or IP addresses are
acceptable values.

Specifies the proxy host name that can be
used by this server engine. The default
value, null, means use the host name from
the system. Host names or IP addresses
are acceptable values.

Specifies the list of Server Connection
Manager name(s).

Specifies the type of Server Connection
Manager.

Specifies the maximum number of cache
connections on the server. The default
value, 0 (zero), implies no restriction.

Specifies the time, in seconds, that the
server uses to determine if an inactive
connection should be closed.

Specifies the type of protocol the listener is
using.

Specifies the port number used with the
host name property. The default value, 0
(zero), means that the system will pick a
random port number.

This property is effective only when
listener.port is greater than 0 (zero). If the
listener cannot bind to that port because
the port may be in use then the listener will
try to bind to the ports in the range [port,
port+portRange]. If no ports in the range
are available then a covM FATIIRE exception
will be thrown.

Specifies the proxy port number used with
the proxy host name property. The default
value, 0 (zero), means that the system will
pick a random port number.

Specifies the type of thread dispatcher
used in the Server Connection Manager.

Specifies the minimum number of threads
that the Server Connection Manager can
create.

Specifies the maximum number of threads
that the Server Connection Manager can
create. The default value, 0 (zero) implies
the ORB will control the thread generation
using an internal algorithm based on
heuristics.

Setting the property

voroker.se.iicp tp.sam.iicp tp.dispatcher.u
nlimitedConcurrency=true will imply that
setting this property to 0 will enable
unlimited number of threads in the thread
pool to be created.

Chapter 6: VisiBroker properties 83

Server-side thread pool BOA_TP/BOA_TP connection properties

Property Default Description

vbrcker.se.iicp tp.san.iicp tp.dispatcher.unlimitedtmarrency false Setting this property to true will allow the
thread pool to create unlimited number of
threads when the property
vbroker.se.iicp tp.sam.iicp tp.dispatcher.t
hreadVex is set to 0.

Vioroker. se.iicp tp.san.iicp tp.dispatcher. threadvexIdle 300 Specifies the time in seconds before an
idle thread will be destroyed.
Vioroker. se.iicp tp.sam.iicp tp.camection. tadbDelay true When this property is set to false, this turns

on buffering for the socket. The default
value, true, turns off buffering, so that all
packets are sent as soon as they are
ready.

Server-side thread pool BOA _TP/BOA TP connection properties

This protocol has the same set of properties as the hread pool iiop_tp/iiop_tp
connection properties, by replacing all iicp tpwith boa tpin all the properties. For
example, the viorcker.se.iicp tp.som.iicp tp.menager.camectiaiex will become
vbroker . se.boa_tp.sam.boa tp.menager.camectiadMeax Also, the default value for
viorcker . se.boa tp.sansis boa tp

Properties that support bi-directional communication

The following table lists the properties that support bi-directional communication.
These properties are evaluated only once—when the SCMs are created. In all cases,
the exportBiDir and importBiDir properties on the SCMs are given priority over the
enableRiDir property. In other words, if both properties are set to conflicting values, the
SCM-specific properties will take effect. This allows you to set the enableBiDir property
globally and specifically turn off bi-directionality in individual SCMs.

Property Default Description

vioroker . arb. enableBiDir none You can selectively make bi-directional
connections. If the client defines
vibrcker . orb. enableBiDir=client and the server
defines vbroker.orb. enableRiDir=server the
value of vbroker.orb.enableBiDir at the
GateKeeper determines the state of the
connection. Values of this property are:
server, client, both Or none.

voroker . se. <se> . san. <san-.menager.exportBiDir - By default, this property This is a client-side property. Setting it to true
is not set by the ORB. enables creation of a bi-directional callback
POA on the specified server engine. Setting it
to falsedisables creation of a bidirectional
POA on the specified server engine.

voroker . se. <se>. san. <san-.merager . importBiDir - By default, not set by This is a server-side property. Setting it to
the ORB. true allows the server-side to reuse the
connection already established by the client
for sending requests to the client. Setting it to
false prevents reuse of connections in this
fashion.

84 VisiBroker for Java Developer’s Guide

Debug Logging properties

Debug Logging properties

This section details the properties that can be used to control and configure the output
of debug log statements. VisiBroker for Java internally uses Log4J infrastructure for

logging.
The debug log statements are categorized according to the areas of the ORB from

where they are logged. These categories are called source names. Currently the
following source names are logged:

aamection— logs from the connection-related source areas such as client side
connection, server side connection, connection pool etc.

client — logs from the client side invocation path

agent — logs for Osagent communication

odr — logs for GIOP areas

se— logs from the server engine, such as dispatcher, listener etc.
server — logs from the server side invocation path.

aorb— logs from the ORB.

naming - logs from Naming Service

gatekeeper - logs from Gatekeeper
time - logs from Time Service

Enabling and Filtering

The following table describes the properties used to enable logging and filtering.

Table 6.19 Enabling and filtering

Property
vbroker.log.enable

voroker.log. loglevel

vbroker.log.default.
filter.register

Default Description

false When set to true, all logging statements will be produced unless the log is being
filtered.

Values are true or false.

debug Specifies the logging level of the log message. When set at a level, the logs with
log levels equal to the specified level or above are forwarded. This property is
applied at the global level.

Values are ererg, alert, crit, err, warning, notice, infoand debug ranking from the
highest to the lowest.

The meaning of the log levels are:
= amrerg- indicates a panic condition.

= alert — a condition that requires user attention—for example, if security has
been disabled.

= crit — critical conditions, such as a device error.
= err— error conditions.

= waming— warning conditions—these may accompany some troubleshooting
advice, such as on the opening of a connection.

= info— informational, such as binding in progress.
= debug— debug conditions used by developers.
rull Register source name for controlling (filtering) the logs from that source.

Values are client, server, camection, odr, se, agent and orb. Multiple values can be
provided as a comma-separated string.

Note: The source names must be registered using this property before they can
be explicitly controlled using vircker.1log.default. filter. <source-nanes.erable and
vbroker. 1og.default . filter. <source-name>. laglevel properties.

Chapter 6: VisiBroker properties 85

Appending and Formatting

Table 6.19 Enabling and filtering (continued)

Property Default Description

voroker.log.default. filter. true Once a source name is registered, log output from the source can be explicitly

<source-ranes.ergble controlled using this property. Values are true or false.

voroker. log.default. filter. deog This property provides finer-grained control over the global log level property.

<source-ranes. loglevel The log level specified using this property explicitly applies to the given source
name. The possible values are similar to the global logLevel values.

viorcker . log.default. true This is a special case of the previous property where an inbuilt source name “all”

filter.all.ergble is being used. “all” here denotes all the source names that have not been
registered.

Appending and Formatting

The output of the logs can be appended to specific destinations and formatted using
specific layouts. VisiBroker for Java uses the appenders and layouts provided by
Log4J for these purposes. Two inbuilt appenders stdout and rolling implement console
and rolling file implementation. Apart from the various layouts available with Log4J, two
inbuilt layouts simple and xml provide good layout capabilities.

= stdout — Name of the Console appender type.

= rolling— Name of the rolling file appender type.

= ginmple— Name of a simple predefined output layout type.
= xml— Name of Log4J XML event layout type.

The following table describes the properties used to configure the destination of the log
output and its format.

Property Default Description

vbroker . 1log.default . appenders stdout List of comma-separated appenders for
specifying log output destination.Values are
stdout, rolling and/or any user specified
appender name. User can further specify the
appenders using: lox].appender. <names=<full
class name in logj>

vioroker . log.default . appender. Pattermlayout Type of layout (format) to be associated with

<apperder-inst-names. layoutType the registered appender destination.
Values are sinple or xl or a custom layout
type.
Values are PatternLayout, simple, xml and/or
the full class name of all the Log4J supported
layout.

For the built-in rolling appender type, you can create the following configurations.

Property Default Description

voroker. log.default.appender. <current_directory> Directory for the rolling log file to reside
rolling.logDir in.

voroker. log.default.appender. virolling.log/td> Nare of rolling log file.

rolling. fileName

voroker.log.default.appender. 10 Size in MB for each backup before
rolling.mextileSize rolling over.

Values >=1.
voroker.log.default.appender. 1 Number of backups needed. When set
rolling. mexBackupIndex to 0 (zero), no backup is created and

logging will keep on appending to the

file.

Values >=0.

86 VisiBroker for Java Developer’s Guide

Deprecated Properties

Deprecated Properties

Table 6.20 Deprecated Properties

Deprecated Property Recommended Property

viroker.orb. debug vbroker.log.enable

‘ioroker . orb. loglevel viorcker. log. loglevel

viorcker . agent . debug viorcker. log.default. filter.agent .enable
viorcker . locatianservice.deloug viorcker . 1log.default. filter.agent .enable
‘ioroker . poa. loglevel viorcker. log.default . filter. server. loglevel
vbroker . gatekeeper . passthru. loglevel viorcker. log.default . filter.gatekesper. loglevel
viorcker .naming. loglevel viorcker. 1log.default . filter.naming. loglevel
vbroker . orb. logger . cutput vbroker. 1og.default . apperders

Setting Properties in an Applet

Setting properties for applets can only be done in the applet parameters. For example:

<PPPLET archive="wbjorb.jar, visec.jar" QDE="ClientApplet.class">
<PARAM NAME="org.arng.CORBA.CRBClass" VALUE="com. irprise. vioroker.orb.ORB">
<PAREM NAVE="~brcker . orb.alwaysTumel " VAIUE="true">

</DPPLET>

Note VisiBroker 3.x-style command-line options cannot be used as applet parameters.

Web Services Runtime Properties

Using these properties listed, you can enable the runtime.

Table 6.21 Web Services Runtime Properties

Property Default Description

voroker.ws.enable false Takes in a Boolean true or false parameter. Setting this value to
true will enable the VisiBroker Web Services Runtime.

Web Services HTTP Listener properties

To configure the HTTP Listener, use the properties listed in the following table.

Table 6.22 Web Services HTTP Listener properties

Property Default Description

voroker . se.ws.Host null Specifies the host name to be used by the
listener.

voroker . se. ws . praxyHost null Specifies the proxy host name used by the

web services engine. Default value null
means use the host name from the system.

viroker.se.ws.san.ws _ts.listener.port 80 Specifies the port number to be used by the
listener socket.
Vioroker.se.ws.san.ws_ts.listener.type WS Specifies the protocol the listener is using. A

value of ws-HIOPS will start a secure (https-
based) listener.

Chapter 6: VisiBroker properties 87

Getting the ORB version programmatically

Web Services Connection Manager properties

Using these properties listed below, you can configure the Web services Connection
Manager.

Table 6.23 Web Services Connection Manager properties

Property Default Description

vioroker. se.ws.san.ws_ts.menager . camectiaiMex 0 If keepAliveConnection is true,
this property specifies the
maximum number of connections
the server will accept. Default O
indicates no restriction.

viorcker. se.ws.san.ws_ts.menager.camectiaMexIdle 0 This property determines the
maximum time an unused
connection will remain alive.

vbroker.se.ws.san.ws_ts.menager. type Socket Specifies the type of Server
Connection Manager

SOAP Request Dispatcher properties

This table lists the SOAP Request Dispatcher properties.

Table 6.24 SOAP Request Dispatcher properties

Property Default Description

vbrcker.se.ws.san.ws_ts.dispatcher. threadex 0 Maximum number of threads
to be present in the thread
pool dispatcher. Default value
0 indicates unlimited number
of threads.

vbroker.se.ws.san.ws_ts.dispatcher.threadMin O Minimum number of threads
to be present in the thread
pool dispatcher.

viorcker. se.ws.san.ws_ts.dispatcher. 300 Time in seconds before an

threadvexIdle idled thread in the thread pool
is destroyed.

vbroker.se.ws.san.ws_ts.dispatcher. type ThreadSession Specifies the type of thread

dispatcher used in the Server
Connection Manager

Getting the ORB version programmatically

Note

When using VisiBroker for Java, you can obtain the ORB version string by calling the
getVersion method on com.inprise.vbroker.orb.ORB class, as shown in the following
example:

String orbVersion = ocam. inprise.vircker.orb.ORB.getVersion() ;
This method is static, so calling it does not require initializing the ORB
The version string appears in the format shown the following example:
Borland VisiBroker: VisiBroker for Java [07.01.00.B1.07] (FEB 18 2006 9:23:46)

88 VisiBroker for Java Developer’s Guide

Handling exceptions

Exceptions in the CORBA model

The exceptions in the CORBA model include both system and user exceptions. The
CORBA specification defines a set of system exceptions that can be raised when
errors occur in the processing of a client request. Also, system exceptions are raised in
the case of communication failures. System exceptions can be raised at any time and
they do not need to be declared in the interface.

You can define user exceptions in IDL for objects you create and specify the
circumstances under which those exceptions are to be raised. They are included in the
method signature. If an object raises an exception while handling a client request, the
VisiBroker ORB is responsible for reflecting this information back to the client.

System exceptions

System exceptions are usually raised by the VisiBroker ORB, though it is possible for
object implementations to raise them through interceptors discussed in Chapter 25,
“Using VisiBroker Interceptors.” When the VisiBroker ORB raises a Systenfxosption,
one of the CORBA-defined error conditions is displayed as shown below.

For a listing of explanations and possible causes of these exceptions, see Chapter 35,
“CORBA exceptions.”

Table7.1 ~ CORBA-defined system exceptions

Exception name Description

BAD CONIEXT Error processing context object.

BAD INV CRDER Routine invocations out of order.

BAD OPERATICN Invalid operation.

BAD PARAM An invalid parameter was passed.

BAD Q08 Quality of service cannot be supported.
BAD TYPEOODE Invalid typecode.

COVM FATIIRE Communication failure.

DATA QONVERSION Data conversion error.

FREE MEM Unable to free memory.

Chapter 7: Handling exceptions 89

System exceptions

90 VisiBroker for Java Developer’s Guide

Table 7.1

Exception name
IMP LIMIT
INTTTALIZE
INTERNAL

INIF REFOS

W FIAG
INV_INDENT

INV CBRIREF

INVALID TRANSACTTION

NO_IMPLEVENT
NO MEMORY
NO_PERMISSTON
NO RESCURCES

NO RESFONSE

CBJ ADAPTCR
CBJECT NOT EXIST
PERSIST STCRE
TRANSTENT
TRANSACTTCN MODE

TRANSACTTION REQUIRED
TRANSACTTON ROLIEDBACK
TRANSACTION UNAVATTABLE

TIMECUT
TNKNOAN

CORBA-defined system exceptions

Description

Implementation limit violated.
VisiBroker ORB initialization failure.
VisiBroker ORB internal error.

Error accessing interface repository.
Invalid flag was specified.

Invalid identifier syntax.

Invalid object reference specified.

Specified transaction was invalid (used in conjunction with
VisiTransact).

Error marshalling parameter or result.
Operation implementation not available.
Dynamic memory allocation failure.

No permission for attempted operation.
Insufficient resources to process request.
Response to request not yet available.
Failure detected by object adaptor.
Object is not available.

Persistent storage failure.

Transient failure.

Mismatch detected between the TransactianPolicyin the IOR and the
current transaction mode (used in conjunction with VisiTransact).

Transaction is required (used in conjunction with VisiTransact).
Transaction was rolled back (used in conjunction with VisiTransact).

Connection to the VisiTransact Transaction Service has been
abnormally terminated.

Request timeout.
Unknown exception.

For a listing of explanations and possible causes of the above exceptions, see
Chapter 35, “CORBA exceptions.”

SystemException class

public abstract class org.ang.CORRA. SystenException extends
java.lang.RuntimeException {
protected SystenbExoeption (java.lang.String reasm,
int minor, CarpletionStatus conpleted) { ... }
pblic String toString() { ... }
public CarpletianStatus corpleted;
public int minor;

System exceptions

Obtaining completion status

System exceptions have a completion status that tells you whether or not the operation
that raised the exception was completed. The sample below illustrates the
CorpletianStatus enumerated values for the CompletionStatus. COMPLETED MAYEE iS
returned when the status of the operation cannot be determined.

erum ConpletianStatus {
COMPLETED YES = 0;
COMPLETED MO = 1;
COMPLETED MAYEE = 2;

}i

Catching system exceptions

Your applications should enclose the VisiBroker ORB and remote calls in a try catch
block. The code samples below illustrate how the account client program, discussed in
Chapter 3, “Developing an example application with VisiBroker” prints an exception.

public class Client {
pblic static void main(String[] args) {
try {
org.arg.CORRA.CRB orb = org.org.CORBA.CRB. init (args,muill) ;
byte[] menagerId = "BarkManager" .getBytes() ;
Bark . AccontManager nenager =
Bank. AccountMenagertHelper . oind (orb, "/kenk agent poa”,
menagerId) ;
String name = args.length > 0 ? args[0] : "Jack B. Quick";
Bank.Account acoount = menager.cpen (name) ;
float balance = account.balance() ;
System.cut .printIn("The alance in " + name + "'s accont is $" +
balance) ;
} catch (Exception e) {
System.err.printin(e) ;
}
}
}

If you were to execute the client program with these modifications and without a server
present, the following output would indicate that the operation did not complete and the
reason for the exception.

pramptsvibj Client
org.arg. CORBA.CRJECT NOT EXIST:
Could not locate the following BOA:

poa rame : /bark agent poa
minor aode: 0 aarpleted: No

Chapter 7: Handling exceptions 91

System exceptions

Downcasting exceptions to a system exception

You can modify the account client program to attempt to downcast any exception that
is caught to a SystenException The following code sample shows you how to modify
the client program.

public class Client {
public static void main(String[] args) {
try {
// Initialize the ORB
org.ang.CORBA.CRB orb = org.ang.CORRA.CRB. init (args, rull);
// Bird to an account
Acoount accont = AccountHelper.bind (orb, "/benk poa",
"BankAcoount " .getBytes ()) ;
// Get the balance of the account
float balance = account.balance() ;
// Print the account balance
System.out .printIn("The accont kalance is $" + balance) ;
catch (Exception e) {
if (e instanceof org.amg.CORBA.SystemException) {
System.err.printIn("System Exosption occurred:") ;
} else {
System.err.printIn("Not a system exceptio") ;
}
System.err.printin(e) ;
}
}
}

The following code sample displays the resulting output if a system exception occurs.

System Exosption occurred:
in thread "mein" org.omg.CORBA.CBJECT NOT' EXIST minor code: 0 carpleted: No

Catching specific types of system exceptions

Rather than catching all types of exceptions, you may choose to specifically catch each
type of exception that you expect. The following code sample show this technique.

public class Client {
public static void main(String[] args) {

try {
org.arg.CORRA.CRB orb = org.ong.CORRA.CRB. init (args,mill) ;
byte[] menagerId = "BarkManager" .getBytes () ;

Bark . AccomtManager nenager =
Bank. AccountMenagerHelper . oind (orb, "/kenk agent poa”,
meragerId) ;
String nane = args.length > 0 ? args[0] : "Jack B. Quidk";
Bank.Account acoount = menager.cpen (name) ;
float kalance = account.balance() ;
System.out .printIn("The balance in " + name + "'s account is
S" + balance) ;

} catch(org.ang.CORRA. SystearException e)
System.err.printIn("System Exoeption occurred:") ;
System.err.println(e) ;

}

}
}

92 VisiBroker for Java Developer’s Guide

User exceptions

User exceptions

When you define your object's interface in IDL, you can specify the user exceptions
that the object may raise. The following code sample shows the UserException code
from which the idl2java compiler will derive the user exceptions you specify for your
object.

public abstract class UserException extends java.lang.Exception {
protected UserException() ;
protected UserFxception (String reasm) ;

Defining user exceptions

Suppose that you want to enhance the account application, introduced in Chapter 3,
“Developing an example application with VisiBroker” so that the account object will
raise an exception. If the acoount object has insufficient funds, you want a user
exception named AccountFrozento be raised. The additions required to add the user
exception to the IDL specification for the Account interface are shown in bold.

// Bark.idl
module Bark {
interface Accamt {
exception AccountFrozen
}i
float balance() raises (AcoomntFrozen) ;
}i
}i

The id12java compiler will generate the following code for a AccountFrozen exception
class.

package Bark;

public interface Account extends caom. inprise.viorcker.CORBA.Qoject,
Bark.AccontOperatians, org.ang.CORBA.portable. IDLEntity

}

package Bark;

pblic interface AccomntOperations {
public float balance () throws Bank.AcoountPackage . AccomtFrozen;

}

package Bank.AccountPackage;

pwblic final class AccomntFrozen extends org.ary.CORBA. UserException
pdolic AccomntFrozen () { ... }
pblic AccountFrozen (java.lang.String reason) { ... }

} pdolic synchranized java.lang.String toString() { ... }

Chapter 7: Handling exceptions 93

User exceptions

Modifying the object to raise the exception

The AccontTmpl object must be modified to use the exception by raising the exception
under the appropriate error conditions.

pwblic class AccomntTnpl extends Bark.AccomntPA {
public AccontImpl (float balance) {
_balance = balance;

public float kalance() throws AccountFrozen {
if (balance < 50) {
throws AccountFrozen () ;
} else {
return lalance;
}

private float balance;

}

Catching user exceptions

When an object implementation raises an exception, the VisiBroker ORB is responsible
for reflecting the exception to your client program. Checking for a UserExceptionis
similar to checking for a SysterExceptian To modify the account client program to catch
the AccountFrozen exception, make modifications to the code as shown below.

public class Client {
pblic static void main(String[] args) {
try {
// Initialize the ORB
org.arg.CORRA.ORB orb = org.ong.CORBA.CRB. init (args, mill);
// Bird to an account
Acoount accont = AcoountHelper.bind (orb, "/benk poa",
"BarkAcoount" .getBytes ()) ;

// CGet the balance of the account
float balance = account.balance() ;
// Print the account balance
System.cut .printIn("The accont kalance is $" + balance) ;

// Check for AccountFrozen exception

catch (Account . AccomntFrozen e)
System.err.printIn("AccountFrozen returmed: ") ;
System.err.printin(e) ;

}

// Check for system errors
catch (org. ang. CORRA. SystenException sys excep) {

}

94 VisiBroker for Java Developer’s Guide

User exceptions

Adding fields to user exceptions

You can associate values with user exceptions. The code sample below shows how to
modify the IDL interface specification to add a reason code to the AccontFrozen user
exception. The object implementation that raises the exception is responsible for
setting the reason code. The reason code is printed automatically when the exception
is put on the output stream.

// Bark.idl
module Bark {
interface Accamt {
exception AccountFrozen
int reasmn;
}i

float balance() raises (AccountFrozen) ;

i
i

Chapter 7: Handling exceptions 95

96 VisiBroker for Java Developer’s Guide

Overview

Server basics

This section outlines the tasks that are necessary to set up a server to receive client
requests.

The basic steps that you'll perform in setting up your server are:
= Initialize the VisiBroker ORB

= Create and setup the POA

= Activate the POA Manager

= Activate objects

= Wait for client requests

This section describes each task in a global manner to give you an idea of what you
must consider. The specifics of each step are dependent on your individual
requirements.

Initializing the VisiBroker ORB

As stated in the previous section, the VisiBroker ORB provides a communication link
between client requests and object implementations. Each application must initialize
the VisiBroker ORB before communicating with it as follows:

// Initialize the VisiBroker CRB.

org.ogm.CORRA.CRB orb=org.ang. QORBA.CRB. init (args,mill) ;

Chapter 8: Server basics 97

Creating the POA

Creating the POA

Note

Note

Early versions of the CORBA object adapter (the Basic Object Adapter, or BOA) did not
permit portable object server code. A new specification was developed by the OMG to
address these issues and the Portable Object Adapter (POA) was created.

A discussion of the POA can be quite extensive. This section introduces you to some of
the basic features of the POA. For detailed information, see Chapter 9, “Using POAs”
and the OMG specification.

In basic terms, the POA (and its components) determine which servant should be
invoked when a client request is received, and then invokes that servant. A servant is a
programming object that provides the implementation of an abstract object. A servant
is not a CORBA object.

One POA (called the rootPOA) is supplied by each VisiBroker ORB. You can create
additional POAs and configure them with different behaviors. You can also define the
characteristics of the objects the POA controls.

The steps to setting up a POA with a servant include:
= Obtaining a reference to the root POA

= Defining the POA policies

= Creating a POA as a child of the root POA

= Creating a servant and activating it

= Activating the POA through its manager

Some of these steps may be different for your application.

Obtaining a reference to the root POA

All server applications must obtain a reference to the root POA to manage objects or to
create new POAs.

//2. Get a reference to the root BQA

org.arg.QORBA.Qoject doj = orb.resolve initial reference ("RootPR") ;
// Narrow the doject reference to a POA reference

BQA rootPoa = org.ang. PortableServer . KRHelper . narrow (doj) ;

You can obtain a reference to the root POA by using resolve initial referenceswhich
returns a value of type CORRA: :(oject. You are responsible for narrowing the returned
object reference to the desired type, which is PortableServer: :FQAin the above
example.

You can then use this reference to create other POAs, if needed.

Creating the child POA

The root POA has a predefined set of policies that cannot be changed. A policy is an
object that controls the behavior of a POA and the objects the POA manages. If you

need a different behavior, such as different lifespan policy, you will need to create a

new POA.

POAs are created as children of existing POAs using create BOA You can create as
many POAs as you think are required.

Child POAs do not inherit the policies of their parent POAs.

98 VisiBroker for Java Developer’s Guide

Creating the POA

In the following example, a child POA is created from the root POA and has a
persistent lifespan policy. The POA Manager for the root POA is used to control the
state of this child POA.

// Create policies for cur persistent POA
org.arg.CORBA. Folicy[] policies = {
TootRCA. create lifespan policy (LifespanPolicyValue . PERSISTENT)
}i
// Create myPQA with the right policies
PCA myPQA = rootPQA.create POA("bark agent poa, rootPQA.the POAManager (),
policies) ;

Implementing servant methods

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data
structures, and more. When you compile IDL that contains an interface, a class is
generated which serves as the base class for your servant. For example, in the
Bark. ITL file, an >AccountMenager

module Bark(
interface Accomt {
float balance() ;
}i

} Aoocont open (in string name) ;

}i
The following shows the AccountManager implementation on the server side.

AccontMenagerPOA. java is created and serves as the skeleton code (implementation
base code) for the AccomtMenager object implementation on the server side, as follows:

import org.ang. PortableServer. *;
import java.util.*;
public class AccomntManagerInpl extends Bark.AccomtMenagerFA {
public syndhronized Bark.Accomnt open (String name)
// Lockup the account in the account dictionary.
Bark.Accont accoant = (Bark.Accouant) _accounts.get (name) ;
// If there was no accont in the dictiocnary, create ane.
if (accomt = rull) {
// Make up the accomnt's balance, between 0 and 1000 dollars.
flcat balance = Math.abs (random.nextInt ()) % 100000 / 100f;
// Create the accomt implementation, given the balance.
Aooa{mtlnpl accountServant = new AccountInpl (balance) ;
try
// Bctivate it on the default PQA which is root FQA for this
servarnt
accoant = Bank.AccountHelper.narrow(default FCA() .
servant to reference (accontServant)) ;
} catch (Bxception e) {
e.printStackTrace() ;

// Print aut the new accomnt.

System.out .printIn("Created " + name + "'s account: " + acoouat) ;
// Save the accomnt in the acoont dicticnary.

_accomnts.put (name, acaaunt) ;

// Return the accouat.
retum account;

private Dicticnary acoounts = new Hashtable() ;
private Random _random = new Randam() ;

}

Chapter 8: Server basics 99

Creating and Activating the Servant

Creating and Activating the Servant

The AccountManager implementation must be created and activated in the server
code. In this example, AccountManager is activated with activate doject with id,
which passes the object ID to the Active Object Map where it is recorded. The Active
Object Map is simply a table that maps IDs to servants. This approach ensures that this
object is always available when the POA is active and is called explicit object
activation.

// Create the servant

AccomntMenagerTnpl menagerServant = new AccountMenagerTpl () ;
// Decide on the ID for the servant

byte[] menagerId = "BankManager" .getBytes() ;

// Activate the servant with the ID on myPQA

myPQOA. activate doject with id(menagerId, menagerServent) ;

Activating the POA

The last step is to activate the POA Manager associated with your POA. By default,
POA Managers are created in a holding state. In this state, all requests are routed to a
holding queue and are not processed. To allow requests to be dispatched, the POA
Manager associated with the POA must be changed from the holding state to an active
state. A POA Manager is simply an object that controls the state of the POA (whether
requests are queued, processed, or discarded.) A POA Manager is associated with a
POA during POA creation. You can specify a POA Manager to use, or let the system
create a new one for you by passing a ruill value as the POA Manager name in
create POA()).

// Activate the POA Maneger
PortableServer: : FOAMenager var mgr=rootPoa ->the POAManager () ;
or->activate () ;

Activating objects

In the preceding section, there was a brief mention of explicit object activation. There
are several ways in which objects can be activated:

= Explicit: All objects are activated upon server start-up via calls to the POA

= On-demand: The servant manager activates an object when it receives a request
for a servant not yet associated with an object ID

= Implicit: Objects are implicitly activated by the server in response to an operation
by the POA, not by any client request

= Default servant: The POA uses the default servant to process the client request

A complete discussion of object activation is in Chapter 9, “Using POAs.” For now, just
be aware that there are several means for activating objects.

Waiting for client requests

Once your POA is set up, you can wait for client requests by using orb.run(). This
process will run until the server is terminated.

// Wait for incoming requests.
orbo->run () ;

100 VvisiBroker for Java Developer's Guide

Complete example

Complete example

The samples below shows the complete example code.

// Server.java

import org.ang.PortableServer. *;

pblic class Server {

pwblic static void mein(String[] args) {

try {

// Initialize the ORB.
org.any.CORBA.CRB orb = org.any.CORBA.CRB. init (args,rull) ;
// get a reference to the root RA
POA rootECA =

BCAHelper.narrow (orb. resolve initial references("RootPCA")) ;
// Create policies for our persistent POA
org.ang.QORBA. Policy[] policies =

TootPOA. create lifespan policy (LifespenPolicyValue . PERSISTENT)

}i

// Create myPQA with the right policies

PCA myPQA = rootPOA. create POA("bark agent poa",
TOOtPCA. the POAManeger () ,

policies) ;

// Create the servant

AccomtMenagerTpl menagerServant = new AccountMenagerTpl () ;

// Decide on the ID for the servamnt

byte[] menagerId = "BarkMenager" .getBytes() ;

// BActivate the servant with the ID on myPQA

myPQA.activate doject with id(menagerId, menagerServent);

// Ectivate the POA menager

TootPOA. the POAManager () .activate() ;

System.out . printIn (myPQA. sexvant to reference (menagerServant) + " is
ready.") ;

// Wait for incoming requests

orb.run() ;

} catch (Exception e) {
e.printStackTrace () ;
}

}

Chapter 8: Server basics 101

102 VvisiBroker for Java Developer's Guide

Using POAs

What is a Portable Object Adapter?

Note

Portable Object Adapters replace Basic Object Adapters; they provide portability on the
server side.

A POA is the intermediary between the implementation of an object and the VisiBroker
ORB. In its role as an intermediary, a POA routes requests to servants and, as a result
may cause servants to run and create child POAs if necessary.

Servers can support multiple POAs. At least one POA must be present, which is called
the rootPOA. The rootPOA is created automatically for you. The set of POAs is
hierarchical; all POAs have the rootPOA as their ancestor.

Servant managers locate and assign servants to objects for the POA. When an
abstract object is assigned to a servant, it is called an active object and the servant is
said to incarnate the active object. Every POA has one Active Object Map which keeps
track of the object IDs of active objects and their associated active servants.

Users familiar with versions of VisiBroker prior to 6.0 should note the change in
inheritance hierarchy to support CORBA Specification 2.6, which requires local
interfaces. For example, a ServantLocator implementation would now extend from
org.arg. PortableServer. ServantlocatorlocalBase instead of

org.ang. PortableServer . Servantl ocatorFOA

Chapter 9: Using POAs 103

What is a Portable Object Adapter?

Figure 9.1 Overview of the POA
Sesrver =)
o
roatPOA
Servant Manager
Client request -
Artive Objsct M
0 ;7*""H
ObjeetD |
ObeetlD |
POA terminology

Following are definitions of some terms with which you will become more familiar as

you read through

Table 9.1

Term
Active Object Map

adapter activator
etherealize

incarnate
ObjectID

persistent object
POA manager

Policy
rootPOA
servant

servant manager

transient object

this section.

Portable Object Adapter terminology

Description
Table that maps active VisiBroker CORBA objects (through their object
IDs) to servants. There is one Active Object Map per POA.

Object that can create a POA on demand when a request is received for a
child POA that does not exist.

Remove the association between a servant and an abstract CORBA
object.

Associate a servant with an abstract CORBA object.

Way to identify a CORBA object within the object adapter. An ObjectID
can be assigned by the object adapter or the application and is unique
only within the object adapter in which it was created. Servants are
associated with abstract objects through ObjectIDs.

CORBA objects that live beyond the server process that created them.

Object that controls the state of the POA,; for example, whether the POA
is receiving or discarding incoming requests.

Object that controls the behavior of the associated POA and the objects
the POA manages.

Each VisiBroker ORB is created with one POA called the rootPOA. You
can create additional POAs (if necessary) from the rootPOA.

Any code that implements the methods of a CORBA object, but is not the
CORBA object itself.

An object responsible for managing the association of objects with
servants, and for determining whether an object exists. More than one
servant manager can exist.

A CORBA object that lives only within the process that created it.

104 VvisiBroker for Java Developer's Guide

POA policies

POA policies

Steps for creating and using POAs

Although the exact process can vary, following are the basic steps that occur during the
POA lifecycle are:

1 Define the POA's policies.

Create the POA.

Activate the POA through its POA manager.
Create and activate servants.

Create and use servant managers.

oo OB W N

Use adapter activators.

Depending on your needs, some of these steps may be optional. For example, you
only have to activate the POA if you want it to process requests.

Each POA has a set of policies that define its characteristics. When creating a new
POA, you can use the default set of policies or use different values to suit your
requirements. You can only set the policies when creating a POA; you can not change
the policies of an existing POA. POAs do not inherit the policies from their parent POA.

The following lists the POA policies, their values, and the default value (used by the
rootPOA).

Thread policy The thread policy specifies the threading model to be used by the POA.
The thread policy can have the following values:

ORB_CTRL_MODEL: (Default) The POA is responsible for assigning requests to
threads. In a multi-threaded environment, concurrent requests may be delivered using
multiple threads. Note that VisiBroker uses multi-threading model.

SINGLE_THREAD_MODEL: The POA processes requests sequentially. In a multi-
threaded environment, all calls made by the POA to servants and servant managers
are thread-safe.

MAIN_THREAD_MODEL: Calls are processed on a distinguished “main” thread.
Requests for all main-thread POAs are processed sequentially. In a multi-threaded
environment, all calls processed by all POAs with this policy are thread-safe. The
application programmer designates the main thread by calling ORB::run() or
ORB::perform_work(). For more information about these methods, see “Activating
objects” on page 109.

Lifespan policy The lifespan policy specifies the lifespan of the objects implemented
in the POA.

The lifespan policy can have the following values:

TRANSIENT: (Default) A transient object activated by a POA cannot outlive the POA
that created it. Once the POA is deactivated, an OBJECT_NOT_EXIST exception
occurs if an attempt is made to use any object references generated by the POA.

PERSISTENT: A persistent object activated by a POA can outlive the process in which
it was first created. Requests invoked on a persistent object may result in the implicit
activation of a process, a POA and the servant that implements the object.

Object ID Unigueness policy The Object ID Unigueness policy allows a single
servant to be shared by many abstract objects.

The Object ID Uniqueness policy can have the following values:

UNIQUE_ID: (Default) Activated servants support only one Object ID.

Chapter 9: Using POAs 105

POA policies

MULTIPLE_ID: Activated servants can have one or more Object IDs. The Object ID
must be determined within the method being invoked at run time.

ID Assignment policy The ID assignment policy specifies whether object IDs are
generated by server applications or by the POA.

The ID Assignment policy can have the following values:
USER_ID: Objects are assigned object IDs by the application.

SYSTEM_ID: (Default) Objects are assigned object IDs by the POA. If the
PERSISTENT policy is also set, object IDs must be unique across all instantiations of
the same POA.

Typically, USER_ID is for persistent objects, and SYSTEM_ID is for transient objects. If
you want to use SYSTEM_ID for persistent objects, you can extract them from the
servant or object reference.

Servant Retention policy The Servant Retention policy specifies whether the POA
retains active servants in the Active Object Map.

The Servant Retention policy can have the following values:

RETAIN: (Default) The POA tracks object activations in the Active Object Map.
RETAIN is usually used with ServantActivators or explicit activation methods on POA.

NON_RETAIN: The POA does not retain active servants in the Active Object Map.
NON_RETAIN must be used with ServantLocators.

ServantActivators and ServantLocators are types of servant managers. For more
information on servant managers, see “Using servants and servant managers” on
page 112.

Request Processing policy The Request Processing policy specifies how requests
are processed by the POA.

USE_ACTIVE_OBJECT_MAP_ONLY: (Default) If the Object ID is not listed in the
Active Object Map, an OBJECT_NOT _EXIST exception is returned. The POA must
also use the RETAIN policy with this value.

USE_DEFAULT_SERVANT: If the Object ID is not listed in the Active Object Map or
the NON_RETAIN policy is set, the request is dispatched to the default servant. If no
default servant has been registered, an OBJ_ADAPTER exception is returned. The
POA must also use the MULTIPLE_ID policy with this value.

USE_SERVANT_MANAGER: If the Object ID is not listed in the Active Object Map or
the NON_RETAIN policy is set, the servant manager is used to obtain a servant.

Implicit Activation policy The Implicit Activation policy specifies whether the POA
supports implicit activation of servants.

The Implicit Activation policy can have the following values:

IMPLICIT_ACTIVATION: The POA supports implicit activation of servants. There are
two ways to activate the servants as follows:

= Converting them to an object reference with
org.arg. PortableServer . FOA. sexvant to reference() .

= Invoking this() on the servant.
The POA must also use the SYSTEM_ID and RETAIN policies with this value.

NO_IMPLICIT_ACTIVATION: (Default) The POA does not support implicit activation
of servants.

106 VisiBroker for Java Developer's Guide

Creating POAs

Bind Support policy The Bind Support policy (a VisiBroker-specific policy) controls
the registration of POAs and active objects with the VisiBroker osagent. If you have
several thousands of objects, it is not feasible to register all of them with the osagent.
Instead, you can register the POA with the osagent. When a client request is made, the
POA name and the object ID is included in the bind request so that the osagent can
correctly forward the request.

The BindSupport policy can have the following values:

BY_INSTANCE: All active objects are registered with the osagent. The POA must also
use the PERSISTENT and RETAIN policy with this value.

BY_POA: (Default) Only POAs are registered with the osagent. The POA must also
use the PERSISTENT policy with this value.

NONE: Neither POAs nor active objects are registered with the smart agent.
Note The rootPOA is created with NONE activation policy.

Creating POAs

To implement objects using the POA, at least one POA object must exist on the server.
To ensure that a POA exists, a rootPOA is provided during the VisiBroker ORB
initialization. This POA uses the default POA policies described earlier in this section.

Once the rootPOA is obtained, you can create child POAs that implement a specific
server-side policy set.

POA naming convention

Each POA keeps track of its name and its full POA name (the full hierarchical path
name.) The hierarchy is indicated by a slash (/). For example, /A/B/Cmeans that POA
C is a child of POA B, which in turn is a child of POA A. The first slash (see the
previous example) indicates the rootPOA. If the BindSupport:BY_POA policy is set on
POA C, then /a/B/Cis registered with the osagent and the client binds with /a/B/C

If your POA name contains escape characters or other delimiters, VisiBroker precedes
these characters with a double back slash (\\) when recording the names internally. For
example, if you have coded two POAs in the following hierarchy,

org.arg.PortableServer. POA myPOAl = rootFCA.create PAA("A/B",
poalManager,
policies) ;
org.arg. PortableServer. POA myPOA2 = myPOAL.create POA("\t",
poalerager,
policies) ;
then the client would bind using:

org.org.CORRA.(oject menager = ((oam. irprise.viorcker.orb.CRB) orb) .
bind ("/A\\/B/\t",
menager1d,
mll,
rull) ;

Chapter 9: Using POAs 107

Creating POAs

Note

Obtaining the rootPOA

The following code sample illustrates how a server application can obtain its rootPOA.
// Initialize the ORB.
org.ang.CORRA.CRB orb = org.org.QORBA.CRB. init (args, mull);
// get a reference to the rootRA
org.arg. PortableServer . FOA yootPOA =
BAHelper.narrow (orb. resolve initial references("RootPOA")) ;

The resolve initial referencesmethod returns a value of type org.ang.CORRA.Joject .
You are responsible for narrowing the returned object reference to the desired type,
which is org.arg. PortableServer . PQAIN the previous example.

Setting the POA policies

Policies are not inherited from the parent POA. If you want a POA to have a specific
characteristic, you must identify all the policies that are different from the default value.
For more information about POA policies, see “POA policies” on page 105.
org.arg.CORBA. Folicy[] policies = {
TootRCA. create lifespan policy (LifespanPolicyValue . PERSISTENT)
}i

Creating and activating the POA

A POA is created using create POAON its parent POA. You can name the POA anything
you like; however, the name must be unique with respect to all other POAs with the
same parent. If you attempt to give two POAs the same name, a CORBA exception

(AGapterilreadyFxists) is raised.
To create a new POA, use create FA as follows:
BQA create POA(PQA Name, ROAVMansger, Policylist);

The POA manager controls the state of the POA (for example, whether it is processing
requests). If ull is passed to create PQAas the POA manager name, a new POA
manager object is created and associated with the POA. Typically, you will want to
have the same POA manager for all POAs. For more information about the POA
manager, see “Managing POAs with the POA manager” on page 117.

POA managers (and POAs) are not automatically activated once created. Use
activate() to activate the POA manager associated with your POA. The following code
sample is an example of creating a POA.

// Create policies for cur persistent POA
org.ang.CORBA.Folicy[] policies = {
TOOLROA. create lifespan policy (LifespanPolicyValue. PERSISIENT) };
// Create myPQA with the right policies
org.ang. PortableServer . FOA myPA =
TootRCA.create POA("bank agent poa", rootPCA.the POAMEnager (), policies
)i

108 VisiBroker for Java Developer's Guide

Activating objects

Activating objects

When CORBA objects are associated with an active servant, if the POA's Servant
Retention Policy is RETAIN, the associated object ID is recorded in the Active Object
Map and the object is activated. Activation can occur in one of several ways:

Explicit activation The server application itself explicitly activates objects by
calling activate doject or activate dboject with id

On-demand activation The server application instructs the POA to activate objects
through a user-supplied servant manager. The servant
manager must first be registered with the POA through
set servent menager.

Implicit activation The server activates objects solely by in response to certain
operations. If a servant is not active, there is nothing a client
can do to make it active (for example, requesting for an
inactive object does not make it active.)

Default servant The POA uses a single servant to implement all of its objects.

Activating objects explicitly

By setting IdAssigmentPolicy: :SYSTEM IDon a POA, objects can be explicitly activated
without having to specify an object ID. The server invokes activate doject on the POA
which activates, assigns and returns an object ID for the object. This type of activation
is most common for transient objects. No servant manager is required since neither the
object nor the servant is needed for very long.

Obijects can also be explicitly activated using object IDs. A common scenario is during
server initialization where the user invokes activate doject with idto activate all the
objects managed by the server. No servant manager is required since all the objects
are already activated. If a request for a non-existent object is received, an
OBJECT NOT EXIST exception is raised. This has obvious negative effects if your server
manages large numbers of objects.

This code sample is an example of explicit activation using activate doject with id

// Create the account mernager servant.

Servant menagerServant = new AccountManagerTmpl (rootPoa) ;

// Activate the newly created servant.

testPoa.activate doject with id("BarkMenager".getBytes (), menagerServart) ;
// Activate the RBs

testPoa.the POAVEnager () .activate() ;

Activating objects on demand

On-demand activation occurs when a client requests an object that does not have an
associated servant. After receiving the request, the POA searches the Active Object
Map for an active servant associated with the object ID. If none is found, the POA
invokes incarmate on the servant manager which passes the object ID value to the
servant manager. The servant manager can do one of three things:

= Find an appropriate servant which then performs the appropriate operation for the
request.

= Raise an CBJECT NOT EXIST exception that is returned to the client.
= Forward the request to another object.

The POA policies determine any additional steps that may occur. For example, if
RequestProcessingPolicy. USE SERVANT MANAGER and ServantRetentianPolicy.REIRINare
enabled, the Active Object Map is updated with the servant and object ID association.

An example of on-demand activation is shown below.

Chapter 9: Using POAs 109

Activating objects

Activating objects implicitly

A servant can be implicitly activated by certain operations if the POA has been created
with ImplicitActivationPolicy. IMPLICTT ACTIVATICN, IdAssignmentPolicy.SYSTEM ID, and

ServantRetentianPolicy.REIAIN Implicit activation can occur with:
= PA.servant to reference method

= PQA.servant to idmethod

= this() servant method

If the POA has IdniquenessPolicy INIQUE IDset, implicit activation can occur when
any of the above operations are performed on an inactive servant.

If the POA has IdniquenessPolicy MILTIPLE IDSet, sexrvant to reference and
servant to idoperations always perform implicit activation, even if the servant is
already active.

Activating with the default servant

Use the RequestProcessing.USE DEFAULT SERVANT policy to have the POA invoke the
same servant no matter what the object ID is. This is useful when little data is
associated with each object.

This is an example of activating all objects with the same servants

import org.ang.PortableServer. *;
public class Server {
pblic static void main(String[] args) {
try {
// Initialize the ORB.
org.arg.CORRA.CRB orb = org.ong.CORBA.CRB. init (args,muill) ;
// get a reference to the rootPA
PQA rootRAA =
BQAHelper . narrow (orb. resolve initial references("RootPQA")) ;
// Create policies for ocur persistent PQA
org.arg.CORBA. Folicy [] policies = {
TootPCA. create lifespan policy (LifespanPolicyValue. PERSISTENT) ,
TootPCA. create request processing policy(
RequestProcessingPolicyValue . USE DEFALT SERVANT
)
TOotPQA. create 1d uniqueness policy (IdUniquenessPolicyValue MILTIPLE ID)
}i
// Create myPQA with the right policies
BCOA myPCOA = rootPCA.create POA("bark default servant poa",
TootPCA. the POAManager (),
policies) ;
// Create the servant
AccomntManagerTpl menagerServant = new AccountMenagerTnpl () ;
// Set the default servant o our FQA
myPCA. set_servant (menagerServant) ;
org.ang.CORBA.Qoject ref;
// BActivate the FOA menager
TootPCA. the PFOAManager () .activate() ;
// Gererate the reference and write it cut. One for each Checking and
Savings
// account types. Note that we are not creating any
// servants here and just mernufacturing a reference which is not
// vet backed by a servant.

try {
ref =

110 VvisiBroker for Java Developer's Guide

Activating objects

myPQA. create reference with id("CheckingAccountMenager" .getBytes (),
"IDL: Bark/AccountManager: 1.0") ;
// Write out checking doject ID
Jjava.io.PrintiWriter pw = new java.io.PrintWriter (
new java.io.FiléWriter ("cref.dat"));
pw.println(orb.doject to string(ref));
pw.close() ;
ref =
myPQA. create reference with id("SavingsAccomntManager" .getBytes (),
"IDL: Bark/AccountManager: 1.0") ;
// Write out savings doject ID
pw = new java.io.PrintWriter(new java.io.FiléWriter("sref.dat"));
pw.printIn(orb.doject to string(ref));
pw.close() ;
} catch (java.io.ICException e) {
System.out .printIn ("Error writing the IOR to file ");
retum;
}
System.out .printIn ("Bank Manager is ready.");
// Wait for incoming requests
orb.run() ;
} catch (Bxceptio e) {
} e.printStackTrace() ;

}
}

Deactivating objects

A POA can remove a servant from its Active Object Map. This may occur, for example,
as a form of garbage-collection scheme. When the servant is removed from the map, it
is deactivated. You can deactivate an object using deactivate doject (). When an
object is deactivated, it doesn't mean this object is lost forever. It can always be

reactivated at a later time.
This is an example of deactivating an object:

import org.arg.PortableServer. *;
public class AcocountManagerActivator extends ServantActivatorlocalBase
pblic Servant incarmate (byte[] oid, POA adapter) throws ForwardRequest (
Servant servant;
String acoontType = new String(oid) ;
System.out . printIn ("\nAcoountManagerActivator . incarmate called
with ID ="
+ accountType + "\n") ;
// Create Savings or Checking Servant based on AccountType
if (accontType.equalsIgnoreCase ("SavingsAccomtMarager"))
servant = (Servant)new SavingsAccountMenagerTnpl () ;
else
servant = (Servant)new CheckingAccomtManagerTnpl () ;
new DeactivateThread (oid, adapter) .start();
retum servart;
}
public void etherealize (byte[] oid,
BCQA adapter,
Servant serv,
boolean cleanp in progress,
boolean remeining activations)

Chapter 9: Using POAs 111

Using servants and servant managers

System. cut . printIn ("\nAccountMenagerActivator.etherealize called

with ID ="
+ new String(oid) + "\n");
}
}

class DeactivateThread exterds Thread {
byte[]l oid;
POA adapter;
public DeactivateThread (oyte[] oid, FOA adapter) {
_old = oid;

_adapter = adapter;

pblic void nn() {

try {
Thread. currentThread () .sleep(15000) ;

System.out . printIn ("\rDeactivating the doject with ID = " +

new String(oid) + "\n");

_adapter.deactivate doject (_oid) ;
} catch (Exception e) {

e.printStackTrace() ;

Using servants and servant managers

Servant managers perform two types of operations: find and return a servant, and
deactivate a servant. They allow the POA to activate objects when a request for an
inactive object is received. Servant managers are optional. For example, servant
managers are not needed when your server loads all objects at startup. Servant
managers may also inform clients to forward requests to another object using the

ForwardRequest exception.

A servant is an active instance of an implementation. The POA maintains a map of the
active servants and the object IDs of the servants. When a client request is received,
the POA first checks this map to see if the object ID (embedded in the client request)
has been recorded. If it exists, then the POA forwards the request to the servant. If the
object ID is not found in the map, the servant manager is asked to locate and activate
the appropriate servant. This is only an example scenario; the exact scenario depends

on what POA policies you have in place.

Figure 9.2 Example servant manager function

Server
2. POA ashs the servant manager to
1. Client makes a tind an appropriate objget.
request, but the - ™,
required object i not
present, - R m&;r::g;r
Active Cbject Map

3. Bervant Manager constructs the

ObjectD
ObgectlD
ObjetlD -]

PO, which completes the request.

appropriate servant and returns o the

112 VvisiBroker for Java Developer's Guide

Note

Using servants and servant managers

There are two types of servant managers: ServantActivator and ServantLocator. The

type of policy already in place determines which type of servant manager is used. For
more information on POA policy, see “POA policies” on page 105. Typically, a Servant
Activator activates persistent objects and a Servant Locator activates transient objects.

To use servant managers, RequestProcessingPolicy.USE SERVANT MANAGER must be set
as well as the policy which defines the type of servant manager
(ServantRetenticnPolicy . .RETAIN for Servant Activator

or ServantRetentianPolicy .NCN RETAIN for Servant Locator.)

ServantActivators

ServantActivators are used when ServantRetentionPolicy.RETAINand
RequestProcessingPolicy . USE SERVANT MANAGER are set.

Servants activated by this type of servant manager are tracked in the Active Object
Map.

The following events occur while processing requests using ServantActivators:

1 A client request is received (client request contains POA name, the object ID, and a
few others.)

2 The POA first checks the active object map. If the object ID is found there, the
operation is passed to the servant, and the response is returned to the client.

3 If the object ID is not found in the active object map, the POA invokes incarrateon a
servant manager. incarmate passes the object ID and the POA in which the object is
being activated.

4 The servant manager locates the appropriate servant.

5 The servant ID is entered into the active object map, and the response is returned to
the client.

The etherealize and incarmate method implementations are user-supplied code.

At a later date, the servant can be deactivated. This may occur from several sources,
including the deactivate doject operation, deactivation of the POA manager
associated with that POA, and so forth. More information on deactivating objects is
described in “Deactivating objects” on page 111.

This code sample is an example of servant activator-type servant manager:

import org.ang.PortableServer. *;
pblic class Server {
public static void mein(String[] args) {
try
// Initialize the ORB.
org.ang.CORBA.CRB orb = org.arng.CORBA.FORB. init (args,rull) ;
// get a reference to the rootPA
BCA rootRCA =
BCAHelper.narrow (orb. resolve initial references("RootPCA")) ;
// Create policies for cur PQA. We need persistence life span and
// use servant menager request processing policies
org.ang.CORBA. Policy[] policies = {
TootPOA. create lifespan policy (LifespenPolicyValue. PERSISTENT) ,

TootPCA. create request processing policy (RequestProcessingPolicyValue.
USE_SFRVANT MANAGER)
}i

// Create myPQA with the right policies
BCA myPQA = rootRCA. create POA("bark servant activator poa",
TootPOA. the POAManager () ,

policies) ;

Chapter 9: Using POAs 113

Using servants and servant managers

// Create the servant activator servent and get its reference
ServantActivator sa = new AccomntManagerActivator () ;
// Set the servant activator on our FOA
myPQA. set_servant menager (sa) ;
org.arg.CORRA.oject ref;
// Activate the POA menager
rootPOA. the ROAMenager () .activate() ;
// Gererate the reference ard write it cut. One for each Checking
ard Savirgs
// accomnt types .Note that we are not creating ary
// servants here and just merufacturing a reference which is not
// vet backed by a servant.
try {
ref =
myPQA. create reference with id("CheckingAccountManager" .getBytes () ,
"IDL: Bank/AccountManager: 1.0") ;
// Write out checking doject ID
java.io.PrintWriter pw =
new java.io.PrintWriter(new java.io.FileWriter
("cref.dat"));
pw.printin (orb.doject to string(ref)) ;
pw.close() ;
ref =
myPQA. create reference with id("SavingsAccountMenager".getBytes (),
"IDL: Bark/AccountManager: 1.0") ;
// Write out savings doject ID
Pw = new java.io.PrintWriter (new java.io.FileWriter ("sref.dat"));
pw.println(orb.doject to string(ref)) ;
pw.close() ;
} catch (java.io.IOException e) {
System.out .printIn ("Error writing the IOR to file ");
retum;
}
System.out .printIn ("Bank Manager is ready.");
// Wait for incoming requests
orb.run() ;
} catch (Exception e) {
e.printStackTrace() ;
}

}
}

The servant manager for the servant activator example follows:

import org.ang.PortableServer. *;
pblic class AccontManagerActivator extends ServentActivatoriocalBase (
public Servant incamate (byte[] oid, FOA adapter) throws ForwerdRequest {
Servant servant;
String accomntType = new String(oid) ;
System.aut . println ("\nAccountMenagerActivator . incarmate called with ID =
" + accontType + "\n") ;
// Create Savings or Checking Servant based on AccountType
if (accontType.equalsIgnoreCase ("SavingsAccomtManager™))
servant = (Sexrvant)new SavingsAccomntManegerTnpl () ;
else
servant = (Servant)new CheckingAccomtManagerTnpl () ;
new DeactivateThread (oid, adapter) .start();
retum servant;

114 VvisiBroker for Java Developer's Guide

Using servants and servant managers

public void etherealize (byte[]l oid,
BQA adapter,
Servant serv,
Ioolean clearup in progress,
boolean remeining activations)
System.out . printIn ("\nAcocountManagerActivator . etherealize called
with ID =
" + new String(oid) + "\n");
}
}
class DeactivateThread extends Thread {
byte[] oid;
POA _adapter;
public DeactivateThread (byte[] oid, POA adapter) {
_oid = oid;

_adapter = adapter;

pblic void nn() {

try {
Thread. currentThread () . slesp (15000) ;

System.out . println ("\rDeactivating the doject with ID =
" + new String(oid) + "\n");
_adapter.deactivate doject ((oid) ;
} catch (Exception e) {

e.printStackTrace() ;
}

ServantLocators

In many situations, the POA's Active Object Map could become quite large and
consume memory. To reduce memory consumption, a POA can be created with
RequestProcessingPolicy. USE SERVANT MANAGER and ServentRetentionPolicy.NON RETAIN,
meaning that the servant-to-object association is not stored in the active object map.
Since no association is stored, Servantlocator servant managers are invoked for each
request.

The following events occur while processing requests using ServantLocators:

1
2

4
5
6

A client request, which contains the POA name and the object id, is received.

Since ServantRetentionPolicy.NON RETAINS used, the POA does not search the
active object map for the object ID.

The POA invokes preirvcke on a servant manager. preirvoke passes the object ID,
the POA in which the object is being activated, and a few other parameters.

The servant locator locates the appropriate servant.
The operation is performed on the servant and the response is returned to the client.

The POA invokes postirvcke on the servant manager.

Note The preirvoke and postirvcke methods are user-supplied code.

Chapter 9: Using POAs 115

Using servants and servant managers

This is some example server code illustrating servant locator-type servant managers:

import org.ang.PortableServer. *;
public class Server {
pblic static void mein(Strirg[] args) {
try {
// Initialize the ORB.
org.ang.CORBA.CRB orb = org.arg.CORBA.CRB. init (args,ull) ;
// get a reference to the rootPA
BOA rootRA =
RAHelper.narrow (orb.resolve initial references("RootPCA")) ;
// Create policies for cur PQA. We need persistence life span,
// use servant menager request processing policies and non retain
// retention policy. This non retain policy will let us use the
// servant locator instead of servant activator
org.arg.CORBA. Folicy [] policies = {
TootPCA. create lifespan policy (LifespanPolicyValue . PERSISTENT) ,
TootPOA.create servant retention policy (ServantRetentionPolicyValue.
RETAIN) ,

TootPCA. create request processing policy (RequestProcessingPolicyValue.
USE SFRVANT MANAGER)

bi B
// Create myPQA with the richt policies
PCOA myPCOA = rootPCA. create POA("bark servent locator poa",
TOotPQA. the POAMenager () ,
policies) ;
// Create the servant locator servant and get its reference
Servantlocator sl = new AccountManagerlocator () ;
// Set the servant locator cn our BOA
myPQA. set_servant menager (sl) ;
org.arg.CORRA.(oject ref ;
// Bctivate the FOA menager
rootPCA. the POAManager () .activate() ;
// Gererate the reference and write it cut. One for each Checking
and Savings
// account types .Note that we are not creating any
// servants here and just merufacturing a reference which is not
// yet backed by a servant.
try {
ref =
myPQA. create reference with id("CheckingAccountMenager" .getBytes (),
"IDL: Bark/AccountManager: 1.0") ;
// Write out checking doject ID
Jjava.io.PrintWriter pw =
new Jjava.io.PrintWriter (new java.io.FildWriter ("cref.dat"));
pw.println(orb.doject to string(ref)) ;
pw.close() ;
ref =
myPQA. create reference with id("SavingsAccomntManager" .getBytes (),
"IDL: Bark/AccountManager: 1.0") ;
// Write out savings doject ID
pw = new java.io.PrintWriter(new java.io.FileWriter ("sref.dat"));
pw.printIn(orb.doject to string(ref));
pw.close() ;
} catch (java.io.IOExceptian e) {
System.out .printIn ("Error writing the IOR to file ");
} returmm;
System.cut .printIn ("BankManager is ready.") ;
// Wait for incoming requests
orb.run() ;
} catch (Bxception e) {
e.printStackTrace() ;

116 VisiBroker for Java Developer's Guide

Managing POAs with the POA manager

The servant manager for this example follows:

import org.ang.PortableServer. *;
import org.ang. PortableServer . Servantl ocatorPackage . CookieHolder;
pblic class AcoontManagerlocator extends ServentlocatorlocalBase {
public Servant preirvcke (byte[] oid, POA adepter,
java.lang.String cperatim,
CockieHolder the cockie) throws ForwardRequest {
String accomntType = new String(oid) ;
System.out . printIn ("\nAccountManager] ocator . preirvake called
with ID = " +
acocontType + "\n") ;
if (accomtType.equalsIgnoreCase ("SavingsAccomtMarager"))
retum new SavingsAccountMenagerTnpl () ;
retum new CheckingAccomtManagerTnpl () ;
}
public void postirvcke (byte[] oid,
BQA adapter,
java.lang.String cperatim,
java.lang.Qoject the codkie,
Servant the servent) {
System.out . printIn ("\nAcoountManagerl ocator . postirvake called with ID = "

new String(oid) + "\n");

Managing POAs with the POA manager

A POA manager controls the state of the POA (whether requests are queued or
discarded), and can deactivate the POA. Each POA is associated with a POA manager
object. A POA manager can control one or several POAs.

A POA manager is associated with a POA when the POA is created. You can specify
the POA manager to use, or specify 11 to have a new POA Manager created.

The following is an example of naming the POA and its POA Manager:

RCA myPOA = rootPOA.create POA("berk agent paa",
TootPQA. the POAManager () ,
policies) ;

POA myPCQA = rootPOA.create POA("bank agent poa",
ull,
policies) ;

A POA manager is “destroyed” when all its associated POAs are destroyed.
A POA manager can have the following four states:

= Holding

= Active

= Discarding

= Inactive

These states in turn determine the state of the POA. They are each described in detalil
in the following sections.

Chapter 9: Using POAs 117

Managing POAs with the POA manager

Note

Note

Getting the current state

To get the current state of the POA manager, use

erum State{HOIDING, ACTIVE, DISCARDING, INACTIVE};
State get state() ;

Holding state

By default, when a POA manager is created, it is in the holding state. When the POA
manager is in the holding state, the POA queues all incoming requests.

Requests that require an adapter activator are also queued when the POA manager is
in the holding state.

To change the state of a POA manager to holding, use

void hold requests (in boolean weit for completion)
raises (AdapterInactive);

wait for corpletianis Boolean If FALSE, this operation returns immediately after
changing the state to holding. If TRUE, this operation returns only when all requests
started prior to the state change have completed or when the POA manager is
changed to a state other than holding. AdapterTnactive is the exception raised if the
POA manager was in the inactive state prior to calling this operation.

POA managers in the inactive state cannot change to the holding state.

Any requests that have been queued but not yet started will continue to be queued
during the holding state.

Active state

When the POA manager is in the active state, its associated POAs process requests.
To change the POA manager to the active state, use

void activate ()
raises (RAdapterTnactive);

MdapterInactive is the exception raised if the POA manager was in the inactive state
prior to calling this operation.

POA managers currently in the inactive state can not change to the active state.

Discarding state

When the POA manager is in the discarding state, its associated POAs discard all
requests that have not yet started. In addition, the adapter activators registered with
the associated POASs are not called. This state is useful when the POA is receiving too
many requests. You need to notify the client that their request has been discarded and
to resend their request. There is no inherent behavior for determining if and when the
POA is receiving too many requests. It is up to you to set-up thread monitoring if so
desired.

To change the POA manager to the discarding state, use

void discard requests (in boolean wait for campletion)
raises (AdapterInactive);

118 VisiBroker for Java Developer's Guide

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Note

Note

The wait for completianoption is Boolean. If FALSE this operation returns immediately
after changing the state to holding. If TRUE, this operation returns only when all requests
started prior to the state change have completed or when the POA manager is
changed to a state other than discarding. AdapterTnactive is the exception raised if the
POA manager was in the inactive state prior to calling this operation.

POA managers currently in the inactive state can not change to the discarding state.

Inactive state

When the POA manager is in the inactive state, its associated POAs reject incoming
requests. This state is used when the associated POAs are to be shut down.

POA managers in the inactive state cannot change to any other state.
To change the POA manager to the inactive state, use

void deactivate (in boolean etherealize dojects, in boolean
wait for completion)
raises (AdapterInactive);

After the state changes, if etherealize dojectsis TRUE, then all associated POAs that
have Servant RetentianPolicy.REITATNand
RequestProcessingPolicy. USE SERVANT MANAGER set call etherealize on the servant
manager for all active objects. If etherealize dojectsis FALSE, then etherealizeis not
called. The wait for completicnoption is Boolean. If FALSE, this operation returns
immediately after changing the state to inactive. If TRUE, this operation returns only
when all requests started prior to the state change have completed or etherealize has
been called on all associated POAs (that have ServantRetentianPolicy.REIAIN and
RequestProcessingPolicy. USE SERVANT MANAGER). AdapterTnactive is the exception raised
if the POA manager was in the inactive state prior to calling this operation.

Listening and Dispatching: Server Engines, Server Connection
Managers, and their properties

Note

Policies that cover listener and dispatcher features previously supported by the BOA
are not supported by POAs. In order to provide these features, a VisiBroker-specific
policy (ServerEnginePolicy) can be used.

Visibroker provides a very flexible mechanism to define and tune endpoints for
Visibroker servers. An endpoint in this context is a destination for a communication
channel for clients to communicate with servers. A Server Engine is a virtual
abstraction for connection endpoint provided as a configurable set of properties.

A ServerEngine abstraction can provide control in terms of:
= types of connection resources
= connection management

= threading model and request dispatching

Chapter 9: Using POAs 119

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Server Engine and POAs

A POA on Visibroker can have many-to-many relationship with a ServerEngine. A POA
can be associated with many ServerEngines and vice-versa. The manifestation of this
fact is that a POA, and hence the CORBA objects on the POA, can support multiple
communication channels.

Figure 9.3 Server engine overview

The simplest case is where POAs have their own unique single server engine. Here,
requests for different POAs arrive on different ports. A POA can also have multiple
server engines. In this scenario, a single POA supports requests coming from multiple
input ports.

Notice that POAs can share server engines. When server engines are shared, the
POA:s listen to the same port. Even though the requests for (multiple) POAs arrive at
the same port, they are dispatched correctly because of the POA name embedded in
the request. This scenario occurs, for example, when you use a default server engine
and create multiple POAs (without specifying a new server engine during the POA
creation).

Server Engines are identified by a name and is defined the first time its name is
introduced. By default Visibroker defines three Server Engine names. They are:

= jiop_tp: TCP transport with thread pool dispatcher
= ljiop_ts: TCP transport with thread per session dispatcher
= jiop_tm: TCP transport with main thread dispatcher

Two more Server Engines, boa_tp and boa_ts, are available for BOA backward
compatibility.

Associating a POA with a Server Engine

The default Server Engine associated with POA can be changed by using the property
vbrcker. se.default. For example, setting

vorcker. se.defaul t=-MySE

defines a new server engine with the name MySE. Root POA and all child POAs created
will be associated with this Server Engine by default.

120 VisiBroker for Java Developer's Guide

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Note

A POA can also be associated with a particular ServerEngine explicitly by using the
SERVER ENGINE PCLICY TYPE POA policy. For example:

// create ServerfFrgine policy value
org.arg.CORBA. Aty serty = orb.create any () ;
org.arg. CORBA. StringSequencetielper . insert (sefry, new String [{"MySE"}) ;
org.ang.CORRA. Policy sePolicy =
orb.create policy (cam. inprise.viroker. PortableServerkxt .
SERVER ENGINE POLICY TYPE.value,selry) ;

// create POA policies

org.arg.CORBA. Folicy[] policies = {
TootRCA. create lifespan policy (LifeSpanPolicyValue. PERSISTENT) ,
sePolicy

}i

// create POA with policies
BCA myPOA = rootPOA. create POA("barnk se policy poa", rootPCA.the ROAManager (),
policies) ;
The POA has an IOR template, profiles for which, are obtained from the Server
Engines associated with it.

If you don't specify a server engine policy, the POA assumes a server engine name of
iicp tpand uses the following default values:

voroker.se.iicp tp.host=rmll

voroker.se.iicp tp.proxyHost=rull

voroker.se.iicp tp.sams=iicp tp
To change the default server engine policy, enter its name using the
vbroker. se.default property and define the values for all the components of the new
server engine. For example:

vircker . se.default=abc, def

vbroker. se.abc.host=cdb

vioroker . se. abc. praxyHost=rmil1l
voroker . se.albc . sams=cdosanl, cdosan?
viorcker. se.def .host=gdb

vbroker . se.def . praxyHost=rmll
vbroker. se.def . sams=gdosaml

Defining Hosts for Endpoints for the Server Engine

Since Server Engines help define a connection's endpoints, the following properties
are provided to specify their hosts:

= vbrdker. se.<se-name>. host=<host-TRL>: viboroker . se.mySE. host=host .orland.oam for
example.

= vbroker. se.<se-names. praxyHost=<praxy-host -URL-or-ITP-address >
voroker . se.mySE. praxyHost=proxy . borland. aam, for example.

The proxyHost property can also take an IP address as its value. Doing so replaces the
default hostname in the IOR with this IP address.

The endpoint abstraction of ServerEngine is further fine-grained in terms of
configurable set of entities referred to as Server Connection Managers (SCM). A
ServerEngine can have multiple SCMs. SCMs are not shareable between
ServerEngines. SCMs are also identified using a name and are defined for a
ServerEngine using:

voroker . se. <se-names . sans=<SV-name> [, <SM-name>, . . .]

the iicp tpand licp tp Server Engines have SCMs named iiop_tp and liop_tp created
for them, respectively.

Chapter 9: Using POAs 121

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Note

Server Connection Managers

The Server Connection Manager defines the configurable components of an endpoint.
Its responsibilities are connection resource management, listening for requests, and
dispatching requests to its associated POA. Three logical entities, defined through
property groups, are provided by the SCM to fulfill these responsibilities:

= Manager
= Listener
= Dispatcher

Each SCM has one Manager, Listener, and Dispatcher. All three, when defined, form a
single endpoint definition allowing clients to contact servers.

Manager

Manager is a set of properties defining the configurable portions of a connection
resource. VisiBroker provides a manager of type Socket.

VisiBroker for Java only supports the Socket type, and a variation of the Socket type,
Socket_nio, that uses the Java NIO package. See section “High scalability
configuration for VisiBroker for Java (using Java NIO)” on page 140 for further details.

You can specify the maximum number of concurrent connections acceptable to the
server endpoint using the camectiaiVex property:

vbrcker . se. <se-name>. sam. <san-names. menader . canectiaMex=<integer>

Setting camectianMaxto 0 (zero) indicates that there is no restriction on the number of
connections, which is the default setting.

You specify the maximum number of idle seconds using the camectiaMexIdle
property:
vbroker . se. <se-name> . sam. <san-nanes. menadger . camectiaiVexTdle=<secands>

Setting camectiaMaxIdleto 0 (zero) indicates that there is no timeout, which is the
default setting.

Garbage collection time is specified through the following property:
vibroker . orb . geTimecut=<secands>
A value of 0 (zero) means that the connection will never be garbage collected.

Listener

The Listener is the SCM component that determines how and where the SCM listens
for messages. Like the Manager, the Listener is also a set of properties. VisiBroker
defines a IIOP listener for the TCP connections.

Since listeners are close to the actual underlying transport mechanism, their properties
are not portable across listener types. Each listener type has its own set of properties,
defined below.

IIOP listener properties

IIOP listners need to define a port and (if desired) a proxy port in conjunction with their
hosts. These are set using the port and praxyPort properties, as follows:

vbrcker . se. <se-name>. sam. <san-names. 1istener . port=<port>
vbrcker . se. <se-name>. sam. <san-names. 1istener . praxyPort=<proxy-port>

If you do not set the port property (or set it to 0[zero]), a random port will be selected. A
0 value for the proxyPort property means that the IOR will contain the actual port
(defined by the listener.port property or selected by the system randomly). If it is not
required to advertise the actual port, set the proxy port to a non-zero (positive) value.

122 VisiBroker for Java Developer's Guide

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

VisiBroker additionally supports a property allowing you to specify your GIOP version:

vbrcker . se. <se-name>. sam. <san-names>. listener .giogVersion=<versian>

Dispatcher

The Dispatcher defines a set of properties that determine how the SCM dispatches
requests to threads. Three types of dispatchers are provided: ThreadPool,
ThreadSessian, and MainThread You set the dispatcher type with the type property:

vbroker . se . <se-name> . san. <san-ranes> . digpatcher . type=ThreadPcol | ThreadSession|
MairThread

Further control is provided through the SCM for the ThreadPool dispatcher type. The
ThreadPool defines the minimum and maximum number of threads that can be created
in the thread pool, as well as the maximum time in seconds after which an idled thread
is destroyed. These values are controlled with the following properties:

viroker . se. <se-name>. san. <san-names. dispatcher . threadMin=<integer>
vbrcker . se. <se-name>. san. <san-names. dispatcher . threadVex=<integer>
viroker . se. <se-name> . sam. <san-names>. digpatcher . threadviaxTdl e=<seconds>

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is said to be “hot”
when the GIOP connection being served is potentially readable, either upon creation of
the connection or upon the arrival of a request. After the cooling time (in seconds), the
thread can be returned to the thread pool.

VisiBroker for Java supports the cooling time property when configured to use the Java
NIO package. See the section “High scalability configuration for VisiBroker
for Java (using Java NIO)” on page 140 for more information.

The following property is used to set the cooling time:
vioroker . se. <se-name> . scm. <san-names . digpatcher . cool ingTime=<seconds>

When to use these properties

There are many times where you need to change some of the server engine properties.
The method for changing these properties depends on what you need. For example,
suppose you want to change the port number. You could accomplish this by:

= Changing the default listener.port property
= Creating a new server engine

Changing the default listener.port property is the simplest method, but this affects all
POAs that use the default server engine. This may or may not be what you want.

If you want to change the port number on a specific POA, then you'll have to create a
new server engine, define the properties for this new server engine, and then reference
the new server engine when creating the POA. The previous sections show how to
update the server engine properties. The following code snippet shows how to define
properties of a server engine and create a POA with a user-defined server engine
policy:

// Server.java

import org.ang.PortableServer. *;

pblic class Server {

public static void mein(String[] args) {
try {

// Initialize the CRB.
org.arg.CORRA.ORB orb = org.ong.CORBA.ORB. init (args,mill) ;
// Get property menager
com. irprise. vibroker . properties. PropertyMenager pm =
((com. inprise. viorcker . orb . ORB) orb) .getPropertyManager () ;

Chapter 9: Using POAs 123

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

pm.addProperty ("Woroker . se.mySe.host", ") ;

m. addProperty ("broker . se.mySe. praxyHost", ") ;

pm.addProperty ("Whrcker . se.mySe.sams", "samlist") ;

pn.addProperty ("Wordker . se.mySe . scm. samlist .menager . type", "Socket") ;

pn.addProperty ("Wrcker . se.mySe. scm. samlist .menager . camectiadax", 100) ;

pn.addProperty ("Whrcker . se . mySe . scm. samlist .menager . camectiaiexIdle",
300) ;

pn.addProperty ("Whrdker . se.mySe. sam. samlist . listener. type", "IIOP");

("Vioroker . se.mySe. sam. samlist . listener.port", 55000)

pn.addProperty ("brdker . se.mySe . sam. sanlist . 1istener. proxyPort ",

pm.addProperty ("Whrcker . se.mySe. scm. samlist .dispatcher. type",
"ThreadPool") ;

. addProperty ("viorcker . se.mySe . sam. scmlist . dispatcher. threadvex", 100) ;

pm.addProperty ("oroker . se.mySe. san. samlist . dispatcher . threadMin, 5) ;

pm.addProperty ("Worcker . se.mySe. sam. samlist .dispatcher. threadvaldle"
300) ;

// get a reference to the root RQA

PQA rootRA =

BQAHelper . narrow (orb. resolve initial references("RootPQA")) ;

// Create our server engine policy

org.ang.CORBA. Ay sefyy = orb.create ary () ;

org.ang. CORBA. StringSequencetelper . insert (sefny, new String[] {"mySe"}) ;
org.ang.CORRA. Policy sePolicy =

orb.create policy(

cam. inprise . vioroker . PortableServerixt . SERVER ENGINE POLICY TYPE.value,

Selny) ;
// Create policies for cur persistent PQA
org.arg.CORBA.Folicy[] policies = {

TootRCA. create lifespan policy (LifespanPolicyValue. PERSISTENT) , sePolicy

}i

// Create myPQA with the right policies

BCA myPQA = rootPCA. create POA("bank se policy poa,
TOOtPOA. the POAManager ()
policies) ;

// Create the servant

AccomtManagerTnpl menagerServant = new AccomtManagerTnpl ()

// Activate the servant

myPQA.activate doject with id("BankManager".getBytes(), menagerServant) ;

// Ootaining the reference

org.ang.QORBA.Qoject ref = myPOA.servant to reference (menagerServant) ;

// Now write out the ICR
oy {
Java.lo.PrintWriter pw =
new java.io.PrintWriter(new java.io.FileWriter("ior.dat"));
pw.printIn (orb.doject to string(ref)) ;
pw.close() ;
} catch (java.io.I0Exception e) {
System.out .printin(<Default Para Fant>"Error writing the IOR to file

ior.dat");

}

}

retum;

// Bctivate the FOA menager

TootPOA. the POAManager () .activate() ;

System.out .printIn(ref + " is ready.")

// Weit for incoming requests

orb.run() ;

} catch (Exception e) {
e.printStackTrace() ;

}

124 VvisiBroker for Java Developer's Guide

Adapter activators

Adapter activators

Adapter activators are associated with POAs and provide the ability to create child
POAs on-demand. This can be done during the find EQA operation, or when a request
is received that names a specific child POA.

An adapter activator supplies a POA with the ability to create child POAs on demand,
as a side-effect of receiving a request that names the child POA (or one of its children),
or when find PQAis called with an activate parameter value of TRUE. An application
server that creates all its needed POAs at the beginning of execution does not need to
use or provide an adapter activator; it is necessary only for the case in which POAs
need to be created during request processing.

While a request from the POA to an adapter activator is in progress, all requests to
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new POA
before requests are delivered to that POA.

For an example on using adapter activators, see the POA adsptor activator example
included with the product.

Processing requests

Requests contain the Object ID of the target object and the POA that created the target
object reference. When a client sends a request, the VisiBroker ORB first locates the
appropriate server, or starts the server if needed. It then locates the appropriate POA
within that server.

Once the VisiBroker ORB has located the appropriate POA, it delivers the request to
that POA. How the request is processed at that point depends on the policies of the

POA and the object's activation state. For information about object activation states,

see “Activating objects” on page 109.

= If the POA has ServantRetentionPolicy.REIAIN, the POA looks at the Active Object
Map to locate a servant associated with the Object ID from the request. If a servant
exists, the POA invokes the appropriate method on the servant.

= If the POA has ServantRetentianPolicy NON REIRINor has
ServantRetentionPolicy . REIAIN but did not find the appropriate servant, the following
may take place:

= If the POA has RequestProcessingPolicy.USE DEFAITT SERVANT, the POA invokes
the appropriate method on the default servant.

= If the POA has RequestProcessingPolicy.USE SERVANT MANRGER , the POA invokes
incarnate or preirvoke on the servant manager.

= If the POA has RequestProcessingPolicy.USE OBJECT MAP ANLY , an exception is
raised.

If a servant manager has been invoked but can not incarnate the object, the servant
manager can raise a ForwardRequest exception.

Chapter 9: Using POAs 125

126 VisiBroker for Java Developer's Guide

Managing threads and connections

This section discusses the use of multiple threads in client programs and object
implementations, and will help you understand the VisiBroker thread and connection
model.

Using threads

A thread, or a single sequential flow of control within a process, is also called a
lightweight process that reduces overhead by sharing fundamental parts with other
threads. Threads are lightweight so that there can be many of them present within a
process.

Using multiple threads provides concurrency within an application and improves
performance. Applications can be structured efficiently with threads servicing several
independent computations simultaneously. For example, a database system may have
many user interactions in progress while at the same time performing several file and
network operations.

Although it is possible to write the software as one thread of control moving
asynchronously from request to request, the code may be simplified by writing each
request as a separate sequence, and letting the underlying system handle the
synchronous interleaving of the different operations.

Multiple threads are useful when:

= There are groups of lengthy operations that do not necessarily depend on other
processing (like painting a window, printing a document, responding to a mouse-
click, calculating a spreadsheet column, signal handling).

= There will be few locks on data (the amount of shared data is identifiable and small).

= The task can be broken into various responsibilities. For example, one thread can
handle the signals and another thread can handle the user interface.

Chapter 10: Managing threads and connections 127

Listener thread, dispatcher thread, and worker threads

Thread and connection management occurs within the scope of an entity known as a
server engine. Several default server engines are created automatically by VisiBroker,
which include thread pool engines for IIOP, for LIOP, and so forth. Additional server
engines can be used and created in a VisiBroker server by applications. See the
example in:

<install dirs/exanples/vbe/poa/server engine policy/Server.java

Server engines are created, configured, and used independently. The creation and
configuration of one server engine does not affect other server engines in the same
server. Usually, each server engine has one transport end point, called the listen point/
socket.

The relationship between server engines and POAs is many-to-many. Each server
engine can be used by multiple POAs, and each POA may also use multiple server
engines.

Server engines can consist of multiple Server Connection Managers (SCMs). An SCM
is composed of managers, listeners, and dispatchers. The properties of managers,
listeners and dispatchers can be configured to determine how the SCM functions.
These properties are discussed in “Setting connection management properties” on
page 137.

Listener thread, dispatcher thread, and worker threads

Each server engine has a listener and a dispatcher thread. The listener thread is
responsible for:

= Accepting new connections. Therefore, it listens on the listen end-point.
= Monitoring readability on idle GIOP connections.

= Updating the monitoring list.

= |dle connection garbage collection based on property settings.

The dispatcher determines which threads to send requests.

Each server engine uses a certain number of worker threads to receive and process
requests. Different requests may handled by different worker threads. For a given
request, the request reading, processing (include server side interceptor intercepting),
and replying are all handled by the same thread. The number of worker threads used
by a server engine depends on:

= The thread model.
= The number of concurrent requests or connections.

= The property settings.

128 VisiBroker for Java Developer's Guide

Thread policies

Thread policies

The two major thread models supported by VisiBroker are the thread pool (also known
as thread-per-request, or TPool) and thread-per-session (also known as thread-per-
connection, or TSessian). Single-thread and main-thread models are not discussed in
this document. The thread pool and thread-per-session models differ in these
fundamental ways:

= Situation in which they are created
= How simultaneous requests from the same client are handled
= When and how threads are released

The default thread policy is the thread pool. For information about setting thread-per-
session or changing properties for the thread pool model, see “Setting dispatch policies
and properties” on page 135.

Thread pool policy

When your server uses the thread pool policy, it defines the maximum number of
threads that can be allocated to handle client requests. A worker thread is assigned for
each client request, but only for the duration of that particular request. When a request
is completed, the worker thread that was assigned to that request is placed into a pool
of available threads so that it may be reassigned to process future requests from any of
the clients.

Using this model, threads are allocated based on the amount of request traffic to the
server object. This means that a highly active client that makes many requests to the
server at the same time will be serviced by multiple threads, ensuring that the requests
are quickly executed, while less active clients can share a single thread, and still have
their requests immediately serviced. Additionally, the overhead associated with the
creation and destruction of worker threads is reduced, because threads are reused
rather than destroyed, and can be assigned to multiple new connections.

VisiBroker conserves system resources by dynamically allocating the number of
threads in the thread pool based on the number of concurrent client requests by
default. If the client becomes very active, new threads are allocated to meet its needs.
If threads remain inactive, VisiBroker releases them, only keeping enough threads to
meet current client demand. This enables the optimal number of threads to be active in
the server at all times.

The size of the thread pool grows based upon server activity and is fully configurable,
either before or during execution, to meet the needs of specific distributed systems.
With the thread pool model, you can configure the following:

= Maximum and minimum number of threads
= Maximum idle time

Each time a client request is received, an attempt is made to assign a thread from the
thread pool to process the request. If this is the first client request and the pool is
empty, a thread will be created. Likewise, if all threads are busy, a new thread will be
created to service the request.

A server can define a maximum number of threads that can be allocated to handle
client requests. If there are no threads available in the pool and the maximum number
of threads have already been created, the request will block until a thread currently in
use has been released back into the pool.

Chapter 10: Managing threads and connections 129

Thread pool policy

Thread pool is the default thread policy. You do not have to set up anything to define
this environment. If you want to set properties for the thread pool, see “Setting dispatch
policies and properties” on page 135.

Figure 10.1 Pool of threads is available

-

The figure above shows the object implementation using the thread pool policy. As the
name implies, there is an available pool of worker threads in this policy.

Figure 10.2 Client application #1 sends a request

Worker
thread 3§ -

In the above figure, Client application #1 establishes a connection to the Object
Implementation and a thread is created to handle requests. In the thread pool, there is
one connection per client and one thread per connection. When a request comes in, a
worker thread receives the request; that worker thread is no longer in the pool.

130 VisiBroker for Java Developer's Guide

Thread pool policy

A worker thread is removed from the thread pool and is always listening for requests.
When a request comes in, that worker thread reads in the request and dispatches the
request to the appropriate object implementation. Prior to dispatching the request, the
worker thread wakes up one other worker thread which then listens for the next
request.

Figure 10.3 Client application #2 sends a request

Chject
Irnplernetationg

-

Wioker fead 3
liztening for the
rext mequest

fiom
Application 14
Cliett
application #1% [i=all=
= Woker

Cliert
application #24%

Warker
mauesty thmead 2%

Wiarkerthread 4
liztening far the
neit mquest

from
Appiication 25

Chapter 10: Managing threads and connections 131

Thread pool policy

As the above figure shows, when Client application #2 establishes its own connection
and sends a request, a second worker thread is created. Worker thread #3 is now
listening for incoming requests.

Figure 10.4 Client application #1 sends a second request

Chigct
Imnplemerdationg

Cliet
application #1%

—

Clert
application #25% ——

The above figure shows that when a second request comes in from Client application
#1, it uses worker thread #4. Worker thread #5 is spawned to listen for new requests. If
more requests came in from Client application #1, more threads would be assigned to
handle them, each spawned after the listening thread receives a request. As worker
threads complete their tasks, they are returned to the pool and become available to
handle requests from any client.

132 VvisiBroker for Java Developer's Guide

Thread-per-session policy

Thread-per-session policy

With the thread-per-session (TSessian) policy, threading is driven by connections
between the client and server processes. When your server selects the thread-per-
session policy, a new thread is allocated each time a new client connects to a server. A
thread is assigned to handle all the requests received from a particular client. Because
of this, thread-per-session is also referred to as thread-per-connection. When the client
disconnects from the server, the thread is destroyed. You may limit the maximum
number of threads that can be allocated for client connections by setting the
voroker.se.iicp ts.sam.ilicp ts.meneger.camectianvex property.

Figure 10.5 Object implementation using the thread-per-session policy

Chject
Irnplernetations

Client
application #1%

The above figure shows the use of the thread-per-session policy. The Client application
#1 establishes a connection with the object implementation. A separate connection
exists between Client application #2 and the object implementation. When a request
comes in to the object implementation from Client application #1, a worker thread
handles the request. When a request from Client application #2 comes in, a different
worker thread is assigned to handle this request.

Figure 10.6 Second request comes in from the same client

Object
Irplerenatim

onnecion - —
-
7 mquest1

Himt
applic3ion #1

Glient
application #2

In the above figure, a second request has come in to the object implementation from
Client application #1. The same thread that handles request 1 will handle request 2.
The thread blocks request 2 until it completes request 1. (With thread-per-session,
requests from the same Client are not handled in parallel.) When request 1 has
completed, the thread can handle request 2 from Client application #1. Multiple
requests may come in from Client application #1. They are handled in the order that
they come in; no additional threads are assigned to Client application #1.

Chapter 10: Managing threads and connections 133

Connection management

Connection management

Overall, VisiBroker's connection management minimizes the number of client
connections to the server. In other words there is only one connection per server
process which is shared. All requests from a single client application are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same
server, eliminating the need for clients to incur the overhead of new connections to the
server.

In the following scenario, a client application is bound to two objects in the server
process. Each bind() shares a common connection to the server process, even though
the bind() is for a different object in the server process.

Figure 10.7 Binding to two objects in the same server process

Bnd]) o Obect & m
0eoh [etiscta
Ondi o CObect B —
Client aplication — ree [ctjectk
Boh request are 5 viced
throudh a shgle cornec fon Sarver pocess

The following figure shows the connections for a client using multiple threads that has
several threads bound to an object on the server.

Figure 10.8 Binding to an object in a server process

)

V- bindi) 1o Objscta il:lot;‘g:m
VA bindij toObjeth ——
V- bindijtoobissts —]

Semerprocess

Fequests fromall thiee thieads ae
Clentapplicaton seiviced thiough a shale conmeztion

As the above figure shows, all invocations from all threads are serviced by the same
connection. For that scenario, the most efficient multi threading model to use is the
thread pool model. If the thread-per-session model is used in this scenario, only one
thread on the server will be allocated to service all requests from all threads in the
client application, which could easily result in poor performance.

The maximum number of connections to a server, or from a client, can be configured.
Inactive connections will be recycled when the maximum is reached, ensuring resource
conservation.

ServerEngines

Thread and connection management on the server side is performed by
ServerEngines, which can consist of one or more Server Connection Managers
(SCMs). An SCM is a collection of properties of the manager, listener, and dispatcher.

Defining a ServerEngine consists of specifying a set of properties in a properties file.
For example, if on UNIX the property file called myprops. propertiesis in home directory,
the command line is

prompt> vbj -DORBpropStorage=~/myprops . properties myServer

134 VvisiBroker for Java Developer's Guide

Setting dispatch policies and properties

ServerEngine properties

vbroker. se.<srvr eng names.sans=<srvr camection mgr namels, <srvr camection m
oY name2>

The set of Server Connection Managers associated with a ServerEngine is defined by
this property. The name specified in the above property as the <svr eng name>is the
name of the ServerEngine. The SCMs listed here will be the list of SCMs for the
associated server engine. SCMs cannot be shared between ServerEngines. However,
ServerEngines can be shared by multiple POAs.

The other properties are
vbroker . se.<se>.host

The host property is the IP address for the server engine to listen for messages.
viroker. se. <se>. praxyHost

The praxyHost property specifies the proxy IP address to send to the client in the case
where the server does not want to publish its real hostname.

Setting dispatch policies and properties

Each POA in a multi-threaded object server can choose between two dispatch models:
thread-per-session or thread pool. You choose a dispatch policy by setting the
dispatcher. type property of the ServerEngine.
vbroker. se.<srvr eng name>.sam.<srvr_camection mgr names>.dispatcher. type=
ThreadPcol
voroker. se.<srvr eng rames>.sam.<srvr camection mngr names>.dispatcher. type=
ThreadSession

For more information about these properties see Chapter 9, “Using POAs” and the
VisiBroker Programmer's Reference.

Thread pool dispatch policy

ThreadPool (thread pooling) is the default dispatch policy when you create a POA
without specifying the ServerEnginePolicy.

For ThreadPool, you can set the following properties:

= vbroker.se.default .dispatcher. tp. threadviax

This property sets a TPool server engine's maximum number of worker threads in
the thread pool. The property can be set statically on server startup or dynamically
reconfigured using the property API. For instance, the start up property

vorcker. se.default . dispatcher. tp. threadVex=32
or
voroker.se.iicp tp.sam.iicp tp.dispatcher. threadvEx=32

sets the initial maximum worker thread limitation to 32 for the default TPool server
engine. The default value of this property is unlimited (0). If there are no threads
available in the pool and the maximum number of threads have already been
created, the request is blocked until a thread currently in use has been released
back into the pool.

Chapter 10: Managing threads and connections 135

Setting dispatch policies and properties

vioroker . se.default . digpatcher. tp. threadVin

This property sets a Thool server engine's minimum number of worker threads in the
thread pool. The property can be set statically on server startup or dynamically
reconfigured using the property API. For instance, the start up property

viroker . se.default . digpatcher. tp. threadVin=8
or
voroker.se.iicp tp.sam.iicp tp.dispatcher. threadin=8

sets the initial worker thread minimum number to 8 for the default TPool server
engine. The default value of this property is 0 (no worker threads).

vbroker. se.default . digpatcher. tp. threadVexIdle

This property sets a TPool server engine's idle thread check interval. The property
can be set statically on server startup or dynamically reconfigured using the property
API. For instance, the start up property

vobroker . se.default . dispatcher. tp. threadVexTdle=120
or
vbroker.se.iiop tp.sam.iicp tp.dispatcher. threadVexTdle=120

sets the initial idle worker thread check interval to 120 seconds for the default TPool
server engine. The default value of this property is 300 seconds. With this setting,
the server engine will check the idle state of each worker thread every 120 seconds.
If a worker thread has been idle across two consecutive checks, it will be recycled
(terminated) at the second check. Therefore, the actual idle thread garbage
collection time is between 120 to 240 seconds under the above setting, instead of
exactly 120 seconds.

vbroker . se.default . digpatcher. tp. coolingTime

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is said to be
“hot” when the GIOP connection being served is potentially readable, either upon
creation of the connection or upon the arrival of a request. After the cooling time (in
seconds), the thread can be returned to the thread pool. The property can be set
statically on server startup or dynamically reconfigured using the property API. For
instance, the startup property

vircker . se.default .dispatcher. tp. coolingTine=6
or
voroker.se.iicp tp.sam.iiocp tp.dispatcher.coolingTime=6

sets the initial cooling time to 6 seconds for the default engine (or the [IOP TPool
server engine).

This property is applicable to VisiBroker for Java under certain conditions. See “High
scalability configuration for VisiBroker for Java (using Java NIO)” on page 140 for
details. The default value of this property in VisiBroker for Java is 0 (zero), which
implies that a GIOP connection being serviced ceases to be “hot” unless a new
request is immediately available for servicing. It is important that the value of
coolingTime is not altered unless tests have indicated that a non-default value is
beneficial to the performance of the application.

Note The vibrcker.se.default.xx. tp.xox property is recommended when
vbroker . se.default=iicp tp. When using with ThreadSession, it is recommended that
you use the vbrcker.se.iicp ts.san.iicp ts.xxxproperty.

136 VisiBroker for Java Developer's Guide

Note

Setting connection management properties

Thread-per-session dispatch policy

When using the ThreadSessian as the dispatcher type, you must set the se.default
property to iicp ts.

voroker.se.default=iicp ts

In thread-per-session, there are no threadVin, threadvex, threadvexIdle, and
acolingTime dispatcher properties. Only the Connection and Manager properties are
valid properties for ThreadSession.

Coding considerations

All code within a server that implements the VisiBroker ORB object must be thread-
safe. You must take special care when accessing a system-wide resource within an
object implementation. For example, many database access methods are not thread-
safe. Before your object implementation attempts to access such a resource, it must
first lock access to the resource using a synchronized block.

If serialized access to an object is required, you need to create the POA on which this
object is activated with the SINGLE THREAD MCDEL value for the ThreadPolicy:.

Setting connection management properties

Note

The following properties are used to configure connection management. Properties
whose names start with viorcker.se are server-side properties. The client side
properties have their names starting with viorcker.ce.

The command line options for VisiBroker 3.x backward-compatibility are less obvious
in terms of whether they are client-side or server-side. However, the connection and
thread management options that start with the -ORB prefix set the client-side options
whereas the options with the -Qa prefix are used for the server-side options. There are
no common properties which are used for both client-side and server-side thread and
connection management.

The distinction between client and server vanishes if callback or bidirectional GIOP is
used.

= voroker.se.default. socket .manager . camectiaVex

This property sets the maximum allowable client connections to a server engine.
The property can be set statically on server startup or dynamically reconfigured
using the property API. For instance, the start up property

-Dvbroker . se.default . socket .menager . camectianMex=128
or
-Dvorcker.se.iicp tp.san.iicp tp.menager.camectiaiMax=128

sets the initial maximum connection limitation on this server engine to 128. The
default value of this property is unlimited (0[zero]). When the server engine reaches
this limitation, before accepting a new client connection, the server engine needs to
reuse an idle connection. This is called connection swapping. When a new
connection arrives at the server, it will try to detach the oldest unused connection. If
all the connections are busy, the new connection will be dropped. The client may
retry again until some timeout expires.

Chapter 10: Managing threads and connections 137

Setting connection management properties

= voroker.se.default.socket .manager . camectiaMexIdle

This property sets the maximum length of time an idle connection will remain open
on a server engine. The property can be set statically on server startup or
dynamically reconfigured using property API. For instance, the start up property

-Dvbroker . se.default . socket .manager . camectiaMaxTdle=300
or
-Dvborcker.se.iicp tp.san.iicp tp.menager. camectiaiMaxIdle=300

sets the initial idle connection maximum lifetime to 300 seconds. The default value
of this property is 0 (unlimited). When a client connection has been idle longer than
this value, it becomes a candidate for garbage collection.

= vbroker.ce.iiop.can.camectiaMex

Specifies the maximum number of the total connections within a client. The default
value of zero means that the client does not try to close any of the old active or
cached connections. If a new client connection will result in exceeding the limit set
by this property, the VisiBroker for C++ will try to release one of the cached
connections. If there are no cached connections, it will try to close the oldest idle
connection. If both of them fail, the CORBA: :NO RESOURCE exception will result.

Valid values for applicable properties

The following properties have a fixed set or range of valid values:
= vbroker.ce.iiogp.can. type=Pool
Currently, Pool is the only supported type.

In the following properties, xxxis the server engine name and yyyis the server
connection manager name:

" vbroker. se.xox. san. yyy .menager . type=Socket
Socket niois the only other permissable value for this property.
= vbroker.se.xxx.san.yyy. listener. type=IT0P
You can also use the value S3Lfor security.
= vbroker. se.xxx. sam.yyy.disptacher. type=ThreadPool
The other possible values are ThreadSessicn and MainThread
= vbroker.se.iiop tp.san.iicp tp.dispatcher.coolingTime

The default value is 0 (zero) , and the maximum value is 10, so a value greater than
10 will be clamped to 10. In VisiBroker for Java, this property is applicable only if the
Server Connection Manager has a manager type of Socket_nio. See “High
scalability configuration for VisiBroker for Java (using Java NIO)” on page 140 for
details.

Effects of property changes

The effect of a change in a property value depends on the actions associated with the
properties. Most of the actions are directly or indirectly related to the utilization of
system resources. The availability and restrictions of the system resources to the
CORBA application vary depending on the system and the nature of the application.

For instance, increasing the garbage collector timer may increase the system activities,
as the garbage collector will run more frequently. On the other hand, increasing its
value means the idle threads will remain in system unclaimed for longer periods of
time.

138 VisiBroker for Java Developer's Guide

Setting connection management properties

Dynamically alterable properties

The following properties can be changed dynamically and the effect will be immediate
unless stated otherwise:

vobroker. ce. 1igp.camn. camectianCacheMax=5

vbroker. ce.1igp.camn. camectianMex=0

vbroker. ce.1i0p.can. camectianVexIdle=360

voroker.ce. iicp.camection. revBufSize=0

vorcker.ce. iicp.camection. sendBufSize=0

viroker. ce. 1igp.camection. todNdDelay=false

vbroker. ce.1igp.camection. socketlinger=0

vbroker. ce.iigp.camection. keepAlive=true

vbroker. ce. 1ligp.can. camectianVex=0

vircker. ce. licp.can. camectiaMexTdle=360

vircker.ce. licp.camection. revBufSize=0

vioroker . ce. 1igp. camection. sendBufSize=0
voroker.se.iicp tp.sam.iicp tp.menager. camecticnVex=0
voroker.se.iicp tp.sam.iicp tp.menager. camecticnVexIdle=0
voroker.se.iicp tp.sam.iicp tp.dispatcher. threadin=0
vbrcker.se.iiop tp.sam.iicp tp.dispatcher. threadVex=100

The new dispatcher threadMax properties will be reflected after the next garbage
collector run.

voroker.se.iicp tp.sam.iicp tp.dispatcher. threadvexIdle=300
voroker.se.iicp tp.sam.iicp tp.dispatcher.coolingTime=3

vbrcker.se.iicp tp.sam.iicp tp.menager.garbegeCollectTimer=30
vbroker.se.liop tp.sam.licp tp.listener.userCmstrained=false

Determining whether property value changes take effect

For this purpose, the server manager needs to be enabled, using the property
vioroker . orb . enableServerManager=true, and the properties can be obtained through the
server manager query either through the Console or through a command-line utility.

Impact of changing property values

It is very difficult to determine the impact of changing the value of a property to
something other than the default. For thread and connection limits, the available
system resources vary depending on the machine configuration and the number of
other processes running. The setting of properties allows performance tuning for a
given system.

Chapter 10: Managing threads and connections 139

High scalability configuration for VisiBroker for Java (using Java NIO)

High scalability configuration for VisiBroker for Java (using Java NIO)

The Java NIO package, available in J2SE 1.4, allows servers to handle multiple
connections efficiently, without having to dedicate a thread per connection. This allows
servers to service a large number of client connections with fewer threads, translating
to higher scalability. VisiBroker for Java servers can be configured to harness Java
NIO technology. Servers using the ThreadPool policy can use Java NIO by setting the
manager type to Socket_nio instead of Socket. For example,

voroker.se.iiop tp.sam.iicp tp.menager. type=Socket nio

This feature should be used in combination with the threadMax property, which is used
to limit the number of threads in the thread pool that are available for dispatching
requests (i.e., processing invocations). When the manager type is Socket_nio, the
number of threads in the thread pool will not increase (beyond the number specified as
threadMax) proportionate to the number of connections being serviced. This is possible
because here the necessity to have a thread per connection does not exist.

Please note that the thread per connection model (which is the default for the
VisiBroker for Java thread pool) is expected to outperform the NIO based model for
servers where the number of connections is relatively small (i.e., not of the order of
hundreds of connections). It is advisable to run tests to decide on the appropriate
model given the typical load conditions for an application.

Servers using J2SE 1.4 or above will be able to use this feature. Currently, clients
based on VisiBroker for Java do not benefit from the ORB's usage of Java NIO.

The coolingTime property is effective in VisiBroker for Java when NIO based dispatch
is enabled. See “Thread pool dispatch policy” on page 135 for details.

Garbage collection

Note

The VisiBroker for Java ORB performs automatic garbage collection of various
resources other than the memory. The garbage collection of the memory is performed
by the Java Virtual machine. Various properties are provided to control the garbage
collection period. In addition, resources like threads and connections define timeout
properties that control the collection of these resources.

How ORB garbage collection works

The ORB garbage collector thread is a normal priority thread. After the expiration of
timeout period (specified by the property vircker.orb.gcTimeout), it wakes up and
collects all the resources that are idle and no longer in use. Classes interested in
getting collected register themselves with the garbage collector. Such classes are
called collectables. Prominent examples of collectables are threads and connections.
Other examples include timeout on various caches like GateKeeper's cache, for
example. Most of the collectables null out or properly release the resources (such as
closing the connection or terminating a thread's run method) held by them when they
are collected. These resources are later reclaimed by the Java garbage collector.

The ORB garbage collector is an internal service and is not exposed to the user.

140 VisiBroker for Java Developer's Guide

Note

Garbage collection

Properties related to ORB garbage collection

The main property that controls the garbage collection period is viorcker.orb.gcTimeout.
The timeout value is in seconds and the default value is 30 seconds.

Threads and connections define properties for idle timeout. For example, the thread
pool dispatcher defines the following property:

voroker.se.iicp tp.sam.iicp tp.dispatcher.threadvbxIdle

The value is in seconds and default value is 300 seconds after which the thread is
removed from the thread pool. Similarly, the default Server Connection Manager
(iiop tp) defines the following idle timeout property for connections.

voroker.se.iicp tp.sam.iicp tp.menager.camecticnvexIdle

The value is in seconds and default value is 0(zero) which means a connection never
gets closed no matter how long it remains idle. However, if the connection gets
dropped, the ORB removes all the references to it and its resources are later collected
by Java garbage collector. The ORB garbage collector will only collect connections
whose camectiolMaxTdle property is set to a non-zero value.

The various timeout properties and the vioroker.orb.gcTimeout property have a subtle
relationship. For example, suppose following properties are specified:

vioroker . orb.gcTimeocut=10
voroker.se.iicp tp.sam.iicp tp.dispatcher. threadvbxTdle=5
voroker.se.iicp tp.sam.iicp tp.mEnager.camectionvexIdle=5

Here the garbage collection timeout period is set to 10 seconds whereas thread and
connection timeouts are 5 seconds. The figure below illustrates how these properties
interact. Here we have shown a thread, T1, and a connection, C1, that have gone idle
and are then collected.

Although the ORB garbage collector is shown here as running exactly after ten
seconds, in practice this may not be true depending on when the JVM schedules the
garbage collector (GC) thread.

Figure 10.9 Collection of resources by ORB GC

Last gathage T1iC 1 idle time TLC] timedaat Garhage collector
collection starts and eligible fior nms T1AC] ccllected
callection

N } /

I 1 1 1 |
0 1 2 3 4 5 & 7 S E 10 se0s

Even though T1 and C1 are eligible for collection, they are collected only when the
ORB garbage collector runs. Until then they remain in the timed-out state.

Chapter 10: Managing threads and connections 141

142 VisiBroker for Java Developer's Guide

Using the tie mechanism

This section describes how the tie mechanism may be used to integrate existing Java
code into a distributed object system. This section will enable you to create a
delegation implementation or to provide implementation inheritance.

How does the tie mechanism work?

Object implementation classes normally inherit from a servant class generated by the
idl2java compiler. The servant class, in turn, inherits from

org.arg. PortableServer. Servant . When it is not convenient or possible to alter existing
classes to inherit from the VisiBroker servant class, the tie mechanism offers an
attractive alternative.

The tie mechanism provides object servers with a delegator implementation class that
inherits from org.arg. PortableServer.Servant . The delegator implementation does not
provide any semantics of its own. The delegator implementation simply delegates
every request it receives to the real implementation class, which can be implemented
separately. The real implementation class is not required to inherit from

org.arg. PortableServer: : . Servant .

With using the tie mechanism, two additional files are generated from the IDL compiler:

= <interface name>ROATie defers implementation of all IDL defined methods to a
delegate. The delegate implements the interface <interface name>Operatians.
Legacy implementations can be trivially extended to implement the operations
interface and in turn delegate to the real implementation.

= <interface name>Operations defines all of the methods that must be implemented by
the object implementation. This interface acts as the delegate object for the
associated <interface name>PCATie class when the tie mechanism is used.

Chapter 11: Using the tie mechanism 143

Example program

Example program

Location of an example program using the tie mechanism

A version of the Bank example using the tie mechanism can be found in:
<install dirs\vbe\examples\basic\bark tie

Changes to the server class

The following code sample shows the modifications to the Server class. Note the extra
step of creating an instance of AccontMenagerVeragerFOAT e

import org.arg.PortableServer. *;

puiblic class Server {
public static void mein(String[] args) {
try {
// Initialize the CRB.
org.ong.CORRA.ORB orb = org.ang.ORBA.CRB. init (axgs,mill) ;
// get a reference to the root RQA
BQA rootFA = BORHelper . narrow (
orb.resolve initial references("RootERA")) ;
// Create policies for cur persistent PQA
org.ang.CQORBA. Folicy[] policies = {
TootPCA. create lifespan policy (LifespanPolicyValue. PERSISTENT)
}i
// Create myPQA with the right policies
BA myPQA = rootPCA. create POA("bark agent poa',
TootPOA. the POAManager (), policies) ;
// Create the tie which delegates to an instance of AccomntManegerInpl
Bark.AccontMenagerPOATie tie =
new Bank. AccountManagerPQAT e (new AccontManager Tpl (rootRR)) ;
// Decide on the ID for the servant
byte[] menegerId = "BarkMereger".getBytes() ;
// Bctivate the servant with the ID on nyRQA
myPQA.activate doject with id(menagerId, tie);
// Activate the POA menager
TootRCA. the POAManager () .activate() ;
System.out .printIn("Sexrver is ready.");
// Wait for incoming requests
orb.run() ;
} catch (Exception e) {
e.printStackTrace() ;
}
}
}

144 visiBroker for Java Developer's Guide

Example program

Changes to the AccountManager

The changes made to the AccontMenager class (in comparison to the Bank agent
example) include:

= AccountMenagerTpl no longer extends Bark.AccountManagerPOA.

= When a new Account is to be created, an AccomtRORTie is also created and
initialized.
import org.arg.PortableServer. *;
import java.util.*;

public class AccomntManagerTnpl inplements
Bark. AccountMenagerCperatians {
public AccontManagerTmpl (FOA poa)
_accoumntPOA = poa;
}
pblic synchronized Barnk.Account open (String name)
// Lockup the accomnt in the accont dictionary.
Bark.Account accoant = (Bank.Accoant) accounts.get (name) ;
// If there was no acoount in the dictionary, create ane.
if (accomt = rull) {
// Meke up the account's kalance, between 0 and 1000 dollars.
float balance = Math.abs (rendom.nextInt()) % 100000 / 100f;
// Create an account tie which delegate to an instance of AccountTmpl
Bank.AccontPORTie tie =
new Bank.AccomntPOAT e (new AccountTnpl (balance)) ;
try {
// Bctivate it on the default POA which is root FOA for
// this servant
acoount =
Bark.AccountHelper . narrow (accountPOA. servant to reference(tie)) ;
}

catch (Exception e) {
e.printStackTrace () ;
}
// Print out the new acoount.
System.out .printIn ("Created " + name +
"'s account: " + acoount) ;
// Save the accomt in the account dictionary.
_accounts.put (name, account) ;
}
// Retum the account.
retum account;
}
private Dictionary accounts = new Hashtable() ;
private Random _random = new Random() ;
private BFOA accontPA = mill;

}

Chapter 11: Using the tie mechanism 145

Example program

Changes to the Account class

The changes made to the Acoount class (in comparison to the Bank example) are that it
no longer extends Bark.AccountPOA
// Server.java
pblic class AccontTnpl inplements Bark.AccomtOperations
public AccontInpl (float balance) {
_kalance = balance;
}
public float balance() {
return balance;
}

private float lalance;

}

Building the tie example

The instructions described in “Developing an example application with VisiBroker” on
page 15 are also valid for building the tie example.

146 VisiBroker for Java Developer's Guide

Client basics

This section describes how client programs access and use distributed objects.

Initializing the VisiBroker ORB

The Object Request Broker (ORB) provides a communication link between the client
and the server. When a client makes a request, the VisiBroker ORB locates the object
implementation, activates the object if necessary, delivers the request to the object,
and returns the response to the client. The client is unaware whether the object is on
the same machine or across a network.

You are advised to create only one single instance of the VisiBroker ORB per process
as the ORB can use a significant amount of system resources.

Though much of the work done by the VisiBroker ORB is transparent to you, your client
program must explicitly initialize the VisiBroker ORB. VisiBroker ORB options,
described Chapter 4, “Programmer tools for Java” can be specified as command-line
arguments. To ensure these options take effect you will need to pass the supplied args
argument to ORB.init. The code samples below illustrate the VisiBroker ORB
initialization.
pblic class Client {
pblic static void mein (String[] args) {
org.arg.CORRA.CRB orb = org.ang.QORBA.CRB. init (args, mill);

Chapter 12: Client basics 147

Binding to objects

Binding to objects

Note

A client program uses a remote object by obtaining a reference to the object. Object
references are usually obtained using the <interfacesHelper's bind() method. The
VisiBroker ORB hides most of the details involved with obtaining the object reference,
such as locating the server that implements the object and establishing a connection to
that server.

Action performed during the bind process

When the server process starts, it performs CRB.init () and announces itself to Smart
Agents on the network.

When your client program invokes the bind () method, the VisiBroker ORB performs
several functions on behalf of your program.

= The VisiBroker ORB contacts the Smart Agent to locate an object implementation
that offers the requested interface. If an object name is specified when bind() is
invoked, that name is used to further qualify the directory service search. The Object
Activation Daemon (OAD), described in Chapter 20, “Using the Object Activation
Daemon (OAD)” may be involved in this process if the server object has been
registered with the OAD.

= When an object implementation is located, the VisiBroker ORB attempts to establish
a connection between the object implementation that was located and your client
program.

= Once the connection is successfully established, the VisiBroker ORB will create a
proxy object and return a reference to that object. The client will invoke methods on
the proxy object which will, in turn, interact with the server object.

Figure 12.1 Client interaction with the Smart Agent

2. Ones his chject refsmence s Sewer
poaved | hacliontcan iswe

pqussts © tie appophiate
erwer object.

1. Glienthcaes Srartagent.
‘When 1ound, e cientobhins
an aojectrefeence by cdlng
bind(]

Smar

agent
Your client program will never invoke a constructor for the server class. Instead, an
object reference is obtained by invoking the static bind() method.

Bank. AccountManager menager =
Bank . AccountManagerfelper . boind (orb,
" /lerk agent poa",
"BarkMenager" .getBytes ()) ;

148 VisiBroker for Java Developer's Guide

Invoking operations on an object

Invoking operations on an object

Your client program uses an object reference to invoke an operation on an object or to
reference data contained by the object. “Manipulating object references” on page 149
describes the variety of ways that object references can be manipulated.

The following example shows how to invoke an operation using an object reference:

// Irvoke the balance operation.
System.out .printIn("The kalance in Accountl: $" + accomntl.balance()) ;

Manipulating object references

Note

Note

The bind() method returns a reference to a CORBA object to your client program. Your
client program can use the object reference to invoke operations on the object that
have been defined in the object's IDL interface specification. In addition, there are
methods that all VisiBroker ORB objects inherit from the class org.ang.CORRA.Qoject
that you can use to manipulate the object.

Converting a reference to a string

VisiBroker provides a VisiBroker ORB class with methods that allow you to convert an
object reference to a string or convert a string back into an object reference. The
CORBA specification refers to this process as stringification.

Table 12.1 Methods for stringification and de-stringification

Method Description

doject to string Converts an object reference to a string.
string to doject Converts a string to an object reference.

A client program can use the doject to stringmethod to convert an object reference
to a string and pass it to another client program. The second client may then
de-stringify the object reference, using the string to doject method, and use the
object reference without having to explicitly bind to the object.

Locally-scoped object references like the VisiBroker ORB or the POA cannot be
stringified. If an attempt is made to do so, a MARSHAL exception is raised with the minor
code 4.

Obtaining object and interface names

The table below shows the methods provided by the Qoject class that you can use to
obtain the interface and object names as well as the repository id associated with an
object reference. The interface repository is discussed in Chapter 21, “Using Interface
Repositories”

When you invoke bind () without specifying an object name, invoking the
_doject name () method with the resulting object reference will return rull .
Table 12.2 Methods for obtaining interface and object names

Method Description
_doject name Returns this object's name.
_repository id Returns the repository's type identifier.

Chapter 12: Client basics 149

Manipulating object references

Determining the type of an object reference

You can check whether an object reference is of a particular type by using the is a()
method. You must first obtain the repository id of the type you wish to check using the
_repository id() method. This method returns trueif the object is either an instance of
the type represented by repository id() or if it is a sub-type. The member function
returns falseif the object is not of the type specified. Note that this may require remote
invocation to determine the type.

You cannot use the instanceof keyword to determine the runtime type.

You can use _is eguivalent () to check if two object references refer to the same object
implementation. This method returns true if the object references are equivalent. It
returns falseif the object references are distinct, but it does not necessarily indicate
that the object references are two distinct objects. This is a lightweight method and
does not involve actual communication with the server object.

Table 12.3 Methods for determining the type of an object reference

Method Description

isa Determines if an object implements a specified interface.
_is equivalent Returns trueif two objects refer to the same interface implementation.

Determining the location and state of bound objects

Given a valid object reference, your client program can use _is bound() to determine if
the object bound. The method returns trueif the object is bound and returns falseif the
object is not bound.

The is local () method returns trueif the client program and the object
implementation reside within the same process or address space where the method is
invoked.

The is remote() method returns trueif the client program and the object
implementation reside in different processes, which may or may not be located on the
same host.

Table 12.4 Methods for determining location and state of object reference

Method Description

_isbomrd Determines if a connection is currently active for this object.
_is local Determines if this object is implemented in the local address space.

_is remwte Determines if this object's implementation does not reside in the local address
space.

Narrowing object references

The process of converting an object reference’s type from a general super-type to a
more specific sub-type is called narrowing.

You cannot use the Java casting facilities for narrowing.

VisiBroker maintains a type graph for each object interface so that narrowing can be
accomplished by using the object's narrow() method.

The TDL exception CORBA: :BAD PARAM is thrown if the narrow fails, because the
dbject reference does not sugport the requested type.public abstract class
AccontManagertielper {

b:l};)lic static Bark.AccomntManeger narrow (org.arg.CORBA.(bject doject) {

}

150 VisiBroker for Java Developer's Guide

Using Quality of Service (QoS)

Widening object references

Converting an object reference's type to a super-type is called widening. The code
sample below shows an example of widening an Account pointer to an Goject pointer.
The pointer acct can be cast as an Ooject pointer because the 2Account class inherits
from the Qoject class.

Account acoount ;
org.ong.CORRA.doject doj;

acoont = AccountHelper.bind () ;

doj = (org.ang.ORRA.(oject) account;

Using Quiality of Service (QoS)

Note

Quality of Service (QoS) utilizes policies to define and manage the connection between
your client applications and the servers to which they connect.

Understanding Quality of Service (QoS)

QoS policy management is performed through operations accessible in the following
contexts:

= The VisiBroker ORB level policies are handled by a locality constrained
PolicyManacer, through which you can set Policies and view the current Policy
overrides. Policies set at the VisiBroker ORB level override system defaults.

= Thread level policies are set through PolicyCurrent, which contains operations for
viewing and setting Policy overrides at the thread level. Policies set at the thread
level override system defaults and values set at the VisiBroker ORB level.

= Object level policies can be applied by accessing the base Object interface's quality
of service operations. Policies applied at the Object level override system defaults
and values set in at the VisiBroker ORB or thread level.

The QoS policies installed at the ORB level will only affect those objects on which no
method is called before installing the policies, for example a non exdstent call internally
makes a call on a server object. If ORB level QoS policies are installed after the

non exdstent call, then the policies do not apply.

Policy overrides and effective policies

The effective policy is the policy that would be applied to a request after all applicable
policy overrides have been applied. The effective policy is determined by comparing
the Policy as specified by the IOR with the effective override. The effective Policy is the
intersection of the values allowed by the effective override and the IOR-specified
Policy:. If the intersection is empty a org.arng.CORBA. INV_ECLICY exception is raised.

Chapter 12: Client basics 151

Using Quality of Service (QoS)

QoS interfaces

The following interfaces are used to get and set QoS policies.

org.omg.CORBA.Object

Contains the following methods used to get the effective policy and get or set the policy
override.

= get policyreturns the effective policy for an object reference.

= set policy overridereturns a new object reference with the requested list of Policy
overrides at the object level.

com.borland.vbroker.CORBA.Object (Borland)

In order to use this interface, you must cast org.ong.CORBA.doject to
com.borland. viorcker . CORBA. Ooject. Because this interface is derived from
org.ong.CORBA. Qoject, the following methods are available in addition to the ones
defined in org.arg.QORBA. (oject.

= get client policyreturns the effective Policyfor the object reference without doing
the intersection with the server-side policies. The effective override is obtained by
checking the specified overrides in first the object level, then at the thread level, and
finally at the VisiBroker ORB level. If no overrides are specified for the requested
PolicyType the system default value for PolicyTypeis used.

= get policy overridesreturns a list of Policy overrides of the specified policy types
set at the object level. If the specified sequence is empty, all overrides at the object
level will be returned. If no PolicyTypes are overridden at the object level, an empty
sequence is returned.

= validate camectionreturns a boolean value based on whether the current
effective policies for the object will allow an invocation to be made. If the object
reference is not bound, a binding will occur. If the object reference is already bound,
but current policy overrides have changed, or the binding is no longer valid, a rebind
will be attempted, regardless of the setting of the RebindPolicy overrides. A false
return value occurs if the current effective policies would raise an INV_ PCLICY
exception. If the current effective policies are incompatible, a sequence of type
Policylistis returned listing the incompatible policies.

org.omg.CORBA.PolicyManager

The PolicyManageris an interface that provides methods for getting and setting Policy
overrides for the VisiBroker ORB level.

= et policy overridesreturns a Policylist sequence of all the overridden policies for
the requested PolicyTypes. If the specified sequence is empty, all Policyoverrides at
the current context level will be returned. If none of the requested PolicyTypes are
overridden at the target PolicyManager; an empty sequence is returned.

= set policy overrides modifies the current set of overrides with the requested list of
Policyoverrides. The first input parameter, policies, is a sequence of references to
Policy objects. The second parameter, set _add, of type
org.arg.QORBA. SetOverrideType indicates whether these policies should be added
onto any other overrides that already exist in the PolicyManager using ADD OVERRITE,
or they should be added to a PolicyManager that doesn't contain any overrides using
SET OVERRIDES. Calling set policy overrides with an empty sequence of policies and
a SET OVERRIDES mode removes all overrides from a PolicyManager. Should you
attempt to override policies that do not apply to your client,
org.arg.CORBA.NO PERMISSIAN will be raised. If the request would cause the specified
PolicyManager to be in an inconsistent state, no policies are changed or added, and
an TrvalidPolicies exception is raised.

152 VisiBroker for Java Developer's Guide

Using Quality of Service (QoS)

org.omg.CORBA.PolicyCurrent

The PolicyCurrent interface derives from PolicyManager without adding new methods. It
provides access to the policies overridden at the thread level. A reference to a thread's
PolicyQurrent is obtained by invoking org.arng.CORBA.CRB.resolve initial references
and specifying an identifier of PolicyCurrent.

com.borland.vbroker.QoSExt.DeferBindPolicy

The DeferBindPolicy determines if the VisiBroker ORB will attempt to contact the
remote object when it is first created, or to delay this contact until the first invocation is
made. The values of DeferBindPolicy are true and false. If DeferBindPolicyis set to
true all binds will be deferred until the first invocation of a binding instance. The default
value is false

If you create a client object, and DeferBindPolicyis set to true, you may delay the
server startup until the first invocation. This option existed before as an option to the
Bind method on the generated helper classes.

The code sample below illustrates an example for creating a DeferBindPolicy and
setting the policy on the VisiBroker ORB.

// Initialize the flag and the references
boolean deferMode = true;

Any policyValue= orb.create any () ;
policyValue. insert boolean (deferMode) ;

Policy policies =
arb.create policy (DEFER BIND BCOLICY TYPE.value, policyValue) ;

// Get a reference to the thread menager
PolicyManager oridvenager =
PolicyManagertielper . narrow (
orb.resolve initial references ("ORBPolicyManager"));

// Set the policy an the ORB level
oriMenager . set. policy overrides (new Policy[] {policies},
SetOverrideType . SET OVERRITE) ;

// Get the binding method
byte[] menagerId = "BankManager" .getBytes() ;
Bank . AccomtManager menager =
Bank.AccountMenegerHelper. bind (orb, "/gos poa", menagerId) ;

com.borland.vbroker.QoSExt.ExclusiveConnectionPolicy

The ExclusiveCamectianPolicyis a VisiBroker-specific policy that gives you the ability
to establish an exclusive (non-shared) connection to the specified server object. You
assign this policy a boolean value of true or false If the policy is true, connections to
the server object are exclusive. If the policy is false, existing connections are reused if
possible and a new connection is opened only if reuse is not possible. The default
value is false

This policy provides the same capabilities as were provided by Qoject. clane() in
VisiBroker 3.x.

An example of how to establish exclusive and non-exclusive connections is provided in
the ClaneClient.java example which can be found in:

<install dirs\examples\vie\QoS policies\gos\

Chapter 12: Client basics 153

Using Quality of Service (QoS)

com.borland.vbroker.QoSExt::RelativeConnectionTimeoutPolicy

The RelativeCamectianTimecutPolicy indicates a timeout after which attempts to
connect to an object using one of the available endpoints is aborted. The timeout
situation is likely to happen with objects protected by firewalls, where HTTP tunneling
is the only way to connect to the object.

The following code examples illustrates how to create
RelativeComectiaiTimecutPolicy:

Any camTimecutPolicyValue = orb.create any () ;
// Irpat is in 100s of Nanosecards.
// To specify a value of 20 secands, use 20 * 10™7 nanosecands as imput

int camTimecut = 20;

cariTimecutPolicyValue. insert ulanglang (cariTimecut * 10000000) ;

org.arg.CORBA. Policy ctoPolicy =
orb.create policyREIATIVE CONN TIMEOUT POLICY TYPE.value,
camTimecutPolicyValue) ;

PolicyManager cridVenager = PolicyManagerHelper.narrow (
orb.resolve initial references ("ORBPolicyManager")) ;

oriMenager . set policy overrides (new Bolicy[] \{ctcPolicy\},
SetOverrideType . SET OVERRIDE) ;

org.omg.Messaging.RebindPolicy

Rebindrolicyis used to indicate whether the ORB may transparently rebind once
successfully bound to a target. An object reference is considered bound once itis in a
state where a LocateRequest message would result in a LocateReply message with
status CBJECT HERE RebindPolicy accepts values of type org.omg.Messaging. Rebindviode
and are set only on the client side. It can have one of six values that determine the
behavior in the case of a disconnection, an object forwarding request, or an object
failure after an object reference is bound. The supported values are:

= org.arg.Messaging. TRANSPARENT allows the VisiBroker ORB to silently handle object-
forwarding and necessary reconnections during the course of making a remote
request. The code sample below illustrates an example to create a RebindPolicy of
type TRANSPARENT and sets the policy on the VisiBroker ORB, thread, and object
levels.

= org.arg.Messaging.NO REBIND allows the VisiBroker ORB to silently handle reopening
of closed connections while making a remote request, but prevents any transparent
object-forwarding that would cause a change in client-visible effective QoS policies.
When Rebindviode is set to NO REBIND, only explicit rebind is allowed.

= org.arg.Messaging.NO RECONNECT prevents the VisiBroker ORB from silently handling
object-forwards or the reopening of closed connections. You must explicitly rebind
and reconnect when RebindViode is set to NO RECONNECT.

= oam.borland. vioroker. QoSExt . VB TRANSPARENT is the default policy. It extends the
functionality of TRANSPARENT by allowing transparent rebinding with both implicit and
explicit binding. VB TRANSPARENT is designed to be compatible with the object failover
implementation in VisiBroker 3.x.

= com.borlard. vbroker.QoSExt . VB NOTTFY REBINDthrows an exception if a rebind is
necessary. The client catches this exception, and binds on the second invocation. If
a client has received a CloseCamection message before, it will also reestablish the
closed connection.

= oam.borland. viorcker. QoSExt . VB NO REBIND does not enable failover. It only allows the
client VisiBroker ORB to reopen a closed connection to the same server; it does not
allow object forwarding of any kind.

154 VvisiBroker for Java Developer's Guide

Note

Note

Using Quality of Service (QoS)

Be aware that if the effective policy for your client is VB TRANSPARENT and your client is
working with servers that hold state data, VB TRANSPARENT could connect the client to a
new server without the client being aware of the change of server, any state data held
by the original server will be lost.

If the Client has set RebindPolicy and the Rebindviode is anything other that the
default(VB TRANSPARENI), then the RebindPolicyis propagated in a special
ServiceCntext as per the CORBA specification. The propagation of the ServiceContext
occurs only when the client invokes the server through a GateKeeper Or a RequestAgent.
This propagation does not occur in a normal Client/Server scenario.

The following table describes the behavior of the different Rebindviode types.

Table 12.5 RebindMode policies

Reestablish closed
connection to the Allow object

RebindMode type same object? forwarding? Object failover?
NO RECONNECT No, throws REBIND No, throws REBIND No

exception. exception.
NO REBIND Yes Yes, if policies No

match. No, throws
REBIND exception.

TRANSPARENT Yes Yes No
VB NO REBIND Yes No, throws REBIND No
exception.
VB NOTTFY REBIND No, throws Yes Yes.
exception. VB_NOTIFY_REBIND

throws an exception after
failure detection, and then
tries a failover on
subsequent requests.

VB TRANSPARENT Yes Yes Yes, transparently.

The appropriate CORBA exception will be thrown in the case of a communication
problem or an object failure.

The following example creates a RebindPolicy of type TRANSPARENT and sets the policy
on the VisiBroker ORB, thread, and object levels.

Ay policyValue= orb.create any() ;
RebindVicdeHelper . insert (policyValue,

org.arg.Messaging. TRANSPARENT . value) ;
Policy myRebindRolicy = orb.create policy (REBIND POLICY TYPE.value,

policyValue) ;
//get a reference to the CRB policy nenager
org.ang.CORRA. PolicyManager nenager;
try {

TBrager =

PolicyManagerHelper.narrow (orb. resolve initial references ("ORBPolicyMenager")) ;
}
catch (org.ang. CORBA.ORBPackage . IrvalidNare e) {}
//get a reference to the per-thread menager
org.arg.CORRA. PolicyManager current;
try {

current =

PolicyManagertlelper.narrow (orb. resolve initial references
("PolicyCurrent")) ;

Chapter 12: Client basics 155

Using Quality of Service (QoS)

catch (org.any. CORRA. ORBPackage. TrvalidName) {}
//set the policy on the orb level
try{
menager.set policy overrides (myRebindPolicy,
SetOverrideType.SET OVERRILE) ;
}

catch (Trvalidrolicies e) {}
// set the policy on the Thread level
try {
current.set policy overrides (myRebindPolicy,
SetOverrideType.SET OVERRILE) ;

catch (Trvalidrolicies e) {}

//set the policy on the doject level:

org.ong.QORRA. doject olddojectReference=bind(...) ;

org.arg. QORBA. Qoject newdojectReference=olddojectReference. set policy override
(myRebindPolicy, SetOverrideType.SET OVERRIDE) ;

For more information on QoS policies and types, see the Messaging section of the
CORBA specification.

org.omg.CORBA.Messaging.RelativeRequestTimeoutPolicy

The RelativeRequestTimecutPolicy indicates the relative amount of time which a
Request or its responding Reply may be delivered. After this amount of time, the
Request is canceled. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout, the Reply
will never be discarded due to timeout. The timeout value is specified in 100s of
nanoseconds. This policy is only effective on established connections, and is not
applicable to establishing a connection.

The following code illustrates how to create RelativeRequestTimeoutPolicy:

// Specify the request timeout in 100s of Nanosecs.
// To set a timeout of 20 secs, set 20 * 1077
int reqTimecut = 20;
Any policyValue = orb.create any () ;
policyValue. insert ulanglong (regTimecut * 10000000) ;
// Create Policy
org.ang.ORBA. Policy regPolicy = orb.create policy(
RELATTVE REQ TIMEOUT POLICY TYPE.value, policyValue) ;
PolicyMenager oridVenager = PolicyManagerHelper.narrow
orb.resolve initial references ("CRBPolicyManager")) ;
oriMeneger . set policy overrides (new Policy[] {regkolicy},
SetOverrideType.SET OVERRIDE) ;

org.omg.CORBA.Messaging.RelativeRoundTripTimeoutPolicy

The RelativeRoudTripTimecutPolicy specifies the relative amount of time for which a
Request or its corresponding Reply may be delivered. If a response has not yet been
delivered after this amount of time, the Request is canceled. Also, if a Request had
already been delivered and a Reply is returned from the target, the Reply is discarded
after this amount of time. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout, the Reply
will never be discarded due to timeout. The timeout value is specified in 100s of
nanoseconds. This policy is only effective on established connections, and is not
applicable to establishing a connection.

156 VisiBroker for Java Developer's Guide

Note

Using Quality of Service (QoS)

The following code illustrates how to create RelativeRoundTrigTimecutPolicy:

// Specify the roud-trip timecut in 100s of Nenoseconds

// To set a timecut of 50 secs, set 50 * 1077

int rttTimecut = 50;

Any policyValue = orb.create any() ;
policyValue. insert ulanglang (rttTimeout * 10000000) ;

//Create the RelativeRoundTripTimecutPolicy and set it at ORB level
org.ang.QORBA. Policy rttPolicy = arb.create policy(

RELATTVE RT TIMEQUT POLICY TYPE.value, policyValue);
PolicyManager oridvernager = PolicyManagertielper.narrow (
orb.resolve initial references("CRBPolicyMenager")) ;
aridMerager . set policy overrides (new Policy[] {rttRolicy},
SetOverrideType. SET OVERRILE) ;

org.omg.CORBA.Messaging.SyncScopePolicy

The syncSoopePolicy defines the level of synchronization for a request with respect to
the target. Values of type SyncSoope are used in conjunction with a SyncSaogpePolicy to
control the behavior of one-way operations.

The default SyncSacpePolicyis SYNC WITH TRANSPCRT. To perform one-way operations via
the OAD, you must use SyncSoopePolicy=SYNC WITH SERVER Valid values for
SyncSaopePolicy are defined by the OMG.

Applications must explicitly set an VisiBroker ORB-level SyncSoopePolicy to ensure
portability across VisiBroker ORB implementations. When instances of SyncSaopePolicy
are created, a value of type Messaging: :SyncSoope is passed to

QCRBA: :CRB: :create policy. This policy is only applicable as a client-side override.

Exceptions
Table 12.6 Exceptions
Exception Description
org.omg.CORBA.INV_POLICY Raised when there is an incompatibility between Policy
overrides.
org.omg.CORBA.REBIND Raised when the Rebindrolicy has a value of NO REBIND,

NO RECONNECT, Oor VB NO REBIND and an invocation on a bound
object references results in an object-forward or location-
forward message.

org.omg.CORBA.PolicyError Raised when the requested Rolicyis not supported.

org.omg.CORBA.InvalidPolicies Raised when an operation is passed a Folicylist sequence.
The exception body contains the policies from the sequence
that are not valid, either because the policies are already
overridden within the current scope, or are not valid in
conjunction with other requested policies.

Chapter 12: Client basics 157

Code Set support

Code Set support

VisiBroker supports Code Set Negotiation that allows applications to agree on a
common Code Set when marshaling char or wchar IDL data types. A Code Set is a
collection of unambiguous rules that establishes a character set and the one-to-one
relationship between each character of the set and its bit representation or numeric
value.

Types of Code Sets

Code sets can differ in their classification. Some language environments distinguish
between byte-oriented and “wide characters”. The byte-oriented characters are
encoded in one or more 8-bit bytes. ASCII (as used for western European languages
like English) is an example of a typical single-byte encoding. A typical multi-byte
encoding which uses from one to three 8-bit bytes for each character is euaJP
(Extended UNIX Code—Japan, packed format), used for Japanese workstations.
Although byte-oriented Code Sets such as UTF-8 uses one to six 8-bit bytes for a
character representation, the CORBA specification mandates that for char data the size
limit is still one byte and that char[] should be used if a representation uses more than
one byte.

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chinese
and Japanese, where the number of combinations offered by 8 bits is insufficient and a
fixed-width encoding is needed. A typical example is Unicode (a “universal” character

set defined by The Unicode Consortium). An extended encoding scheme for Unicode

characters is UTF-16 (UCS Transformation Format, 16-bit representations).

Native Code Set

A native code set is the code set which a client or a server uses to communicate with
its ORB. There might be separate native code sets for char and wchar data.

Conversion Code Set (CCS)

This is the set of target code sets for which an ORB can convert all encodings between
the native code set and that target code set. For each code set in this CCS, the ORB
maintains appropriate translation or conversion procedures and advertises the ability to
use that code set for transmitted data in addition to the native code set.

Transmission Code Set (TCS)

A transmission code set is the commonly agreed upon encoding used for character
data transfer between a client's ORB and a server's ORB. There are two transmission
code sets established per session between a client and its server, one for char data
(TCS-C) and the other for wchar data (TCS-W).

Code Set Negotiation

The client-side ORB determines a server's native and conversion code sets from an
IOR multi-component profile structure, simultaneously determining a client's native and
conversion code sets. From this information, the client-side ORB chooses char and
wchar transmission code sets (TCS-C and TCS-W). For both requests and replies, the
char TCS-C determines the encoding of char and stringdata, and the wchar TCS-W
determines the encoding of wchar and wstring data.

158 VisiBroker for Java Developer's Guide

Deploying client-only applications using Client Runtime

Supported Code Sets

VisiBroker supports the following code sets:

For IDL char data types the native Code Set is ISO 8859-1 (Latin-1) and the
conversion Code supported is UTF-8.

For IDL wchar data types the native Code Set is UTF-16 and there is no Conversion
Code Set.

Deploying client-only applications using Client Runtime

Note

In many application deployment scenarios it is sometimes required to just have a client
runtime rather than a full-sized ORB implementation. If the application is a pure client
and has no server side functionality, such as POA creation and object activation,
VisiBroker provides a client runtime library for such scenarios. The VisiBroker Client
Runtime has a smaller memory footprint compared to the full VisiBroker
implementation. The client runtime is provided as a Java archive (vbjclientorb.jar) file
which is installed under the /lib directory in the VisiBroker installation.

The Client Runtime does not support full ORB functionality.

The following features are supported by the VisiBroker client runtime library:

Client-side functionality such as invoking operations on remote servers and services
is provided. Applications using the client runtime can still make use of services like
Interface Repository, Naming Service, RequestAgent (only Polling mode), etc. They
can also make use of GateKeeper for firewall traversal, and they can invoke
operations on servers that are registered with Object Activation Daemon (OAD).
They are also able to use OSAgent for locating servers.

Client-side interceptors such as Bind Interceptor, and Request Interceptors (both
VisiBroker 4x and Portable Interceptors) can be used.

VisiSecure client-side functionality is also available.

The following features are not supported by the VisiBroker client runtime library:

Any server-side functionality, such as POA creation or object activation, is not
available. Using resclve initial references("RootPQA") is not allowed.

Noatification, Event Service, and callback mode of Request Agent are not available.
Location Service is not supported.

Any type of server-side interceptors, such as POALifeCyclelnterceptor, Request
Interceptor (both VisiBroker 4x and Portable Interceptor), and IOR interceptors, are
not available. However, additional security JAR files are required to be included in
the classpath (see instruction in Usage below).

Chapter 12: Client basics 159

Deploying client-only applications using Client Runtime

Usage

To make use of vbjclientorb.jar, modify <install_dir>/bin/vbj.config to configure an
addpath entry for vbjclientorb.jar. To make this change, replace the following line in the
vbj.config file:

addpath $var (defaul tJarPath) Abjorb. jar
with:
addpath $var (defaul tJarPath) /~bojclientorb. jar

When using VisiSecure in client applications, vbsec.jar, sunjce_provider jar,
local_policy.jar, US_export_policy.jar should also be present in the classpath. If IDK
1.3.1is used, the JAR files jsse.jar, jcert.jar, jnet.jar, jaas.jar, and jcel_2_ 1.jar should
also be present in the classpath, in addition to the JARs mentioned previously.

Note If a particular feature is not supported by the client runtime (vbjclientorb.jar), at runtime
the following standard error message is printed out along with the ClassNotFound or
NoClassDefFound exception.

mkkkxxxClient nntime does not support full CRB functicnality kxxsskn

160 VisiBroker for Java Developer's Guide

Using IDL

This section describes how to use the CORBA interface description language (IDL).

Introduction to IDL

Note

The Interface Definition Language (IDL) is a descriptive language (not a programming
language) to describe the interfaces being implemented by the remote objects. Within
IDL, you define the name of the interface, the names of each of the attributes and
methods, and so forth. Once you've created the IDL file, you can use an IDL compiler
to generate the client stub file and the server skeleton file in the Java programming
language.

For more information see Chapter 4, “Programmer tools for Java.”

The OMG has defined specifications for such language mapping. Information about the
language mapping is not covered in this manual since VisiBroker adheres to the
specification set forth by OMG. If you need more information about language mapping,
see the OMG web site at http: //www.ong.org.

The CORBA 2.6 formal specification can be found at
http: //www.cng . orgy/ technology/document s/vault . htmHCORRA TTOP.

Discussions on the IDL can be quite extensive. Because VisiBroker adheres to the
specification defined by OMG, you can visit the OMG site for more information
about IDL.

Chapter 13: Using IDL 161

How the IDL compiler generates code

How the IDL compiler generates code

You use the Interface Definition Language (IDL) to define the object interfaces that
client programs may use. The idl2java compiler uses your interface definition to
generate code.

Example IDL specification

Your interface definition defines the name of the object as well as all of the methods the
object offers. Each method specifies the parameters that will be passed to the method,
their type, and whether they are for input or output or both. The IDL sample below
shows an IDL specification for an object named exanple. The exanple object has only
one method, opl.

// IDL gpecification for the exanple doject
interface example {
lag opl (in char x, aut short y) ;

7

Looking at the generated code

The IDL compiler generates several files from the above Example IDL specification.
= exanpleStub.javais the stub code for the exanple object on the client side.
= exanple.javais the exanple interface declaration.

= exanplelelper.java declares the exampleHelper class, which defines helpful utility
functions and support functions for the exanple interface.

= exanplefolder.java declares the exanpletolder class, which provides a holder for
passing out and inout parameters.

= exanpleOperations. java defines the methods in the example interface and is used
both on the client and the server side. It also works together with the tie classes to
provide the tie mechanism.

= exanpleRCA.java contains the skeleton code (implementation base code) for the
exanple object on the server side.

= exanplePATie.java contains the class used to implement the example object on the
server side using the tie mechanism.

_<interface_name>Stub.java

For each user-defined type, a stub class is created by the idl12java compiler. This is the
class which is instantiated on the client side which implements the <interface name>
interface.

public class exampleStib extends com. inprise.vircker . QORBA. portable . QojectTmpl
inplements exanple {
final public static java.lang.Class cpsClass = exampleOperations.class;
public java.lang.String[] ids () {

}

public int opl (char x, org.ang.CORBA.ShortHolder y)

162 VisiBroker for Java Developer's Guide

Looking at the generated code

<interface_name>.java

The <interface name>.javafile is the Java interface generated for each IDL interface.
This is the direct mapping of the IDL interface definition to the appropriate Java
interface. This interface is then implemented by both the client and server skeleton.

public interface example exterds com. inprise.viorcker.CORBA.Qoject,

exampleOperatians,
org.ary.CORBA. portable. IDLEntity {

<interface_name>Helper.java

For each user-defined type, a helper class is created by idl2java. The Helperclass is
an abstract class with various static methods for the generated Java interface.

pwblic final class exanpleHelper {
public static exanple narrow (final org.ang.CORBA.(oject dbj) {

public static exanple unchecked narrow (org.ary.CORBA.Goject abj)
public static exanple bind (org.ang.CORBA.CRB orb) {

public static exanple bind (org.omg.QORBA.CRB orb,
java.lang.String name) {

public static exanple bind (org.ong.CORBA.CRB orb, java.lang.String name,
java.lang.String host,
cam. irprise. vioroker . CORBA. BindOptions _optians) {

public static exanple bind (org.org.CORBA.CRB orb, java.lang.String
fullPoaName,
byte[] oid) {

public static example bind (org.omg.CORBA.CRB orb,
Jjava.lang.String fullPoaName, byte[] oid,
java.lang.String host,
cam. irprise. vbroker . CORBA. BindOptions _optians) {

pdblic java.lang.Qoject read (oject (final org.arg.CORBA.portable.
TrputStream istream) {

public void write Cbject (
final org.ong.CORBA.portable.QutputStream ostream,
final java.lang.Ooject doj) {

b | |

piolic java.lang.String get id () {

pblic org.ang.CORBA. TypeCode cet type () {

public static example read (
final org.amy.CORBA.portable. IrpurStream _irput)

Chapter 13: Using IDL 163

Looking at the generated code

public static void write (

firal org.omg.QORBA.portable.OutputStream output,
fimnal example valwe) {

pdolic static void insert (
final org.any.CORRA.Any any, final example value) {

public static exanple extract (final org.ang.CORBA.AY arty) |
public static org.ang.CORRA.TypeCode type () {
public static java.lang.String id () {

}
}

<interface_name>Holder.java

For each user-defined type, a holder class is created by the id12java compiler. It
provides a class for an object which wraps objects which support the <interface rame>
interface when passed as cut and inout parameters.
public fimal class exanpletolder
inplements org.ang.QORBA.portable. Streaneble {

public foo.example value;

piblic exampletolder () {

}

pblic exanplefolder (final foo.exanple vis value) {

}

pblic void read (final org.ang.CORBA.portable. IrputStream irput) {

}

pblic void write (final org.arg.CORBA.portable.QutputStream output) {

}
public org.ang.QORBA. TypeCode type () {

}
}

<interface_name>Operations.java

For each user-defined type, an operations class is created by the id12java compiler
which contains all the methods defined in the IDL declaration.
pwblic interface exampleQperatians {
public int opl (char x, org.ang.QORRA.ShortHolder vy) ;

}

164 VisiBroker for Java Developer's Guide

Looking at the generated code

<interface_name>POA . java

The <interface name>PCA.javafile is the server-side skeleton for the interface. It
unmarshals in parameters and passes them in an upcall to the object implementation
and marshals back the return value and any out parameters.

public abstract class exampleBCA
externds org.arg.PortableServer. Servant
inplements org.ang.QORBA. portable. IrvokeHendler, exanpleOperatians {
pblic exanple this () {

}

pblic exanple this (org.any.CORBA.CRB arb) {

}
pdblic java.lang.String[] all interfaces (
final org.ong.PortableServer. POA poa,

}

pblic org.omg.CORRA.portable.OutputStream irvoke (java. lang.String oNeme,
org.ang.QORBA.portable. InputStream input,
org.arg. QORBA. portable. RespanseHandler handler) {

}

pdblic static org.amg.CORBA.portable.OutputStream irvoke (exampleQperations
self,

int methed id, org.omg.QORBA.portable. InputStream input,
org.arg.CORBA. portable . ResponseHardler hardler) {

}
}

<interface_name>POATie.java

The <interface name>PCATie.javafile is a delegator implementation for the
<interface name> interface. Each instance of the tie class must be initialized with an
instance of an implementation class that implements the <interface namesQperations
class to which it delegates every operation.

public class exanpleROATie extends exampleFA {
pblic exanplePATie (final exanpleOperations delegpte) {

pblic exenplePOATie (final exampleQperations delegate,
final org.ary.PortableServer . FOA poa) {

public exanpleOperations delegate ()
pdblic void delegpte (final exampleOperatians delegate) {

public org.amg.PortableServer . FA default POA () {

pblic int opl (char x, org.ang.CORRA.ShortHolder v)

}

Chapter 13: Using IDL 165

Defining interface attributes in IDL

Defining interface attributes in IDL

In addition to operations, an interface specification can also define attributes as part of
the interface. By default, all attributes are read-write and the IDL compiler will generate
two methods, one to set the attribute's value, and one to get the attribute's value. You
can also specify read-only attributes, for which only the reader method is generated.

The IDL sample below shows an IDL specification that defines two attributes, one read-
write and one read-only.

interface Test {
attribute layg cont;
readmly attribute string nane;
}i
The following code sample shows the operations class generated for the interface
declared in the IDL.

pblic interface TestOperations {
public int cant () ;
public void comt (int count) ;
public java.larng.String name () ;
}

Specifying one-way methods with no return value

Note

IDL allows you to specify operations that have no return value, called one-way
methods. These operations may only have input parameters. When a cneway method is
invoked, a request is sent to the server, but there is no confirmation from the object
implementation that the request was actually received.

VisiBroker uses TCP/IP for connecting clients to servers. This provides reliable delivery
of all packets so the client can be sure the request will be delivered to the server, as
long as the server remains available. Still, the client has no way of knowing if the
request was actually processed by the object implementation itself.

One-way operations cannot raise exceptions or return values.

interface aneway exanple {
aeway void set value (in long val) ;

bi

Specifying an interface in IDL that inherits from another interface

IDL allows you to specify an interface that inherits from another interface. The classes
generated by the IDL compiler will reflect the inheritance relationship. All methods, data
type definitions, constants and enumerations declared by the parent interface will be
visible to the derived interface.

interface parent {
void goerationl () ;
};

interface child : parent {

lag operatia? (in short s) ;

7

166 VisiBroker for Java Developer's Guide

Specifying an interface in IDL that inherits from another interface

The code sample below shows the code that is generated from the interface
specification shown above.

public interface parentCperatians
public void cperationl ();

}

pwblic interface childOperations extends parentOperatians
public int cperatian? (short s);

}

public interface parent
exterds oom. irprise.vioroker.QORBA.Qoject, parentOperatians,

org.arg.CORBA. portable. IDLENEity {

public interface child extends childOperations, Baz.parent,
org.ang.CORBA. portable. INLENtity {

Chapter 13: Using IDL 167

168 VisiBroker for Java Developer's Guide

Using the Smart Agent

This section describes the Smart Agent (osagent), which client programs register with in
order to find object implementations. It explains how to configure your own VisiBroker
ORB domain, connect Smart Agents on different local networks, and migrate objects
from one host to another.

What is the Smart Agent?

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory service that
provides facilities used by both client programs and object implementations. A Smart
Agent must be started on at least one host within your local network. When your client
program invokes bind () on an object, the Smart Agent is automatically consulted. The
Smart Agent locates the specified implementation so that a connection can be
established between the client and the implementation. The communication with the
Smart Agent is completely transparent to the client program.

If the PERSISTENT policy is set on the POA, and activate doject with idis used, the
Smart Agent registers the object or implementation so that it can be used by client
programs. When an object or implementation is deactivated, the Smart Agent removes
it from the list of available objects. Like client programs, the communication with the
Smart Agent is completely transparent to the object implementation. For more
information about POAs, see Chapter 9, “Using POASs.”

Best practices for Smart Agent configuration and synchronization

While the Smart Agent imposes no hard limits on the numbers and types of objects that
it can support, there are reasonable best practices that can be followed when
incorporating the it into a larger architecture.

The Smart Agent is designed to be a lightweight directory service with a flat, simple
namespace, which can support a small number of well known objects within a local
network.

Chapter 14: Using the Smart Agent 169

What is the Smart Agent?

Note

Since all objects' registered services are stored in memory, scalability cannot be
optimized and be fault tolerant at the same time. Applications should use well known
objects to bootstrap to other distributed services so as not to rely on the Smart Agent
for all directory needs. If a heavy services lookup load is necessary, it is advisable to
use the VisiBroker Naming Service (VisiNaming). VisiNaming provides persistent
storage capability and cluster load balancing whereas the Smart Agent only provides a
simple round robin on a per osagent basis. Due to the in-memory design of the Smart
Agent, if it is terminated by a proper shutdown or an abnormal termination, it does not
failover to another Smart Agent in the same ORB domain, that is to the same
OSAGENT BORT number, whereas the VisiNaming Service provides such failover
functionality. For more information on the VisiBroker naming service, see Chapter 16,
“Using the VisiNaming Service.”

General guidelines
The following are some general guidelines for best practice Smart Agent usage.

= Server registrations should be limited to less than 100 object instances or POAs per
ORB domain.

= The Smart Agent keeps track of all clients (not just CORBA servers), so every client
creates a small load on the Smart Agent. Within any 10 minute period, the client
population should generally not exceed 100 clients.

The GateKeeper counts as one client even though it is acting on behalf of many real
clients.

= Applications should use the Smart Agent sparsely by binding to small sets of well
known objects at startup and then using those objects for further discovery. The
Smart Agent communications are based on UDP. Although the message protocol
built on top of UDP is reliable, UDP is often not reliable or allowed in wide area
networks. Since the Smart Agent is designed for intranet use, it is not recommended
over wide area networks that involve firewall configurations.

= The real default IP of the Smart Agent must be accessible to clients on a subnet that
is not directly connected to the Smart Agent host. The Smart Agent cannot be
configured for client access behind a Network Address Translation (NAT) firewall.

= The Smart Agent configures itself at startup using the network information available
at that time. It is not able to detect new network interfaces that are added later, such
as interfaces associated with a dial up connection. Therefore, the Smart Agent is
meant for use in static network configurations.

Load balancing/ fault tolerance guidelines

= The Smart Agent implements load balancing using a simple round-robin algorithm
on a per agent basis, not on an ORB domain basis. For load balancing between
server replicas, when you have more than one Smart Agent in the ORB domain,
make sure all servers are registered with the same Smart Agent.

= The ORB runtime caches access to the Smart Agent, so multiple binds to the same
server object from the same ORB process do not result in round-robin behavior
because all subsequent attempts to bind to the object us the cache rather than
sending a new request to the Smart Agent. This behavior can be changed using
ORB properties. For more information see Chapter 6, “VisiBroker properties.” .

= When a Smart Agent is terminated, all servers that were registered with that agent
attempt to locate another agent with which to register. This process is automatic, but
may take up to two minutes for the server to perform this function. During that two
minute window, the server is not registered in the ORB domain and therefore is not
available to new clients. However, this does not affect ongoing IIOP
communications between the server and clients that were previously bound.

170 VisiBroker for Java Developer's Guide

Note

Note

What is the Smart Agent?

Location service guidelines

The location service is built upon the Smart Agent technology. Therefore, the location
service is subject to the same guidelines described above.

= The location service triggers generate UDP traffic between the Smart Agent and the
trigger handlers registered by applications. Use of this feature should be limited to
less than 10 objects, monitored by less than 10 processes.

= The location service triggers fire when the Smart Agent determines that an object is
available or down. There may be a delay of up to four minutes for a “down” trigger to
fire. For this reason, you may not want to use this feature for time critical
applications.

For more information about the Location Service, see Chapter 15, “Using the Location
Service.”

When not to use a Smart Agent

= When the ORB domain spans a large number (greater than 5) of subnets.
Maintaining the agentaddr files for a large ORB domain spread over a large number
of subnets is difficult to manage.

= When the name space requires a large number (greater than 100) of well known
objects.

= When the number of applications (clients) that require the Smart Agent consistently
exceeds 100 in a 10 minute period.

In the above situations an alternative directory, such as the Naming Service, may be
more appropriate. See Chapter 16, “Using the VisiNaming Service” for more
information.

Locating Smart Agents

VisiBroker locates a Smart Agent for use by a client program or object implementation
using a broadcast message. The first Smart Agent to respond is used. After a Smart
Agent has been located, a point-to-point UDP connection is used for sending
registration and look-up requests to the Smart Agent.

The UDP protocol is used because it consumes fewer network resources than a TCP
connection. All registration and locate requests are dynamic, so there are no required
configuration files or mappings to maintain.

Broadcast messages are used only to locate a Smart Agent. All other communication
with the Smart Agent makes use of point-to-point communication. For information on
how to override the use of broadcast messages, see “Using point-to-point
communications” on page 178.

Locating objects through Smart Agent cooperation

When a Smart Agent is started on more than one host in the local network, each Smart
Agent will recognize a subset of the objects available and communicate with other
Smart Agents to locate objects it cannot find. If one of the Smart Agent processes
should terminate unexpectedly, all implementations registered with that Smart Agent
discover this event and they will automatically re register with another available Smart
Agent.

Chapter 14: Using the Smart Agent 171

What is the Smart Agent?

Windows

UNIX

Note

Cooperating with the OAD to connect with objects

Object implementations may be registered with the Object Activation Daemon (OAD)
so they can be started on demand. Such objects are registered with the Smart Agent
as if they are actually active and located within the OAD. When a client requests one of
these objects, it is directed to the OAD. The OAD then forwards the client request to
the actual server. The Smart Agent does not know that the object implementation is not
truly active within the OAD. For more information about the OAD, see Chapter 20,
“Using the Object Activation Daemon (OAD).”

Starting a Smart Agent (osagent)

At least one instance of the Smart Agent should be running on a host in your local
network. Local network refers to a subnetwork in which broadcast messages can be
sent.

To start the Smart Agent:
= Double-click the osagent executible csagent.exe located in:
<install dir\bin\
or
= At the Command Prompt, enter: asagent [options]. For example:
pronpt> osagent [optians]
To start the Smart Agent, enter: osagent & For example:
prarpt> osagent &

Due to signal handling changes, bourne and korn shell users need to use the

ignoreSignal hup parameter when starting osagent in order to prevent the hangup (fwup)
signal from terminating the process when the user logs out. For example:

notup SVBROKERDIR/bin/osagent ignoreSignal hup &

The osagent command accepts the following command line arguments:

Option Description
-a<IP_address> Specifies the default listening address.
-p<UDP_port> Overrides the setting of 0S2GENT FCRT and the registry setting.

-v Turns verbose mode on, which provides information and diagnostic
messages during execution.

-helpor -2 Prints the help message.

-1 Turns off logging if OSAGENT IOGGING (NS set.

-ls<size> Specifies trimming log size of 1024KB block. Max value is 300, therefore
largest log size is 300MB

+1 <options> Show/enable logging level. Options supported are:
= Turn logging on and enable level "ief" (== +1 oief), equivalent to

OSAGENT IOGGING (N set. Logs are auto-trim and written to OSAGENT I0G DIR
or VBROKER ADMdirectory if set. Otherwise default is to /tmpon UNIX and
$TEMP% on Windows.

= 1i-Informational
= e- Error
= w- Warning
= f- Fatal
= d- Debugging
= a-All
-n, -N Disables system tray icon on Windows.

172 VisiBroker for Java Developer's Guide

UNIX

Windows

Note

Note

What is the Smart Agent?

Example:

The following example of the asagent command specifies a particular UDP port:

osagent -p 17000

Verbose output

On UNIX, the verbose output is sent to stdout.

On Windows, the verbose output is written to a log file stored in either of the following
locations:

= C:\TEMP\vbroker\log\osagent . 1og,
= the directory specified by the VBROKER ALM environment variable.

To specify a different directory in which to write the log file, use CSAGENT I10G DIR To
configure logging options you can right-click the Smart Agent icon and select Log
Options.

Disabling the agent

Communication with the Smart Agent can be disabled by passing the VisiBroker ORB
the property at runtime:

pravpt> viboj -Dvbrcker . agent .enablel ocator=false

If using string-to-object references, a naming service, or passing in a URL reference,
the Smart Agent is not required and can be disabled. If you pass an object name to the
bind() method, you must use the Smart Agent.

Ensuring Smart Agent availability

Starting a Smart Agent on more than one host within the local network allows clients to
continually bind to objects, even if one Smart Agent terminates unexpectedly. If a
Smart Agent becomes unavailable, all object implementations registered with that
Smart Agent will be automatically re-registered with another Smart Agent. If no Smart
Agents are running on the local network, object implementations will continue retrying
until a new Smart Agent is contacted.

If a Smart Agent terminates, any connections between a client and an object
implementation established before the Smart Agent terminated will continue without
interruption. However, any new bind() requests issued by a client causes a new Smart
Agent to be contacted.

No special coding techniques are required to take advantage of these fault-tolerant
features. You only need to be sure a Smart Agent is started on one or more host on the
local network.

Checking client existence

A Smart Agent sends an “are you alive” message (often called a heartbeat message) to
its clients every two minutes to verify the client is still connected. If the client does not
respond, the Smart Agent assumes the client has terminated the connection.

You can not change the interval for polling the client.

The use of the term “client” does not necessarily describe the function of the object or
process. Any program that connects to the Smart Agent for object references is a
client.

Chapter 14: Using the Smart Agent 173

Working within VisiBroker ORB domains

Working within VisiBroker ORB domains

It is often useful to have two or more VisiBroker ORB domains running at the same
time. One domain might consist of production versions of client programs and object
implementations, while another domain might consist of test versions of the same
clients and objects that have not yet been released for general use. If several
developers are working on the same local network, each may want to establish their
own VisiBroker ORB domain so that their tests do not conflict with one another.

Figure 14.1 Running separate VisiBroker ORB domains simultaneously

WisiBroker ORE
Srriart i genit

]

ViziBrokerO RE

Srnar sgent

Chant o pplcation Gt Appd cat

Test Domain P raduction Domain

Ofect Impl.

Object Imp. Chiget Inpl.

VisiBroker allows you to distinguish between multiple VisiBroker ORB domains on the
same network by using unique UDP port numbers for the Smart Agents of each
domain. By default, the OSAGENT BORT variable is set to 14000. If you wish to use a
different port number, check with your system administrator to determine what port
numbers are available.

To override the default setting, the OSAGENT PORT variable must be set accordingly
before running a Smart Agent, an OAD, object implementations, or client programs
assigned to that VisiBroker ORB domain. For example,

prarpt> seterv OSAGENT PORT 5678
prarpt> osagent &
prampt> cad &

The Smart Agent uses an additional internal port number for both TCP and UDP
protocols, the port number is the same for both. This port number is set by using the
OSAGENT CLIENT HANDLER EORT environment variable.

174 VvisiBroker for Java Developer's Guide

Connecting Smart Agents on different local networks

Connecting Smart Agents on different local networks

Note

If you start multiple Smart Agents on your local network, they will discover each other
by using UDP broadcast messages. Your network administrator configures a local
network by specifying the scope of broadcast messages using the IP subnet mask. The
following figure shows two local networks connected by a network link.

Figure 142 Two Smart Agents on separate local networks

Wisi Broker ORE %
Smar agent E
1991095

Wi Broker O RE

S Agent
11086

Client applicaton |

Local Metwark: $1 Lecal Metwork $2

To allow the Smart Agent on one network to contact a Smart Agent on another local
network, use the OSAGENT AITR FILE environment variable, as shown in the following
example:

seterv OGAGENT AITR FITE=<path to agent addr file>

Alternatively, use the viroker.agent .addrFile property, as shown in the following
example:

Vibj -Dvbroker.agent .addrFile=<path to agent addr files>

The following example shows what the agentaddr file would contain to allow a Smart
Agent on Local Network #1 to connect to a Smart Agent on another local network.

101.10.2.6

With the appropriate agentaddr file, a client program on Network #1 locates and uses
object implementations on Network #2. For more information on environment variables,
see the Installation Guide.

If a remote network has multiple Smart Agents running, you should list all the IP
addresses of the Smart Agents on the remote network.

How Smart Agents detect each other

Suppose two agents, Agent 1 and Agent 2, are listening on the same UDP port from
two different machines on the same subnet. Agent 1 starts before Agent 2. The
following events occur:

= When Agent 2 starts, it UDP broadcasts its existence and sends a request message
to locate any other Smart Agents.

= Agent 1 makes note that Agent 2 is available on the network and responds to the
request message.

= Agent 2 makes note that another agent, Agent 1, is available on the network.

If Agent 2 is terminated gracefully (such as killing with Ctrl+C), Agent 1 is notified that
Agent 2 is no longer available.

Chapter 14: Using the Smart Agent 175

Working with multihomed hosts

Working with multihomed hosts

UNIX

Windows

UNIX

When you start the Smart Agent on a host that has more than one IP address (known
as a multihomed host), it can provide a powerful mechanism for bridging objects
located on separate local networks. All local networks to which the host is connected
will be able to communicate with a single Smart Agent, therefore bridging the local
networks.

Figure 14.3 Smart Agent on a multihomed host

Multhomedhast

Lacal
netwak #

On a multihomed UNIX host, the Smart Agent dynamically configures itself to listen
and broadcast on all of the host's interfaces which support point-to-point connections
or broadcast connections. You can explicitly specify interface settings using the
localaddr file as described in “Specifying interface usage for Smart Agents” on

page 177.

On a multihomed Windows host, the Smart Agent is not able to dynamically determine
the correct subnet mask and broadcast address values. To overcome this limitation,
you must explicitly specify the interface settings you want the Smart Agent to use with
the localaddrfile.

When you start the Smart Agent with the —v (verbose) option, each interface that the
Smart Agent uses will be listed at the beginning of the messages produced. The
example below shows the sample output from a Smart Agent started with the verbose
option on a multihomed host.

Bourd to the following interfaces:
Address: 199.10.9.5 Sunet: 255.255.255.0 Broadcast:199.10.9.255
Address: 101.10.2.6 Sumet: 255.255.255.0 Broadcast:101.10.2.255

The above output shows the address, subnet mask, and broadcast address for each
interface in the machine.

The above output should match the results from the UNIX command ifomnfig -a

If want to override these settings, configure the interface information in the localaddr
file. See “Specifying interface usage for Smart Agents” on page 177 for details.

176 VisiBroker for Java Developer's Guide

Note

UNIX

Windows

Working with multihomed hosts

Specifying interface usage for Smart Agents

It is not necessary to specify interface information on a single-homed host.

You can specify interface information for each interface you wish the Smart Agent to
use on your multihomed host in the localaddr file. The localaddr file should have a
separate line for each interface that contains the host's IP address, subnet mask, and
broadcast address. By default, VisiBroker searches for the localaddrfile in the
VBROKER ArMdirectory. You can override this location by setting the OSAGENT IOCAL FIIE
environment variable to point to this file. Lines in this file that begin with a “#’ character,
and are treated as comments and ignored. The code sample below shows the contents
of the localaddr file for the multihomed host listed above.

fentries of formet <address> <sulnet mask> <broedcast address>
199.10.9.5 255.255.255.0 199.10.9.255
101.10.2.6 255.255.255.0 101.10.2.255

Though the Smart Agent can automatically configure itself on a multihomed host on
UNIX, you can use the localaddrfile to explicitly specify the interfaces that your host
contains. You can display all available interface values for the UNIX host by using the
following command:

pronpt> ifoonfig -a
Output from this command appears similar to the following:

1o0: £lags=849<UP, LOOPRACK, RUNNING, MULTICAST> mtu 8232
inet 127.0.0.1 netmask ££000000

1le0: flags=863<UP, BROADCAST, NOIRATLERS, RUNNING, MULTICAST> mtu 1500
inet 199.10.9.5 netmask £EE£££00 broadcast 199.10.9.255

lel: flags=863<UP, BROADCAST, NOIRATLERS, RUNNING, MULTICAST> mtu 1500
inet 101.10.2.6 netmask £E£fff00 broadcast 101.10.2.255

The use of the localaddr file with multihomed hosts is required for hosts running
Windows because the Smart Agent is not able to automatically configure itself. You
can obtain the appropriate values for this file by accessing the TCP/IP protocol
properties from the Network Control Panel. If your host is running Windows, the
ipaonfigcommand will provide the needed values. This command is as follows:

prampt> iponfig
Output from this command appears similar to the following:
Ethemet adapter E190x1:

IPAdress. 172.20.30.56

Suonet Mask : 255.255.255.0

Default Gateway : 172.20.0.2
Ethermet adapter Elnk32

IPAddress. 101.10.2.6

Sumet Mask :255.255.255.0

Default Gateway. : 101.10.2.1

Chapter 14: Using the Smart Agent 177

Using point-to-point communications

Using point-to-point communications

UNIX

Windows

VisiBroker provides three different mechanisms for circumventing the use of UDP
broadcast messages for locating Smart Agent processes. When a Smart Agent is
located with any of these alternate approaches, that Smart Agent will be used for all
subsequent interactions. If a Smart Agent cannot be located using any of these
alternate approaches, VisiBroker will revert to using the broadcast message scheme to
locate a Smart Agent.

Specifying a host as a runtime parameter

The code sample below shows how to specify the IP address where a Smart Agent is
running as a runtime parameter for your client program or object implementation. Since
specifying an IP address will cause a point-to-point connection to be established, you
can even specify an IP address of a host located outside your local network. This
mechanism takes precedence over any other host specification.

prompt> vibj -Dvbroker.agent .addr=<ip address> Server

You can also specify the IP address through the properties file. Look for the
viroker . agent .addr entry.

vbroker.agent .addr=<ip address>
By default, vbrcker.agent .addr in the properties file is set to NULL

You can also list the host names where the agent might reside and then point to that
file with the vibroker.agent .addrFile option in the properties file.

Specifying an IP address with an environment variable

You can specify the IP address of a Smart Agent by setting the OSAGENT AITR
environment variable prior to starting your client program or object implementation.
This environment variable takes precedence if a host is not specified as a runtime
parameter.

prarpt> seterv OSAGENT AITR 199.10.9.5
prompt> client

To set the OSAGENT AR environment variable on a Windows system, you can use the
System control panel and edit the environment variables:

1 Under System Variables, select any current variable.
2 Type OSAGENT AITRin the Variable edit box.
3 Type the IP address in the Value edit box. For example, 199.10.9.5.

Specifying hosts with the agentaddr file

Your client program or object implementation can use the agentaddr file to circumvent
the use of a UDP broadcast message to locate a Smart Agent. Simply create a file
containing the IP addresses or fully qualified hostnames of each host where a Smart
Agent is running and then set the OSAGENT AITR FILE environment variable to point to
the path of the file. When a client program or object implementation has this
environment variable set, VisiBroker will try each address in the file until a Smart Agent
is located. This mechanism has the lowest precedence of all the mechanisms for
specifying a host. If this file is not specified, the VBROKER AlM/agentaddr file is used.

178 VisiBroker for Java Developer's Guide

Ensuring object availability

Ensuring object availability

Note

Important

Note

You can provide fault tolerance for objects by starting instances of those objects on
multiple hosts. If an implementation becomes unavailable, the VisiBroker ORB will
detect the loss of the connection between the client program and the object
implementation and will automatically contact the Smart Agent to establish a
connection with another instance of the object implementation, depending on the
effective rebind policy established by the client. For more information on establishing
client policies, go to the Client basics, “Using Quality of Service (QoS)” on page 151.

The Smart Agent implements load balancing using a simple round-robin algorithm on a
per agent basis, not on an ORB domain basis. For load balancing between server
replicas, when you have more than one Smart Agent in the ORB domain, make sure all
servers are registered with the same Smart Agent.

The rebind option must be enabled if VisiBroker is to attempt reconnecting the client
with an instance object implementation. This is the default behavior.

Invoking methods on stateless objects

Your client program can invoke a method on an object implementation which does not
maintain state without being concerned if a new instance of the object is being used.

Achieving fault-tolerance for objects that maintain state

Fault tolerance can also be achieved with object implementations that maintain state,
but it will not be transparent to the client program. In these cases, your client program
must either use the Quality of Service (QoS) policy VB NOTIFY REBIND Of register an
interceptor for the VisiBroker ORB object. For information on using QoS, see “Using
Quality of Service (QoS)” on page 151.

When the connection to an object implementation fails and VisiBroker reconnects the
client to a replica object implementation, the bind method of the bind interceptor will be
invoked by VisiBroker. The client must provide an implementation of this bind method
to bring the state of the replica up to date. Client interceptors are described in “Client
Interceptors” on page 354.

Replicating objects registered with the OAD

The OAD ensures greater object availability because if the object goes down, the OAD
will restart it. If you want fault tolerance for hosts that may become unavailable, the
OAD must be started on multiple hosts and the objects must be registered with each
OAD instance.

The type of object replication provided by VisiBroker does not provide a multicast or
mirroring facility. At any given time there is always a one-to-one correspondence
between a client program and a particular object implementation.

Chapter 14: Using the Smart Agent 179

Migrating objects between hosts

Migrating objects between hosts

Note

Object migration is the process of terminating an object implementation on one host,
and then starting it on another host. Object migration can be used to provide load
balancing by moving objects from overloaded hosts to hosts that have more resources
or processing power (there is no load balancing between servers registered with
different Samrt Agents.) Object migration can also be used to keep objects available
when a host is shutdown for hardware or software maintenance.

The migration of objects that do not maintain state is transparent to the client program.
If a client is connected to an object implementation that has migrated, the Smart Agent
will detect the loss of the connection and transparently reconnect the client to the new
object on the new host.

Migrating objects that maintain state

The migration of objects that maintain state is also possible, but it will not be
transparent to a client program that has connected before the migration process
begins. In these cases, the client program must register an interceptor for the object.

When the connection to the original object is lost and VisiBroker reconnects the client
to the object, the interceptor's rebind succeeded () member function will be invoked by
VisiBroker. The client can implement this function to bring the state of the object up to
date.

Refer to Chapter 24, “Using Portable Interceptors” for more information about how to
use the interceptors.

Migrating instantiated objects

If the objects that you wish to migrate were created by a server process instantiating
the implementation's class, you need only start it on a new host and terminate the
server process. When the original instance is terminated, it will be unregistered with the
Smart Agent. When the new instance is started on the new host, it will register with the
Smart Agent. From that point on, client invocations are routed to the object
implementation on the new host.

Migrating objects registered with the OAD

If VisiBroker objects that you wish to migrate are registered with the OAD, you must
first unregister them with the OAD on the old host. Then, reregister them with the OAD
on the new host.

Use the following procedure to migrate objects already registered with the OAD:
1 Unregister the object implementation from the OAD on the old host.

2 Register the object implementation with the OAD on the new host.

3 Terminate the object implementation on the old host.

See Chapter 20, “Using the Object Activation Daemon (OAD)” for detailed information
on registering and unregistering object implementations.

180 VisiBroker for Java Developer's Guide

Reporting all objects and services

Reporting all objects and services

Windows

The Smart Finder (ostind) command reports on all VisiBroker related objects and
services which are currently available on a given network.

You can use csfindto determine the number of Smart Agent processes running on the
network and the exact host on which they are executing. The osfindcommand also
reports on all VisiBroker objects that are active on the network if these objects are
registered with the Smart Agent. You can use osfindto monitor the status of the
network and locate stray objects during the debugging phase.

The osfind command has the following syntax:
osfind [options]

The following options are valid with osfird If no options are specified, osfirdlists all of
the agents, OAD's, and implementations in your domain.

Option Description

-a Lists all Smart Agents in your domain.

b Uses the VisiBroker 2.0 backward compatible osfind
mechanism.

-d Prints hostnames as quad addresses.

-f Queries Smart Agents running on the hosts specified in the file.

<agent_address_file_name> This file contains one IP address or fully qualified host name
per line. Note that this file is not used when reporting all Smart
Agents; it is only used when reporting objects implementations
and services.

-g Verifies object existence. This can cause considerable delay on
loaded systems. Only objects registered BY INSIANCEare verified
for existence. Objects that are either registered with the OAD,
or those registered BY A policy are not verified for existence.

-h, -help, -usage, -? Prints help information for this option.
-0 Lists all OADs in your domain.
L Lists all POA instances activated on the same host. Without

this option only unique POA names are listed.

osfindis a console application. If you start osfind from the Start menu, it runs until
completion and exits before you can view the results.

Binding to Objects

Note

Before your client application invokes a method on an interface it must first obtain an
object reference using the bind() method.

When your client application invokes the bind () method, VisiBroker performs several
functions on behalf of your application. These are shown below.

= VisiBroker contacts the osagent to locate an object server that is offering the
requested interface. If an object name and a host name (or IP address) are
specified, they will be used to further qualify the directory service search.

= When an object implementation is located, VisiBroker attempts to establish a
connection between the object implementation that was located and your client
application.

= If the connection is successfully established, VisiBroker will create a proxy object if
necessary, and return a reference to that object.

VisiBroker is not a separate process. Itis a collection of classes and other resources
that allow communication between clients and servers.

Chapter 14: Using the Smart Agent 181

182 VisiBroker for Java Developer's Guide

Using the Location Service

The VisiBroker Location Service provides enhanced object discovery that enables you
to find object instances based on particular attributes. Working with VisiBroker Smart
Agents, the Location Service notifies you of what objects are presently accessible on
the network, and where they reside. The Location Service is a VisiBroker extension to
the CORBA specification and is only useful for finding objects implemented with
VisiBroker. For more information on the Smart Agent (csagent), see Chapter 14, “Using
the Smart Agent.”

What is the Location Service?

Note

The Location Service is an extension to the CORBA specification that provides
general-purpose facilities for locating object instances. The Location Service
communicates directly with one Smart Agent which maintains a catalog, which
contains the list of the instances it knows about. When queried by the Location Service,
a Smart Agent forwards the query to the other Smart Agents, and aggregates their
replies in the result it returns to the Location Service.

The Location Service knows about all object instances that are registered on a POA
with the BY INSTANCE Policy and objects that are registered as persistent on a BOA. The
server containing these objects may be started manually or automatically by the OAD.
For more information, see Chapter 9, “Using POAs,” Chapter 33, “Using the BOA with
VisiBroker,” and Chapter 20, “Using the Object Activation Daemon (OAD).”

The following diagram illustrates this concept.

Figure 15.1 Using the Smart Agent to find instances of objects

Cueryforall
dyject reums:

| RN |

Smart agant

Locatian [= Fiegis Tation ofan & ive cbiea
Srra rtAgen't danio2 [= Regis Tation of an & ivableobia:

A server specifies an instance's scope when it creates the instance. Only globally-
scoped instances are registered with Smart Agents.

Chapter 15: Using the Location Service 183

What is the Location Service?

The Location Service can make use of the information the Smart Agent keeps about
each object instance. For each object instance, the Location Service maintains
information encapsulated in the structure GojLocation: :Desc shown below.

struct Desc {
Qoject ref;
: : ITOP: : ProfileBodyValue iicp locator;
string repository id;
string instance name;
lboolean activable;
string agent hostname;
}i
typedef sequence<Desc> DescSeq;

The IDL for the Desc structure contains the following information:

The object reference, ref, is a handle for invoking the object.

The iicp locatorinterface provides access to the host name and the port of the
instance's server. This information is only meaningful if the object is connected with
110P, which is the only supported protocol. Host names are returned as strings in the
instance description.

The repository id, which is the interface designation for the object instance that
can be looked up in the Interface and Implementation Repositories. If an instance
satisfies multiple interfaces, the catalog contains an entry for each interface, as if
there were an instance for each interface.

The instance name, which is the name given to the object by its server.

The activable flag, which differentiates between instances that can be activated by
an OAD and instances that are started manually.

The agent hostrame, the name of the Smart Agent with which the instance is
registered.

The Location Service is useful for purposes such as load balancing and monitoring.
Suppose that replicas of an object are located on several hosts. You could deploy a
bind interceptor that maintains a cache of the host names that offer a replica and each
host's recent load average. The interceptor updates its cache by asking the Location
Service for the hosts currently offering instances of the object, and then queries the
hosts to obtain their load averages. The interceptor then returns an object reference for
the replica on the host with the lightest load. For more information about writing
interceptors, see Chapter 24, “Using Portable Interceptors” and Chapter 25, “Using
VisiBroker Interceptors.”

184 VvisiBroker for Java Developer's Guide

Location Service components

Location Service components

Note

The Location Service is accessible through the 2gent interface. Methods for the 2gent
interface can be divided into two groups: those that query a Smart Agent for data
describing instances and those that register and unregister triggers. Triggers provide a
mechanism by which clients of the Location Service can be notified of changes to the
availability of instances.

What is the Location Service agent?

The Location Service agent is a collection of methods that enable you to discover
objects on a network of Smart Agents. You can query based on the interface’s
repository ID, or based on a combination of the interface's repository ID and the
instance name. Results of a query can be returned as either object references or more
complete instance descriptions. An object reference is simply a handle to a specific
instance of the object located by a Smart Agent. Instance descriptions contain the
object reference, as well as the instance's interface name, instance name, host name
and port number, and information about its state (for example, whether it is running or
can be activated).

The locservexecutable no longer exists since the service is now part of the core
VisiBroker ORB.

The figure below illustrates the use of interface repository IDs and instance names
given the following example IDL:

module Autandbile {
interface Car{...};
interface Sedan:Car {...};

}

Figure 15.2 Use of interface repository IDs and instance names

“Keri's Gar ! 1 = inters ie's repositony 10

' - - - a =0fectinsgnc

IDL awtorcbiletar o~

IDL: automiob letSedan:t 0

Given the previous example, the following diagram visually depicts Smart Agents on a
network with references to instances of Car. In this example, there are three instances:
one instance of Keri's Car and two replicas of Tom's Car.

Figure 15.3 Smart Agents on a network with instances of an interface

: Loz dan LUl =0bectinsence
Sendoe
(}:Srnart.n.gsm
athena senver '.KE_["__'S__%_[;O
. Tom'sCar -

The following sections explain how the methods provided by the 2gent class can be
used to query VisiBroker Smart Agents for information. Each of the query methods can
raise the Fail exception, which provides a reason for the failure.

Chapter 15: Using the Location Service 185

Location Service components

Note

Obtaining addresses of all hosts running Smart Agents

Using the String(] in the all agent locatians() method, you can find out which servers
are hosting VisiBroker Smart Agents. In the example shown in the figure below, this
method would return the addresses (such as, IP address string) of two servers: Athena
and Zeus.

Finding all accessible interfaces

You can query the VisiBroker Smart Agents on a network to find out about all
accessible interfaces. To do so, you can use the String[] in the all repository ids()
method. In the example shown in the following figure, this method would return the
repository IDs of two interfaces: Car and Sedan.

Earlier versions of the VisiBroker ORB used IDL interface names to identify interfaces,
but the Location Service uses the repository id instead. To illustrate the difference, if an
interface name is:

: :modulel : :module2: :interface
the equivalent repository id is:
IDL:modulel /module2/interface:1.0
For the example shown in the figure above, the repository ID for Car would be:
IDL:Autandbile/Car:1.0
and the repository ID for Sedan would be:
TDL:Autandbile/Sedan: 1.0

Obtaining references to instances of an interface

You can query VisiBroker Smart Agents on a network to find all available instances of a
particular interface. When performing the query, you can use either of these methods:

Table 15.1 Obtaining references to objects that implement a given interface

Method Description
org.ang.CORBA. Ooject [] Use this method to return object references to
all instances (String repository id) instances of the interface.

Desc[] all instance descs(Stringrepository id) Use this method to return an instance
description for instances of the interface.

In the example shown in the figure above, a call to either method with the request
IDL: Autandbile/Car: 1.0 would return three instances of the Car interface: Tom's Car on
Athena, Tom's Car on Zeus, and Keri's Car. The Tom's Car instance is returned twice
because there are occurrences of it with two different Smart Agents.

Obtaining references to like-named instances of an interface

Using one of the following methods, you can query VisiBroker Smart Agents on a
network to return all occurrences of a particular instance name.

Table 15.2 References to like-named instances of an interface

Method Description

org.amngy.CORBA.(bject [] all replica String Use this method to return object references to like-
repository id, String instance name named instances of the interface.

Desc[] all replica descs(String Use this method to return an instance description
repository id, String instance name) for like-named instances of the interface.

In the example shown in the previous figure, a call to either method specifying the
repository ID IDL:2Autondbile/Sedan: 1.0 and instance name Tom's Car would return two
instances because there are occurrences of it with two different Smart Agents.

186 VisiBroker for Java Developer's Guide

Note

Location Service components

What is a trigger?

A trigger is essentially a callback mechanism that lets you determine changes to the
availability of a specified instance. It is an asynchronous alternative to polling an Agent,
and is typically used to recover after the connection to an object has been lost.
Whereas queries can be employed in many ways, triggers are special-purpose.

Looking at trigger methods

The trigger methods in the 2gent class are described in the following tables:

Table 15.3 Trigger methods

Methods Description

void reg trigger(Use this method to register a
oan. irprise. vbroker. QojLocation. TriggerDesadesc, com. irprise. trigger handler.
vioraker.QojLocation. Triggertiandler handler)

void unreg trigger (Use this method to unregister
com. inprise. voroker . ojLocation. TriggerDesc desc, com.irprise. a trigger handler.
viorcker . QojLocation. TriggerHandler handler)

Both of the 2gent trigger methods can raise the Fail exception, which provides a
reason for the failure.

The TriggerHardlerinterface consists of the methods described in the following tables:

Table 15.4 TriggerHandler interface methods

Method Description

void inpl is ready(com.irprise. This method is called by the Location Service when an
viorcker.(bjLocation. TriggerDesadesc) instance matching the desc becomes accessible.

void impl is down(com.inprise. This method is called by the Location Service when an

vbroker.QojLocation. TriggerDesadesc) instance becomes unavailable.

Creating triggers

A Triggertiandleris a callback object. You implement a Triggertardler by deriving from
the TriggertlardlerPA class (or the TriggertardlerTnpl class with BOA), and
implementing its impl is ready() and impl is down() methods. To register a trigger
with the Location Service, you use the reg trigger() method in the 2Agent interface.
This method requires that you provide a description of the instance you want to
monitor, and the Triggerfiandler object you want invoked when the availability of the
instance changes. The instance description (TriggerDesc) can contain combinations of
the following instance information: repository ID, instance name, and host name. The
more instance information you provide, the more particular your specification of the
instance.

struct TriggerDesc
string repository id;
string instance name;
string host name;

}i

If a field in the TriggerDescis set to the empty string (*), it is ignored. The default for

each field value is the empty string.

Chapter 15: Using the Location Service 187

Querying an agent

For example, a TriggerDesc containing only a repository ID matches any instance of the
interface. Looking back to our example in the figure above, a trigger for any instance of
IDL:Autandbile/Car:1.0 would occur when one of the following instances becomes
available or unavailable: Tom's Car on Athena, Tom's Car on Zeus, or Keri's Car.
Adding an instance name of “Tom's Car” to the TriggerDesc tightens the specification
so that the trigger only occurs when the availability of one of the two “Tom's Car”
instances changes. Finally, adding a host name of Athena refines the trigger further so
that it only occurs when the instance Tom's Car on the Athena server becomes
available or unavailable.

Looking at only the first instance found by a trigger

Triggers are “sticky.” A Triggertlardleris invoked every time an object satisfying the
trigger description becomes accessible. You may only be interested in learning when
the first instance becomes accessible. If this is the case, invoke the 2Agent's

unreg trigger () method to unregister the trigger after the first occurrence is found.

Querying an agent

This section contains two examples of using the Location Service to find instances of
an interface. The first example uses the Account interface shown in the following IDL
excerpt:

// Bark.idl

module Bark
interface Accomnt {

float balance() ;

i

interface AccomntManager {
Accont copen (in string name) ;

}i

b

Finding all instances of an interface

The following code sample uses the all instances() method to locate all instances of
the Account interface. Notice that the Smart Agents are queried by passing
“LocationService” to the CRB.resolve initial references() method, then narrowing the
object returned by that method to an ojLocatian.2gent . Notice, as well, the format of
the Account repository id: IDL:Bank/Account:1.0.

Finding all instances satisfying the AccountManager interface:

// AcoountFinder. java
pwblic class AccomntFinder {
pdolic static void main(String[] args) {
try {
// Initialize the CRB.
org.ang.CORBA.CRB orb = org.ary.ORRA.CRB. init (args, mill) ;
oam. inprise . vioroker.dojLocation.Agent the agent = rull;
try {
the agent = com.inprise.vircker.OojLocation. AgentHelper . narrow (
orb.resolve initial references("LocationService"));
}

catch (org.ary.CORBA.CRBPackage. IrvalidNeame e)
System.out .printIn("Not able to resolve references " +
"for LocationService") ;
System.exit (1) ;

}

188 VisiBroker for Java Developer's Guide

Querying an agent

catch (Exception e) {
System.out .printIn ("Uhable to locate LocatianService!") ;
System.out .printIn ("Caught exception: " + e);
System.exit (1) ;

}

org.arg.CORRA.(oject [1 accountRefs =
the agent.all instances ("IDL:Bank/AccountMeneger:1.0") ;

System.cut .printIn("Agent retumed " + accomntRefs.length +
" doject references");

for (int i=0; i < accomtRefs.lergth; i++) {
System.out .printIn("Stringified IR for accomt #" + (i+l) + ":");
System.out . printIn (orb.doject to string(accomntRefs(i])) ;
System.out.println() ;

}

} catch (Exception e) {
System.out .printIn ("Caught exceptian: " + e);
System.exdt (1) ;

}

}

Finding interfaces and instances known to Smart Agents

The following code sample shows how to find everything known to Smart Agents. It
does this by invoking the all repository ids() method to obtain all known interfaces.
Then it invokes the all instances descs() method for each interface to obtain the
instance descriptions.

Finding everything known to a Smart Agent:
// Fird.java
pwblic class Find {
pdblic static void main(String[] args) {

try {
// Initialize the CRB.
org.ang.CORRA.CRB orb = org.ong.ORBA.CRB. init (args,mill) ;
com. inprise. viroker.Qojlocation. Agent agent = rull;
try {
agent = com. inprise.viorcker.dojLocation. AgentHelper . narrow (
orb.resolve initial references("TocationService"));
} catch (org.arg.CORBA.ORBPackace. IrvalidName e) {
System.out .printIn("Not able to resolve references " + "for
LocationService") ;
System.exdit (1) ;
} catch (Exception e) {
System.out .printIn("Not able to resolve references " + "for
LocationService") ;
System.out .printIn ("Caught exceptian: " + e);
System.exit (1) ;
}
boolean done=false;
java.io.BufferedReader in =
new java.io.BufferedReader (new java.io.IrputStreanReader (System.in)) ;

Chapter 15: Using the Location Service 189

Querying an agent

vhile (! doe) {
System.cut .print ("-> ") ;
System.out.flush() ;
String line = in.readline() ;
if (line.startsiith ("agents")) {
java.lang.String[] agentlist = agent.all agent locatians() ;
System.cut .printIn("Located " + agentlist.length + " agents");
for (int i=0; i < agentlist.length; i+) {
System.cut.printIn("\t" + "Agent #" + (i+l) + ": " +
} agentlist [i]) ;
} else if (line.startsWith("rep")) {
java.lang.String[] replds = agent.all repository ids();
System.cut .printIn("Located " + replds.length + " repository Ids");
for (int i=0; i < replds.length; iw) {
System.out.printIn("\t" + "Repository Id #" + (i+1) + ": " +
} replds[i]) ;

} else if (line.startsiith("dojects ")) {
String names = line.substring("dojects ".length(), line.length());
PrintCojects (nanes, agent, orb) ;
} else if (line.startsiWith("quit")) {
dme = true;
} else {
System.out.printIn ("Comerds: agents\n" +
" repository ids\n" +

" dojects <rep Id\n" +
" dojects <rep Id> <doj name>\n" +
n quit\n") ;

}
}
} catch (com.irprise.vbroker.(bjlocation.Fail err) {
System.out .printIn("Location call failed with reason " + err.reasm);
} catch (java.lang.Exception err) {
System.out .printIn("Caught error " + err);
err.printStackTrace() ;
}
}
public static void PrintQojects (String names,
com. inprise.viorcker.Qojlocation. Agent agent,
org.ang.CORRA.CRB orb)
throws cam. irprise.vioroker.(ojlocatian.Fail {
int space pos = names.indexOf (' ') ;
String repository id;
String doject name;
if (space pos = -1) {
repository id = names;
doject name = rull;
} else {
repository id = names.substring (0, names. indexOf (' ') ;
doject name = names. substring (names. indexOf (' ')+1) ;
}
org.ang.CORRA.(oject [] dojects;
com. irprise. vioroker.QojLocation.Desc[] descriptors;
if (doject name = muall) {
dbjects = agent.all instances (repository id);
descriptors = agent.all instances descs (repository id) ;

190 VisiBroker for Java Developer's Guide

Writing and registering a trigger handler

} else {
dojects = agent.all replica(repository id,doject name) ;
descriptors = agent.all replica descs (repository id,doject name) ;
}
System.out .printIn("Retumed " + dojects.length + " dojects") ;
for (int i=0; i<dojects.lergth; i++) {
System.out .println("\n\nCbject #" + (i+l) + ":");
System.out . printIn (" ";
System.out.printIn("\tRep ID: " +
((com. inprise. viorcker . CORBA. (oject) dojects [i]) ._repository id()) ;
System.out . printIn("\tInstance:" +
((cam. inprise.vbrcker. CORBA.Goject) dojects [1]) ._dbject name()) ;
System.cut . printIn("\tICR: " + arb.doject to string(dojects[il));
System.out.println() ;

(
System.out .printIn("Descriptor #" + (i+1));
System.out .printIn(" ");
System.out .printIn ("Host : " + descriptors([i] .iicp locator.host) ;
System.out .printIn("Port: " + descriptors([i] .iicp locator.port) ;
System.out .printIn ("Agent Host: " + descriptors[i] .agent hostrname) ;
System.out . printIn("Repository Id: " + descriptors[i] .repository id) ;
System.out .printIn("Instance: " + descriptors[i] . instance name) ;
System.out .printIn("Activable: " + descriptors[i] .activable) ;
}
}
}

Writing and registering a trigger handler

The following code sample implements and registers a Triggerfardler. The
TriggerHandlerTnpl's inpl is ready() and impl is down() methods display the
description of the instance that caused the trigger to be invoked, and optionally
unregister itself.

If it is unregistered, the method calls System.exit () to terminate the program.

Notice that the TriggertlandlerTnpl class keeps a copy of the descand 2gent parameters
with which it was created. The unreg trigger() method requires the desc parameter.
The Agent parameter is duplicated in case the reference from the main program is
released.

Implementing a trigger handler:

// AcoontTrigger. java
import java.io.*;
import org.ang.PortableServer. *;
class TriggerHandlerTnpl externds
caom. irprise. vioroker . dojLocation. TriggertandlerFOA {
public TriggerandlerTnpl (cam. inprise.vioroker.Qojlocation.Agent agent,
com. inprise.vbroker . ojlocation. TriggerDesc initial desc) {
agent = agent;
initial desc = initial desc;
}
pblic void inpl is ready (com.irprise.vbroker.(ojLocation.Desc desc) {
notification(desc, true);
}

pdolic void inpl is down (com. irprise.viorcker.GojLocation.Desc desc)
rotification(desc, false);
}

Chapter 15: Using the Location Service 191

Writing and registering a trigger handler

private void notification (cam. irprise.vioroker.QojLocation.Desc desc,
boolean isReady) {
if (isReady) {
System.out .printIn ("Inmplementation is ready:")
} else {
System.out .printIn ("Inplarentation is down:") ;

System.out . println("\tRepository Id = " + desc.repository id + "\n" +
"\tInstance Neme = " + desc.instance name + "\n" +

"\tHost Name = " 4+ desc.iicp locator.host + "\n" +

"\tBA Port = " + desc.licp locator.port + "\n" +

"\tActivable =" + desc.activable + "\n" + "\n");
System.out . printIn("Unregister this handler and exit (yes/no)?");

try {
BufferedReader in = new BufferedReader (

new TrputStreanReader (System. in))
String line = in.readline() ;
if (lme{startsWJ. ("y") || lire.startswith("y")) {
try
agent .unreg trigger(initial desc, this());
} catch (com. imprise.viorcker.dojlocation.Fail e) {
System.out .printIn("Failed to unregister trigger with
} reasn=[" + e.reason + "]");

System.cut .printIn("exiting...");
System.exit (0) ;
}
} catch (java.io.I0Exception e) {
System.out .printIn ("Unexpected exception caught: " + €)
System.exit (1) ;
} }
private com.inprise.viroker.Qojlocation.Agent agent;
} private cam.inprise.vioroker.Gojlocation. TriggerDesc initial desc;
pblic class AccomntTrigoer {
public static void main(String args(])
try {
// Initialize the CRB.
org.arg.CORRA.CRB orb = org.org.CORRA.CRB. init (args,mull) ;
BQA rootPoa =
BCAHelper.narrow (orb. resolve initial references("RootEA")) ;
rootPoa. the ROAMeEnager () .activate () ;
oam. inprise . vioraker.GojLocation.Agent the agent =
com. inprise . viorcker . dojLocation. AgentHelper . narrow (
orb.resolve initial references("LocatianService")) ;
// Create a trigger description and an appropriate TriggerHarndler.
// The Triggertardler will ke irvoked when the osagent beocares
// aware of ary new inplementations of the interface
"Bark : :AccomtMenager™"
com. irprise. vibroker.QojLocation. TriggerDesc desc =
new oom. irprise.viorcker.QojLlocation. TriggerDesc
"IDL: Bark/AccountManager:1.0", "', ") ;
TriggertiardlerTnpl trig = new TriggerHandlerTnpl (the agent, desc);
rootPoa.activate doject (trig) ;
the agent.reg trigger(desc, trig. this());
arb.run() ;
} catch (Exception e) {
e.printStackTrace() ;
System.exit (1) ;
}
}
}

192 VvisiBroker for Java Developer's Guide

Overview

Using the VisiNaming Service

This section describes the usage of the VisiBroker VisiNaming Service which is a
complete implementation of the CORBA Naming Service Specification Version 1.2
(formal/02—-09-02).

The VisiNaming Service allows you to associate one or more logical names with an
object reference and store those names in a namespace. With the VisiNaming Service,
your client applications can obtain an object reference by using the logical name
assigned to that object.

The figure below contains a simplified view of the VisiNaming Service that shows how
1 an object implementation can bind a name to one of its objects within a namespace.

2 client applications can then use the same namespace to resolve a name which
returns an object reference to a naming context or an object.

Figure 16.1 Binding, resolving, and using an object name from a naming context within a namespace

Chject Implementation 4, Invoke methods

o abjpets

Marnespace
1. bindiname, objpet_ref) <aame_1, chiref 1>

“Tame_2, chijref 2

<name_x-1, chijref x-1>

3. resobel) tums an
ohjpet referzncs

2. reaokefname) Client Application

Chapter 16: Using the VisiNaming Service 193

Understanding the namespace

There are some important differences to consider between locating an object
implementation with the VisiNaming Service as opposed to the Smart Agent.

= Smart Agent uses a flat namespace, while the VisiNaming Service uses a

hierarchical one.

= |f you use the Smart Agent, an object's interface name is defined at the time you
compile your client and server applications. This means that if you change an
interface name, you must recompile your applications. In contrast, the VisiNaming
service allows object implementations to bind logical names to its objects at runtime.

= If you use the Smart Agent, an object may implement only one interface name. The
VisiNaming service allows you to bind more than one logical name to a single

object.

For more information about the Smart Agent (osagent),see Chapter 14, “Using the

Smart Agent.”

Understanding the namespace

The figure below shows how the VisiNaming Service might be used to name objects
that make up an order entry system. This hypothetical order entry system organizes its
namespace by geographic region, then by department, and so on. The VisiNaming
Service allows you to organize the namespace in a hierarchical structure of
NamingContext objects that can be traversed to locate a particular name. For example,
the logical name Northanerica/ShippingDepartment /Orders could be used to locate an

Order object.
Figure 16.2 Naming scheme for an order entry system

Asia

Eurpe

Motth Armnetica

Shipping Department

Sales Department

Custormers

ety

Oiders

Billing

Aormne Lumber

= MarningContaxt

@ =Chjeet Implementation

194 VvisiBroker for Java Developer's Guide

Intematianal Supplies

Ordar
Implementation
Ohject

Understanding the namespace

Naming contexts

To implement the namespace shown above with the VisiNaming Service, each of the
shadowed boxes in the diagram above, would be implemented by a NamingContext
object. A NamingContext object contains a list of Name structures that have been bound to
object implementations or to other NamingContext objects. Though a logical name may
be bound to a NamingOmtext, it is important to realize that a NemingContext does not, by
default, have a logical name associated with it nor is such a name required.

Object implementations use a NamingContext object to bind a name to an object that
they offer. Client applications use a NamingCmntext to resolve a bound name to an object
reference.

A NamingContextExt interface is also available which provides methods necessary for
using stringified names.

Naming context factories

A naming context factory provides the interface for bootstrapping the VisiNaming
Service. It has operations for shutting down the VisiNaming Service and creating new
contexts when there are none. Factories also have an additional API that returns the
root context. The root context provides a very critical role as a reference point. This is
the common starting point to store all data that are supposed to be publicly available.

Two classes are provided with the VisiNaming Service that allow you to create a
namespace; the default naming context factory and the extended naming context
factory. The default naming context factory creates an empty namespace that has no
root NemingContext. You may find it more convenient to use the extended naming
context factory because it creates a namespace with a root NaminoContext.

You must obtain at least one of these NamingContext objects before your object
implementations can bind names to their objects and before client applications can
resolve a name to an object reference.

Each of the NeminoContext objects shown in the figure above could be implemented
within a single name service process, or they could be implemented within as many as
five distinct name server processes.

Names and NameComponent

A CosNaming: :Name represents an identifier that can be bound to an object
implementation or a CofNaming: :NemingContext. A Name is not simply a string of
alphanumeric characters; it is a sequence of one or more NameCarponent structures.

Each NameConmponent contains two attribute strings, idand kind The Naming service
does not interpret or manage these strings, except to ensure that each idand kindis
unique within a given NamingComntext.

The idand kind attributes are strings which uniquely identify the object to which the
name is bound. The kind member adds a descriptive quality to the name. For example,
the name “Inventory.RDBMS” has an idmember of “Inventory” and a kind member of
“RDBMS.”

module CosNeming
typedef string Istring;
struct NemeCorpanent {
Istring id;
Istring kind;
}i
typedef sequence<NameCampanent> Name;

Chapter 16: Using the VisiNaming Service 195

Understanding the namespace

Note

Note

The idand kirnd attributes of NameCarponent in the code example above, must be a
character from the 1ISO 8859-1 (Latin-1) character set, excluding the null character
(0x00) and other non-printable characters. Neither of the strings in NemeCarponent can
exceed 255 characters. Furthermore, the VisiNaming Service does not support
NameCompanent which uses wide strings.

The idattribute of a Name cannot be an empty string, but the kind attribute can be an
empty string.

Name resolution

Your client applications use the NamingContext method resolve to obtain an object
reference, given a logical Nane. Because a Nare consists of one or more NameComponent
objects, the resolution process requires that all of the NameCarponent structures that
make up the Nere be traversed.

Stringified names

Because the representation of CosNamirg: :Nane is not in a form that is readable or
convenient for exchange, a stringified name has been defined to resolve this problem.
A stringified name is a one-to-one mapping between a string and a CosNeming: :Nare. |f
two CosNaming: :Name objects are equal, then their stringified representations are equal
and vice versa. In a stringified name, a forward slash (/) serves as a name component
separator; a period (.) serves as the idand kind attributes separator; and a backslash
(\) serves as an escape character. By convention a NemeCorponent with an empty kind
attribute does not use a period (for example, Order).

"Borland. Canparty/Engineering. Department /Printer. Resource"

In the following examples, NameCompanent: structures are given in their stringified
representations.

Simple and complex names

A simple name, such as Billing, has only a single NameCompanent and is always resolved
relative to the target naming context. A simple name may be bound to an object
implementation or to a NamingContext.

A complex name, such as Northamerica/ShippingDepartment /Iriventory, consists of a
sequence of three NameCompanent structures. If a complex name consisting of n
NameCompanent objects has been bound to an object implementation, then the first (n—1)
NameCompanent objects in the sequence must each resolve to a NemingCmtext, and the
last NameCorponent object must resolve to an object implementation.

If a Nane is bound to a NamingContext, each NaveCarponent structure in the sequence
must refer to a NaminoContext.

The code sample below shows a complex name, consisting of three components and
bound to a CORBA object. This name corresponds to the stringified name,
Northanerica/SalesDepartment /Order. When resolved within the topmost naming
context, the first two components of this complex hame resolve to NamingContext
objects, while the last component resolves to an object implementation with the logical
name “Order.”

// Nare stringifies to "NorthAverica/SalesDepartment /Order™
NemeCtnpanent [oontinentNeme = { new NemeConponent: ("NorthArerica", ") };
NemingContext continentContext =

rootNamingContext .bind new context (cantinentName) ;
NermeCtompanent: [] departmentName = { new NameCompanent ("SalesDepartment”, "") };
NamingContext departmentContext =

oantinentContext .bind new context (departmentName) ;

196 VisiBroker for Java Developer's Guide

Running the VisiNaming Service

NemeCtipanent: [dojectName = { new NemeCorpanent ("Order™, "") };
departmentContext . rebind (dojectName, myPOA. sexrvant to reference (menagerServant))

1

Running the VisiNaming Service

Note

UNIX

Windows

The VisiNaming Service can be started with the following commands. Once you have
started the Naming service, you may browse its contents by using the VisiBroker
Console.

Installing the VisiNaming Service

The VisiNaming Service is installed automatically when you install VisiBroker. It
consists of a file nameserv, which for Windows is a binary executable and for UNIX is a
script, and Java class files which are stored in the vibjorb.jarfile.

Configuring the VisiNaming Service

In previous versions of VisiBroker, the VisiNaming Service maintained persistence by
logging any modifying operations to a flat-file. From version 4.0 onward, the
VisiNaming Service works in conjunction with backing store adapters. It is important to
note that not all backing store adapters support persistence. The default IrMenory
adapter is non-persistent while all the other adapters are. For more details about
adapters, see “Pluggable backing store” on page 206.

A Naming Server is designed to register itself with the Smart Agent. In most cases you
should to run the Smart Agent to bootstrap the VisiNaming Service. This allows clients
to retrieve the initial root context by calling the resclve initial referencesmethod. The
resolving function works through the Smart Agent for the retrieval of the required
references. Similarly, Naming Servers that participate in a federation also uses the
same mechanism for setting up a federation.

For more information about the Smart Agent, see Chapter 14, “Using the Smart Agent.”

Starting the VisiNaming Service

You can start the VisiNaming Service by using the rameservlauncher program in the /
bindirectory. The nameservlauncher uses the com. irprise.viorcker.naming. ExtFactory
factory class by default.

nameserv [driver gptions] [nameserv cptions] <ns rames &

start nameserv [driver gotions] [mameserv cptions] <ns name>

See “General options” on page 28 for descriptions of the driver options available to all
of the VisiBroker programmer tools.

Table 16.1 nameserv_option options and descriptions

nameserv_option Description

-?, -h, -help, -usace Print out the usage information.

-amnfig <properties file> Use <properties_file>as the configuration file when starting up the
VisiNaming Service.

s name> The name to use for this VisiNaming Service. This is optional; the
default name is NemeService.

Chapter 16: Using the VisiNaming Service 197

Invoking the VisiNaming Service from the command line

In order to force the VisiNaming Service to start on a particular port, the VisiNaming
Service must be started with the following command line option:

prampt> nameserv -J-Dvbroker.se.iicp tp.san.iicp tp.listener.port=<port rumber>

The default name for VisiNaming is “NameService”, if you want to specify a name other
than this, you can start VisiNaming in the following way:

prampt> nameserv -J-Dvbroker.se.iicp tp.san.iicp tp.listener.port=<port rumbers

s name>

Starting the VisiNaming Service with the vbj command
The VisiNaming Service can be started using vbj.

pramptsvibj com. inprise. viorcker . naming. ExtFactory <ns name>

Invoking the VisiNaming Service from the command line

The VisiNaming Service Utility (nsutil) provides the ability to store and retrieve
bindings from the command line.

Configuring nsutil

To use nsutil, first configure the Naming service instance using the following
commands:

pravptsrameserv <ns nanes

pronptsnsutil -VBJorop <options> <and> [args]

Option Description
ns rene Configure the Naming service to contact
SVChameroot=<ns_nane> Note: Before using SvChameroot, you must first run OSAgent.

CRBInitRef=NemeService=<url> File name or URL, prefixed by its type, which may be (corbalec:,
corbenare:, file:, ftp:, http:, or iar:). For example, to assign a
file in a local directory, the ns config string would be: -VBJprop
ORBInitRef=NameService=<file:ns.ior>

ad Any CosNaming operation, and, in addition, ping and shutdown.

Running nsutil

The VisiNaming Service Utility supports all the CosNaming operations as well as three
additional commands. The CosNaming operations supported are:

cmd Parameter(s)
bind name objRef
bind context name ctxRef
bind new context name
destroy name

list [namel name2 names3...]
new aontext No parameter
rebind name objRef
rebind context name ctxRef
resolve name

uroind name

198 VisiBroker for Java Developer's Guide

Bootstrapping the VisiNaming Service

Note For the operations destroy and list, the name parameter must refer to existing naming
contexts. For the operation list only, there can be zero or more naming contexts,
whose contents will be listed. In the case where no naming context is specified, the
content of the root naming context will be listed.

The additional nsutil commands are:

cmd Parameter Description

ping name Resolves the stringified name and contacts the
object to see if it is still alive.

shutdown <naming context factory = Shuts the VisiNaming Service down gracefully

name or stringified ior> from the command line. The mandatory
parameter of this operation specifies either the
naming context factory's name as registered
with the osagent or the stringified IOR of the
factory.

ubird from cluster name objRef Unbinds a specific object in an implicit cluster.
The rane is the object's logical name and the
dojref is the stringified object reference that is
to be unbound.

To run an operation from the nsutil command, place the operation name and its
parameters as the <and>parameter. For example:

promptsnsutil -VBJprop ORBInitRef=NameService=file://ns.ior resolve myNane

Shutting down the VisiNaming Service using nsutil

To shut down the VisiNaming Service using nsutil, use the shutdown command:
pramptsnsutil -VBJprop CRBInitRef=NameService=file://ns.icr shutdown <ns name>

Bootstrapping the VisiNaming Service

There are three ways to start a client application to obtain an initial object reference to
a specified VisiNaming Service. You can use the following command-line options when
starting the VisiNaming Service:

= CRBInitRef

" CRBDefaultInitRef

= SVChameroot

The following example illustrates how to use these options.

Suppose there are three VisiNaming Services running on the host TestHost: nsl, ns2,
and ns3, running on the ports 20001, 20002 and 20003 respectively. And there are
three server applications: srl, sr2, sr3. Server srl binds itself in ns1, Server sr2 binds
itself in ns2, and server sr3in ns3.

Chapter 16: Using the VisiNaming Service 199

Bootstrapping the VisiNaming Service

Note

Calling resolve_initial_references

The VisiNaming Service provides a simple mechanism by which the

resolve initial references method can be configured to return a common naming
context. You use the resolve initial referencesmethod which returns the root context
of the Naming Server to which the client program connects.

org.ong.CORRA.CRB orb = org.ang.QORBA.CRB. init (args, mill);
org.ong.CORRA.doject rootQoj =
orb.resolve initial references("NemeService");

Using -DSVCnameroot

You use the -DSVChameroot option to specify into which VisiNaming Service instance
(especially important if several unrelated Naming service instances are running) you
want to bootstrap.

For instance, if you want to bootstrap into ns1, you would start your client program as:
vbj -DSVChameroot=nsl <client spplication>

You can then obtain the root context of ns1 by calling the resolve initial references
method on an ORB reference inside your client application as illustrated below. The
Smart Agent must be running in order to use this option.

Using -DORBInitRef

You can use either the corlaloc or corbaname URL naming schemes to specify which
VisiNaming Service you want to bootstrap. This method does not rely on the Smart
Agent.

Using a corbaloc URL
If you want to bootstrap using VisiNaming Service ns2, then start your client application
as follows:
vibj -DORBInitRef=NameService=corbaloc: :TestHost :20002/NameService
<client application>
You can then obtain the root context of ns2 by calling the resolve initial references

method on the VisiBroker ORB reference inside your client application as illustrated in
the example above.

The deprecated iicplocand iigmane URL schemes are implemented by corbalocand
corkanane, respectively. For backwards compatibility, the old schemes are still
supported.

Using a corbaname URL
If you want to bootstrap into ns3 by using corbanane, then you should start your client
program as:

vbj -DORBInitRef NemeService=corbarname: :TestHost: 20003/ <client applications

You can then obtain the root context of ns3 by calling the resolve initial references
method on the VisiBroker ORB reference inside your client application as illustrated
above.

200 VisiBroker for Java Developer's Guide

NamingContext

-DORBDefaultinitRef

You can use either a corlaloc or corlaname URL to specify which VisiNaming Service
you want to bootstrap. This method does not rely on the Smart Agent.

Using -DORBDefaultinitRef with a corbaloc URL

If you want to bootstrap into ns2, then you should start your client program as:
vbj -DORBDefaultInitRef corboaloc: :TestHost:20002 <client gpplications

You can then obtain the root context of ns2 by calling the resolve initial references
method on the VisiBroker ORB reference inside your client application as illustrated in
the sample above.

The following is an example of how to set up multiple VisiNaming Services using
corbaloc

client -DORBDefaultInitRef
NameService=corbaloc: :bart:20000, :Bart :20001, :Bart :20002/NameService
-ORBpropStorage clt.props

Using -DORBDefaultinitRef with corbaname

The combination of -ORBDefaultTnitRef or -DORBDefaultInitRef and corbaname works
differently from what is expected. If -ORBDefaultInitRef or -DORBDefaultInitRef is
specified, a slash and the stringified object keyis always appended to the coranane.

If the URL is corbanae: : TestHost :20002, then by specifying -DORRBDefaultTnitRef,
resolve initial referencesin Java will resultin a new URL:
corbaname:: : TestHost : 20003/NameService.

NamingContext

This object is used to contain and manipulate a list of names that are bound to
VisiBroker ORB objects or to other NamingCmtext objects. Client applications use this
interface to resolve or list all of the names within that context. Object implementations
use this object to bind names to object implementations or to bind a name to a
NamingContext object. The sample below shows the IDL specification for the

NemingContext.

Modiule CosNaming {
interface NemingContext {

void bind(in Nare n, in Goject doj)

raises (NotFourd, CarmotProceed, TrvalidNeme, AlreadyBourd) ;
void rebind (in Name n, in Goject dboj)

raises (NotFound, CarmotProceed, TrvalidName) ;
void bind context (in Name n, in NemingContext nc)

raises NotFourd, CarmotProoeed, TrvalidNeme, AlreadyBouard) ;
void rebind context (in Neme n, in NemingContext NC)

raises (NotFound, CarmotProceed, TrvalidName) ;
(oject resolve(in Name n)

raises (NotFound, CammotProceed, TrvalidName) ;
void unbind (in Name n)

raises (NotFournd, CarmotProceed, InvalidNeme) ;
NemingQontext new aontext () ;
NemingContext bind new context (in Neme n)

raises NotFourd, CarmotProceed, TrvalidNeme, AlreadyBouard) ;
void destroy ()

raises (NotEmpty) ;
void 1ist (in unsigned long how merny,

out Bindingldist bl,
out BindingTterator bi) ;

Chapter 16: Using the VisiNaming Service 201

NamingContextExt

NamingContextExt

The NamingContextExt interface, which extends NamingContext, provides the operations
required to use stringified names and URLSs.

Module CosNaming {
interface NemingContextExt : NemingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;
StringName to string(in Neme n)
raises (TrvalidName) ;
Neme to name (in StringName sn)
raises (ivalidNane) ;
exception Irvaliddddress {};
URLString to url (in Address addr, in StringName sn)
raises (Trvalididdress, TrvalidName) ;
Qoject resolve str(in StringName n)
raises (NotFound, CarmotProceed, TrvalidName) ;
}i

i

Default naming contexts

A client application can specify a default naming context, which is the naming context
that the application will consider to be its root context. Note that the default naming
context is the root only in relation to this client application and, in fact, it can be
contained by another context.

Obtaining the default naming context

Java client applications can connect to the VisiNaming Service by using the
resolve initial references method in the CRBinterface. To use this feature, the
S\VCrameroot or CRBInitRef parameters must be specified when the client is started.

For example, to start a Java application named Client?Applicationthat intends to use
the naming context Irventory as its default naming context, you could enter the
following command:
prapt> vioj -DSVChameroot=NorthAmerica,/ShippingDepartment /Triventory \
ClientApplication
In the example, Northanericais the server name and ShippinogDepartment/Irventory is
the stringified name from the root context.

Note When using the vioj command, all -D properties must appear before the Java class
name.

202 VisiBroker for Java Developer's Guide

VisiNaming Service properties

Obtaining naming context factories

A naming service client can get a reference to the naming context factory by resolving
the initial reference of the factory as follows:

ExtendedNamingUntextFactory myFactory =
ExtendedNamingContextFactoryHelper . narrow
orb.resolve initial reference ("VisiNemingContextFactory™)) ;

If osagent is running on the network, then such a client must be started as follows:

vbj -DSVChameroot=<ns name> Client

If there is no osagent running on the network, then the client must be started as shown

in the following example:

vbj -DORBInitRef=VisiNamingContextFactory=
corbaloc: :<host>: <port>/VisiNemingOontextFactory Client

VisiNaming Service properties

The following tables list the VisiNaming Service properties:

Table 16.2 Core VisiNaming Service properties

Property Default

viorcker .naming.enableSlave 0

vioroker .naming. iorFile ns.ior

viorcker .naming. loglevel energ

Description

Password required by administrative VisiBroker Naming
service operations.

If 1, enables master/slave naming services
configuration. See “VisiNaming Service Clusters for
Failover and Load Balancing” on page 218 for
information about configuring master/slave naming
services.

This property specifies the full path name for storing the
Naming service IOR. If you do not set this property, the
Naming service will try to output its IOR into a file
named ns.icrin the current directory. The Naming
service silently ignores file access permission
exceptions when it tries to output its IOR.

This property specifies the level of log messages to be
output from Naming service. Acceptable values are:

= Vvbroker.log.enable=true

= Vbroker.log.filter.default.enable=false

= Vbroker.log.filter.default.register=naming

= Vbroker.log.filter.default.naming.enable=true

= Vvbroker.log.filter.default.naming.logLevel=debug

Chapter 16: Using the VisiNaming Service 203

VisiNaming Service properties

Table 16.2 Core VisiNaming Service properties (continued)
Property Default Description
voroker .naming . logUpdate false This property allows special logging for all of the update

operations on the CosNaming: :NamingCmtext,

CosNamingFxt : :Cluster, and CosNamingExt : : ClusterMenager
interfaces.

The CosNaming: :NamingContext interface operations for
which this property is effective are:

bind, bind context, bind new context, destroy,
rebind, rebmd context, unbind

The CosNamingExt: :Cluster interface operations for which
this property is effective are:

bind, rebind, unbind, destroy.
The CosNamingExt : :ClusterManager interface operation for
which this property is effective is:

create cluster

When this property value is set to true and any of the
above methods is invoked, the following log message is
printed (the output shows a bind operation being
executed):

00000007,5/26/04 10:11 AM,127.0.0.1,00000000,
VBJ-Application, VBT ThreadPool Worker, INFO,

OPERATION NAME : bind

CLIENT END POINT : Comection [socket=Socket
[addr=/127.0.0.1, port=2026, localport=1993]]
PARAMETER 0 : [(Tom.LoenAccount)]

PARAMETER 1 : Stub[repository id=IDL:Bank/
LoanAcoount:1.0, key=TransientId [poaName=/,

id={4 bytes: (0) (0) (0) (0) },sec=505,usec=990917734,
key string=%00VB%01%00%00%00%02/%00%20%20%00%00%00%
04%00%00%00%00%00%00%01%£9; %$104f] , codebase=ruil1]

For more information see “Object Clusters” on page 213.

Table 16.3

Property Default
enableClusterFailover

vioroker .naming. 0
prooBindon

viorcker .naming. smrr 1
pruneStaleRef

Object Clustering Related properties

Description

When set to true, it specifies that an interceptor be installed
to handle fail-over for objects that were retrieved from the
VisiNaming Service. In case of an object failure, an attempt is
made to transparently reconnect to another object from the
same cluster as the original.

If 1, the implicit clustering feature is turned on.

This property is relevant when the name service cluster uses
the Smart Round Robin criterion. When this property is set to
1, a stale object reference that was previously bound to a
cluster with the Smart Round Robin criterion will be removed
from the bindings when the name service discovers it. If this
property is set to 0, stale object reference bindings under the
cluster are not eliminated. However, a cluster with Smart
Round Robin criterion will always return an active object
reference upon a resolve() or select() call if such an object
binding exists, regardless of the value of the

vbroker . naming. ser . pruneStaleRef property. By default, the
implicit clustering in the name service uses the Smart Round
Robin criterion with the property value set to 1. If set to 2, this
property disables the clearing of stale references completely,
and the responsibility of cleaning up the bindings belongs to
the application, rather than to VisiNaming.

204 VisiBroker for Java Developer's Guide

VisiNaming Service properties

For more information see “VisiNaming Service Clusters for Failover and
Load Balancing” on page 218.

Table 16.4 VisiNaming Service Cluster Related properties

Property Default Description

viorcker . naming . enableSlave 0 See “VisiNaming Service properties” on
page 203.

voroker .naming . slavelMode No default. This property is used to configure

Can be set to VisiNaming Service instances in the

clusteror slave. Cluster mode or in the master/slave
mode. The viorcker .naming. enableSlave
property must be set to 1 for this property
to take effect.
Set this property to clusterto configure
VisiNaming Service instances in the
cluster mode. VisiNaming Service clients
will then be load balanced among the
VisiNaming Service instances that
comprise the cluster. Client failover
across these instances are enabled.
Set this property to slave to configure
VisiNaming Service instances in the
master/slave mode. VisiNaming Service
clients will always be bound to the master
server if the master is running but failover
to the slave server when the master
server is down.

Voroker .naming. serverClusterName ruill This property specifies the name of a
VisiNaming Service cluster. Multiple
VisiNaming Service instances belong to a
particular cluster (for example, clusterxy?)
when they are configured with the cluster
name using this property.

Vooroker .naming . serverNanes rull This property specifies the factory names
of the VisiNaming Service instances that
belong to a cluster. Each VisiNaming
Service instance within the cluster should
be configured using this property to be
aware of all the instances that constitute
the cluster. Each name in the list must be
unique. This property supports the
format:

Serverl :Server2:Server3

See the related property,

Chapter 16: Using the VisiNaming Service 205

Pluggable backing store

Table 16.4 VisiNaming Service Cluster Related properties (continued)

Property Default Description

voroker .naming . serverAddresses rull This property specifies the host and
listening port for the VisiNaming Service
instances that comprise a VisiNaming
Service cluster. The order of VisiNaming
Service instances in this list must be
identical to that of the related property
vbroker .naming. serveriNames, which
specifies the names of the VisiNaming
Service instances that comprise a
VisiNaming Service Cluster. This
property supports the format:

viorcker .naming . serverfddresses=host1:
portl;host2 :port2;host3 :port3

vioroker .naming . anyServiceOrder false This property must be set to true on the
(To ke set on VisiNaming VisiNaming Service client to utilize the
Service clients) load balancing and failover features

available when VisiNaming Service
instances are configured in the
VisiNaming Service cluster mode. The
following is an example of how to use this

property:
client -DVioroker.naming.
aryServiceOrder=true

Pluggable backing store

Note

The VisiNaming Service maintains its namespace by using a pluggable backing store.
Whether or not the namespace is persistent, depends on how you configure the
backing store: to use JDBC adapter, the Java Naming and Directory Interface (JNDI,
which is certified for LDAP), or the default, in-memory adapter.

Types of backing stores

The types of backing store adapters supported are:

= In-memory adapter

= JDBC adapter for relational databases

= DataExpress adapter

= JINDI (for LDAP only)

For an example using pluggable adapters, see the code located in the directory:
<install dirs/vibe/exanples/ins/pluggeble adaptors

In-memory adapter
The in-memory adapter keeps the namespace information in memory and is not
persistent. This is the adapter used by the VisiNaming Service by default.

206 VisiBroker for Java Developer’'s Guide

Pluggable backing store

JDBC adapter

Relational databases are supported via JDBC. The following databases have been
certified to work with the VisiNaming Service JDBC adapter:

= JDataStore 7

= Oracle 10G, Release 1

= Sybase 11.5

= Microsoft SQLServer 2000
= DB28.1

= InterBase 7

Multiple VisiNaming Service instances can use the same back-end relational database
if one of these is true:

= The VisiNaming Service instances are independent of each other and use different
factory names, or,

= The VisiNaming Service instances are all part of the same VisiNaming Service
Cluster.

DataExpress adapter

In addition to the JDBC adapter, there is also a DataExpress adapter which allows you
to access JDataStore databases natively. It is much faster than accessing JDataStore
through JDBC, but the DataExpress adapter has some limitations. It only supports a
local database running on the same machine as the Naming Server. To access a
remote JDataStore database, you must use the JDBC adapter.

JNDI adapter

A JNDI adapter is also supported. Sun's JNDI (Java Naming and Directory Interface)
provides a standard interface to multiple naming and directory services throughout the
enterprise. JNDI has a Service Provider Interface (SPI) with which different naming and
service vendors must conform. There are different SPI modules available for Netscape
LDAP server, Novell NDS, WebLogic Tengah, etc. By supporting JNDI, the VisiNaming
Service allows you to have portable access to these naming and directory services and
other future SPI providers.

The VisiNaming JNDI adapter is certified with the following LDAP implementations:
= iPlanet Directory Server 5.0
= OpenLdap 2.2.26

You must use Sun and Netscape JNDI Driver version 1.2 to leverage LDAP.

Chapter 16: Using the VisiNaming Service 207

Pluggable backing store

Note

Configuration and use

Backing store adapters are pluggable, which means that the type of adapter used can
be specified by user-defined information stored in a configuration (properties) file used
when starting up the VisiNaming Service. All adapters, except the in-memory one,
provide persistence. The in-memory adapter should be used when you want to use a
lightweight VisiNaming Service which keeps its namespace entirely in memory.

For the current version of the VisiNaming Service, you cannot change settings while
the VisiNaming Service is running. To change a setting, you must bring down the
service, make the change to the configuration file, and then restart the VisiNaming
Service.

Properties file

As with the VisiNaming Service in general, which adapter is to be used and any
specific configuration of it is handled in VisiNaming Service properties file. The default
properties common to all adapters are:

Table 16.5 Default properties common to all adapters
Property Default Description

voroker .naming . backingStoreType InViamory Specifies the Naming service adapter type to
use. This property specifies which type of

backing store you want the VisiNaming
Service to use. The valid options are:
IrMemory, JDBC, Dx, INDL. The default is

IriVemory.
Vioroker . naming . cacheOn 0 Specifies whether to use the Naming Service
cache. A value of 1 (one) enables caching.
vioroker . naming . cache . camectString This property is required when the Naming

Service cache is enabled

(vbroker .naming. cacheOn=1) and the Naming
Service instances are configured in Cluster
or Master/Slave mode. It helps locate an
Event Service/VisiNotify instance in the
format <hostnames>:<port>. For example:

127.0.0.1:14500

See “Caching facility” on page 211 for
details about enabling the caching
facility and setting the appropriate
properties.

vioroker .naming. cache . size 2000 This property specifies the size of the
Naming Service cache. Higher values will
mean caching of more data at the cost of
increased memory consumption.

Vioroker .naming . cache. timecut 0 (no limit) This property specifies the time, in seconds,
since the last time a piece of data was
accessed, after which the data in the cache
will be purged in order to free memory. The
cached entries are deleted in LRU (Least
Recently Used) order.

208 VisiBroker for Java Developer's Guide

Pluggable backing store

JDBC Adapter properties

The following sections describe the JDBC Adapter properties.

This property should be set to JOBC The poolSize, jdodDriver, url, logirName, and
loginPwd properties must also be set for the JDBC adapter.

vibroker . naming. jdocDriver
This property specifies the JDBC driver that is needed to access the database used as

your backing store. The VisiNaming Service loads the appropriate JDBC driver
specified. The default is the Java DataStore JDBC driver.

JDBC driver class name Description

com.borlard.datastore. jdoc.DataStoreDriver JDataStore JDBC Driver 7.0

aan. sybase. jdoc2.. jdbc. SykDriver Sybase driver (jConnect Version 5.0)

oracle.jdoc.driver.OracleDriver Oracle driver (using classes12.zip Version
8.1.7.0.0)

interbase. interclient .Driver Interbase driver (using InterClient.jar Version
3.0.12)

weblagic. jdoc.mesglserverd . Driver WebLogic MS SQLServer JDBC driver (Version
5.1)

com. 1m.de2.. joc . DB2Driver IBM DB2 driver (using db2jcc.jar Version 1.2.117)

vibroker . naming. minReconTnterval

This property sets the database reconnection retry time by the Naming Service in
seconds. The default value is 30. The Naming Service will ignore the request and throw
a CarmotProceed exception if the time interval between this request and the last
reconnection time is less than the value set by this property. The valid value for this
property is O (zero) or a greater integer. If the property value is 0 (zero), the VisiNaming
Service will try to reconnect to the database for every request, once disconnected.

vibroker . naming . 1oginName
This property is the login name associated with the database. The default is VisiNaming.
vhroker . naming. loginPwd
This property is the login password associated with the database. The default value is
VisiNeming
vircker . naming. poolSize

This property specifies the number of database connections in your connection pool
when using the JDBC Adapter as our backing store. The default value is 5, but it can be
increased to whatever value the database can handle. If you expect many requests will
be made to the VisiNaming Service, you should make this value larger.

vioroker . naming. url

Chapter 16: Using the VisiNaming Service 209

Pluggable backing store

This property specifies the location of the database which you want to access. The
setting is dependent on the database in use. The default is JbataStore and the
database location is the current directory and is called rootDB.jds. You can use any
name you like not necessarily rootDB.jds. The configuration file needs to be updated

accordingly.

URL value Description

jdbe:borland:dslocal :<db name> JDataStore URL

jdoc: sybase: Tds : <host>: <part>/<do name> Sybase URL
jdbc:oracle:thin:@<host>: <port>:<sid> Oracle URL

jdoc: interbase: //<servers/<full db path> Interbase URL
jdbc:weblogic:mssglserverd : <do names@<tost>:<port> WebLogic MS SQLServer URL
jdoc:db2: //<host rames: <port-runbers/<db name> IBM DB2 URL

<full path JdbDataStore do> DataExpress URL for the native driver

You should start InterServer before accessing InterBase via JDBC. If the InterBase
server resides on the local host, specify <server>as localhost; otherwise specify it as
the host name. If the InterBase database resides on Windows NT, specify the
<full db path>as driver:\\dir1\dir2\\db.gdb (the first backslash [\] is to escape the
second backslash [\]). If the InterBase database resides on UNIX, specify the
<full db path>as \dirl\dir2\db.gdo. You can get more information from

http: / /www.borland. con/interase/.

Before you access DB2 via JDBC, you must register the database by its alias
<db_name> using the Client Configuration Assistant. After the database has been
registered, you do not have to specify <host>and <port>for the viorcker .naming.url
property.

If the JDataStore database resides on Windows, the <full path of the JDataStore
database>should be Driver:\\dir1\\dir2\\db. jds (the first backslash [\] is to escape the
second backslash [\]). If the JDataStore database resides on UNIX, the <full path of
the JDataStore database>should be /dirl/dir2/do.jds.

DataExpress Adapter properties
The following table describes the DataExpress Adapter properties:

Property Description

viorcker . naming.backingStoreType This property should be set to Dx.

vioroker . naming . logirName This property is the login name associated with the database.
The default is VisiNaming.

Vioroker . naming . loginPwd This property is the login password associated with the
database. The default value is VisiNaming,

Voroker . naming. url This property specifies the location of the database.

210 VisiBroker for Java Developer's Guide

Note

Note

Pluggable backing store

JNDI adapter properties

The following is an example of settings that can appear in the configuration file for a
JNDI adapter:

Setting Description

vioroker . naming . ackingStoreType=INDI This setting specifies the backing store type which
is anDI for the JNDI adapter.

Vioroker . naming . logirNeme=<user. nane> The user login name on the JNDI backing server.
Vioroker . naming . loginPwd=<password> The password for the JNDI backing server user.
viorcker . naming. jndi InitialFactary=cam. This setting specifies the JNDI initial factory.

sun. jndi . 1dap . IdapCtxFactory

voroker .naming . jndi ProviderURL=132p: This setting specifies the JNDI provider URL
//<hostrame>:389/<initial root contexts

voroker .naming. jndiAuthentication=sinple This setting specifies the JINDI authentication type
supported by the JNDI backing server.

Configuration for OpenLDAP

OpenLDAP is one of the supported VisiNaming back-end stores. When using Openl DAP,
additional configuration is required on the OpenLDAP server. You must perform the
following actions:

1 Add corba.schemain the QpenlDRP server's config file (the default is slapd.omnf). The
corba. schama is included with your OperiITRP server installation.

2 Add gpenldap ns.schemain the OpenLDAP config file. gpenldap ns.schemais provided
with VisiBroker and is located in

<install-dirs/etc/ns schema/

The user must have the necessary privilege to add schemas/attributes to the Directory
Server.

Caching facility

By enabling the caching facility you can improve the performance of the Naming
Service when it uses a backing store. For example, in the case of the JDBC adapter,
directly accessing the database every time there is a resolve or bind operation is
relatively slow. If you cache the results, you can reduce the number of times you
access the database. You will only see improvement in the performance of the backing
store if the same piece of data is accessed multiple times.

Multiple Naming Service instances can access the same backing store if they are
configured in the Naming Service Cluster mode or in the Master/Slave mode. In order
to use the caching facility in these two modes, each Naming Service instance must be
specially configured using the vioroker.naming. cache . camectString property. The
VisiBroker Event Service or VisiNotify is used to coordinate the caching facility
amongst the various Naming Service instances.

To enable the caching facility set the following property in your configuration file:
vibroker . naming . cacheOn=1

Chapter 16: Using the VisiNaming Service 211

Pluggable backing store

Note

If multiple Naming Service instances in Cluster or Master/Slave mode will access the
cache, set the viorcker .naming. cache.. camectString property so that the Naming
Services can locate the Event Service (or VisiNotify).

The format for vioroker .naming. cache . camectString is:
vircker . naming. cache . camect String=<host>: <port>

Where <host>is the hostname or IP address of the machine where VisiBroker Event
Service is running and <port>is the port used by VisiBroker Event Service/VisiNotify
(default is 14500 for Event Service and 14100 for VisiNotify).

For example:
vioroker . naming. cache . camect String=127.0.0.1:14500
or
viroker . naming. cache . camect String=myhost : 14100
If the host address is an IPv6 style address then enclose it in square brackets.

The VisiBroker Event Service (version 6.5 or later) should be started before starting the
Naming Service instances. If VisiNotify is used instead, VisiNotify should be started.
Start the Event Service/VisiNotify without any channel name (so the default name is
used) before Naming Service instances are started.

If the cache needs tuning, set the following properties:

vbroker.naming.cache . size
viroker . naming. cache. timeout

See “Properties file” on page 208 for more information about the caching facility
properties.

Important Notes for users of Caching Facility

Consistent configuration is very important. It is extremely important to configure all
Naming Service instances in a Cluster to use the Caching Facility in a consistent
manner. Naming Service instances that constitute a Cluster must either all use the
caching facility or none use it. If certain Naming Service instances use the caching
facility while others do not, the behaviour of the Cluster will be inconsistent. This is also
true for Naming Services configured in the Master-Slave mode. If the Master is
configured to use the caching facility, it is required that the Slave also be configured to
use it, and vice versa.

The distributed cache depends on the Event Service/VisiNotify. If the Caching
Facility is used in Naming Service Cluster mode (or the Master-Slave mode), the
distributed cache needs synchronization across the multiple Naming Services
instances. This is achieved using the Event Service (or VisiNotify). Please note that in
such a configuration, the cached data might be stale. The quality of data would depend
on the health of the Event Service/VisiNotify. Applications that do not find this
acceptable are advised to avoid using the Caching Facility. It is advisable to perform
tests to gauge the suitability of the distributed Caching Facility for a particular
application.

212 VisiBroker for Java Developer's Guide

Object Clusters

Object Clusters

VisiBroker supports a clustering feature which allows a number of object bindings to be
associated with a single name. The VisiNaming Service can then perform load
balancing among the different bindings in a cluster. You can decide on a load
balancing criterion at the time a cluster is created. Clients, which subsequently resolve
name-object bindings against a cluster, are load balanced amongst different cluster
server members. These clusters of object bindings should not be confused with
“VisiNaming Service Clusters for Failover and Load Balancing” on page 218.

A cluster is a multi-bind mechanism that associates a Name with a group of object
references. The creation of a cluster is done through a ClusterManager reference. At
creation time, the create cluster method for the ClusterMenager takes in a string
parameter which specifies the criterion to be used. This method returns a reference to
a cluster, which you can add, remove, and iterate through its members. After deciding
on the composition of a cluster, you can bind its reference with a particular name to any
context in a VisiNaming Service. By doing so, subsequent resolve operations against
the Nae will return a particular object reference in this cluster.

Object Clustering criteria

The VisiNaming Service uses a SmartRoundRdoin criterion with clusters by default. After
a cluster has been created, its criterion cannot be changed. User-defined criteria are
not supported, but the list of supported criteria will grow as time goes on.
SrartRoundRdoin performs some verifications to ensure that the CORBA object
reference is an active one; that the object reference is referring to a CORBA server
which is in a ready state.

Cluster and ClusterManager interfaces

Although a cluster is very similar to a naming context, there are certain methods found
in a context that are not relevant to a cluster. For example, it would not make sense to
bind a naming context to a cluster, because a cluster should contain a set of object
references, not naming contexts. However, a cluster interface shares many of the
same methods with the NamingGmntext interface, such as bind, rebind, resolve, urloind
and list. This common set of operations mainly pertains to operations on a group. The
only cluster-specific operation is pick. Another crucial difference between the two is
that a cluster does not support compound names. It can only use a single component
name, because clusters do not have a hierarchical directory structure, rather it stores
its object references in a flat structure.

Chapter 16: Using the VisiNaming Service 213

Object Clustering criteria

IDL Specification for the Cluster interface

CoelemingFixt module {
typedef sequence<Cluster> Clusterlist;
erum ClusterNotFondReason {
missing node,
not cotext,
not cluster context
}i
exception ClusterNotFourd {
ClusterNotFoundReasmn why’;
CosNaming: :Name rest of name;
}i
exception Epty {};
interface Cluster {
Qoject select() raises (Bpty);
void bind (in CosNaming: :NameConponent n, in Qoject doj)
raises (CosNaming: :NemingGontext : : CarmotProcead,
CoNaming : :NemingCmtext : : TrivalidName,
CosNaming': :NemingContext : :AlreadyBourd) ;
void rebind (in CosNaming: :NemeComponent n, in doject doj)
raises (CosNaming: :NamingContext : : CarmotProcead,
CoNaming: :NemingContext : : TrvalidName) ;
oject resolve (in CosNaming: :NameConmponent 1)
raises (CosNaming: :NemingContext : :NotFourd,
CoNaming : :NemingCmntext : : CarmotProceed,
CosNaming:: :NamingContext : : ivalidName) ;
void urbind (in CosNeming: :NemeComponent n)
raises (CosNaming: :NemingGontext : :NotFourd,
CoNaming : :NemingComntext : : CarmotProceed,
CoNaming : :NemingContext : : TrvalidName) ;
void destroy ()
raises (CosNaming: :NamingContext : :NotHpty) ;
void 1ist (in unsigned long how merny,
aut CosNaming: :Bindingldst bl,
aut CoeNaming: :BindingTterator BI) ;
}i

IDL Specification for the ClusterManager interface

CosermingFixt module {
interface ClusterManager
Cluster create cluster(in string algo) ;
Cluster find cluster (in CosNaming: :NemingContext ctx,
in CoNaming: :Neme n)
raises (ClusterNotFound, CosNeming: :NemingContext : : CarmotProceed,
CosNaming: :NemingContext : : TrvalidName) ;
Cluster find cluster str(in CosNeming: :NemingContext ctx, in string n)
raises ((lusterNotFound, CosNaming: :NamingContext : : CarmotProceed,
CoNaming : :NemingCntext : : TrivalidName) ;
Clusterlist clusters();

214 VisiBroker for Java Developer's Guide

Note

Object Clustering criteria

IDL Specification for the NamingContextExtExtended interface

The NamingOmtextExtExtended interface, which extends NamingCmtextExt, provides
some operations required to remove an object reference from an implicit cluster. You
must narrow a NemingGmtext to NamingQontextExtExtended in order to use these
operations. Note that these operations are proprietary to VisiBroker only.

module CosNemingExt {
interface NemingContextExtExtended : NemingContextExt {
void ubind from cluster (in Name n, in Qoject doj)
raises (NotFound, CarmotProceed, IrvalidNeme) ;
boolean is ncluster type(in Name n, cut Joject cluster)
raises (NotFourd, CarmotProceed, TrvalidNane) ;
}i

}

urboind from cluster()

The urbind fram cluster () method allows user to unbind a specific object in a cluster.
The object's logical name (such as “London.Branch/Jack.SavingAccount”) and the
object reference to be unbound need to be passed into this method. Whenever the
number of objects in the cluster reaches zero, the cluster is deleted as well.

This method is useful when automatic pruning of stale object references in a cluster is
not required. Call this method to unbind an object in a cluster based on the
application's specific rules.

The unbind from cluster () method can only be used when the VisiNaming Service is
running in the implicit clustering mode and automatic pruning of stale object reference
is disabled. This means that the following two properties must be set at the VisiNaming
Service side:
vircker . naming. sirr . prineStaleRef=0
vioroker . naming . propBindon=1

is ncluster type()

The is ncluster type() method lets you check whether a context is of a cluster type.
The object's logical name need to be passed into this method. It returns true when the
context is a cluster type and set the cluster object in the second argument value. It
returns falsewhen the context is not a cluster type and set the second argument value
to null.

Creating an object cluster

To create a cluster, use the Cluster Manager interface. A single ClusterManager object
is automatically created when a Naming Server starts up. There is only one
ClusterManeger per Naming Server. The role of a ClusterManager is to create, retrieve,
and keep track of the clusters that are in the Naming Server. Here are the general
steps in creating an object cluster:

1 Bind to the Naming Server with which you wish to create cluster objects.

2 Get a reference to the Cluster Manager by calling get cluster menager method on
the factory reference.

3 Create a cluster using a specified cluster criterion.

4 Bind objects to an Name using the cluster.

Chapter 16: Using the VisiNaming Service 215

Object Clustering criteria

Note

Note

5 Bind the Cluster object itself to a Name.

6 Resolve through the Cluster reference for the specified cluster criterion.

ExtendedNamingCntextFactory myFactory =
ExtendedNamingContextFactoryHelper . bind (orb, FNemingService") ;

ClusterManager clusterMgr = myFactory.get cluster menager () ;

Cluster cluster(oj = clusterVgr.create cluster ("RoundRdoin") ;

cluster(oj .bind (new NemeCarnpanent ("memberl", "aCluster"), dojl);

clusteroj .bind (new NemeCarnpanent ("member2", "aCluster"), doj2);

clusterQoj .bind (new NameCarponent ("member3", "aCluster"), doj3);

NemeCarpanent myClusterName = new NameConmpanent ("ClusterName", "") ;

root Joind (myClusterName, clustexrQoj) ;

root . resolve (myClusterName) // a menber of the Cluster is returmed.

root . resolve (myClusterNae) // the next member of the Cluster is returmed.

root . resolve (myClusterNae) // the last member of the Cluster is returmed.

Explicit and implicit object clusters

The clustering feature can be turned on automatically for a VisiNaming Service. The
caveat is that once this facility is on, a cluster is created transparently to bind the
object. The round robin criterion is used. The implication is that it is possible to bind
several objects to the same name in the Naming Server. Conversely, resolving that
name will return one of those objects, and an wibind operation would destroy the
cluster associated with that name. This means that the VisiNaming Service is no longer
compliant to the CORBA specification. The Interoperable Naming Specification
explicitly forbids the ability to bind several objects to the same name. For a compliant
VisiNaming Service, an AlreadyBound exception is thrown if a client tries to use the
same name to bind to a different object. You must decide whether to use this feature
for a dedicated server only.

Do not switch from an implicit cluster mode to an explicit cluster mode as this can
corrupt the backing store.

Once a Naming Server is used with the implicit clustering feature, it must be activated
with that feature turned “on”. To turn on the clustering feature, define the following
property value in the configuration file:

vibroker . naming . progBindon=1

For an example of both explicit and implicit clustering, see the code located in the
following directories:

<install dirs/examples/vice/ins/implicit clustering
<install dirs/exanples/vbe/ins/explicit clustering

Load balancing

Both the ClusterManager and the Smart Agent provide RoundRobin criterion load
balancing facilities, however, they are of very different nature. You get load balancing
from the Smart Agent transparently. When a server starts, it registers itself
automatically with the Smart Agent, and this in turn allows VisiBroker ORB to provide
an easy and proprietary way for the client to get a reference to the server. However,
you have no choice in determining what constitutes a group and the members of a
group. The Smart Agent makes all the decisions for you. This is where a Cluster
provides an alternative. It enables a programmatic way to define and create the
properties of a Cluster. You can define the criterion for a Cluster, including choosing
the members of a Cluster. Though the criterion is fixed at creation time, the client can
add or remove members from the Cluster throughout its existance.

216 VisiBroker for Java Developer's Guide

Object Clustering criteria

Object failover

An advantage of using object clustering is the failover capability among the objects
clustered together in a VisiNaming service. These clustered objects support the same
interface. Once such a cluster is created and bound to a naming context, the failover
behavior is transparently handled by the ORB. Typically when a naming service client
does a resolution against this cluster, the VisiNaming service returns a member from
the cluster. In case any member of the cluster has crashed or is temporarily
unavailable, ORB and VisiNaming service perform transparent failover by handing over
the next available cluster member to the client. This ensures high availability and fault-
tolerance.

Failover capability using object clustering is demonstrated in the example contained in
the following directory:

<install dirs/examples/vice/ins/cluster failover

Pruning stale object references in VisiNaming object clusters

Obiject references in VisiNaming service can become stale due to unavailability of the
servers. Implicit object clustering provides different strategies, which can be used to
configure the pruning of stale references. Note that this pruning facility only works in
implicit clustering using smart round-robin technique. VisiNaming service is started with
a pruning configuration using the property vbrcker.naming. snrr . prineStaleRef. This
property can take values 0, 1 (default) and 2. The working of pruning facility can be
understood as follows.

VisiNaming service holds the mapping between the names and object references in the
memory. When a client requests for an object reference against a name, VisiNaming
resolves the name, modifies the IOR and hands over the object reference to the client.
The modification pertains to putting the logic that in case, the server represented by the
object reference in unavailable, the client ORB, to which this object reference is being
handed to, can revert back to the VisiNaming service to look for an alternate object
reference (fail-over to another candidate). If the client is unable to find the server and it
does revert back to the VisiNaming service, VisiNaming marks that object reference as
stale.

Depending on the value of the property vbrcker . naming. sirr . pruneStaleRef, VisiNaming
decides whether to keep the object reference or remove it. Following are the possible
values:

= vbroker.naming. sirr.pruneStaleRef =0
In this case, if an object reference has been detected stale, VisiNaming only marks it
as stale but does not remove it from its in-memory hold. However, VisiNaming does
not ever hand over this reference to the client unless the server rebinds the object
reference against the same name.

= ~vroker.naming. smwr.pruneStaleRef =1
VisiNaming service immediately removes the object reference both from the
memory and persistent backstore (if backing store is being used) as soon as the
client bounces back to the VisiNaming service indicating the object reference as
stale.

= vbroker.naming. sirr.pruneStaleRef =2
In this case, VisiNaming does not modify the IOR before handing it over to the client.
In case the client is not able to contact the server represented by the object
reference, client ORB throws OBJECT_NOT_EXIST exception back to the client
application. VisiNaming services does not take guarantee of providing the client
application with an active object reference.

Chapter 16: Using the VisiNaming Service 217

VisiNaming Service Clusters for Failover and Load Balancing

VisiNaming Service Clusters for Failover and Load Balancing

Note

Note

Multiple instances of the VisiNaming Service can be clustered to provide for load
balancing and failover. These clusters of VisiNaming Service instances should not be
confused with the clustering of object bindings described in “Object Clusters” on

page 213. Clients can bind to any one of the VisiNaming Service instances that
comprise the cluster, which allows for load sharing across multiple VisiNaming Service
instances. If a particular VisiNaming Service instance becomes inactive or terminates,
the client will automatically fail over to another VisiNaming Service instance within the
same cluster.

All instances of the VisiNaming Service within a cluster must use the common
underlying data in a persistent backing store. The caching facility is available to
Naming Service instances provided that a VisiBroker Event Service (or VisiNotify)
instance is made available to the Naming Service instances via the

vhroker .naming. cache . camectString property. There are certain restrictions regarding
the choice of backing store. See the following Note that discusses these restrictions.

When failover occurs, it is transparent to the client, but there can be a slight delay
because server objects might have to be activated on demand by the requests that are
coming in. Also, object reference transients like iterator references are no longer valid.
This is normal because clients using transient iterator references must be prepared for
those references becoming invalid. In general, a VisiNaming Service instance never
keeps too many resource-intensive iterator objects, and it may invalidate a client's
iterator reference at any time. Other than these transient references, any other client
request using persistent references will be rerouted to another VisiNaming Service
instance.

In addition to the VisiNaming Service cluster, a Master/Slave model is also supported.
This is a special cluster with the configuration of two VisiNaming Service instances. Itis
useful only when failover is required. The two VisiNaming Services instances must be
running at the same time; the master in active mode and the slave in standby mode. If
both VisiNaming Services are active, the master is always preferred by clients that are
using VisiNaming Service. In the event that the master terminates unexpectedly, the
slave VisiNaming Service takes over. This changeover from master to slave is
seamless and transparent to clients. However, the slave VisiNaming Service does not
become the master server. Instead, it provides temporary backup when the master
server is unavailable. You must take whatever remedial actions necessary to revive the
master server. After the master comes back up again, only requests from the new
clients are sent to the master server. Clients that are already bound to a slave naming
server will not automatically switch back to the master.

Clients that are bound to a slave naming server provide only one level of failover
support. They will not switch back to the master, therefore, if the slave naming server
terminates, the VisiNaming Service also becomes unavailable.

VisiNaming Service Clusters configured in the Master/Slave mode may use either the
JNDI adapter or the JDBC adapter. Clusters not configured in the Master/Slave mode
must use the JDBC adapter for RDBMS. Each clustered service must obviously point
to the same backing store. See “Pluggable backing store” on page 206 for information
on configuring the backing store for the cluster.

218 VisiBroker for Java Developer's Guide

Note

Note

VisiNaming Service Clusters for Failover and Load Balancing

Configuring the VisiNaming Service Cluster

The VisiNaming Service instances that comprise the cluster must be started with the
relevant properties set as illustrated in the code sample below. The configuration is set
to cluster mode using the enableSlave and the slaveMode properties. The instances of
the VisiNaming Service that comprise the cluster have to be started on the hosts and
ports specified using the serverfddresses property. The snippet shows the host and
port entries for the three VisiNaming Service instances in the sample cluster. The
serverNames property lists the factory names of the VisiNaming Service instances.
These names are unique and the ordering identical to the serverAddresses property.
Finally, the serverClusterNare property names the cluster.

Starting from VisiBroker 6.0, VisiNaming Service contains several properties for proxy
support:

= voroker.naming. proxyEnable allows the VisiNaming Service to use a proxy. Turn off
this property (default is turned off), and the VisiNaming Service will ignore other
Naming service properties for the proxy.

= viroker.naming. proxyAddresses gives each Naming service in the cluster a proxy
host and a proxy port. The ordering of the proxyAddresses is identical to the
serverAddresses.

Java clients need to use a system property -DAryServiceOrder=truein order to benefit
from the load balancing and failover capabilities provided by VisiNaming Service
clusters. Clients can use the system property -DSVChameroot=<serverClusterName> to
resolve to a VisiNaming Service instance within the cluster, provided osagent is being
used. Alternately, the corbaloc mechanism can be used (by specifying the host and
port pairs for all the VisiNaming Service instances that comprise the cluster, for use by
resolve initial references).

The Naming Service instances comprising a Cluster can benefit from the Naming
Service Caching Facility. Use the viorcker.naming.cacheOn and
vbroker . naming . cache . camect String properties to configure caching for a Naming
Service cluster. See “Caching facility” on page 211 for details.

The following code sample shows the configuration of the VisiNaming Service cluster:

vibroker . naming . enableSlave=1
viroker . naming. slaveMode=cluster
viroker . naming. serverAddresses=host1 :port] ;host2 :port2;host 3 :port3
vioroker . naming . serverNames=Server] : Server? : Server3
vbroker . naming . serverClusterNane=ClusterX
viroker . naming. praxyFrable=1 //Any value other than 1 means proxy is
not enabled.
viroker . naming. praxyAddresses=praxyHost 1 :proxyPort 1 ; proxyHost2 spraxyPort 2 ; praxy
Host3 :proxyPort3
When using the viborcker.naming. proxy2ddresses property, place a semicolon (;)
separator between each host and port pair.

Chapter 16: Using the VisiNaming Service 219

VisiNaming Service Clusters for Failover and Load Balancing

Note

Configuring the VisiNaming Service in Master/Slave mode

The two VisiNaming Services must be running. You must designate one as the master
and the other as the slave. The same property file can be used for both the servers.
The relevant property values in the property file are shown in the following code sample
to configure for the Master/Slave mode.

vibroker . naming . enableSlave=1

vircker . naming. slaveMode=slave

viroker . naming.mesterServer=<>NMaster Naming Server Nene>

viroker . naming . masterHost=<host ip address for Master>

vbroker . naming.masterPort=<port rumber that Master is listening on>
vobroker . naming . slaveServer=<Slave Neming Server Name>

vibroker . naming . slaveHost=<ost ip address for Slave>

viroker . naming. slavePort=<Slave Neming Server port address>
vircker . naming. mesterPraxyHost=<praxy host ip address for Master>
vioroker . naming . masterPort Port=<praxy port rumber for Masters
vbroker . naming . slaveProxyHost=<praxy host ip address for Slaves
vbroker . naming . slavePortPort=<proxy port runker for slaves

There is no restriction in the start sequence of the master and the slave servers.

Starting up with a large number of connecting clients

In a production environment with a large number of clients it may be impossible to
avoid clients trying to connect to a Naming Service which is still in the startup phase
(still initializing and not yet ready to service requests). When a Naming Service is not
yet completely started up it may receive incoming requests and discard them.
Depending on the number of requests, which must be received then discarded, this
activity can use too many CPU resources which can disturb the startup process itself,
resulting in a long startup time for the Naming Service.

To solve this particular problem, and let the Naming Service start quickly, the following
configuration settings can be used:

1 Set the following property to true
voroker.se.iicp tp.sam.iicp tp.listener.deferAccept=true
2 Use a fixed listener port by setting the following properties:

vbrcker.se.iiop tp.sam.iicp tp.som. listener.port=<port rumoers
vorcker.se.iiop tp.sam.iicp tp.listener.portRange=0

For this to succeed, make sure that the <port_number> is available on the host on
which the Naming Service is running. Make sure that the portRance property is set
to 0(zero). You can leave it at its default setting or explicitly set the property. Note
that both the port and portRange settings described above should be applied.

Clients that try to connect to a Naming Service configured in this manner while it is
starting up will be denied any connection. If they are accessing a Naming Service
Cluster, then they would fail over to another Naming Service that has finished its
initialization. If no Naming Services are up and running, the client application would get
an OBJECT NOT EXIST exception.

220 VisiBroker for Java Developer's Guide

Note

VisiNaming Service Clusters for Failover and Load Balancing

These settings are per SCM (Server Connection Manager). If needed, all SCMs can be
set to take advantage of this feature.

If SSL is involved in the Naming Service, in addition to the settings described above,
the following settings might also be needed:

vbroker.se.iiop tp.sam.ssl.listener.deferAccept=true
vbroker.se.iicp tp.san.ssl.listener.port=<port mmber for ssl>
voroker.se.iicp tp.sam.ssl.listener.portRange=0

The defernocept property should only be used for Naming Services. Using for other
services or user written servers can result in undefined behavior.

VisiNaming service federation

Federation enables more than one VisiNaming services to be configured to act as a
distributed namespace. This involves having a naming context in a name service
bound to the names in the naming contexts of other naming services, thereby providing
more than one naming hierarchy to access an object. The figure below shows two
instances of naming service nsl and ns2. Grayed naming contexts are the initial
contexts of the respective naming services. An AccountManager object slis placed in
a naming context under nsl.

Figure 16.3 Naming contexts with multiple access hierarchies

Naming Service ns1 Naming Service ns2

Branch L] Branch .

Internet Banking | » I

Paris .

Internet Banking

Chicago .

IOR of

s1 AccounManager

1
Naming Service Boundary

As shown in the figure, naming context containing Parisis bound to Branch under
naming service nsl and also bound to Renote under naming service ns2. Client can
retrieve the IOR of the AccountMenager object against sl either by resolving nsl: Branch/
Paris/sl or ns2: Branch/Paris/sl In both cases, it gets the same IOR.

Setting up federation is as easy as binding the name Branchin the root context of ns2in
the above example to the naming context containing the name Parisin nsl The
example in the following location shows the working of VisiNaming federation:

<install dirs/exanples/vie/ins/federation

Chapter 16: Using the VisiNaming Service 221

VisiNaming Service Security

VisiNaming Service Security

The VisiNaming Service in the VisiBroker integrates with the Security Service,
providing two levels of security: Client authentication and Method level authorization.
This allows fine grained control over which clients can use the VisiNaming Service and
what methods they can call. The following properties are used to enable or disable
security and to configure the Security Service.

Table 16.6 VisiNaming Service Security-related properties

Property Value Default Description

voroker .naming. security.disable boolean true This property indicates whether the
security service is disabled.

voroker .naming. security.authDomain -~ string This property indicates the
authorization domain name to be
used for the Naming service method
access authorization.

voroker .naming. security.trangport int 3 This property indicates what transport
to be used. The available values are:

ServerQoPPolicy . SECURE ONLY=1
ServerQoPPolicy . CLEAR ONLY=0

ServerQoPPolicy.ALL~3
vioroker . naming. security. boolean false This property indicates whether
requireMuthentication naming client authentication is

required. When

vbroker.naming. security.disable is
true, no client authentication will be
performed regardless what value this

property takes.
voroker .naming. security. boolean false This property indicates whether
enableAuthorization method access authorization is
enabled.
Vioroker .naming. security. string (none) This property points to the file
requiredRolesFile containing the required roles that are

necessary for invocation of each
method in the protected object types.
For more information see “Method
Level Authorization” on page 223.

Naming client authentication

Note For detailed information on authentication and authorization, see the Authentication
and Authorization chapters in the Security Guide.

Configuring VisiNaming to use SSL

Depending on the security requirements, different properties can be set to configure
the VisiNaming service. For the full list of security properties and their descriptions, go
to the Security Guide, Security Properties for Java or the Security Properties for C++
section.

Important In order to enable security in the VisiNaming Service, you must have a valid VisiSecure
license.

222 VisiBroker for Java Developer's Guide

Note

VisiNaming Service Security

The following is a sample of the properties that can be used to configure the
VisiNaming Service to use SSL:

Enable Security in Neming Service

viorcker . naming. security.disable=false

Enabling Security Service
vbroker . security.disable=false

Setting SSL Layer Attributes

viorcker . security. peerAuthenticaticnMode=REJUIRE AND TRUST
viorcker.se.iicp tp.sam.ssl.listener. trustInClient=true

vbroker . security. trustpointsRepository=Directory: . /trustpoints

Set the certificate identity for the VisiNaming Service using wallet
properties

voroker. security.wallet . type=Divectory: . /identities

viorcker . security.wallet . identity=delta

vioroker . security.wallet . password=Delt@SSS

For information about how to configure the client to use SSL, go to the Security Guide,
Making secure connections (Java) or the Making secure connections (C++) section.

Currently, there is no way to specify security and secure transport components in an
IOR using corbaloc. So, when using SSL, bootstrapping a VisiNaming Service using
the corbaloc method at the Naming client side is not possible. However, the
SVCnameroot and stringified IOR methods can still be used.

Method Level Authorization

Method level authorization is supported for the following object types:
= Cotext

= (ntextFactory

® Cluster

* (ClusterManager

When security is enabled for the Naming service and enableMithorizationis set to true,
only authorized users of each method of these object types can invoke the
corresponding method.

The Naming service predefines two roles to support the method level authorization:
= Administrator role
= Userrole

Other roles can be defined if required. Users need to configure the roles map for these
two roles, assigning roles to clients. The following is an example role map definition:

IAdministrator {
*N=admin
*group=adnin
uid=*, group=admin
}

User {

*N=admin

*Qroup=user
uid=*, group=user

Chapter 16: Using the VisiNaming Service 223

Import statements

You need to specify the roles before invoking each method of the objects listed above.
This is done using the required roles property for each method. Below is the list of
these properties and the corresponding default values. These default values are used
only when you do not define any required roles specified using the property

vioroker . naming. security. requiredRolesFile The values of these properties are space
or comma separated:

#
naming required roles.properties
#

all roles
required roles.all=Administrator User

required roles.Cmtext . bind=Administrator

required roles.Cmtext . rebind=Administrator

required roles.Cotext.bind aontext=Administrator
required roles.Context. J:ebmd ontext=Administrator
required roles.Context. resolve=Admninistrator User
required roles.Context . unbind=Administrator

required roles.Cmtext.new context=Administrator User
required roles.Cmtext.bind new context=Administrator User
required roles.Context. list=Administrator User

required roles.Cmtext .destroy=Administrator

required roles.CdmtextFactory.root context=Administrator User
required roles.CmtextFactory.create context=Administrator

required roles.CmtextFactory.get cluster menager=Administrator User
required roles.CotextFactory.remove stale contexts=Administrator
required roles.CmtextFactory.list all roots=Administrator

required roles.CmtextFactory . shutdown=Administrator

required roles.Cluster.select=Administrator User
required roles.Cluster.bind=Administrator
required roles.Cluster. rebind=Administrator
required roles.Cluster. resolve=Administrator User
required roles.Cluster.unbind=Administrator
required roles.Cluster.destroy=Administrator
required roles.Cluster. list=Administrator User

required roles.ClusterManager.create cluster=Administrator
required roles.ClusterMenager. find cluster=Administrator User
required roles.ClusterMenager.find cluster str=Administrator User
required roles.ClusterManager . clusters=Administrator User

Import statements

The following import statement must be used by any Java class that wishes to use the
VisiBroker ORB extensions to the VisiNaming Service:

import com. irprise.vbroker . CosNamingExt . *;
The following packages are needed if you are interested in accessing the OMG
compliant features of the VisiNaming Service:

import org.arg. CosNaming. *
TImport org.ang . CosNaming. NemingContextPackage . *
TImport org.arg. CosNaming . NemingContextExt Package . *

224 VisiBroker for Java Developer's Guide

Sample programs

Sample programs

Important

Several example programs that illustrate the use of the VisiNaming Service are
provided with VisiBroker. They show all of the new features available with the
VisiNaming Service and are found in the <install dirs/examples/vie/ins directory. In
addition, a Bank Naming example illustrates basic usage of the VisiNaming Service is
found in the <install dirs/examples/vie/basic/kank naming directory.

Before running the example programs, you must first start the VisiNaming Service, as
described in “Running the VisiNaming Service” on page 197. Furthermore, you must
ensure that at least one naming context has been created by doing one of the
following:

= Start the VisiNaming Service, as described in “Running the VisiNaming Service” on
page 197, which will automatically create an initial context.

= Use the VisiBroker Console.

= Have your client bind to the NemingCmtextFactory and use the create context
method.

= Have your client use the ExtendedNamingCmtextFactory.

If no naming context has been created, a CORBA.NO_IMPLEMENT exception is raised when
the client attempts to issue a bind

Binding a name example

The Bank Naming example uses the AccountManager interface to open an Account
and to query the balance in that account. The Server class below illustrates the usage
of the VisiNaming Service for binding a name to an object reference. The server
publishes its IOR into the root context of the Naming Server, which is then retrieved by
the client.

From this example, you learn how to:

1 Use the resolve initial references method on the VisiBroker ORB instance to get
a reference to the root context of the VisiNaming Service. (In the example, you need
to start the VisiNaming Service with the default name of NameService.)

2 Cast the reference for the root context by using the narrow method of the
NamingContextExtHelper class.

3 Create a POA and servant for your AccountManagerTnpl object.

4 Finally use the bind method of the NamingContext interface to bind the Name
BankManager to the object reference for the AccountMenagerTmpl object.

Chapter 16: Using the VisiNaming Service 225

Sample programs

For more information about POAs, see Chapter 9, “Using POAs.”

Inport org.arg.PortableServer. *;

Import org.ang.CosNaming. *;

pwblic class Server {

public static void mein(String[] args) {
try {

}

}

// Initialize the CRB.
org.ang.CORBA.CRB orb = org.ang. QORRA.CRB. init (args,rull) ;

// get a reference to the root BA
FQA rcotRA =
BCQAHelper .narrow (orb.resolve initial references ("RootECA")) ;

// get a reference to the VisiNeming Service root aontext
org.ang.CORBA.Qoject rootdoj =

orb.resolve initial references("NemeService");
NemingContextExt root = NemingGontextExtHelper.narrow (rootdoj) ;

// Create policies for cur persistent PQA
org.ang.CORBA. Policy[] policies = {
TootPOA. create lifespan policy (LifespenPolicyValue . PERSISTENT)

i

// Create myPQA with the richt policies
POA myPQOA = rootPCA. create POA("bark agent poa",
TootPOA. the FOAManager (), policies) ;

// Create the servant
AccontMenagerInpl menagerServant = new AccomntMenagerInpl () ;

// Decide on the ID for the servant
byte[] menagerId = "BarkManager" .getBytes () ;

// BActivate the servant with the ID on myRQA
myPCA.activate doject with id(menagerId, menagerServent);

// BActivate the FOA menager
ToOtPOA. the POAMarnager () .activate () ;

// Bssociate the bank menager with the name at the root oontext
// Note that casting is needed as a workarourd for a JOK 1.1.x bug.
((NemingContext) root) .loind (root . to name ("BankMenager™) ,
myPCA. servant to reference (menagerServart)) ;
System.out . printIn (myPOA. sexvant to reference (menagerServant)
+ " is ready.");

// Wait for incoming requests
orb.run() ;

} catch (Bxception e) {

}

e.printStackTrace() ;

226 VisiBroker for Java Developer's Guide

Configuring VisiNaming with JdataStore HA

Configuring VisiNaming with JdataStore HA

Notes

This section helps you configure JDataStore High Available (HA) to work with
VisiNaming.

The Explicit Clustering example used throughout this section illustrates the usage of
JDataStore HA with VisiNaming. In this example, JDataStore will be configured to have
the following mirror types:

= One Primary mirror. This is the only mirror type that can accept both read and write
transactions. Only one Primary mirror at a time is allowed.

= Three Read-only mirrors. These can only perform read transactions, and they
provide a transactionally consistent view of the Primary mirror database.

= One Directory mirror. This contains only the mirror configuration table and other
system security tables. It redirects read-only connection requests to Read-only
mirrors, and writable connection requests to the Primary mirror. It also provides an
important feature for load balancing all read connections across all available Read-
only mirrors. However, this feature is not supported by Naming Service at this
version.

JDataStore HA supports automatic failover in the following circumstances:

= If a connection to the Primary mirror was made before the failure, this connection
can trigger an automatic failover by calling the rollback method on the connection
object. Note that this scenario is not described in this section.

= If the connection request is not for read-only operation, and the current Primary
mirror is not accessible, the Directory mirror automatically triggers the failover
operations to satisfy the request for a writable connection. This is done by promoting
one of the Read-only mirrors to the Primary mirror.

VisiNaming works with JDataStore HA when a connection is made to the Directory
mirror. When the Primary mirror is inaccessible, it will failover to one of the Read-only
mirrors. VisiNaming must work with one Primary, and at least two Read-only mirrors at
all times.

= The Directory Mirror is a single point of failure in the scenario described in this
section. Higher availability could be achieved by configuring Master and Slave
Naming Services to point to a different directory mirror.

= JDataStoreHA only works with JDataStore Version 7.04 or later.

Create a DB for the Primary mirror

To make use of the JDataStore Explorer (JdsExplorer) to create a new DB, select New
from the File menu.

Invoke JdsServer for each listening connection

In this example, the following connections are used:
= JdsServer —port 2511 (Primary mirror)

= JdsServer —port 2512 (Read-only mirror)

= JdsServer —port 2513 (Read-only mirror)

= JdsServer —port 2514 (Read-only mirror)

= JdsServer —port 2515 (Directory mirror)

Chapter 16: Using the VisiNaming Service 227

Configuring VisiNaming with JdataStore HA

Note Always start JdsServer from the location where the AutcFailover *jds files are located.
Never start JdsServer from «JdataStore Install Directorys/binunless
vbrcker.naming.url is set according. The required jar files are:

= dbtools.jar

= dbswing.jar

= jdsremote.jar

= jdsserver.jar

= jds.jar

Configure JDataStore HA

To configure JDataStore HA, complete the following steps:

1 Invoke the JDS Server Console to configure JDataStore.

2 Create a new project named NS AutcFailoverin the JDataStore Server Console.

Note When creating a new DataSource, it is best to set its Protocol to Remote and

include the machine IP in the ServerName

3 Click DataSourcel (in the Structure pane) to open it for editing.

4 Right-click DataSourcel and select Camect from the context menu.

5 Right-click Mirror (in the Structure pane) and select 2dd mirror from the context
menu.

6 Edit Mirrorl so that the Type property is set to PRIVERY.
Each of the mirrors should also ensure that the host uses the IP of the machine
where they are located instead the default value of localhost. You can use a
different IP address for each of the mirrors, as long as the JdsServer is started for
that mirror at the IP. The Directory mirror must have access to each of the mirrors.

7 Set the Auto Failover and Instant Synchronization properties to true.

8 Add Mirror2 and edit it to be a Read-only mirror.
Note that you do not need to create AutcFailover Mirror2 beforehand. It is created
automatically by JDataStore HA.

9 Set the 2uto Failover and Instant Synchronization properties to true for all Read-
only mirrors.

10 Repeat the previous two steps for Mirror3 and Mirror4.

11 Add Mirror5 and edit it be the Directory mirror.

12 Set the Auto Failover and Instant Synchronization properties to falsefor this
Directory mirror.

13 Choose Save Project "NS AutoFailover.datasources" from the File menu to save the
project.

14 Right-click Mirrors (in the Structure pane) and choose Synchranize all mirrors.

15 Click Mirror Status (in the Structure pane) and verify that Validate Primeryis

checked for Mirrorl only.

228 VisiBroker for Java Developer's Guide

Configuring VisiNaming with JdataStore HA

Run the VisiNaming Explicit Clustering example

To run the VisiNaming Explicit Clustering example, complete the following steps:

1 Start osagent with the following command:

osagent
2 Create a file named autofailover.properties with the following properties:
viroker . naming . poolSize=5
vibroker . naming . jdocDriver=com.borland . datastore . jdoc . DataStoreDriver
viroker . naming. url=jdoc:borland:dsrenote: //143.186.141.14/
AutcFailover Mirror5.jds
viroker . naming. logirNeme=SYSDRA
vircker . naming. loginPwdsesterkey
vioroker . naming . traceOn=0
vbroker . naming . jdsSvrPort=2515
vircker . naming. loglevel =delug
3 Start Naming Service with the following command:

rameserv -VBJclasspath <JDS Install>\1ib\
Jjdsserver.jar —oonfig autofailover.properties

4 Start ServerA with the following command:
vbj -DSVChamerocot=NemeService ServerA
5 Start ServerB with the following command:
voj -DSVChameroot=NameService ServerB
6 Start Client with the following command:
vbj -DSVChameroot=NameService Client NameService
7 Repeat the previous step several times and observe the output.

To verify the minimum requirement of one Primary and two Read-only mirrors,
complete the following steps:

1 Stop the JdsServer listening to port 2513.
2 Repeat the Start Client step several times.
Note that the behavior is the same as in the previous procedure.
3 Stop the JdsServer listening to port 2514.
4 Repeat the Start Client step several times.

Note that Client begins to raise a BRD PARMM exception This is as expected because

a failover requires that at least two read-only mirrors are available.
5 Restart the JdsServer listening to port 2513 and 2514.
This restores the original configuration, with three Read-only mirrors.

To verify the autofailover of JDatastore HA, complete the following steps:

1 Stop the JdsServer listening to port 2511, configured for Primary mirror, and repeat

the Start Client step several times.

Note that one of the Read-only mirrors has been promoted to Primary mirror.

2 Stop another active Read-only mirror and repeat the Start Client step several times.
Note that Client begins to raise a BAD PARAM exceptianbecause a failover requires

that at least two read-only mirrors are available.

Chapter 16: Using the VisiNaming Service

229

Configuring VisiNaming with JdataStore HA

Note

Restart the JdsServer listening to port 2511.
Note that this was previously configured for Primary mirror.
Repeat the Start Client step several times.

Note that Mirrorl is now configured as Read-only mirror. You can check this from
the JDS Server Console by making a datasource connection to the Directory mirror
that the Naming Service uses.

Run the VisiNaming Naming Failover example

Run the following example to observe the failover capability of the VisiNaming service.

Before using this procedure, create a JDataStore HA with one Primary mirror at port
1111, three Read-only mirrors at ports 1112, 1113, 1114 and two Directory mirrors at
ports 1115 and 1116.

1 Start osagent with the following command:

osagent

2 Create a file named autofailover.properties with the following properties:

Naming

viroker . naming. poolSize=5

vioroker . naming . jdocDriver=can.borland. datastore . jdoc. DataStoreDriver
viroker . naming . 1oginNeme=SYSTRA

vibroker . naming . loginPwd=rasterkey

vbroker . naming . traceOn=0

vircker . naming. jdsSvrPort=1115
#vbrcker . naming . loglevel=deloug

#default value of enableslave is 0. 'l' Irndicates cluster or
mester-slave aonfiguration

vibroker . naming . enableSlave=1

#indicate master-slave aonfiguration

vircker . naming. slaveMcde=slave

vircker . naming.mestertiost=143.186.141.14

vioroker . naming . masterPort=12372

vbrcker . naming. mesterServer=Master

vbroker . naming. slaveHost=143.186.141.14

vibroker . naming . slavePort=12373

vircker . naming. slaveServer=Slave

3 Start the JDataStore Servers as shown in the following example:

JdsServer.exe -port=1111
JdsServer.exe -port=1112
JdsServer.exe -port=1113
JdsServer.exe -port=1114
JdsServer.exe -port=1115
JdsServer.exe -port=1116

4 Start the Naming Service Master with the following command:

nameserv -VBIclasspath <JDS Install>\1ib\

jdsserver.jar -oanfig autofailover.properties -VBJprap

viroker . naming. url=jdbc:borland:dsremote: //143.186.141.14/
AutcFailover Mirror5.jds

-VBJprop vbrcker.se.iicp tp.san.iicp tp.listener.port=12372 Master

230 VisiBroker for Java Developer's Guide

Configuring VisiNaming with JdataStore HA

5 Start the Naming Service Slave with the following command:

nameserv -VBJclasspath <JDS Install>\lib\
jdsserver.jar —oanfig autofailover.properties -VBJprop
vioroker . naming . url=jdoc:borland:dsrenote: //143.186.141.14/
AitoFailover Mirroré.jds
-VBJporop vioroker.se.iigp tp.sam.iicp tp.listener.port=12373 -VBJprop
vbroker . naming. jdsSvrPort=1116

Slave

6 Start Server with the following command:
Vibj -DSVChamercot=Master Server
7 Start Client with the following command:
vbj -DSVChanercot=Master Client
8 Press the Enter key and observe the output.
Note that the balance returns a value.
9 Stop the Naming Service Master, repeat the previous step, and observe the output.
Note that the balance returns a value.
10 Press the Enter key to exit, and observe the output.
Note that the balance returns a value

To see how two Directory mirrors handle a single point of failure, complete the
following steps:

1 Stop the JdsServer listening to port 1115.

2 Without starting the Naming Service Master, repeat the Start Client step.
The CarmotProceed exception is raised, which is the expected behavior.

3 Repeat the Start Client step several times.

Note that the balance will return a value. Once it can return a value, you can
observe that it is using the Directory mirror that is listening on port 1117.

4 Repeat the Start Client step and press the Enter key three times.
Note that the balance returns a value for three times.

To see how autofailover functions with two Directory mirrors, complete the following
steps:

1 Stop the JdsServer that is listening on port 1111.
2 Repeat the Start Client step.
3 Press the Enter key three times.

The CamotProcesd exception is raised several times before it starts returning a
value. Once it returns a value, you can see that one of the mirrors is promoted to be
a Primary mirror. This can only be viewed using the JDS Server Console.

Chapter 16: Using the VisiNaming Service 231

232 VisiBroker for Java Developer's Guide

Overview

Note

Using the Event Service

This section describes the VisiBroker Event Service.

The OMG Event Service has been superseded by the OMG Notification Service. The
VisiBroker Event Service is still supported for backward compatibility and light weight
purposes. For mission critical applications, we strongly recommend using VisiBroker
VisiNotify. For more information, see Chapter 2, “Introduction to VisiNotify.”

The Event Service package provides a facility that de-couples the communication
between objects. It provides a supplier-consumer communication model that allows
multiple supplier objects to send data asynchronously to multiple consumer objects
through an event channel. The supplier-consumer communication model allows an
object to communicate an important change in state, such as a disk running out of free
space, to any other objects that might be interested in such an event.

Figure 17.1 Supplier-Consumer communication model

Ewent Channd

Chapter 17: Using the Event Service 233

Overview

The figure above shows three supplier objects communicating through an event
channel with two consumer objects. The flow of data into the event channel is handled
by the supplier objects, while the flow of data out of the event channel is handled by the
consumer objects. If each of the three suppliers shown in the figure above sends one
message every second, then each consumer will receive three messages every
second and the event channel will forward a total of six messages per second.

The event channel is both a consumer of events and a supplier of events. The data
communicated between suppliers and consumers is represented by the Ay class,
allowing any CORBA type to be passed in a type safe manner. Supplier and consumer
objects communicate through the event channel using standard CORBA requests.

Proxy consumers and suppliers

Consumers and suppliers are completely de-coupled from one another through the use
of proxy objects. Instead of interacting with each other directly, they obtain a proxy
object from the EventCharmel and communicate with it. Supplier objects obtain a
consumer proxy and consumer objects obtain a supplier proxy. The EventCharmel
facilitates the data transfer between consumer and supplier proxy objects. The figure
below shows how one supplier can distribute data to multiple consumers.

Figure 17.2 Consumer and supplier proxy objects

(/E'.._Qm Charnsl

Supplier
Prp#2

aep

#1

Note The event channel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process. See “Starting the Event Service”
on page 244 for more information.

234 VisiBroker for Java Developer's Guide

Communication models

OMG Common Object Services specification

The VisiBroker Event Service implementation conforms to the OMG Common Object
Services Specification, with the following exceptions:

= The VisiBroker Event Service only supports generic events. There is currently no
support for typed events in the VisiBroker Event Service.

= The VisiBroker Event Service offers no confirmation of the delivery of data to either
the event channel or to consumer applications. TCP/IP is used to implement the
communication between consumers, suppliers and the event channel and this
provides reliable delivery of data to both the channel and the consumer. However,
this does not guarantee that all of the data that is sent is actually processed by the
receiver.

Communication models

Note

The Event Service provides both a pull and push communication model for suppliers
and consumers. In the push model, supplier objects control the flow of data by pushing
it to consumers. In the pull model, consumer objects control the flow of data by pulling
data from the supplier.

The EventCharmel insulates suppliers and consumers from having to know which model
is being used by other objects on the channel. This means that a pull supplier can
provide data to a push consumer and a push supplier can provide data to a pull
consumer.

Figure 17.3 Push model

Push rod &

eyep

({F:mtq'rannd

P ooy
Pish
Sipplier £2

P oxy Push Pragy
Supplier$l Push
Supplier£2

Push

\

qep

Push
Gensumer E [Consumer

#1 [

The EventCharmel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process. See “Starting the Event Service”
on page 244 for more information.

Chapter 17: Using the Event Service 235

Communication models

Note

Push model

The push model is the more common of the two communication models. An example
use of the push model is a supplier that monitors available free space on a disk and
notifies interested consumers when the disk is filling up. The push supplier sends data
to its ProxyPushConsuner in response to events that it is monitoring.

The push consumer spends most of its time in an event loop, waiting for data to arrive
from the PraxyPushSupplier. The EventCharmel facilitates the transfer of data from the
ProxyPushSupplier to the ProxyPushConsuner.

The figure below shows a push supplier and its corresponding ProxyPushConsurer
object. It also shows three push consumers and their respective ProxyPushSupgplier
objects.

Pull model

In the pull model, the event channel regularly pulls data from a supplier object, puts the
data in a queue, and makes it available to be pulled by a consumer object. An example
of a pull consumer would be one or more network monitors that periodically poll a
network router for statistics.

The pull supplier spends most of its time in an event loop waiting for data requests to
be received from the PraxyPullConsurer. The pull consumer requests data from the
PraxyPullSupplierwhen it is ready for more data. The EventCharmel pulls data from the
supplier to a queue and makes it available to the ProxyPullSupplier.

The figure below shows a pull supplier and its corresponding ProxyPullCmsurer object.
It also shows three pull consumers and their respective ProxyPullSupplier objects.

Figure 17.4 Pull model

Ful Pull Pul
cansumner Consu e Gonsumer
¥1 o ¥2
A
o

P oy

Full

Suppier£2

wep
e
wep

Proey P oy
Pull Full
Suppi o Suppier £2

f

Proizy
Pull
Cronsumer

Ewen t Channed

PullSuppler

The event channel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process.

See “In-process event channel” on page 245 for more information about how to start
the event service in Java.

236 VisiBroker for Java Developer's Guide

Using event channels

Using event channels

Windows

UNIX

Note

To create an EventCharmel, connect a supplier or consumer to it and use it:

1

2
3
4
5

Create and start the EventChannel:

pronpt> start vibj oom. inprise.vioroker. CosEvent . EventServer -ior <iorFilename>
<charmelName>

pronpt> vbj com. inprise. vioroker . CosEvent . EventServer -ior <iorFilenames
<charmelName> &

where <charmelNanes is the user-specified object name of the event channel and
<iorFilenames is a user-specified filename of the file to which the icr of the object is
to be written.

Another way to create the EventChannel is to run PushModelChannel:
prarpt> vioj PushiMiodelCharmel <iorFilenames

Pushvcdel Charrel first creates an EventChannel and publishes its ior to the file
<iorFilenames given by the user. Other clients (for example, PushModel) can then
bind to the EventChannel by using the initial reference.

To run this:
pramt> vioj -DORBInitRef=EventService=file:<fullpath + iorFilename> PushVodel

Regardless of how the event channel is created, make sure that the name specified
in <iorFilenanesis created in the specified directory.

Only one instance of the EventChannel is supported. All binding to the EventCharmel
is done through the call to orb.resolve initial references("EventService"), where
EventServiceis the hardcoded EventCharmel name.

Connect to the EventChannel.
Obtain an administrative object from the channel and use it to obtain a proxy object.
Connect to the proxy object.

Begin transferring or receiving data.

The methods used for these steps vary, depending on whether the object being
connected is a supplier or a consumer, and on the communication model being used.
The table below shows the appropriate methods for suppliers.

Table 17.1 Connecting Suppliers to an EventChannel

Steps Push supplier Pull supplier

Bind to the EventChannel EventCharmelHelper.narrow EventCharmelHelper .narrow
(orb.resolve initial references (orb.resolve initial references
("EventService")) ("EventService"))

Get a SupplierAdmin EventCharmel : :for suppliers() EventCharmel : : for suppliers ()

Get a consumer proxy SupplierAdmin: : SupplierAdmin: :
dotain push consurer () dotain pull consumer ()

Add the supplier to the ProxyPushConsurer: : ProxyPullConsurer: :

EventChannel carect push supplier () carect pull supplier()

Data transfer ProxyPushConsuner : :push () Inplements pull() and try pull()

Chapter 17: Using the Event Service 237

Creating event channels

The table below shows the appropriate methods for consumers.

Table 17.2 Connecting Consumers to an EventChannel

Steps Push consumer Pull consumer

Bind to the EventChannel EventCharmelHelper.narrow EventCharmelHelper .narrow
(orb.resolve initial references (orb.resolve initial references
("EventService")) ("EventService"))

Get a ConsumerAdmin EventCharmel : :for consumers () EventCharmel : : for aonsurers ()

Obtain a supplier proxy Consurer?dmin: : Consumer?dmin: :
dotain push supplier () cbtain pull supplier ()

Add the consumer to the PraxyPushSupplier: : PraxyPushSupplier: :

EventChannel camect push consumer () camect pull consurer ()

Data transfer Tnplerents push() PraxyPushSupplier: :

pull() and try pull()

Creating event channels

Windows

UNIX

VisiBroker provides a proprietary interface called EventChannelFactory in the
CosEventChannelAdmin module to allow Event Service clients to create event
channels on demand. To enable this feature, start the event service for your operating
system as follows:

start vibj -Dvbrcker.events. factory=true
oom. inprise.vibroker. CosEvent . EventServer <factoryNemes

vibj -Dvbroker.events. factory=true com. irprise.vioroker . CoskEvent . EventServer
<factoryName>

The property vbroker.events.factory instructs the service to create a factory object with
the name <factoryName> (with a default value of VisiEvent) instead of a channel
object. To write the IOR of the factory to a file, use the —ior option to provide the file
name. By default, the IOR is written to the console.

The factory object created can then be bound by the client, either using the IOR written
to the file (or console) or using the osagent bind mechanism to pass the factory object
name. Once the factory object reference is obtained, it can be used to create, look up,
or destroy event channel objects. An event channel object obtained from the factory
object can be used to connect suppliers and consumers.

Examples of push supplier and consumer

This section describes the example of the push supplier and the consumer
applications.

Push supplier and consumer example

This section describes the example push supplier and consumer applications. The files
PullSupply. java and PullConsure. java implement the supplier and consumer. These
files can be found in the <install dirs/exanples/vie/events directory.

To run these examples, you need a supplier-consumer pair. You can pair a consumer
of type Push or Pull can be paired with any supplier of type Pushor Pull. The order in
which you invoke the supplier and consumer does not matter. However, the event
channel must be the same object instance.

Before you can start using the Push model example, you need to run this example. The
next few sections describe how to run this example.

238 VisiBroker for Java Developer's Guide

Examples of push supplier and consumer

Running the Push model example

To run the PushModel example, enter:
prarpt> vibj -DORBInitRef=FventService=file:<fullpath of iorFilename> PushModel

Select eto bind to an event channel, pto get a proxy to a push consumer from the
event channel, mto instantiate a PushModel, and cto connect the event channel.

Continuous sentences indicating the content of the message being pushed to the
EventCharmel will be displayed. You can continue to make selections regardless of what
is displayed on the screen. You can specify the number of seconds between events
using the soption. Lastly, select dto disconnect and gto quit.

To run the PushView, enter:

pramptsvb] -DORBInitRef=EventService=file:
<fullpath of iorFilenames PushiView

Select eto bind to an event channel, pto get a proxy to a push supplier from the event
channel, vto instantiate a PushView, cto connect the event channel, dto disconnect
and gto quit. To run this example, a supplier of type Push or Pull must be running on
another terminal, continuously sending data to the same event channel in order for
PushiViewto receive the data. The supplier and consumer can be started in any order.

Running the PullModel example
To run the PullModel example, enter:

pravpt> vioj -DORBInitRef=FventService=file:
<fullpath of iorFilenames PullMcdel

Select eto bind to an event channel, pto get a proxy to a push consumer from the
event channel, mto instantiate a PullModel, cto connect the event channel, dto
disconnect and gto quit.

Running the PullView example
To run the PullView, enter:

pramptsvbj -DORBInitRef=FEventService=file:
<fullpath of iorFilenames> PullView

Select eto bind to an event channel, pto get a proxy to a push supplier from the event
channel, vto instantiate a PushView, cto connect the event channel. Then select ato
pull asynchronously or sto pull synchronously. To exit, select dto disconnect and gto
quit.

To run this example, a supplier of type Push or Pull must be running on another
terminal, continuously sending data to the same event channel in order for Pullviewto
receive the data. The supplier and consumer can be started in any order.

PullSupply

The PullSuply class is derived from the PullSugplierPQA class and provides
implementations for the main, pull and try pull methods. The pull method, shown
below, returns a numbered “hello” message. The try pull method always sets the
hasFvent flag to true and calls the pull method to provide the message. Once a
PullSupply object is connected to an EventCharrel, these methods are used by the
channel to pull data from the supplier.

The mainmethod, shown below, performs the usual VisiBroker ORB and POA creation,
connects to the specified EventCharmel, obtains a PraxyPullConsurer from the
EventCharmel, instantiates a PullSupply object, activates the PullSupply object on the
POA, then connects this pull supplier to proxy pull consumers.

Chapter 17: Using the Event Service 239

Examples of push supplier and consumer

Executing PullSupply

After compiling PullSupply.java and starting the Event Service, described in
“In-process event channel” on page 245, you can execute the supplier with the
following command:

vbj -DORBInitRef = <charmel name> = file:<fullpath of iOrFilename> PullSupply

Implementation of the pull and try_pull methods

// PallSupply.java
import org.ang. CosEventConm. *;
import org.ang. CoskEventCharmel Admin. *;
import org.ang.PortableServer. *;
public class PullSupply extends PullSupplierPA {
private FCA myFCA;
private PullConsurer pullConsurer;
private int counter;
Pul1Supply (PullConsurer pullConsurer, FOA myPQR) {
_pullConsurer = pullConsurer;
} _yROA = myRQR;
public void discomect puall supplier() {
System.out.printIn("Model : :discamect pull supplier()");
try {
_myPOA.deactivate doject ("PullSupply".getBytes()) ;
} catch(Exception e) {
e.printStackTrace() ;
\ }
public org.ang.CORBA. Aty pull () throws Discamected
if (pullConsurer = muill) {
throw new Discamected() ;
}

try {
Thread. currentThread () .slesp (1000) ;

} catch(Exception e) {
}

//org.ang. CORBA. Arly message =
new org.any.ORBA. Ay () . from string("Hello #" + ++ counter) ;
org.arg.CORBA. Ay message = _orb() .create any () ;
message. insert string("Hello #" + ++ counter) ;
System.out .printIn ("Sugplier being pulled: " + message) ;
retum message;
}
public org.any.CORRA. Aty try pull (org.amg.CORBA.BoolearHolder hasEvent)
throws
org.ary.QORBA. SystenException, Discamected {
hasBEvent .value = true;
retum pull () ;

}

240 VisiBroker for Java Developer's Guide

Examples of push supplier and consumer

Main method of PullSupply

// PullSupply.java

import org.arg.CosEventCom. *;

import org.arg.CosEventCharmel Admin. *;

import org.arg.PortableServer. *;

public class PullSupply extends PullSupplierPA {

I'JL'Jk‘)lic static void main(String[] args) {
try {

org.ang.CORBA.ORB orb = org.ang.CORRA.CRB. init (args, rull) ;
// get a reference to the root FOA
PQA rootPA =

BAHelper . narrow (orb. resolve initial references("RootPQA")) ;

// Create policies for our persistent PQA
org.arg.CORBA. Folicy[] policies = {

TootRCA. create lifespan policy (LifespanPolicyValue . PERSISTENT)
}i

// Create myPQA with the right policies

BCA myPQA = rootRCA. create POA("event service poa",
TootPOA. the FOAMenager (), policies) ;

EventCharmel charmel = rull;

PullSupply model = rull; ProxyPullConsurer pullConsurer = rull;

charmel =

EventCharmelHelper . narrow (orb. resolve initial references("EventService")) ;

System.out .printIn("Located event charmel: " + chamel) ;
pallConsurer = charmel . for suppliers() .dotain pull consumer() ;
System.cut .printIn ("Gotained pull consurer: " + pullConsurer) ;
model = new PullSupply (pullConsuner, myBOR) ;
myPQA.activate doject with id("PullSupply".getBytes(), model) ;
myPQA. the POAManager () .activate() ;

System.out .printIn("Created model: " + model) ;

System.out .printIn("Camecting ...");

pallConsurer.camect pull supplier(model. this());

} catch (Exception e) {

e.printStackTrace() ;

PullConsume

The PullCmnsure class is derived from PullConsurerPA class and provides a command
line interface for pulling data from the PullSugply class. The code sample above shows
how the application connects to any available EventChannel, obtains a
ProxyPullSupplier, connects to the channel, and displays a command prompt. The
table below summarizes the commands that may be entered.

Table 17.3

PullConsume commands

Command Description

a

Asynchronously pulls data from the event channel, using the try pull method. If
no data is currently available, the command will return with a no data message.

Synchronously pulls data from the event channel, using the pull method. If there
is no data currently available, the command will block until data is available.

Disconnects from the channel and exits the tool.

Chapter 17: Using the Event Service 241

Examples of push supplier and consumer

Executing PullConsume

After compiling PullConsure. java and starting the Event Service, described in
“In-process event channel” on page 245 , you can execute the consumer with the
following command:

vbj -DORBInitRef = <charmel name> = file:<fullpath of iOr filename> PullConsure

// PullConsune. java
import org.arg.CosEventCom. *;
import org.arg.CosEventCharmel Admin. *;
import org.ang.PortableServer. *;
import java.io.*;
pblic class PullCosure extends PullConsumerFA
pblic void discamect pull consurer ()
System.out .printIn("View.discomect pull consumer") ;
}
pblic static void mein(String[] args) {
try {
org.ang.CORBA.CRB orb = org.arng.CORRA.CRB. init (args, rwll);
// get a reference to the root RRA
BCA rootRCA =
ECQAHelper.narrow (orb. resolve initial references("RootPOA")) ;
// Create policies for cur persistent PQA
org.ang.CORBA. Policy[] policies = {
TootPOA. create lifespan policy (LifespanPolicyValue . PERSISTENT)
}i

// Create myPQA with the right policies
BCA myPQA = rootPCA. create POA("event service poa,
TOOtPCA. the POAManager (), policies);

EventCharmmel chammel = rull;

PullConsure view = rull;

PraxyPullSupplier pullSupplier = mill;

BufferedReader in = new BufferedReader (new
TrputStreanReader (System. in)) ;

charmel =EventCharmelHelper.narrow (orb.resolve initial references
("EventService")) ;

System.out .printIn("Located event charmel: " + chammel) ;

view = new PullConsune () ;

myPCA.activate doject with id("PullConsume".getBytes(), view);

myPCA. the POAManager () .activate() ;

System.cut .printIn("Created view: " + view) ;

pallSumplier = chammel . for consurers () .dotain pull supgplier() ;

System.out .printIn ("Gotained pull supplier: " + pullSupplier) ;

System.out .printIn("Camecting. ..") ;

System.cut . flush() ;

pallSupplier.camect pull consurer (view. this()) ;

242 VisiBroker for Java Developer's Guide

}

}

Examples of push supplier and consumer

while (true) {
System.cut .print ("-> ") ;
System.cut.flush() ;
if (System.getProperty ("W THREZD BUG") != mull) {
while(!in.ready()) {
try {
Thread. currentThread () . slesp (100) ;

} catch(InterruptedException e) {
}

}

}

String line = in.readline() ;

if (lire.startgwith("a")) {
org.ang.CCORBA. Booleartolder hasEvent = new

org.any.CORBA. BoolearHolder () ;
arg.arg.QORBA. Aty result = pullSupplier. try pull (haskvent) ;
System.cut.printIn("try pull: " +
(hasEvent.value ? result.toString() : "NO DRTA"));

antirue;

} else if (line.startsWith("s")) {
org.ong.QORBA. Arty result = pullSupplier.pull () ;
System.cut .printIn("pull: " + result);
antirue;

} else if (line.startsWith("qg")) {
System.out .printIn("Discomecting...") ;
pallSupplier.discamect pull supplier() ;
System.out .printIn ("Quitting. ..") ;
reak;

}

System.out.printIn ("Comerds: a [a] syncdhironous pull\n" +

" s [slynchronous pull\n" +
} n q [q] uit\n") ;
} catch(Exception e) {
} e.printStackTrace() ;

Chapter 17: Using the Event Service 243

Starting the Event Service

Starting the Event Service

Note

Note

When using VisiBroker for Java, the Event Service can be started by using the
following command.

vbj [-Dvbrcker.events.debug] [-Dvbroker.events.interactive] [-

Dvorcker . events.mex queue length=<umber>] [-Dviorcker.events.debug. factory] \
[-Dvbrcker.events.vm thread bug] com. inprise.vioroker . CosEvent . EventServer -ior
<ior filenames <charmel names

Option Description

-Dvboroker . events . dgoug Optional parameter that enables the output of debugging
messages to stdout.

-Dvbroker . events. interactive Specifies that the event channel is to execute in a console-
driven, interactive mode.

-Dvbroker . events .mexQuevelength — Specifies the number of messages to be queued for slow
consumers. The default maximum queue length is 100
messages for each consumer.

-Dvorcker . events . factory Specifies that an event channel factory is to be instantiated
instead of an event channel.
charmel rame The name of the channel or channel factory.

There is a known bug in some implementations of the Java Virtual Machine, including
Solaris, that may cause this command to hang. If you experience difficulties, try
specifying the -Dvlorcker.events.vm thread ug parameter when you start the Event
Service.

Setting the queue length

In some environments, consumer applications may run slower than supplier
applications. The mexQueuelength parameter prevents out-of-memory conditions by
limiting the number of outstanding messages that will be held for each consumer that
cannot keep up with the rate of messages from the supplier.

If a supplier generates 10 messages per second and a consumer can only process one
message per second, the queue will quickly fill up. Messages in the queue have a fixed
maximum length and if an attempt is made to add a message to a queue that is full, the
channel will remove the oldest message in the queue to make room for the new
message.

Each consumer has a separate queue, so a slow consumer may miss messages while
another, faster consumer may not lose any. The code sample below shows how to limit
each consumer to 15 outstanding messages.

vbj -Dviborcker.events.mexQueuel ength=15 CosEvent .EventServer -ior myCharmel . ior
MyCharmel

If maxQueuel engthis not specified or if an invalid number is specified, a default queue
length of 100is used.

244 VisiBroker for Java Developer's Guide

In-process event channel

In-process event channel

In addition to running an EventCharmel as a separate, stand-alone server, the Event
Service also allows you to create an EventCharmel within your server or client
application. This frees you from having to start a separate process to provide the
EventCharmel for your supplier or consumer applications.

For Java applications, an EventlLilbrary class is provided that provides methods for
creating an EventCharmel which, in turn, handles the loading of the necessary classes.
To create an in-process EventCharmel object within a supplier/consumer application,
make the following call:

Eventlibrary.create Chammel ("MyCharmel", whetherTaDeboug, mexQueuel ength) ;

So, to create a channel named MyCharmel with debugging off and a maximum queue
length of 100, you would write:

Eventlibrary.create Chammel ("MyCharmel", false, 100) ;

After this call completes, the resulting client application can bind to the EventCharmel as
it would bind to any other CORBA obiject.

For example, you might have a supplier application creating the channel in-process
and want the consumer application to connect to the same channel. To accomplish
this, you need to pass the channel object from the supplier application to the consumer
application. To do this, convert the EventCharmel object to an ior string and write the
string to a file:

try

EventCharmel chammel = Eventlibrary.create Chammel ("MyCharmel", false, 100) ;
PrintWriter pw = new PrintWriter (new FileWriter (ior filename));
pw.printin(orb.doject to string(chammel)) ;
pw.close() ;

}
catch (I0Exception e) {

System.aut .printIn("Error writing the IR to file " ior filename);
}

The ior filename specifies the name of the file to which the ior string of the channel will
be written.

To run PushModelChannel:
vbj PushModelCharmel <ior filenamegt;

PushModelCharel is a push supplier. You can connect either a push consumer or pull
consumer to the event channel created in PusiVodelCharmel:

vbj -DORBInitRef=EventService=file:<fullpath of ior filename> PushView

where <fullpath of ior filenamesis the full path of the ior filename passed into
PushModelCharmel and EventService is the name (or identifier) bound to the ior contained
in <ior filenames From within Pushiview, you can bind to the event channel as follows:

EventCharmel charmel =
EventCharmelHelper.narrow (orb. resolve initial references("EventService"));

Chapter 17: Using the Event Service 245

Import statements

Using the in-process Event Channel

If your application uses the in-process event channel feature, you must add the
following inport statement:

import com. irprise.vibroker . CosEvent . *;

Java EventLibrary class

The EventLibrary class provides several methods for creating an EventCharmel within
an application's process.

Java example

The file PushvbdelCharmel . java implements a push supplier that uses an in-process
event channel. This application presents a command prompt and allows you to enter
one of the commands shown below.

Command Description

e Creates an event channel.

s <unber of secads> Sets the delay for the event channel to the number of seconds
specified, which must be a non-negative number.

Obtains a push consumer proxy object.

Creates a PushvodelCharrel and activates it on the POA.
Connects the push supplier.

Disconnects the push consumer.

Quits the application.

Q & Q0 3 T

The code sample below contains an excerpt from Pushvcdel Charmel . java that shows
how you can use the Charmellib.create charmel method.

piblic static void main(String[] args) {

charmel = Eventlibrary.create chammel ("charmel server", false, 100);

Import statements

The following import statements should be used by applications that wish to use the
Event Service:

import org.arg.CosEventCom. * ;

import org.ang. CosEventCharmel Admin. *;

246 VisiBroker for Java Developer's Guide

Using the VisiBroker Server
Manager

The VisiBroker Server Manager allows client applications to monitor and manage
object servers, view and set properties at runtime for those servers, and view and
invoke methods on Server Manager objects. The Server Manager uses elements
known as containers which represent each major ORB component. A container can
contain properties, operations, and even other containers.

Note Do not confuse the Server Manager container with J2EE containers. The Server
Manager container is simply a logical grouping of ORB components and selected
runtime properties.

Getting Started with the Server Manager

This section covers enabling the Server Manager on a server, obtaining a Server
Manager reference, working with containers, the Storage interface and the Server
Manager IDL.

Enabling the Server Manager on a server

A VisiBroker server is not enabled to be managed by default. The command which
starts the server must set the following property to manage the server:

vbroker . orb. enableServerManager=true

The property can be specified either through the command-line or through the server's
properties file.

Chapter 18: Using the VisiBroker Server Manager 247

Getting Started with the Server Manager

Obtaining a Server Manager reference

The first step in interacting with a Server Manager is to obtain a reference to a server's
Server Manager. This reference points to the top level container. A client can obtain the
reference in two ways:

1 A server runner can choose to name the Server Manager using the property option
vioroker . serverManager .name. For example, the command:

pravpt> Server -Dvbrcker. serverMenager . neme=BigBadBoss
registers the Server Manager name “BigBadBoss” to the Smart Agent namespace.
From this point onward, the client can bind to that name and start invoking
operations on the reference. This property can be set in the properties file as well.
This method of locating a Server Manager can be used when the client does not
have object references to any other objects implemented by the server, for example:

import com. irprise.vioroker . ServerManager . * ;

// retums reference to Server Manager "BigBadBoss" top container.
Cotainer topGmtainer = ContainerHelper.bind (orb, "BigBadBoss") ;

2 Ifthe client has an object reference to some other object implemented by the server,
then the client can perform _resolve reference("ServerManager") on that object to
obtain the ServerManager for the ORB corresponding to the object. The following
code fragment obtains the Server Manager's top-level container from the

Bark: :AccountManager object.
import com. inprise.vbroker . ServerManager . * ;

// assure "merager" contains the reference to AccomtMenager
// doject. No need to narrow since AccountMenadger is a

// com. inprise.viorcker.CORRA.Qoject, however a narrow is still
// required to cawert returmed Server Manager reference to
// Container.

Cotainer toplmtainer = ContainerHelper.narrow (

nereger. resolve reference ("ServerMenager")) ;

The client code needs to include the servermgr c.hhto use the Server Manager
interfaces.

Working with Containers

Once a client application has obtained the reference to the top level container, it can:
= get, set, or add properties on top level container.

= iterate through containers container inside top level container.

= get, set, or add containers.

= invoke operations defined in containers.

= get or set storage on the containers.

= restore or persist properties to property storage.

The top-level container does not support any properties or operations but just contains
the ORB container. The ORB container in turn contains few ORB properties, a shutdown
method, and other containers like RootPOA, Agent, OAD, and so forth.

See “The Container Interface” on page 249 for information on how to interact with
containers. “Server Manager examples” on page 255 shows Java and C++ interactions
as well.

248 VisiBroker for Java Developer's Guide

The Container Interface

The Storage Interface

Server Manager provides an abstract notion of storage that can be implemented in any
fashion. Individual containers may choose to store their properties in the different ways.
Some containers may choose to store their properties in a database, while others may
choose to store them in files or in some other method. The Storage interface is defined
in Server Manager IDL.

Every container uses the same methods to get and set storage, along with the ability to
optionally set storage on all child containers of the parent. Similarly, each container
uses the same methods to read and write its properties from the storage.

For information on the Storage Interface and its methods, see “The Storage Interface”
on page 252.

The Container Interface

The container interface defines an interface and associated methods for logically
grouping sets of objects, properties, operations, and so forth.

Container class

public interface Container extends

cam. inprise . viorcker . ServerManager . ContainerOperations
org.ang.CORBA.portable. IDLEntity

When using this class in your code, you must include the following include statements:

import cam.borland. vibraker . ServerManager . *;
import aom.borland. vioroker . ServerManager . CntainerPackage. *;

Container Methods for Java

A container can hold properties, operations, and other containers. Each major ORB
component is represented as a container.

This section explains the Java methods that can be executed on the container
interface. There are four categories:

= Methods related to property manipulation and quereies
= Methods related to operations
= Methods related to children containers

= Methods related to storage

Chapter 18: Using the VisiBroker Server Manager 249

The Container Interface

Methods related to property manipulation and queries

public String[] list all properties();
Returns the names of all the properties in the contianer as a StringSequence.

public con. irprise.vbroker . ServerVanager . ContainerPackage . Property []
et all properties();
Returns the PropertySequence containing the names, values, and read-write status of all
the properties in the container.

public com. irprise.vbroker . ServerManager . GmtainerPackage . Property
et property (String name) throws
com. inprise . vorcker . ServerManager . CantainerPackage . Namervalid

Returns the value of the property name passed as an input parameter.

pdblic void set property (String name, org.arg.CCRBA.Ay
value) throws cam. inprise.virdker . ServerManager .

ContainerPackage .NaneTrvalid,
cam. inprise. vircker . ServerManager. ContainerPackage . ValueTrvalid,
com. irprise.vibroker. ServerManager. CantainerPackage . ValuelNotSettable

Sets the value of the property name to the requested value.

public void persist properties (boolean recurse) throws
caom. inprise. vioroker . ServerManager . StorageExoeption;
Causes the container to actually store its properties to the associated storage. If no
storage is associated with the container, a StorageExceptian will be raised. When it is
invoked with the parameter recurse=true, the properties of the children containers are
also stored into the storage. It is up to the container to decide if it has to store all the
properties or only the changed properties.

pdblic void restore properties (boolean recurse) throws
cam. inprise. vioroker . ServerManager . Storagekxosption;
Instructs the container to obtain its properties from the storage. A container knows
exactly what properties is manages and it attempts to read those properties from the

storage. The containers shipped with the ORB do not support restoring from the
storage. You must create containers that support this feature yourself.

Methods related to operations

public Strirg[] list all gperatians();
Returns the names of all the operations suppored in the container.
public oom. inprise.vbroker . ServerManager . GontainerPackage . Operatian[]
get all cperatians();

Returns all the operations along with the parameters and the type code of the
parameters so that the operation can be invoked with the appropriate parameters.

public oom. irprise.vbroker . ServerManager . ContainerbPackage . Operation
get gpeeration(String name) throws
com. inprise. viorcker . ServerManager . ContainerPackage . Namelrvalid;

Returns the parameter information of the operation specified by name which can be
used to invoke the operation.

pdblic org.ong.QORBA.Ay do cperation(
cam. inprise. vioroker . ServerManager . GontainerPackage . OQperation op) throws
cam. inprise . viorcker . ServerManager . ContainerPackage . NameTrvalid,
com. irprise. vibroker . ServerManager . ContainerPackage . ValueTrvalid,
cam. inprise . vioroker . ServerManager . ContainerPackage . OperationFailed;

Invokes the method in the operation and returns the result.

250 VisiBroker for Java Developer's Guide

The Container Interface

Methods related to children containers
pdblic String[] list all containers();
Returns the names of all the children containers of the current container.

public com. irprise.vbroker . ServerManager . GmtainerPackage . NamedCotainer []
get all cmtainers() ;
Returns all the children containers.
public com. inprise.vbroker . ServerManager . GntainerPackage . NarmedContainer
get omtainer (String name) throws
com. irprise. vibroker . ServerMenager . ContainerPackage . NameTrvalid;
Returns the child container identified by the name parameter. If there is not any child
container with this name, a NameIrvalid exception is raised.
public void add container(
cam. inprise . vioroker . ServerManager . ContainerPackage . NamedCmtainer
omtainer) throws
com. inprise . viorcker . ServerManager . ContainerPackage . NemeAl readyPresent,
com. irprise. vibroker . ServerManager . ContainerPackage . ValueTrivalid;
Adds the container as a child container of this container.
public void set container (String name,
com. inprise . vorcker . ServerManager . Cantainer value) throws
com. irprise. vibroker . ServerManager . ContainerPackage . NameTrvalid,
com. irprise. vibroker . ServerManager . ContainerPackage . ValueTrvalid,
cam. inprise. vioroker . ServerManager . ContainerPackage . ValueNot Settable;
Modifies the child container identified by the name parameter to one in the value
parameter.

Methods related to storage

void set storege(in cam.inprise.vbroker.ServerManager.Storage s, in boolean
recurse) ;

Sets the storage of this container. If recurse=true, it also sets the storage for all its
children as well.

com. inprise. vbroker . ServerManager . Storage get storage() ;
Returns the current storage of the container.

Chapter 18: Using the VisiBroker Server Manager 251

The Storage Interface

The Storage Interface

The Server Manager provides an abstract notion of storage that can be implemented in
any fashion. Individual containers may choose to store their properties in databases,
flat files, or some other means. The storage implementation included with the
VisiBroker ORB uses a flat-file-based approach.

Storage Interface Class and Methods

Storage Class

public interface Storage extends
com. inprise . viorcker . ServerManager . StorageQperations,
org.ang.CORBA.portable. IDLEntity

The following include statements must appear in your code when using the Storage
interface:

import cam.borland. vioroker . ServerManager . * ;
import cam.borland. vbroker . ServerManager . ContainerPackage. *;

Storage Interface Methods

public void geen() throws
cam. inprise. vioroker . ServerManager . Storagekxosptian;
Opens the storage and makes it ready for reading and writing the properties. For the

database-based implementation, logging into the database is performed in this
method.

public void close() throws
caom. inprise. vioroker . ServerManager . Storagekxosption;
Closes the storage. This method also updates the storage with any properties that

have been changed since the last Cmtainer: :persist properties call. In database
implementations, this method closes the database connection.

pdolic con. inprise.vioroker . ServerManager . ContainerPackage. Property [
read properties() throws
oom. inprise. vibroker . ServerVianager . StorageException;
Reads all the properties from the storage.
public cam. irprise.vioroker . ServerManager . GmntainerPackage . Property
read property (String propertyName)
throwsoom. irprise. vioroker . ServerManager . CoantainerPackage .NemeTrvalid,
com. inprise . vorcker . ServerManager . StorageExosption;
Returns the property value for propertyName read from the storage.
public void
write properties (com. inprise.viorcker. ServerManager . ContainerPackage.
Property[] props) throws com. inprise.vbroker . ServerManager . StorageExoeption;
Saves the property sequence into the storage.
pdblic void write property
prop) throws cam. inprise.voroker . ServerManager . StorageException;
Saves the single property into the storage.

252 VisiBroker for Java Developer's Guide

Limiting access to the Server Manager

Limiting access to the Server Manager

A client that obtains the Server Manager can control the entire ORB and hence security
is paramount. The following properties can limit a user's access to the Server Manager

functionality:

Property
vbroker . orb. enableServerManager

vioroker . serverMenager . enableQperatians true

vbroker . serverManager . enableSetProperty true

Default Value Description

false Setting this property to True enables

the Server Manager.

Controls the permission to invoke
operations in the containers. If set to
false, the client will not be able to
invoke do cperaticnon any container.

Controls the setting of properties
from the client. If set to false, clients
cannot modify any of the container
properties.

Server Manager IDL

Server Manager IDL is as shown below:

module ServerManager {
interface Storage;

exception StorageException {

string reasm;

interface Container

ernm RiStatus {
READWRTTE ALL,

READONLY IN SESSICN,

READONLY AlL

i

struct Property {
string name;
any value;

RWStatus rw status;

i

typedef sequence<Property> PropertySequence;

struct NamedCtntainer {

string name;
Container value;

boolean is replacesble;

i

typedef sequence<NanmedContainers> NamedCntainerSequence;

struct Parameter {
string name;
ay value;

i

typedef sequence<Parameter> ParameterSequence;

struct Qperation {
string name;

ParameterSequence params;
: :(ORBA: : TypeCode result;

Chapter 18: Using the VisiBroker Server Manager 253

Limiting access to the Server Manager

typedef sequence<Operatian> QperatianSequence;

struct Versionnfo {
wmsigned lag mejor;
unsigned lag minor;

i

exception Nemelrvalid(};
exception NareAlreadyPresent({};
exception ValueTrvalid{};
exception ValueNotSettablef};
exception QperationFailedf
string real exception reasm;

I

: :CQORBA: : StringSequence list all properties() ;
PropertySequence get all properties();

Property get property (in string name) raises (Nemelrwvalid) ;
void add property (in Property prop)

raises (NaneAlreadyPresent, Nenelrvalid, Valuelrvalid);
vold set property (in string name, in any value)

raises (Namelrvalid, Valuelrvalid, ValueNotSettable) ;

: :CQORBA: : StringSequence get value dhain(in string propertyNeme) raises

(NameTrvalid) ;

}i

void persist properties(in boolean recurse) raises (StorageBExoeption) ;
void restore properties(in boolean recurse) raises (StorageBxception) ;

: :QORBA: : StringSequence 1ist all gperations() ;
QperationSequence get all geeratians() ;

Operation get cperation(in string name)

raises (Nemelrvalid);

any do geeration(in Qperation op)

raises (NameTrivalid, Valuelivalid, OperatianFailed);

: :CQORBA: : StringSequence list all amtainers() ;
NemedContainerSequence get all oantainers() ;
NaredCntainer get container (in string name)

raises (Naelrvalid) ;

void add container (in Nemeddmtainer container)

raises (NaneAlreadyPresent, Valuelrvalid) ;

void set container(in string name, in Container value)
raises (Namelrvalid, Valuelrvalid, ValueNotSettable) ;

void set storage(in Storage s, in boolean recurse) ;
Storage get storage() ;

readmly attribute VersionInfo version;

interface Storage

void open() raises (StorageExosptim);

void close() raises (StorageExoeption) ;

Container: : PropertySequence read properties() raises

(StorageExoeptian) ;

Container: : Property read property (in string propertyNene)

raises (StorageExoeption, Container: :Nemelrvalid) ;

void write properties(in Container: :PropertySequence p) raises
(StorageExceptian) ;

void write property (in Container: :Property p) raises (StorageException);

254 VisiBroker for Java Developer's Guide

Server Manager examples

Server Manager examples

The following examples demonstrate how to:
1 Obtain a reference to the top-level container.
2 Get all containers and their properties recursively.
3 Getting, setting, and saving properties on different containers.
4 Invoke the ghutdown () method on the ORB container.
These example files can be found in:
<install dirs/exanples/vbe/ServerManager/

The following example uses the bank agent server. This server should be started by
passing the property storage file. Initially the property file contains the properties to
enable the Server Manager and set its name. The file is used by the Server Manager to
update the properties if the user changes them. The properties to enable the Server
Manager and set its name can be passed as command-line options, but the property
file is required if any of the properties are to be modified and saved during the session.

Initially, the property file contains the following:

server properties
viraker . orb. enableServerManager=true
viroker . serverManager . name=BigBadBoss

The server is started from the command-line:

prampt> Server -CRBoropStorage prop. txt

Obtaining the reference to the top-level container

This example uses the second, or bind method since the Server Manager has been
started with a name (see “Obtaining a Server Manager reference” on page 248).

Ctainer topComtainer = ContainerHelper.bind (orb, "BigBadBoss") ;

Getting all the containers and their properties

The following example shows how get all properties, get all cperatians, and
get all amtainerscan be used to query all the properties and operations of all the
containers below the current container recursively.

public void displayCmtainer (NemedContainer cont, boolean tap) {

// Get All Containers
NamedOmtainer[] nc = omt.value.get all omtainers();

// Get All Properties for the current ootainer
Property[] props=cont.value.get all properties();

// Get All Qperations for the current container
Qperation[] cps=cont.value.get all goerations() ;

//l\bﬁpr:mt all properties and cperations and recurse
// through all containers

Chapter 18: Using the VisiBroker Server Manager 255

Server Manager examples

Getting and Setting properties and saving them into the file

The following code fragment shows how to query a property of a container. If the
container is not the top-level container, it needs to be reached first by traversing
through all its parents from the top container. The get and set methods can be called
only on the container which owns the property.

Note Properties with RW STATUS values of READCNLY ALL are not settable.
public void getSetProperties (Nemeddmtainer topdmt) throws Exception

// Ootain the ORB amtainer from top level aotainer.
Container orbCont=topCont . value.get container ("ORB") .value;

// Qotain the "iicp tp" SM container. This cmtainer is
// contained as follows:

// topQont->0RB->Serverfrgines->iicp tp->iicp tp (the first
// iicp tp is the Serverfrngine name)'

Container iigoCont=cribCont.get container(
"Serverfngines") .value.get container(
"iigp tp") .value.get container(
"iigp tp") .value;

// Cbtain the "bark agent poa" container. This ootainer is
// cntained as follows:
// topCant->0RB->Root POA->Children->bark agent poa
Container poaCont=orbCont .get container (
"RootRA") .value.get cantainer (
"Children") .value.get container(
"bark agent poa') .value;

// get the process Id property fram ORB aontainer
Property procIdProp=oridont .get property ("iroker . orb. procId") ;

// get the listener port property fram iicp tp oomtainer

Property portProp=iigoCmt.get property (
"“oroker.se.iiop tp.sam.iicp tp.listener.port");

// et the upTime property from kenk agent poa container
Property upTimeProp=pcaCont.get property ("upTime") ;

// let the user modify listener port value

org.arg.CORBA. Aty portAny=orb.create any () ;
portAny. insert lang (newPort) ;

iiop0mt.set property(
"oroker.se.iicp tp.sam.iicp tp.listener.port",portAny) ;
// save the updated property to file

iigpQmt.persist properties (true) ;
}

256 VisiBroker for Java Developer's Guide

Server Manager examples

Invoking an operation in a Container

The CORB container supports the operation shutdown. The operation can be obtained by
calling get operatianon the container.

public void invokeShutdown (NemedCntainer topCot) throws Exception
Cmtainer orbCont=topCont.value.get container ("CRB") .value;
System.out .printin ("Executing ShutDown ...");

// Prepare parameter (boolean wait for completion)
org.arg.CORBA. Ay arny=crb.create ary () ;

ary. insert boolean(false) ;

Parameter[] params=new Parameter (1] ;

// Prepare result (void)

params [0] =new Parameter ("waitForCorpletion", amy) ;

org.ang. QORBA. TypeCode result=orb.get primitive tc(
arg.arg. QORBA. TCKind. tk void) ;

// Prepare cperation
Qperation cp=new Qperation("shutdown",params, result);

// Irvcke gperation
oot .do cperation(op) ;

}

The operationreturned by the get operatiancall has the default parameters. If the
default values of the parameters are not the intended ones, these values should be
modified before calling the do cperatian method.

Custom Containers

It is possible for a user application to define containers and add them to the Server
Manager. The container manages two properties and defines one operation. It also
uses its own storage for storing the properties. The two properties are:

Property Description

menager. lockAl1Accounts This property has a read-write status of READWRTTE ALL, SO it can be
modified and takes effect while the server is running. The purpose of
this property is to make AccountManager unavailable for client
applications. The initial value of this property is read by the server on
startup and saved to the same file when server shuts down/restarts.

Enager . ILMACCOUNts This property has a read-write status of READONLY ALL, SO it can only be
read. The purpose of this property is to provide the number of
Accounts in the AccountManager. The value of this property is not
written to the storage.

The operation is:

Operation Description

shutdown Shuts down the server without starting it again. Before shutdown, the
menager . lockAl 1Accaunts property is written (persisted) to the property file.

Chapter 18: Using the VisiBroker Server Manager 257

Server Manager examples

For a complete example, go to:
<install_dir>/examples/vbe/ServerManager/custom_container/

The main steps in writing custom containers is follows:

1 Implement the Container interface defined in Serve Manager IDL.

2 Instantiate the servant that implements the Container interface and activate it on a
POA.

3 Obtain the reference to Server Manager top level container. Add the custom
container to the Container hierarchy.

The server then can be started with the Server Manager enabled and a client can
interact with the custom container.

If you want your application to implement its own storage, it has to implement the
Storace interface defined in Server Manager IDL. The basic steps are same as
implementing custom containers.

258 VisiBroker for Java Developer's Guide

Introduction

Using VisiBroker Native Messaging

Native Messaging is a language independent, portable, interoperable, server side
transparent, and OMG compliant two-phase invocation framework for CORBA and
RMI/J2EE (RMI-over-110P) applications.

Two-phase invocation (2Pl)

In object-oriented vocabulary, invocations are method calls made on target objects.
Conceptually, an invocation is made up of two communication phases:

= sending a request to a target in the first phase
= receiving a reply from the target in the second phase

In classic object-oriented distributed frameworks, such as CORBA, RMI/J2EE, and
.NET, invocations on objects are one-phased (1PI), in which the sending and receiving
phases are encapsulated together inside a single operation rather than exposed
individually. In a one-phased invocation the client calling thread blocks on the operation
after the first phase until the second phase completes or aborts.

If a client can be unblocked after the first phase, and the second phase can be carried
out separately, the invocation is called two-phased (2PI). The operation unblocking
before completing its two invocation phases is called a premature return (PR) in Native
Messaging.

A 2Pl allows a client application to unblock immediately after the request sending
phase. Consequently, the client does not have to halt its calling thread and retain the
transport connection while waiting for a reply. The reply can be retrieved or received by
the client from an independent client execution context and/or through a different
transport connection.

Chapter 19: Using VisiBroker Native Messaging 259

Introduction

Polling-Pulling and Callback models

In a two-phase invocation scenario, after sending out each request the client
application can either actively poll and pull the reply using a poller object provided by
the infrastructure, or the client can passively wait for the infrastructure to notify it and
send back the reply on a specified asynchronous callback handler. These two
scenarios are usually called the synchronous polling-pulling model and the
asynchronous callback model respectively.

Non-native messaging and IDL mangling

In non-native messaging, such as CORBA Messaging, two-phase invocations are not
made with native operation signatures on native IDL or RMI interfaces. Instead, at
different invocation phases, and with different reply retrieve models, client applications
have to call various mangled operations.

For instance, in CORBA Messaging, to make a two-phase invocation of operation
foo (<paremeter 1lists>) on a target, the request sending is not made with the native
signature foo() itself, but it is made with either of the following mangled signatures:

// in polling-pulling model
sendp foo(<irput parameter lists);

// in callback model
sendc foo(<callback handlers, <irput paremeter lists);

The reply polling operation signature is:
foo(<timeout>, <returm and cutput parameter list as outputs) ;
The reply delivery callback operation signature is:
foo(<retum and cutput peremeter list reversed as imputs) ;

These mangled operations are either additional signatures added to the original
application specified interface, or defined in additional type specific interfaces or
valuetypes.

Problems of this non-native and mangling approach are:

= |t ruins the intuitiveness of the original IDL interface and operation signatures.

= It could conflict with other operation mangling, for instance, in case of Java RMI.

= It could collide with operation signatures already used by the original IDL interface.

= [tintroduces interface binary incompatibility. For instance, interfaces with and
without mangled signatures are not necessarily binary compatible in their language
mapping.

= It does not respect the natural mapping between IDL operations and native GIOP

messages, and therefore, introduces inconsistency and dilemmas when used with
other OMG CORBA features, such as Portablelnterceptor.

Native Messaging solution

Native Messaging only uses native IDL language mapping and native RMI interfaces
defined by applications, without any interface mangling and without introducing any
additional application specific interface or valuetype.

For instance, in Native Messaging, sending a request to foo(gparameter list>) and
retrieving (or receiving) its reply in either the polling-pulling or callback models are
made with the exact native operation foo(<parameter 1list>) itself and are made on
native IDL or RMI interfaces. No mangled operation signature and interfaces or
valuetypes are introduced or used.

260 VisiBroker for Java Developer's Guide

Introduction

This pure native and non-mangling approach is not only elegant and intuitive but
completely eliminates conflicts, name collision, and inconsistencies of operation
signature mangling.

Request Agent

Similar to the OMG Security and Transaction Services, Native Messaging is an object
service level solution, which is based on an fully interoperable broker server, the
Request Agent, and a client side portable request interceptor fully compliant with the
OMG Portable Interceptor specification.

When making two-phase invocations, Native Messaging applications do not send
requests directly to their target objects. Instead, request invocations are made on
delegate request proxies created on a specified Request Agent. The request proxy is
responsible for delegating invocations to their specified target objects, and delivering
replies to client callback handlers or returning them later on client polling-pulling.

Therefore, a request agent needs to be known by client applications. Usually, this is
accomplished by initializing the client ORB using OMG standardized ORB initialization
command arguments:

-CRBInitRef RequestAgent=<request agent ior or urls
This command allows client applications to resolve the request agent reference from
this ORB as an initial service, for instance:

// Getting Request Agent reference in Java
org.ang.CORRA. Qoject ref

= arb.resolve initial references("RequestPgent");
NativeMessaging. RequestigentEx agent

= NativeMessaging.RequestPgentExtlelper.narrow (ref) ;

By default, the URL of a request agent is:

corkaloc: : <host>: <port>/Requestiogent

Here, <host> is the host name or dotted IP address of a RequestAgent server, and
<port> is the TCP listener port number of this server. By default, NativeMessaging
RequestAgent uses port 5555.

Native Messaging Current

Similar to the OMG Security and Transaction Services, Native Messaging uses a
thread local Current object to provide and access additional supplemental parameters
for making two-phase invocations. These parameters include blocking timeout, request
tag, cookie, poller reference, reply availability flag, and others. Semantic definitions
and usage descriptions of these parameters are given in later sections. Similarly, the
Native Messaging Current object reference can be resolved from an ORB as an initial
service, for instance:

// Getting CQurrent doject reference in Java
org.ang.CORRA. Qoject ref

= arb.resolve initial references("NativeMessagingCrrent") ;
NativaMessaging.Qurrent current

= NativaMessaging. QurrentHelper . narrow (ref) ;

Chapter 19: Using VisiBroker Native Messaging 261

StockManager example

Core operations

A two-phase framework allows all normal invocations to be carried out in two separate
phases manageable by client applications. Nevertheless, on fulfilling or using this two-
phase invocation service, the framework and/or client may need some other primitive
core functions from the framework. Operations used to access primitive core functions
are called core operations. It is desirable that:

= Core operations are always accomplished in a single phase. An invocation on a
core operation always blocks until it completes or aborts.

= Core operations are always orthogonal to any normal two-phase invocations that
they are involved in.

In Native Messaging, all pseudo operations are reserved as core operations.

Note In this document, if not explicitly stated, “invocation” or “operation” implies a non-core
two way operation.
StockManager example
The StockManager example is used in this section to illustrate the Native Messaging
usage scenarios. This example is abridged from the full scale version that is shipped
with the product in the <install dirs/examples/vbe/NativeMessaging/stock menager
directory, and it is provided to illustrate functionality that is equivalent to the CORBA
Messaging StockManager example.
The following example assumes a server object has its IDL interface, StockManager,
defined as follows:
// fram: <install dirs/examples/vie/NativeMessaging/
// stock menager/StockMenager . idl
interface StockMenager
boolean add stock (in string symbol, in float price) ;
boolean find closest symbol (inout string symool) ;
}i
A conventional single-phase add stock() or find closest symbol () call adds a stock
symbol to or finds a symbol in the targeted stock manager server. The following is an
example of the invocation code:
// irvoke ard block until return
boolean stock added = stock menager.add stock ("AQVE", 100.5) ;
arg.org. QORBA. StringHolder symbol holder
= new arg.org.ORBA. StringHolder ("AQVR") ;
boolean closest found
= stock menager.find closest symbol (symbol holder) ;
In the above one-phase invocation case, the invocations are blocked until the client
receives its returns or exceptions.
Using Native Messaging, two-phase invocations can be made on the same stock
manager server. Replies to these invocations can be retrieved or returned using the
synchronous polling-pulling model or the asynchronous callback model, as illustrated in
the “Polling-pulling model” on page 263, and “Callback model” on page 264.
Note This document illustrates the StockManager example code in C++. The corresponding

Java code is available in Chapter 19, “Using VisiBroker Native Messaging.”

262 VisiBroker for Java Developer's Guide

StockManager example

Polling-pulling model

In the polling-pulling model, the result of a two-phase invocation is pulled back by client
applications. The steps for Native Messaging polling-pulling two-phase invocations are
summarized below.

1 Create a request proxy from a Native Messaging Request Agent. This proxy is

created for a specific target object (a stock manager server in our example) and is
used to delegate requests to the target.

Get the typed receiver or <I> interface of this proxy. This typed receiver is used by
the client application to send requests to the proxy. The typed receiver of a proxy
supports the same IDL interface as the target object. In this example, the typed
receiver supports the StockManager interface and can be narrowed down to a typed
StockManager stub.

Perform the first invocation phase, making several invocations on the typed receiver
stub. By default, invocations on a typed receiver are returned with dummy output
and return values. This is called a premature return. Receiving a premature return
from proxy's typed receiver without raising an exception indicates that a two-phase
invocation has been successfully initiated. It indicates that the request has been
accepted and assigned to a distinct poller object by the request agent. The poller
object of a two-phase invocation is available from the local NativeMessaging
Current. Like the typed receiver, all poller objects also support the same IDL
interface as the target (in this example the StockManager).

Carry out the second phase of the invocation, polling availability and pulling replies
back from the poller objects. The client application narrows the poller objects to their
corresponding typed receiver stubs (StockManager in this example) and invokes the
same operations as those invoked in the request sending phase. When making an
invocation on poller objects input parameters are ignored. Also, the agent does not
deliver new requests to the delegated target object. The agent treats all invocations
made on the poller object as polling-pulling requests. Usually, a timeout value can
be provided as a supplemental parameter through NativeMessaging Current to
specify the maximum polling blocking timeout. If the reply is available before the
timeout, the polling invocation will receive a mature return with output parameters
and a return result from the real invocation. Otherwise, if the reply is not available
before the timeout expires, the poll ends up with a premature return again.
Applications should use the reply not available attribute of Native Messaging
Current to determine whether a polling return is premature.

The following code sample illustrates how to use Native Messaging to make polling-
pulling two-phase invocations on a stock manager object:

// from: <install dirs/exanples/vbe/NativeMessaging/
// stock menager/PollingClient . java

// 1. create a request praxy fram the request agent for meking
// nm-blocking requests on targeted stock meneger server.
RequestProxy proxy = agent.create request proxy(

stock menager, "", mill,

new NameValuePair [0]) ;

// 2. Get the request receiver of the proxy
StockManager stock menager rcv
= StockMenagerHelper . narrow (proxy . the receiver()) ;

// 3. serd two requests to the receiver, ard get

// their reply pollers from the Native Messaging Current.
StockiVenager [] pollers = new StockVenager [2] ;

stock memager rcv.add stock ("AQVE", 100.5);

pollers[0] = StockManagerHelper.narrow(current.the poller()) ;

Chapter 19: Using VisiBroker Native Messaging 263

StockManager example

Note =

Stringtolder symbol holder = new StringHolder ("AQR") ;
stock menager rev. find closest synool (symool holder) ;
pollers[1] = StockManagerHelper.narrow (current.the poller()) ;

// 4. Poll/pull the two associated replies.
current.wait timecut (mex timecut);

boolean stock added;
do { stock added = pollers[0] .add stock("", 0.0); }
while (current . reply not available()) ;

boolean closest fourd;
do { closest fourd = pollers[1].find closest symbol (symbol holder) ; }
while (current.reply not available()) ;

In Native Messaging, the request sending phase and the reply polling-pulling phase
of a two-phase invocation all use the same operation signature. This operation used
by both phases of a two-phase invocation is exactly the same native operation
defined on the actual target's IDL interface.

Poller objects are normal CORBA objects with location transparency. Therefore, in
Native Messaging, it is not necessary to carry out the request sending phase and
the reply polling phase of a two-phase invocation in same client execution context
and through same transport connection.

If there is an exception in polling-pulling phase, the application should use the
Current reply not available attribute to determine whether the exception is the
result of a reply polling-pulling failure, or the successful pulling of a real exceptional
result of the delegated request. TRE indicates that the exception is a polling-pulling
failure between the client and agent. FALSE indicates that the exception is the real
result of the delegated request.

In a premature return, Native Messaging sets all non-primitive output parameters
and the return value to null. This is similar to the OMG non-exception handling C++
mapping except Native Messaging uses a local Current object rather than the
CORBA Environment.

Additional features, variances of the polling-pulling model, and Native Messaging API
syntax and semantics specification are discussed in “Advanced Topics” on page 267
and “Native Messaging API Specification” on page 274.

Callback model

Using the Native Messaging callback model, applications are unblocked immediately
after they send out requests to a proxy's typed receiver. Replies to these invocations
are delivered to a callback reply recipient that is specified upon creating the request

proxy.
The steps to make Native Messaging two-phase invocations in the callback model are
summarized below:

1 Create a request proxy from a Native Messaging Request Agent. This proxy is

created for a specific target object. Like the polling-pulling model, this proxy will be
used to delegate requests to the specified target. A reply recipient callback handler,
which is a null reference in the polling-pulling model, is also specified on creating
this request proxy. The request agent will deliver to the callback handler any newly
available replies to requests delegated by this proxy.

Like the second step in the polling-pulling model, get the typed receiver, or <I>
interface, of this proxy and narrow it down to a typed <I> stub (a StockManager stub
in this example).

264 VisiBroker for Java Developer's Guide

Note

StockManager example

3 Like the third step in the polling-pulling model, perform the first invocation phase by
making several invocations on the proxy's typed receiver stub. By default,
invocations on a typed receiver are returned with dummy output and return values.
This is called a premature return. A premature return on a proxy's typed receiver
without an exception indicates a two-phase invocation has been successfully
initiated.

4 Complete the second phase of the invocation, which is to receive replies. In the
callback model, this is done asynchronously in a completely independent execution
context. Client applications implement and activate a reply recipient object. This
callback object is type unspecific, that is it does not depend on the real target's IDL
interface. The key operation of this callback handler is the reply available () method
which is discussed below after the code sample.

The following code sample illustrates the first three steps for using Native Messaging to
make callback model two-phase invocations on a stock manager object:

// from: <install dirs/exanples/vie/NativeMessaging/
// stock menager/CallbackClient. java

// get type independent callback hardler reference
NativeMessaging.ReplyRecipient reply recipient = ..;
// 1. create a request praxy from the request agent for
// weking non-blocking requests an targeted stock menager server.
RequestProxy proxy = agent.create request proxy (

stock menager, "", reply recipient,

new NemeValuePair[0]) ;

// 2. Get the request receiver of the proxy
StockManager stock menager rcv
= StockManagertelper . narrow (praxy . the receiver()) ;

// 3. serd two requests to the receiver.

stock menager rov.add stock ("AQVE", 100.5) ;

StringHolder symbool holder = new StringHolder ("AQVR") ;

Stock menager rev.find closest symbol (symbol holder) ;
Here, the reply recipient callback handler is a NativeMessaging: :ReplyRecipient object
regardless the specific application target types. The ReplyRecipient interface is defined
as

// fram: <install dirs/idl/NativeMessaging.idl

interface NativeMessaging: :ReplyRecipient
void reply available(
in doject reply holder,
in string operatim,
in sequence<octet> the codkie) ;
)i
}i
The reply holder parameter of reply available() is called a reflective callback
reference, which is the same as a reply poller object of the polling-pulling model and
can be used by the reply available() implementation to pull back the reply result in the
same way a polling-pulling client would pull back a reply result from a poller object.

In delivering replies to a callback handler, Native Messaging uses the double dispatch
pattern to reverse the callback model into a polling-pulling model. Here, a reply
recipient implementation makes a second (reflective) callback on a typed reply holder
reference to retrieve the reply.

Chapter 19: Using VisiBroker Native Messaging 265

StockManager example

The following code sample is an example implementation of reply available() method:

// from: <install dirs/exanples/vbe/NativeMessaging/
// stock menager/AsyncStockRecipient . java

void reply available(
ang.org.QORRA.Qoject reply holder,
String cperatin,
byte[] cockie)

StockiVenager poller
= StockManagerHelper .narrow (reply poller) ;

// retrieve response using reflective callback
if (operation.equals("add stock")) {
// retrieve a add stock() return
boolean stock added = poller.add stock ("™, 0.0);

}
else
if (operation.equals("find closest symol")) {
Stringiolder synbol holder = new StringHolder("") ;
// retrieve a find closest symool () retum
boolean closest found
= poller.find closest symbol (symool holder) ;

}

Note = In Native Messaging, the request sending phase and the reply receiving phase of a
two-phase invocation both use the same operation. The operation used by both
phases of a two-phase invocation is exactly the same native operation defined on
the actual target's IDL interface.

= Reply recipient objects are normal CORBA objects and are location transparent.
Therefore, in Native Messaging, the reply recipient callback object is not necessarily
located within the request sending client process.

= If an exception is raised when the reply available() implementation retrieves a
reply from the reply holder, the application should use the Current
reply not availableattribute to determine whether the exception reports retrieving a
failure or a successful reply retrieval of a real exceptional result of the delegated
request. TRUE indicates that this exception is the result of a reply retrieval failure
between the client and agent. FALSE indicates that this exception is a real result of
delegated request.

= Reply retrieval operations on reply holder should only be made within the scope of
the reply available() method. Once the application returns from reply available(),
the reply holder may no longer be valid.

Additional features, variances of the polling-pulling model, and the Native Messaging
API specification are discussed in “Advanced Topics” on page 267 and “Native
Messaging API Specification” on page 274.

266 VisiBroker for Java Developer's Guide

Advanced Topics

Advanced Topics

Group polling

As illustrated in previous sections, multiple requests can be delegated by a given
request proxy. However, as different requests take different processing time, replies
from them are not necessarily ready in the order in which they were invoked. Instead of
polling individual requests one by one, group polling allows a polling client application,
which has multiple requests delegated by a given request proxy, to determine the
availability of replies in an multiplexed aggregation.

In order to participate in group polling, a request sent to a given proxy needs to be
tagged. Request tags are assigned by clients to identify requests in the scope of their
group, namely the request proxy. Native Messaging does not impose any constraint on
request tag content, except that they must be unique within the scope (request proxy).
Untagged requests (requests with empty tags) do not participate in group polling, and
the availability of their replies is not reported by group polling results.

The steps for using group polling are summarized below.

1 Send tagged requests. To tag a request, a client application simply sets the
request_tagattribute of the local Native Messaging Current object before making
each invocation on the typed receiver interface (before delivering each request).
The content of each request tag is specified by application for its own convenience,
as long as it is unigue within its scope (proxy).

2 Poll reply availability on the request proxy, instead of on any individual poller, by
calling the proxy's poll (mex timeout, umesk) operation. This operation will block
until timeout, or until any tagged requests delegated by this proxy are ready for
mature return, at which time their tags will be put in the returned request tag
sequence. An empty tag sequence return indicates a timeout has expired.

3 Retrieve reply results from individual pollers, which have reported that they are
ready for mature return by the group polling return result.

The following code sample illustrates above steps of using Native Messaging group
polling feature:

// fram: <install dirs/examples/vie/NativeMessaging/

// stock menager/GroupPollingClient . java

StockMemager pollers(] = new StockMenager [2] ;

// serd ane tagged request

current.request tag("0".getBytes());

stock menager rov.add stock ("AQVE", 100.5) ;

pollers[0] = StockManagerHelper.narrow (current.the poller()) ;

// serd ancther tagged request

current.request tag("1".getBytes()) ;

StringHolder symbol holder = new StringHolder ("AQR") ;

Stock menager rov. find closest symbool (symool holder) ;
pollers[1] = StockMenagerHelper.narrow (current.the poller()) ;

// polling request availability on proxy and retrieve their replies
bytell [tags = rull;
while (true) {
// polling availability
try {
tags = praxy.poll (mex timecut, true);

catch (Pol linoGroupTskrpty e) {
proxy . destroy (true) ;
break;

7

Chapter 19: Using VisiBroker Native Messaging 267

Advanced Topics

Note

// retrieve replies
for (int i=0;i<tags.length;i+) {
int id = Integer.parselnt (new String(tags(il));

switch(id) {
case 0: // the first tagged request sent above
boolean stock added;
stock added = pollers[0] .add stock ("", 0.0);
break;

case 1: // the secard tagged request sent above
boolean closest found;
closest fourd
= pollers[1] .find closest symool (symool holder) ;
reak;

default:
reak;

}

= After each invocation, the Current request tagattribute is automatically reset to
empty or null.

= Try to initiate a 2PI on a proxy with a request tagalready used by another 2PI or the
proxy will end up with a CORBA BAD INV ORDER exception with minor code
NativeMessaging: :DUPLICATED REQUEST TAG

= The umesk parameter of the poll () operation on a request proxy specifies whether
the poll () should unmask all mature requests. If they are unmasked, they will not be
involved and reported by the next poll().

= If all requests on a proxy are not tagged or unmasked, poll () will raise a
PollingGroupIskpty exception.

Cookie and reply de-multiplexing in reply recipients

As illustrated in previous sections, multiple requests can be delegated by a given
request proxy. In the callback model, all replies to these requests will be sent back to
the same reply recipient object specified on creating the proxy. The challenge is how
the client demultiplexes different replies on one ReplyRecipient callback handler.

Applications using OMG CORBA Messaging also face the same challenge. To avoid
activating many callback objects, CORBA Messaging suggests that applications use a
POA default servant or servant manager to manipulate callback objects, and assign
different object IDs to different callback references. Although this avoids many callback
objects being activated in the reply recipient process, it is inflexible and far from an
efficient scenario, because it requires an object reference to be created and marshaled
for sending each callback request.

Native Messaging supports two demultiplexer mechanisms, which can be used either
together or alone depending on the required demultiplexer granularity. A coarse
grained demultiplex, but handy mechanism, is simply demultiplexing by operation
signature, which is available within the ReplyRecipient's reply available() callback
method. This is the mechanism used in some of the previous examples.

268 VisiBroker for Java Developer's Guide

Advanced Topics

A more effective demultiplexing mechanism in the Native Messaging callback scenario
is using request cookies. A request cookie is an octet sequence (or byte array). Its
content is specified by client applications on the Native Messaging's Current object
before sending a request. The specified cookie is passed to the reply recipient's

reply available() method on delivering the reply of that request. There is no constraint
on the content of a cookie, not even a unigueness requirement. Contents of cookies
are decided solely by applications for their own convenience and efficiency on callback
demultiplexing.

The following code sample illustrates how to assign cookie to a request:

// serd a requests with a cockie
current.the cockie("add stock".getBytes()) ;
stock menager rov.add stock ("AQVE", 100.5) ;

// serd ancther request with a different cookie

current.the codkie ("find symbol".getBytes()) ;

Stringtolder symbool holder = new StringHolder ("AQVR") ;

stock menager rev. find closest symbol (symbol holder) ;
The following code sample illustrates how to use attach cookies to demultiplex by reply
recipient:

void reply available(
ang.org.QORBA.Qoject reply poller,
String cperatimn,
byte[] cockie)

StockManager poller
= StockManagerHelper .narrow (reply poller) ;
String id = new String(codkie) ;

if (id.equals("add stock")) {
boolean stock added.add stock ("™, 0.0) ;

}

else
if (id.equals("find symool™)) {
Stringiolder synbol holder = new Stringtolder (") ;
boolean closest fourd
= poller.find closest symbol (symbol holder) ;

}

Evolving invocations into two-phases

Compared to conventional single-phase invocations, two-phase invocations incur
additional reply polling communication round trips. For a long duration heavyweight
task, latency from few additional communication round trips is insignificant. However,
for a lightweight transient invocation, this latency can be undesirable.

It is ideal for applications if lightweight transient invocations can be completed in a
single-phase without incurring additional latency, and heavyweight long duration
invocations can automatically be performed in two separated phases without holding
client execution context and transport connection.

Chapter 19: Using VisiBroker Native Messaging 269

Advanced Topics

In Native Messaging, this can be achieved with the evolve into two-phase invocation
feature. By default, invocations on a proxy's typed receiver always end up with
premature returns along with their reply results to be polled back or delivered through
callbacks later in a separate invocation phase. The evolve into two-phase feature
allows invocations on a proxy's typed receiver to block and end up with a mature return
if it can be accomplished before a specified timeout expires. Otherwise, if the
invocation cannot complete before the timeout expires, it will evolve into a two-phase
invocation by taking a premature return. To determine whether an invocation on a
proxy's typed receiver has evolved into a two-phase invocation, the application can
examine the reply not availableattribute of the local Native Messaging Current object
after the return.

To use this feature:
= The request proxy should be created with a WaitReply property with a value of TRUE

= Setthe wait timecut attribute of Native Messaging Current to a non-zero value
(milliseconds) before the invocations.

= After each invocation on the typed receiver, determine whether a return is
premature by examining the reply not available attribute of the local Native
Messaging Current object after each invocation.

= If areturn is premature, get the returned poller object from the local Current to poll
the reply in separate phase later.

The following code sample illustrates how to use the evolve invocations into two-
phases:

// Create a reguest praxy with WaitReply property TRUE
org.ang.ORRA. NareValuePair 1v = new org.ang. CORRA. NameValuePair () ;
v.id = new String("WaitReply") ;
nv.value = orb.create any() ;
nv.value. insert boolean (true) ;
org.arg.QORBA . NaneValuePair[] props

= new org.ary. QORBA. NemeValuePair [] {rv} ;

RequestProxy proxy
= agent.create request proxy (stock menager, "", rull, props);

// Get the typed receiver of this proxy
StockMenager stock menager rov
= StockMaragertelper . narrow (praxy . the receiver()) ;

// Set wait timecut attribute to 3 secands
current.wait timecut (3000) ;

// meke an irvocation an the receiver.
boolean stock added = stock menager rov.add stock ("AQME", 100.5) ;

// check whether it has evolved into a two-phase irvocation.
if (current.reply not available() = false) {

// It is not evolved. The returmn above is mature.

// Tre cb has dore.

retum;

}

// It has evolved into a two-phase invocation.

// We ghould get the poller and poll its reply.

StockManager poller = StockManagerHelper.narrow (current.the poller()) ;
do { stock added = poller.add stock (", 0.0); }

while (current . reply not available())

270 VisiBroker for Java Developer's Guide

Notes

Notes

Advanced Topics

= [If an operation on a proxy's typed receiver can be completed before it evolves into a
two-phase invocation on timeout, there will be no poller generated, nor will a
callback be made on the reply recipient to deliver the reply.

= |If an exception is raised from blocking on a proxy or polling reply, the application
should use the reply not available attribute of Native Messaging Current to
determine whether the exception reports a request delivering or reply polling failure
orifitis a real result of delegating the request. A value of TRUE for this attribute
indicates that this exception is a reply delivering or polling failure between the client
and agent. FALSEindicates that this exception is a real result of delegating the
request.

Reply dropping

In the callback model, by default, a request agent sends whatever result, return or
exception, of the invocation back to the reply recipient. Reply dropping allows specified
types of reply results to be filtered out. This is useful, for instance, if applications want
to invoke one-way requests with no result to be returned, but would still be notified if
any invocations fail.

Native Messaging allows applications to specify a ReplyDrogping property on creating a
request proxy. This property specifies which types of returns should be filtered out from
being sent to the reply recipient. The value of this property is an octet (or byte) with the
following filtering rules:

= if(value & 0x01 == 0x01) drop normal replies
= if(value & 0x02 == 0x02) drop system exceptions
= if(value & 0x04 == 0x04) drop user exceptions

For example, a value of 0x06 for this property lets the request agent drop all exceptions,
system as well as user, on requests delegated by this proxy.

The following example code illustrates setting the ReplyDropping property:

// Create a request proxy with ReplyDropgping property
// with value 0x01 (dropping all normel replies) .
org.org.CQORRA. NaneValuePair 1v = new org.ang.QORBA. NameValuePair () ;
nv.id = new String("ReplyDrogping") ;
nv.value = orb.create any() ;
nv.value. insert octet (0x01) ;
org.ang.CORRA. NarmeValuePair [] props
= new org.ang.CORBA. NemeValuePair [] {rv} ;

RequestProxy proxy
= agent.create request proxy (stock menager, "",
reply recipient, props);

= Reply dropping only applies to the callback model. If the reply recipient reference

passed to the create request praxy () is null, the reply dropping property is ignored.

= If the value of the reply dropping property in create request praxy () is not 0x00, and
the reply recipient reference is not null, invocation on this proxy's typed receiver
will not return a poller object on Native Messaging Current.

Chapter 19: Using VisiBroker Native Messaging 271

Advanced Topics

Note

Note

Manual trash collection

By default, a poller object will be trashed immediately after a polling operation on it
results in a mature return. In the callback model, once the callback is returned, a
request agent also trashes the poller regardless of whether the application has
retrieved the reply within the callback reply available() operation. Polling on a trashed
object raises a CORBA CBIECT NOT EXIST exception and the Current
reply not available attribute is set to TRUE

If a request proxy is created with a RequestMarual Trash property of value TRUE, poller
objects of requests delegated by this proxy are not trashed automatically. Polling on
these poller objects after a reply becomes available is idempotent, returning the same
result every time.

These poller objects can be manually trashed if an application no longer needs them.
To manually trash poller objects, applications simply call the destroy request ()
operation on the request agent, with the poller to be trashed as a parameter. For
example,

agent .destroy request (poller) ;

Pollers of requests delegated by an auto-trashing proxy can also be trashed manually.
This makes sense when replies on these pollers are either not yet available or have not
been polled back.

Unsuppressed premature return mode

The key concept of Native Messaging is unblocking from a native operation after its
first invocation phase. In Native Messaging, this is called premature return. There are
two premature return modes in Native Messaging: suppressed mode and
unsuppressed mode. All of the discussions so far used the default suppressed mode.
In suppressed mode, the premature return is a normal operation return, except that it
contains dummy output and return values. This is similar to an exceptional return in
non-exception handling in the OMG C++ mapping, except that Native Messaging uses
a thread local Current object instead of an additional Environment parameter.

Suppressed premature return mode is handy, however, it requires client-side mapping
support. Namly, it assumes the IDL precompiler generated client-side stub code
catches and suppresses premature return exceptions. To port client applications to an
ORB, its IDL precompiler does not generate premature return suppressed client-side
stub code, the unsuppressed premature return mode can be used.

In Native Messaging unsuppressed premature return mode, a native operation is
unblocked by simply raising an RNa exception, that is a CORBA NO RESEONSE exception
with minor code REPLY NOT AVATIARIE TO use unsuppressed premature return mode, an
application needs to turn off suppressed mode by calling supporess mode (false) on
Native Messaging Current, and it needs to catch and handle the R® exceptions
accordingly.

To ensure that the code is portable to both suppressed and unsuppressed modes, it is
recommended that applications use the Current reply not available attribute in
unsuppressed mode, rather than the R\ exception and minor code to determine the
maturity of a return.

272 VisiBroker for Java Developer's Guide

Advanced Topics

The following example code illustrates the StockManager polling example in
unsuppressed mode. This code is not only portable to all ORBs, but also portable to
suppressed mode as well.

// fram: <install dirs/examples/vie/NativeMessaging/
// stock menager/PollingClientPortable. java

void yield non ma(org.amy.CORBA.NO RESEONSE e) {
if (e.minor != NativeMessaging.REPLY NOT AVATIARIE.value) {
throw e;
}

}

// tum off suporess mode
current . suppress mode (false) ;

// serd several requests to the receiver, and get

// their reply pollers fram the Native Messaging Current.
StockManager pollers (2] ;

try{ stock menager rov.add stock ("AQVE", 100.5)); }

catch (org.ang. CORBA.NO RESFONGE €) { yield non mal(e); }
pollers[0] = StockMenagerHelper.narrow (current.the poller()) ;
Stringiolder symbol holder = new Stringdolder ("AQA") ;

try{ stock menager rov.find closest symool (synbol holder)) ; }
catch (org.amy.CORRA.NO RESEAEE e) { vield non mafe); }
pollers[l] = StockManagerHelper.narrow (current.the poller()) ;

// poll the two associated replies.
current.wait timecut (mex timeout);

boolean stock added;

do { try{ stock added = pollers[0] .add stock("", 0.0)) }
catch (org.ang. CORBA.NO RESENGE e) { yield nn male); } }

while (current . reply not available()) ;

boolean closest fourd;

do { try{ closest foud = pollers[1].find closest symol (symbol holder)) }
catch (org.ang. CORBA.NO RESEANSE e) { yield non male); } }

while (current.reply not available()) ;

Suppress poller generation in callback model

By default, pollers are generated even in the callback model. This allows:
= Applications to trash a request before it completes.
= Applications to retrieve replies independent of their reply recipients.

However, generating and sending back poller references incurs additional overhead.
Native Messaging allows applications to suppress (disable) poller reference generation
in the callback model.

To suppress a poller in the callback model, applications only need to create a request
proxy with the CalllackOnly property set to TRUE In this case null pollers are returned.

Chapter 19: Using VisiBroker Native Messaging 273

Native Messaging API Specification

Native Messaging API Specification

Note Several operations and attributes in the Native Messaging IDL definition are not
specified in this document. They are either value added features, depreciated features,
or reserved for further extension.

Interface RequestAgentEx

This is the interface of the Native Messaging Request Agent. A request agent is
responsible for delegating invocations to their specified target object and delivering
return results to client callback handlers or returning them later on client polling. See
“Request Agent” on page 261 for more information.

create_request_proxy()

RequestProxy
Create request proxy (
in doject target,
in string repository id,
in ReplyRecipient reply recipient,
in PropertySeq properties)
raises (TrvalidProperty) ;
The create request praxy () method creates a request proxy to delegate two-phase
invocations to the specified target object.

Argument Description

target The target of all requests to be delegated by this proxy.

repository id This is the assigned repository ID of the typed receiver, reply poller, and reply
holder from this proxy. If this parameter is an empty string, the target's
repository ID is used. This ID is used by Native Messaging to fulfill _is a()
semantics on typed receiver, reply poller, and reply holder.

reply recipient The reply recipient callback handler. When replies become available the
request agent calls back its reply available() operation to send back reply
results. A ruill reply recipient implies the polling-pulling model.

properties Properties to specify non-default semantics of the proxy. Supported
properties include:
= WaitReply. A boolean property with default value FALSE See “Evolving
invocations into two-phases” on page 269 for more information.

= RequestMenualTrash: A boolean property with default value FALSE See
“Manual trash collection” on page 272 for more information.

= ReplyDropping. An octet property with default value 0x00. See “Reply
dropping” on page 271 for more information.

= Callbackonly: A boolean property with default value FALSE. See “Suppress
poller generation in callback model” on page 273 for more information.

Exception Description

InvalidProperty This exception indicates that an invalid property name or value is used in the
properties list. The property name is available from the exception.

274 VisiBroker for Java Developer's Guide

Note

Native Messaging API Specification

destroy_request()
void
destroy request (
in doject poller)
raises (RequestNotExist) ;
This method is used to manually trash a poller object. See “Manual trash collection” on
page 272 for more information.

Argument Description
poller the poller to be trashed.
Exception Description

RequestNotExist This exception indicates the poller to be trashed is not available.

Interface RequestProxy

Request proxies are created by an application from a request agent in order to
delegate requests to the specified target and with the specified semantic properties.
See “create_request_proxy()” on page 274.

the_receiver
readonly attribute doject the receiver;

This attribute is the proxy's typed receiver reference. The type receiver of a proxy
supports the same IDL interface as the specified target and is where applications send
their requests to be delegated by the proxy.

= By default, calling operations on a proxy's typed receiver initiates two-phase
invocations to be delegated by this proxy. These calls will be unblocked and yield
distinct reply pollers.

= |If the proxy is created with a WaitReply property value of TRUE and the request on
the receiveris called with a non-zero wait timeout, the request agent will try to
delegate the request as single-phase invocation before the timeout expires. If the
agent does not receive a reply from the target before the timeout expires, it will
unblock the client and the request will evolve into a two-phase invocation. After
unblocking from a call on the receiver, applications can use the Current
reply not available attribute to determine whether the request has evolved into a
two-phase invocation. See “reply_not_available” on page 278.

= |IDL one-way operations only have one invocation phase intrinsically, therefore, one-
way invocations on a proxy's typed receiver do not yield poller objects. The agent
simply forwards them to their targets without going through a second invocation
phase.

= Core operations on a proxy's typed receiver are handled synchronously; they will be
blocked until a mature return or exception. Calling core operations on typed
receivers does not imply initiating two-phase invocations. For instance, a
_non exdstent () call on a proxy's typed receiver only implies a ping on the receiver
itself, not on the real target.

Chapter 19: Using VisiBroker Native Messaging 275

Native Messaging API Specification

poll()
RequestIdSeq
poll(
in wnsigned lag timeout,
in boolean umesk)
raises (Pol lingGroupIshrpty) ;
This method performs group polling. See “Group polling” on page 267 for more
information.
Argument Description
timecut specifies the maximum length of time, in milliseconds, that this method
will wait for any tagged request to become available. If no tagged request
becomes available before the timeout expires an empty RequestIdSeqis
returned.
umesk specifies whether a tagged request, its tag is in the returned sequence,
should be unmasked. Once unmasked, a tagged request will no longer
be involved in subsequent group polling.
Exception Description

PollingGrouplskhpty This exception indicates there are no tagged or unmasked requests
pending on this proxy.

destroy()
void
destroy (
in boolean destroy requests) ;

This method destroys a request proxy.

Argument Description
destroy requests if TRUE, all requests delegated by this proxy are trashed.

Local interface Current

A local Native Messaging Current object is used by an application to specify and
access additional information before and after a two-phase invocation. The Current
object can be resolved from the local ORB as an initial reference. See “Native
Messaging Current” on page 261 for more information.

suppress_mode()

void

suppress mode (

in boolean mode) ;

This sets the current premature return mode. In suppressed mode, two-phase
invocations are unblocked after the first phase in a normal return, except that it
contains dummy output and return values. In unsuppressed mode, two-phase
invocations are unblocked after the first phase by an R\e exception (a CORBA

NO _RESPCONSE exception with minor code of NativeMessaging: :REPLY NOT AVAILARLE). See
“Unsuppressed premature return mode” on page 272 for more information.

Argument Description

de specifies whether the suppressed mode is used.

276 VisiBroker for Java Developer's Guide

Note

Note

Native Messaging API Specification

wait_timeout
attribute unsigned long weit timeout;

This attribute specifies the maximum number of milliseconds a two-phase invocation
will block on sending a request or on polling a reply. On timeout, Native Messaging
unblocks the call with a premature return.

the_cookie
attribute Cockie the cockie;

This attribute specifies the cookie to be sent immediately following the invocation on a
proxy's typed receiver. By default, the cookie is empty. A non-empty cookie can be
used by reply recipient to do more application-specific demultiplexing. See “Cookie
and reply de-multiplexing in reply recipients” on page 268 for more information.

request_tag

attribute RequestTeg request tag;

This attribute uniquely identifies the request immediately following an invocation on a
proxy's typed receiver. By default the tag is initially empty, and it is reset to empty after
sending the request. Requests with non-empty tags are involved in group polling. See
“poll()” on page 276 and “Group polling” on page 267.

= After each invocation, the Current request tagattribute is automatically reset to
empty or null.

= Attempting to initiate a 2P1 on a proxy with a request tagpreviously used by another
2P1 on the proxy will result in a CORBA B2D INV CRDER exception with minor code
NativeMessaging: :DUPLICATED REQUEST TAG

the_poller
readonly attribute doject the poller;

This attribute returns the poller object reference just after delivering a request through
an invocation made on a proxy's typed receiver. Poller objects are used by client
applications to fulfill the reply polling-pulling phase of two-phase invocations.

= A client application should call the same operation used in initiating the two-phase
invocation on the given poller object to poll and retrieve the return result. Calling an
operation on the poller that does not match the one used in initiating the two-phase
invocation will result in a CORBA BAD OPERATIQN exception, and the value of the
Current reply not available attribute will be TRUE

= Poller objects are normal CORBA objects with location transparency. Therefore, in
Native Messaging, the request sending phase and the reply polling phase of a two-
phase invocation are not necessarily carried out in same client execution context
and through same transport connection. A client application can accomplish the first
invocation phase and get the poller object, then perform the polling in a completely
distinct client execution context, in a different process, and through a different
transport connection.

= If an exception is raised in the reply polling-pulling phase, an application should use
the Current reply not available attribute to determine whether the exception
reports a reply polling-pulling failure or a successful reply pulling of a real
exceptional result of the delegated request. TRUE indicates that this exception is a
polling-pulling failure between the client and agent. FALSE indicates that this
exception is the real result of the delegated request.

Chapter 19: Using VisiBroker Native Messaging 277

Native Messaging API Specification

Core operations made on poller objects are orthogonal to two-phase invocations
pending on them. For instance, is a() or nm existent() on a poller does not
imply reply polling-pulling on the pending two-phase invocation, but only implies a
repository ID comparison and non-existence check on the poller object itself.

reply_not_available

readonly attribute boolean reply not available;

This attribute reports the consequence of an unblocked (either normal return or
exception) call on a proxy's typed receiver, reply poller, or reply holder, as summarized
by the following table.

Reply_not_availableq True False True False
Called object Proxy's typed Reply poller or
receiver holder
Normal return, 2Pl initiated 2Pl completed (poller only) Reply 2Pl completed
no exception (premature) not available
(premature)
RNA exception 2Pl initiated N/A (poller only) Reply N/A
(unsuppressed mode) (premature) not available
(premature)
Exception other 2Pl initiation 2Pl completed Polling-pulling 2P1 completed
than RNA failure (target failure) failure (target failure)

The terms in the above table are defined as follows:

2Pl initiated: This is the result when an operation made on a proxy's typed receiver
results in a normal return or an RN& exception (in unsuppressed mode), and the
Current reply not availableattribute is TRUE This is one of the two premature return
cases in Native Messaging. By default, a reply poller of this initiated two-phase
invocation is available on Current after the call.

2Pl initiation failure: This is the result when an operation made on a proxy's typed
receiver results in an exception other than R®, and the Current reply not available
attribute is TRUE. This outcome indicates either that the agent has rejected the two-
phase invocation, or the client failed to receive agent's premature reply message.
No reply poller is available on Current. If this is caused by a communication failure
on receiving a premature reply message, the agent will still delegate the request and
may even generate a callback to a reply recipient.

2P1 completed: This is the result when an operation made on a proxy's typed
receiver, a reply poller or reply holder, results in either a normal return or any
CORBA exception, and the Current reply not available attribute is FALSE If the
operation results in an exception other than RNA, a TRUE reply not available attribute
indicates that this exception is a real result of a delegated request to target.

Reply not available: This is the result when an operation made on a reply poller
results in a normal return or an RN& exception, and the Current reply not available
attribute is TRUE This is one of the two premature return cases.

Polling-Pulling failure: This is the result when an operation made on a reply poller
or reply holder results in an exception other than R\g, and the Current
reply not available attribute is TRUE This outcome indicates a usage or system
failure on retrieving the reply, such as calling an unmatched operation or the poller
has already been trashed.

N/A: Not an applicable outcome. It should never happen.

278 VisiBroker for Java Developer's Guide

Native Messaging API Specification

Interface ReplyRecipient

ReplyRecipient objects are implemented by Native Messaging applications to receive
reply results in the callback model. See the example in “Callback model” on page 264
and “Cookie and reply de-multiplexing in reply recipients” on page 268.

reply_available()

void
reply available (
in doject reply holder,
in string operatim,
in Cockie the codkie);
This method is callback by request agent on delivering a reply. The actual reply result,
either a normal return or an exception, is held by the input reply holder object and can
be retrieved by making a callback on it. If an exception is raised from a call on the
reply holder, the application should use the Current reply not available attribute to
determine whether the exception is reporting a retrieval failure or the real result of the
delegated request. TRUE indicates that this exception is the result of a retrieval failure
between the client and agent. FALSE indicates that this exception is a real result of the
delegated request.

See the example in “Callback model” on page 264.

Argument Description

reply holder Within the scope of the reply available() method, this object reference has the
same semantics as a reply poller. A reply retrieving operation on reply holder
should only be made within the scope of the reply available() method. Once the
application returns from reply available(), the reply holder may no longer be
valid.

cperation The original operation signature. It can be used by applications for coarse
grained demultiplexing. A call made on the reply holder reference should have
same operation signature as this parameter. Making a call on the reply holder
with a different operation will end up with a CORBA BAD OPERATICN exception with
Current reply not available attribute value of TRUE

the cockie The original request cookie. Can be used by applications for fine grained
demultiplexing.

Semantics of core operations

Native Messaging reserves all pseudo operations as core operations. Core operations
meet the following rules:

= They are always accomplished in one phase. Core operations always block until a
mature return or a non-RNA exception.

= They do not initiate a two-phase invocation to be forwarded to the real target when
called on a proxy's typed receiver. For instance, calling nm exdstent () on a proxy's
typed receiver is only a ping to check the non-existence of the receiver itself, not the
target.

= They are orthogonal to pending two-phase invocations on a reply poller or reply
holder: For instance, calling _is a() or nm existent() on a reply poller or reply
holder does not imply retrieving the reply result of the pending two-phase invocation,
but only repository ID comparsion and existence checks on these poller or holder
objects themselves.

Chapter 19: Using VisiBroker Native Messaging 279

Native Messaging Interoperability Specification

Native Messaging Interoperability Specification

The content of this section is not intended for Native Messaging application developers
but for third party Native Messaging vendors.

Native Messaging uses native GIOP

In non-native messaging, such as CORBA Messaging, the OMG GIOP protocol is not
used as a direct message protocol; it is used as a tunneling protocol for another ad hoc
message routing protocol.

For instance, in CORBA Messaging, calling a mangled operation
sendc foo (<irput parameter lists) ;

does not incur a native OMG GIOP Request message with operation sendc fooin the
head and <irput parameter list>as payload. Instead, a routing message tunneling
through GIOP Request is sent.

Native Messaging uses the native OMG GIOP directly as its message level protocol:

= A method call on an agent, request proxy's typed receiver, reply poller, reply
recipient, or reply holder reference incurs a native GIOP Request message with the
exact called operation name in head, and the exact input parameters as payload to
be sent, as defined by OMG GIOP.

= A premature return is simply a native GIOP Reply message containing an R\
exception, specifically a CORBA NO RESEINSE exception with minor code of
REPLY NOT AVATIARIE.

= A mature return is simply a native GIOP Reply message with either the exact
<retum value and output parameter listsor the exact exception from the target as
payload.

Native Messaging service context

Like the OMG Security and Transaction service, Native Messaging also uses a service
context to achieve certain semantic results. The client-side Native Messaging engine,
implemented in an OMG standardized Portablelnterceptor for instance, is responsible
for creating and adding required service contexts into certain outgoing requests and for
extracting information from the same kind of service context inside incoming replies.

The context idused by Native Messaging's service context is
NativeMessaging: :NMService. The aontext datais an encapsulated
NativeMessaging: :NMiContextData defined as:

module NativeMessaging
const IOP: :ServicelD NVService = ...

struct RequestInfo {
RequestTag request tag;
Cockie the codkie;
unsigned lang wait timeout;

!

union NMCntextData switch (short s) {
case 0: RequestInfo req info;
case 1: unsigned lang weit timeout;
case 2: doject the poller;
case 3: string replier rame;

280 VisiBroker for Java Developer's Guide

Native Messaging Interoperability Specification

Mandated usage of different context data in Native Messaging is summarized in the
following table:

Proxy's typed
Sending to or receiving from receiver Reply poller Reply holder
Request req_info wait_timeout Not defined
Normal Reply (NO_EXCEPTION) Not defined
RNA Exception the_poller No NMService N/A

context
Non-RNA exception from calling target replier_name

Non-RNA exception within agent No NMService
context

The terms in the above table are defined as follows:

= req_info: NMContextData is mandated to all requests of two-way non-core
operation sending to a proxy's typed receiver. This context has request tag, cockie
and wait timecut from Native Messaging Current as supplement parameters for
initiating a two-phase invocation. The content of this context should be used by the
request agent to tag the request, to deliver callback with the cookie, and to wait
before evolving into a two-phased invocation. See corresponding topics in the
previous sections.

= wait_timeout: NMContextData is mandated to all normal (two-way non-core)
requests sent to a reply poller, with wait timeout from Native Messaging Current as
supplement parameter for polling. The content, namely the wait timeout, should be
used by the request agent to block the call before a mature or premature return. See
corresponding topics in previous sections.

= the_poller: NMContextData is mandated to all successful returns on initiating two-
phase invocations on a proxy's typed receiver object. The content of the context, a
poller reference, is extracted and copied to Native Messaging Current's the poller
attribute.

= replier_name: NMContextData is mandated to all exceptional returns as a
successful return of an exceptional return result from delegating a request. This
context should not appear if the exceptional return is a failure not resulting from
delegating the request. The actual content of the string should be empty and
preserved for further extension.

= Not defined: Native Messaging does not use NMService context in these cases.

= N/A: Not applicable. It should never happen.

NativeMessaging tagged component

A tagged component with the NativeMessaging: :TAG NM REF tag should be embedded in
typed receivers of request proxies and poller references. The corponent data of this
tagged component encapsulates an octet. Namely the first octet of the component data
is the byte-order byte and second byte of it is the value octet. A value of 0x01 for this
octet indicates the reference is a typed receiver of a request proxy, and a value of 0x02
indicates it is a poller reference.

This component is used by Portablelnterceptor's send request () method to determine
whether a request is sending to a Native Messaging request proxy's the receiver
reference, a reply poller, or something else, and to decide whether and what service
context to add to the outgoing request.

Chapter 19: Using VisiBroker Native Messaging 281

Using Borland Native Messaging

Using Borland Native Messaging

Using request agent and client model

Start the Borland Request Agent

To start the Request Agent service, run the command requestagent. Run it with
requestagent -? to see the usage information.

Borland Request Agent URL

To use Native Messaging, a request agent needs to be known by client applications.
Usually, this is done by initializing the client ORB with the OMG standardized ORB
initialize command arguments:

-CRBInitRef RequestAgent=<request agent ior or url>

This allows client applications to resolve the request agent reference from the ORB as
an initial service, for instance:

// Getting Request Agent reference in Java
org.ang.CORRA. Qoject ref

= arb.resolve initial references("RequestPgent");
NativeMessaging. RequestigentEx agent

= NativeMessaging.RequestPgentExtlelper .narrow (ref) ;

By default, the URL of a request agent is:

cortaloc: : <host>: <port>/Requestloent
Here, <host>is the host name or dotted IP address of a Request Agent server, and

<port>is the TCP listener port number of this server. By default, the Native Messaging
Request Agent uses port 5555.

Using the Borland Native Messaging client model

Borland Native Messaging client side models in Java are implemented as OMG
portable interceptors and are referred to as the Native Messaging Client Component.
The Native Messaging for Java Client Component needs to be initialized explicitly by
setting viroker . orb. enableNativaMessaging to true (the default value is false).

Borland Request Agent vbroker properties

vbroker.requestagent.maxThreads
Specifies the maximum number of threads for request invocation. The default value is 0
(zero) which means no limit. Values cannot be negative.

vbroker.requestagent.maxOutstandingRequests

Specifies the maximum queue size for requests waiting to get serviced. This property
only takes effect if the mexThreads property is set to non-zero value. The default value is
0 (zero) which means no limit. Values cannot be negative. If a request arrives when the
queue size is equal to maximum size, the request waits for a timeout until there is
space in the queue. See “vbroker.requestagent.blockingTimeout” on page 283.

282 VisiBroker for Java Developer's Guide

vbroker.requestagent.blockingTimeout

Specifies the maximum time, in milliseconds, that a request can wait before it is added
to the queue. The default value is 0 (zero) which means no wait. Values cannot be
negative. If the value is set to 0 (zero) and a request arrives and the queue is full, the
Request Agent will raise CORRA: : IMP_LIMIT exception. Otherwise, the request waits for
the specified timeout. After the timeout, either the request gets executed immediately if
the queue is empty and worker thread is available, or the request is enqueued in the
waiting queue if the queue has space and the request remains there until it gets
serviced, or if the queue is still full, CORRA: : IMP LIMIT exception is raised by the
Request Agent.

vbroker.requestagent.router.ior
Specifies the IOR of OMG messaging router. The default value is empty string.

vbroker.requestagent.listener.port

Specifies the TCP listener port to be used by the request agent. The default value
is 5555.

vbroker.requestagent.requestTimeout

This property specifies the maximum time, in milliseconds, that the agent will hold the
reply result for its client. If request agent has received reply results on a request, but
the client does not pull the result or trash the request, the request agent will trash the
request (together with its reply result) upon the expiration of the request timeout set by
this property. The default value of this property is infinity, meaning the agent will
preserve the reply results until they are trashed by client applications (manually or
automatically).

Interoperability with CORBA Messaging

The Native Messaging Request Agent is forward interoperable with the OMG untyped
Messaging Router. Specifically, the Request Agent can be configured to route requests
through an OMG untyped router instead of sending them directly to their specified
targets. To do so, the request agent needs to be started with the
“vbroker.requestagent.router.ior” on page 283 property with a valid CORBA Messaging
router IOR as value.

Chapter 19: Using VisiBroker Native Messaging 283

284 VisiBroker for Java Developer's Guide

Using the Object Activation Daemon
(OAD)

This section discusses how to use the Object Activation Daemon (OAD).

Automatic activation of objects and servers

Note

The Object Activation Daemon (OAD) is the VisiBroker implementation of the
Implementation Repository. The Implementation Repository provides a runtime
repository of information about the classes a server supports, the objects that are
instantiated, and their IDs. In addition to the services provided by a typical
Implementation Repository, the OAD is used to automatically activate an
implementation when a client references the object. You can register an object
implementation with the OAD to provide this automatic activation behavior for your
objects.

Object implementations can be registered using a command-line interface (cadutil).
There is also a VisiBroker ORB interface to the OAD, described in “IDL interface to the
OAD” on page 297. In each case, the repository ID, object name, the activation policy,
and the executable program representing the implementation must be specified.

You can use the VisiBroker OAD to instantiate servers generated with VisiBroker for
Java and C++.

The OAD is a separate process that only needs to be started on those hosts where
object servers are to be activated on demand.

Locating the Implementation Repository data

Activation information for all object implementations registered with the OAD are stored
in the Implementation Repository. By default, the Implementation Repository data is
stored in a file named impl repin the <install dirs/adn/inpl dir directory.

Chapter 20: Using the Object Activation Daemon (OAD) 285

Using the OAD

Activating servers

The OAD activates servers in response to client requests. VisiBroker clients and non-
VisiBroker IIOP-compliant clients can activate servers through the OAD.

Any client that uses the IIOP protocol can activate a VisiBroker server when that
server's reference is used. The server's exported Object Reference points to the OAD
and the client can be forwarded to the spawned server in accordance with the rules of
IIOP. To allow true persistence of the server's object references (such as through a
Name Service), the OAD must always be started on the same port. For example, to
start the OAD on port 16050, enter the following:

prampt> cad -VBJprop vibroker.se.iicp tp.sam.iicp tp.listener.port=16050

Note
property.

Using the OAD

Port 16000 is the default port, but it can be changed by setting the listener.port

The OAD is an optional feature that allows you to register objects that are to be started
automatically when clients attempt to access them. Before starting the OAD, you
should first start the Smart Agent. For more information, see “Starting a Smart Agent

(osagent)” on page 172.

Starting the OAD

Windows To start the OAD:

= Use the cad.exelocated in <install dir>\bin\

or

= Enter the following at the command prompt:

prompt> cad

The cadcommand accepts the following command line arguments:

Option
-verfose
-version
-path <path>

-filename <repository_filename>

-timecut <#_of_seconds>

-IR<IOR_filename>
kill

-no verify

286 VisiBroker for Java Developer's Guide

Description
Turns on verbose mode.
Prints the version of this tool.

Specifies the platform-specific directory for storing the
Implementation Repository. This overrides any setting
provided through the use of environment variables.

Specifies the name of the Implementation Repository. If you
do not specify it, the default is inpl rep. This overrides any
user environment variable settings.

Specifies the amount of time the OAD will wait for a
spawned server process to activate the requested
VisiBroker ORB object. The default time-out is 20 seconds.
Set this value to 0 (zero) if you wish to wait indefinitely. If a
spawned server process does not activate the requested
object within the time-out interval, the OAD will kill the
spawned process and the client will see a CORRA: :NO
IMPLEMENT exception. Turn on the verbose option to see more
detailed information.

Specifies the filename to store the OAD's stringified IOR.

Stipulates that an object's child process should be killed
once all of its object are unregistered with the OAD.

Turns off check for validity of registrations.

UNIX

Using the OAD utilities

Option Description
-? Displays command usage.
-readmly When the OAD is started with the -readonly option, no

changes can be made to the registered objects. Attempts to
register or unregister objects will return an error. The
-readmly option is usually used after you've made changes
to the Implementation Repository, and have restarted the
OAD in readonly mode to the prevent any additional
changes.

The OAD is installed as Windows Service, allowing you to control it with the Service
Manager provided with Windows.

To start the OAD enter the following command:
prampt> oad &

Using the OAD utilities

Note

The cadutil commands provide a way for you to manually register, unregister, and list
the object implementations available on your VisiBroker system. The cadutil
commands are implemented in Java and use a command line interface. Each
command is accessed by invoking the cadutil command, passing the type of operation
to be performed as the first argument.

An object activation daemon process (cad) must be started on at least one host in your
network before you can use the cadutil commands.

The cadutil command has the following syntax:
cadutil {list|reg|ureg} [options]
The options for this tool vary, depending on whether you specify list, regor ureg.

Converting interface names to repository IDs

Interface names and repository IDs are two ways of representing the type of interface
the activated object should implement. All interfaces defined in IDL are assigned a
unigue repository identifier. This string is used to identify a type when communicating
with the Interface Repository, the OAD, and most calls to the VisiBroker ORB itself.

When registering or unregistering an object with the OAD, the cadutil commands allow
you to specify either an object's IDL interface name or its repository id.

An interface name is converted to a repository ID as follows:
1 Prepend "I0L:" to the interface name.

2 Replace all non-leading instances of the scope resolution operator (: :) with a slash
(/) character.

3 Append ":1.0" to the interface name.
For example, the IDL interface name
: :Modulel : :Module2: : ITntfName
would be converted to the following repository ID:
TDL:Modulel /Module2/IntfName: 1.0

The #pragma ID and #pragma prefix mechanisms can be used to override the default
generation of repository ID's from interface names. If the #pragma ID mechanism is used
in user-defined IDL files to specify non-standard repository IDs, the conversion process
outlined above will not work. In these cases, you must use -rrepository ID argument
and specify the object's repository ID.

Chapter 20: Using the Object Activation Daemon (OAD) 287

Using the OAD utilities

Note

To obtain the repository id of the object implementation's most derived interface in
Java, use the method java: <interfaceName>Helper.id() defined for all CORBA objects.

Listing objects with oadutil list

The cadutil list utility allows you to list all VisiBroker ORB object implementations
registered with the OAD. The information for each object includes:

= Interface names of the VisiBroker ORB objects.

= Instance names of the object offered by that implementation.

= Full path name of the server implementation's executable.

= Activation policy of the VisiBroker ORB object (shared or unshared).

= Reference data specified when the implementation was registered with the OAD.
= List of arguments to be passed to the server at activation time.

= List of environment variables to be passed to the server at activation time.

The cadutil list command returns all VisiBroker ORB object implementations
registered with the OAD. Each OAD has its own Implementation Repository database
where the registration information is stored.

An object activation daemon process (oad) process must be started on at least one
host in your network before you can use the oadutil list command.

The cadutil list command has the following syntax:
cadutil list [optians]
The cadutil list command accepts the following command line arguments:

Option Description

-1 <interface name> Lists the implementation information for objects of a particular IDL
interface name. Only one of the following options may be specified at a
particular time: -i, -, -s, or -pca.

Note: All communications with the VisiBroker ORB reference an object's
repository id instead of the interface name. For more information the
conversion performed when specifying an interface name, see
“Converting interface names to repository IDs” on page 287.

-r <repository id> Lists the implementation information of a specific repository id. See
“Converting interface names to repository IDs” on page 287 for details on
specifying repository IDs. Only one of the following options may be
specified at a particular time: -i, -r, -s, or -poa.

-8 <service name> Lists the implementation information for a specific service name. Only
one of the following options may be specified at a particular time: -1, -r,

-s, Or -poa.

-poa. <poa. raEe> Lists the implementation information for a specific POA name. Only one
of the following options may be specified at a particular time: -1, -r, -s, or
-poa.

-0 <dbject name> Lists the implementation information for a specific object name. You can
use this only if the interface or repository id is specified in the command
statement. This option is not applicable when an -sor -pca arguments is
used.

-h <D host name> Lists the implementation information for objects registered with an OAD
running on a specific remote host.

-verbose Turns verbose mode on, causing messages to be output to stdout.
-version Prints the version of this tool.
-full Lists the status of all implementations registered with the OAD.

288 VisiBroker for Java Developer's Guide

Note

Note

Using the OAD utilities

The following is an example of a local list request, specifying an interface name and
object name:

cadutil list -i Bark: :AccountMenager -o BorlandBank
The following is an example of a remote list request, specifying a host IP address:
cadutil list -h 206.64.15.198

Registering objects with oadultil

The cadutil command can be used to register an object implementation from the
command line or from within a script. The parameters are either the interface name and
object name, the service name, or the POA name, and path name to the executable
that starts the implementation. If the activation policy is not specified, the shared server
policy will be used by default. You may write an implementation and start it manually
during the development and testing phases. When your implementation is ready to be
deployed, you can simply use cadutil to register your implementation with the OAD.

When registering an object implementation, use the same object name that is used
when the implementation object is constructed. Only named objects (those with a
global scope) may be registered with the OAD.

The cadutil regcommand has the following syntax:
cadutil reg [options]

An cadprocess must be started on at least one host in your network before you can use
the cadutil regcommand.

The options for the cadutil regcommand accepts the following command-line
arguments:

Option Required Description

-1 <interface name> Yes Specifies a particular IDL interface name. Only one of
the following options may be specified at a particular
time: -1, -1, -s, or -pca. See “Converting interface
names to repository IDs” on page 287 for details on
specifying repository IDs.

-r <repository id> Yes Specifies a particular repository id. Only one of the
following options may be specified at a particular
time: -i, -1, -s, Or -pca.

-s <service nane> Yes Specifies a particular service name. Only one of the
following options may be specified at a particular
time: -i, -r, -s, or -poa.

-poa. <poa. rane> Yes Use this option to register the POA instead of an
object implementation. Only one of the following
options may be specified at a particular time: -1, -r,
-s, Or -poa.

-0 <dbject name> Yes Specifies a particular object. You can use this only if
the interface name or repository id is specified in the
command statement. This option is not applicable
when an -sor -poaargument is used.

-cpp <file rame to execute> Yes Specifies the full path of an executable file that must
create and register an object that matches the -d -¢/
-g/-poa arguments. Applications registered with the
-cpp argument must be stand-alone executables.

-java <full class namre> Yes Specifies the full name of a Java class containing a
main routine. This application must create and
register an Object that matches the -d -/ -g/-poa
argument. Classes registered with the -java
argument will be executed with the command vbj
<full classname>.

Chapter 20: Using the Object Activation Daemon (OAD) 289

Using the OAD utilities

Note

Note

Option Required Description

-host <D host name> No Specifies a specific remote host where the OAD is
running.

-verbose No Turns verbose mode on, causing messages to be
output to stdout.

-version No Prints the version of this tool.

-cos nae <CosNae> No Specifies the CosName to bind this registration to

NOTE:. This does not work with service or POA
registrations.

-d <referenceData> No Specifies reference data to be passed to the server
upon activation.
-a argl -a arR No Specifies the arguments to be passed to the

spawned executable as command-line arguments.
Arguments can be passed with multiple -a (arg)
parameters. They will be propagated in order to
create the spawned executable.

-e el -e av2 No Specifies environment variables to be passed to the
spawned executable. Arguments can be passed with
multiple -e(env) parameters. They will be propagated
in order to create the spawned executable.

-p <shared|unshared> No Specifies the activation policy of the spawned
objects. The default policy is SHERED SFRVER

Shared: Multiple clients of a given object share the
same implementation. Only one server is activated
by an OAD at a particular time.

Unshared: Only one client of a given implementation
will bind to the activated server. If multiple clients
wish to bind to the same object implementation, a
separate server is activated for each client
application. A server exits when its client application
disconnects or exits.

Example: Specifying repository ID

The following command will register with the OAD the VisiBroker program factory: It
will be activated upon request for objects of repository ID IDL:elTest/Factory:1.0
(which corresponds to the interface name ehTest : :Factory). The instance name of the
object to be activated is ReentrantServer, and that name is also passed to the spawned
executable as a command-line argument. This server has the unshared policy, by
which it will be terminated when the requesting client breaks its connection to the
spawned server.

prompt> cadutil reg -r IDL:elTest/Factory:1.0 -0 ReentrantServer \
-java factory r -a ReentrantServer -p unshared

In the example above, the specified Java class must be found in the CLASSPATH.

Example: Specifying IDL interface name

The following command will register the VisiBroker Server class with the OAD. In this
example, the specified class must activate an object of repository ID IDL:Bark/
AccontMenager: 1.0 (corresponding to the interface name IDL name

Bark: :AccountMenager) and instance name CreditUnion. The server will be started with
unshared policy, ensuring that it will terminate when the requesting client breaks its
connection. The server is also passed with an environment variable DEBUG=1 when it is
first started by the client.

prampt> cadutil reg -1 Bark: :AccomntMenager -o CreditUnian \
-java Server -a CreditUhion -p unshared -e DEBUG=1

In the previous example, the specified Java class must be found in the CLASSPATH.

290 VisiBroker for Java Developer's Guide

Using the OAD utilities

The previous registration tells the OAD to execute the following command when
spawning the requested server:

pronpt> vbj -IDEBJG=1 Server CreditUnian

Remote registration to an OAD
To register an implementation with an OAD on a remote host, use the -hargument to
cadutil reg

The following is an example of how to perform a remote registration to an OAD on
Windows from a UNIX shell. The double backslashes are necessary to avoid having
the shell interpret the backslashes before passing them to caduril.

prompt> cadutil reg -r IDL:Library:1.0 Harvard \
-java c:\\vibrcker\\examples\\library\\libsrv -p shared -h 100.64.15.198

Using the OAD without using the Smart Agent

To access a server using the OAD without involving the Smart Agent, use the property
vbrcker.orb. activationTOR to indicate the OAD's IOR to cadutil and to the server.

For example, let us assume that the OAD's IOR is located in the e:/adm dir (on
Windows), and you want to run the kerk portalcle example that is included (in the
exanples/basic/bank portable directory) with the product. To access this server
without using the Smart Agent:

1 Start the OAD: the classpath visible to OAD must include the Server's classpath.
The command is:

prarpt>start cad -VBJprop vioroker . agent .enablel ocator=false -vertose
2 Register the server using cadutil: the command is:
prampt> cadutil -VRJprop voroker.arb.activationIOR=file:///e: /adv/
cadj.ior -VRJprop vircker.agent .enablel ocator=false reg -i
Bank: :AccomntMenager -0 BankManager -java Server
3 Generate the Server's IOR: when the server is started it will write out it's IOR into a
file. Terminate the server once it is running, so that the launching of the server by
the OAD can be demonstrated. The command is:
prarpt> vbj -Dvbrcker.orb.activationTOR=file:///e: /adw/cadj.ior Server
4 Run the Client: make sure the OAD is running, then use the command:
pravpt> vibj -Dvbrcker.agent .enablel ocator=false Client

Using the OAD with the Naming Service

OAD facilitates the use of the Naming Service for bootstrapping. In the above section,
the Smart Agent was not used, and the client needed to obtain the server's IOR file.
This bootstrapping can be achieved using the Naming Service instead, as illustrated in
the following steps.

1 Start the OAD, providing it with a reference to the Naming Service. Assume that the
Naming Service runs on port 1111 on host myhost.

prampt>cad -verbose -VBJprop
vioroker . orb. ini tRef=NameServi ce=corioaloc: :myhost : 1111 /NameService

2 Register the server with the OAD. Note the use of the -cos name parameter which
indicates to the OAD that this server should be automatically bound to the Naming
Service.

praptsocadiutil -VBJprop vioroker.orb.activationIOR=file:///e: /adn/cadj.ior
-VBJprop vibroker.agent .enablel ocator=false reg -i Bank: :AccomtManager -o
BarkManager -cos name sinple test -java Server

Chapter 20: Using the Object Activation Daemon (OAD) 291

Using the OAD utilities

Note

3 The client can then use the Naming Service to resolve and obtain the server's
reference. A snippet of the client code for a Java client is shown below.

org.ang.CORRA.(oject server=
rootCtx. resolve (new NemeCarponent [1 {new
NemeCorponent ("sinple test", ") }) ;
The OAD automatically created a binding for the server in the Naming Service because
the -cos name parameter was used.

Distinguishing between multiple instances of an object

Your implementation can use ReferencelData to distinguish between multiple instances
of the same object. The value of the reference data is chosen by the implementation at
object creation time and remains constant during the lifetime of the object. The
ReferenceData typedef is portable across platforms and VisiBroker ORBs.

VisiBroker does not use the inf ptr, which is defined by the CORBA specification to
identify the interface of the object being created. Applications created with VisiBroker
should always specify a NULL value for this parameter.

Setting activation properties using the CreationimplDef class

The CreationTmplDef class contains the properties the OAD requires to activate a
VisiBroker ORB object: path name, activation policy, args, and env. The following
sample shows the CreatiaonTmplDef struct.

module extension

erum Policy {
SHARED SFRVER,
UNSHARED SERVER
}i
struct CreationTmplDef
QORBA: :Repositoryld repository id;

string doject nanme;
QORRA: :Referencelata id;

string path name;

Policy activation policy;

QORBA: :StringSequence args;
QORBA: :StringSequence arv;
}i
}i
The path nane property specifies the exact path name of the executable program that
implements the object. The activation policy property represents the server's

activation policy, which is used in object creation and registration. The args and erwv
properties represent command line arguments and environment settings for the server.

292 VisiBroker for Java Developer's Guide

Caution

Using the OAD utilities

Dynamically changing an ORB implementation

The sample below shows the change implementation() method which can be used to
dynamically change an object's registration. You can use this method to change the
object's activation policy, path name, arguments, and environment variables.

module Activation

{

void change implementation(in extension: :CreationTnmplDef old info,
in extension::CreationTmplDef new info)
raises (NotRegistered, TrvalidPath, IsActive);
}i
Although you can change an object's implementation name and object name with the

charge inplementation() method, you should exercise caution. Doing so will prevent
client programs from locating the object with the old name.

OAD Registration using OAD::reg_implementation

Instead of using the cadutil regcommand manually or in a script, VisiBroker allows
client applications to use the Q2D: :reg_inplementaticnoperation to register one or more
objects with the activation daemon. Using this operation results in an object
implementation being registered with the OAD and the osagent. The OAD will store the
information in the Implementation Repository, allowing the object implementation to be
located and activated when a client attempts to bind to the object.

module Activation {
typedef sequence<dojectStatus> (ojectStatus List;
typedef sequence<InplementationStatus> ImplStatusldist;

interface QWD {
// Register an implementation.
Qoject reg implementation(in extension: :CreationTmplDef impl)
raises (Duplicatebntry, TrvalidPath) ;
}
}

The CreationTmplDef struct contains the properties the OAD requires. The properties
are repository id, doject name, id, path name, activation policy, args, and e
Operations for setting and querying their values are also provided. These additional
properties are used by the OAD to activate an VisiBroker ORB object.

struct CreationTmplDef
QORRA: :RepositoryTd repository id;
string doject name;
QORRA: :ReferencelData id;
string path name;
Policy activation policy;
(ORRBA: : StringSequence args;
CORBA: : StringSequence erv;
}i
The path name property specifies the exact path name of the executable program that
implements the object. The activation policy property represents the server's
activation policy. The args and env properties represent optional arguments and
environment settings to be passed to the server.

Chapter 20: Using the Object Activation Daemon (OAD) 293

Using the OAD utilities

Example of object creation and registration

The following code samples show how to use the CreationTmplDef class and the
QRD.reg inplementation() method to register a server with the OAD. This mechanism
may be used in a separate, administrative program, not necessarily in the object
implementation itself. If used in the object implementation, these tasks must be
performed prior to activating the object implementation.

// Register.java
import com. inprise.vbroker.Activation. *;
import com. irprise.vioroker.extension. *;
pblic class Register(
pblic static void main(String[] args) {
// Initialize the CRB.
org.ong.CORRA.CRB orb = org.ang.ORBA.CRB. init (axrgs,mill) ;
// Locate an QRD
try
Q@AD anAD =
QAHelper . bird (orb) ;
// Create an ImplDef
CreationTmplDef implDef = new
oom. irprise. vibroker. extension. CreationTmplDef () ;
_implDef . repository id = "IDL:Bank/AccomntManager:1.0";
_implDef.doject name = "BankManager";
_implDef.path name = "bj";
_implDef.id = new byte[0] ;
_implDef .activation policy =
oam. inprise . vioroker . extension. Policy . SHARED SERVER;
_inplDef .erwv = new String[0] ;
String[] str = new Strirg[1];
str[0] = "Server";
_inplDef.args = str;
try {
anCAD.reg implementation (_implDef) ;
} catch (Exception e) {
System.out .printIn("Caught " + e);

}

catch (org.arg.CORBA.NO IMPLEMENT e) {

}
}

Arguments passed by the OAD

When the OAD starts an object implementation it passes all of the arguments that were
specified when the implementation was registered with the OAD.

294 VisiBroker for Java Developer's Guide

Un-registering objects

Un-registering objects

When the services offered by an object are no longer available or temporarily
suspended, the object should be unregistered with the OAD. When the VisiBroker ORB
object is unregistered, it is removed from the Implementation Repository. The object is
also removed from the Smart Agent's dictionary. Once an object is unregistered, client
programs will no longer be able to locate or use it. In addition, you will be unable to use
the Q2D.change inplementation() method to change the object's implementation. As
with the registration process, un-registering may be done either at the command line or
programmatically.

Un-registering objects using the oadutil tool

The cadutil unregcommand allows you to unregister one or more object
implementations registered with the OAD. Once an object is unregistered, it can no
longer be automatically activated by the OAD if a client requests the object. Only
objects that have been previously registered via the cadutil regcommand may be
unregistered with cadutil unreg.

If you specify only an interface name, all VisiBroker ORB objects associated with that
interface will be unregistered. Alternatively, you may identify a specific VisiBroker ORB
object by its interface name and object name. When you unregister an object, all
processes associated with that object will be terminated.

Note An cadprocess must be started on at least one host in your network before you can use
the oadutil reg command.

The cadutil unregcommand has the following syntax:
cadutil unreg [options]
The options for the cadutil wwegcommand accepts the following command line

arguments:

Option Required Description

-1 <interface name> Yes Specifies a particular IDL interface name. Only one of the
following options may be specified at a particular time: -1, -r,
-, or -poa. See “Converting interface names to repository
IDs” on page 287 for details on specifying repository IDs.

-r <repository id> Yes Specifies a particular repository id. Only one of the following
options may be specified at a particular time: -1, -r, -s, or
-poa

-S <service rame> Yes Specifies a particular service name. Only one of the following
options may be specified at a particular time: -1, -r, -s, or
-poa.

-0 <dbject name> Yes Specifies a particular object name. You can use this only if
the interface name or repository id is included in the
command statement. This option is not applicable when a -s
or -poa argument is used.

-poa <FOA nane> Yes Unregisters the POA registered using cadutil reg -poa
<PQA name>.

-host <host name> No Specifies the host name where the OAD is running.

-verbose No Enables verbose mode, causing messages to be output to
stdout.

-version No Prints the version of this tool.

Chapter 20: Using the Object Activation Daemon (OAD) 295

Un-registering objects

Unregistration example
The cadutil wnreg utility unregisters one or more VisiBroker ORB objects from these
three locations:

= Object Activation Daemon
= Implementation repository
= Smart Agent

The following is an example of how to use the cadutil uregcommand. It unregisters
the implementation of the Bark: :AccountMenager named MyBark from the local OAD.

cadutil unreg -i Bank: :AccountManager -o MyBank

Unregistering with the OAD operations

An object's implementation can use any one of the operations or attributes in the OAD
interface to unregister a VisiBroker ORB object.

= unreg implementation(in QORBA: :RepositoryId repld, in string doject name)
" unreg interface(in CQORBA: :RepositoryId repId)

= unregister all()

= attribute boolean destroy an unregister()

Operation Description

unreg inplementation() Use this operation when you want to un-registered implementations
using a specific repository id and object name. This operation
terminates all processes currently implementing the specified
repository id and object name.

unreg interface () Use this operation when you want to un-registered implementations
by using a specific repository id only. This operation terminates all
processes currently implementing the specified repository id.

uregister all() Use this operation to un-registered all implementations. Unless
destroyActive is set to true, all active implementations continue to
execute. For backward compatibility, uwegister all() is not
destructive; it is equivalent to invoking unregister all destroy(false).

destroy on unregister Use this attribute to destroy any spawned processes on unregistration
of the relevant implementation. The default value is false.

The following is an example of an OAD unregistered operation:
module Activation {
interface QD {
void unreg implementation (in CORBA: :RepositoryTd repld,

in string doject name)
raises (NotRegistered) ;

Displaying the contents of the Implementation Repository

You can use the cadutil tool to list the contents of a particular Implementation
Repository. For each implementation in the repository the cadutil tool lists all the
object instance names, the path name of the executable program, the activation mode
and the reference data. Any arguments or environment variables that are to be passed
to the executable program are also listed.

296 VisiBroker for Java Developer's Guide

IDL interface to the OAD

IDL interface to the OAD

The OAD is implemented as a VisiBroker ORB object, allowing you to create a client
program that binds to the OAD and uses its interface to query the status of objects that
have been registered. The sample below shows the IDL interface specification for the

OAD.

module Activation

{

erum state {
ACTTVE,
INACTTVE,
WATTING FOR ACTTVATICON
}i
struct QojectStatus {
log unique id;
State activation state;
Qoject dojRret;

typedef sequence<dojectStatus> QojectStatuslist;
struct InplerentationStatus {
extension: :CreationTmplDef impl;
QojectStatuslist status;
}i
typedef sequence<InplementationStatus> ImplStatusldist;
exception Duplicatebntry {};
exception TrvalidPath {};
exception NotRegistered {};
exception FailedToExecute {};
exception NotRespanding {};
exception IsActive {};
exoeption Busy {};
interface QD {
(oject reg implementation(in extension::CreationTmplDef impl)
raises (Duplicatefntry, Invalidpath);
extension: :CreationTnplDef get implementation(
in CORRA: :RepositoryTd repld,
in string doject name)
raises (NotRegistered);
void change implementation(in extension: :CreationTmplDef old info,
in extension::CreationTmplDef new info)
raises (NotRegistered, IrivalidPath, IsActive) ;
attribute boolean destroy on unregister;
void unreg inplementation(in CGORBA: :RepositoryId repld,
in string doject name)
raises (NotRegistered);
void unreg interface (in QORBA: :RepositoryId repId)
raises (NotRegistered);
void unregister all();
InplementationStatus get status (in QORBA: :Repositoryld repld,
in string doject name)
raises (NotRegistered) ;
ImplStatuslist get status interface(in CORBA: :RepositoryId repld)
raises (NotRegistered);
ImplStatuslist get status all() ;

Chapter 20: Using the Object Activation Daemon (OAD) 297

298 VisiBroker for Java Developer's Guide

Using Interface Repositories

An Interface Repository (IR) contains descriptions of CORBA object interfaces. The
data in an IR is the same as in IDL files, descriptions of modules, interfaces,
operations, and parameters, but it is organized for runtime access by clients. A client
can browse an Interface Repository (perhaps serving as an online reference tool for
developers) or can look up the interface of any object for which it has a reference
(perhaps in preparation for invoking the object with the Dynamic Invocation Interface

(DIN)).

Reading this section will enable you to create an Interface Repository and access it
with VisiBroker utilities or with your own code.

What is an Interface Repository?

An Interface Repository (IR) is like a database of CORBA object interface information
that enables clients to learn about or update interface descriptions at runtime. In
contrast to the VisiBroker Location Service, described in Chapter 15, “Using the
Location Service,” which holds data describing object instances, an IR's data describes
interfaces (types). There may or may not be available instances that satisfy the
interfaces stored in an IR. The information in an IR is equivalent to the information in an
IDL file (or files), but it is represented in a way that is easier for clients to use at
runtime.

Clients that use Interface Repositories may also use the Dynamic Invocation Interface
(DIl) described in Chapter 22, “Using the Dynamic Invocation Interface.” Such clients
use an Interface Repository to learn about an unknown object's interface, and they use
the DIl to invoke methods on the object. However, there is no necessary connection
between an IR and the DII. For example, someone could use the IR to write an “IDL
browser” tool for developers; in such a tool, dragging a method description from the
browser to an editor would insert a template method invocation into the developer's
source code. In this example, the IR is used without the DII.

You create an Interface Repository with the VisiBroker irep program, which is the IR
server (implementation). You can update or populate an Interface Repository with the
VisiBroker idl2ir program, or you can write your own IR client that inspects an
Interface Repository, updates it, or does both.

Chapter 21: Using Interface Repositories 299

Creating and viewing an Interface Repository with irep

What does an Interface Repository contain?

An Interface Repository contains hierarchies of objects whose methods divulge
information about interfaces. Although interfaces are usually thought of as describing
objects, using a collection of objects to describe interfaces makes sense in a CORBA
environment because it requires no new mechanism such as a database.

As an example of the kinds of objects an IR can contain, consider that IDL files can
contain IDL module definitions, and modules can contain interface definitions, and
interfaces can contain operation (method) definitions. Correspondingly, an Interface
Repository can contain ModuleDef objects which can contain InterfaceDef objects,
which can contain Qperatiabef objects. Thus, from an IR ModuleDef, you can learn
what InterfaceDefs it contains. The reverse is also true; given an InterfaceDef you can
learn what ModuleDef it is contained in. All other IDL constructs, including exceptions,
attributes, and valuetypes, can be represented in an Interface Repository.

An Interface Repository also contains typecodes. Typecodes are not explicitly listed in
IDL files, but are automatically derived from the types (lang, string, struct, and so on)
that are defined or mentioned in IDL files. Typecodes are used to encode and decode
instances of the CORBA arytype: a generic type that stands for any type and is used

with the dynamic invocation interface.

How many Interface Repositories can you have?

Interface repositories are like other objects; you can create as many as you like. There
is no VisiBroker-mandated policy governing the creation or use of IRs. You determine
how Interface Repositories are deployed and named at your site. You may, for
example, adopt the convention that a central Interface Repository contains the
interfaces of all “production” objects, and developers create their own IRs for testing.

Note Interface repositories are writable and are not protected by access controls. An
erroneous or malicious client can corrupt an IR or obtain sensitive information from it.

If you want to use the _get interface def method defined for all objects, you must have
at least one Interface Repository server running so the VisiBroker ORB can look up the
interface in the IR. If no Interface Repository is available, or if the IR that the VisiBroker
ORB binds to has not been loaded with an interface definition for the object,

_get interface def raises a NO_IMPLEMENT exception.

Creating and viewing an Interface Repository with irep

The VisiBroker Interface Repository server is called irep, and is located in the
<install dirs/bindirectory. The irep program runs as a daemon. You can register
irepwith the Object Activation Daemon (OAD) as you would any object
implementation. The cadutil tool requires the object ID, for example, IDL:org.ang/
QORBA/Repository:2.3 (as opposed to an interface name such as CORRA: :Repository).

Note The irep server needs a rollback file to keep its internal data consistent. The file is
created if it does not already exist, for example when launching the irep server for the
first time. The IRepName specified in the command line is used to make up the name
of the rollback file. Make sure that the name contains only valid file system characters
based on your platform. If the specified name contains directory locations that do not
exist, they will be automatically created.

300 VisiBroker for Java Developer’s Guide

Creating and viewing an Interface Repository with irep

Creating an Interface Repository with irep

Use the irep program to create an Interface Repository and view its contents. The
usage syntax for the irep program is as follows:

irep <driver cptimns> <other cptions> <IReNanme> [file.idl]

The syntax for creating an Interface Repository in the irepis described in the following
table:

Syntax Description

IRepName Specifies the instance name of the Interface Repository. Clients can bind to this
Interface Repository instance by specifying this name.

file.idl Specifies the IDL file whose contents irepwill load into the Interface Repository it
creates and will store the IR contents into when it exits. If no file is specified, irep
creates an empty Interface Repository.

The ireparguments are defined in the following table. You may also use the driver
options defined in “General options” on page 28.

Argument Description

-D, -defire fool[=har] Define a preprocessor macro, optionally with value.

-I, -include <dirs> Specify additional directory for #include searching.

-P, -ro line directives Do not emit #line directives from preprocessor. The default
is off.

-H, -list includes Display #included file names as they are encountered. The
default is off.

-C, -retain coments Retain comments in preprocessed output. The default is off.

-U, -undefine fco Undefine a preprocessor macro.

-[mo]4dl strict Strict OMG-standard interpretation of IDL source. The default
IS off.

- o Jwern unrecognized prages Warn if a #pragma is not recognized. The default is an

- [no Jback conpat mepping Use mapping that is compatible with VisiBroker 3.x.

-h, -help, -usage, -? Print this usage information.

-version Display software version numbers.

-install <service name> Install as a NT service.

-reove <service names> Uninstall this NT service.

The following example shows how an Interface Repository named TestIR can be
created from a file called Bark.idlL

ivep TestIR Bark.idl

Viewing the contents of the Interface Repository

You can view the contents of the Interface Repository with either the VisiBroker ir2idl
utility, or the VisiBroker Console application. The syntax for the ir2idl utility is:

ir2idl [-ivep <IRnames]
The syntax for viewing the contents of an Interface Repository in the irepis described
in the following table:

Syntax Description

-irep <IRname> Directs the program to bind to the Interface Repository instance named
IRname. If the option is not specified, it binds to any Interface Repository
returned by the Smart Agent.

Chapter 21: Using Interface Repositories 301

Updating an Interface Repository with idl2ir

Updating an Interface Repository with idl2ir

Note

You can update an Interface Repository with the VisiBroker idl12ir utility, which is an IR
client. The syntax for the idl2ir utility is:

idl2ir [arguments] <idl file list>

The following example shows how the TestIR Interface Repository would be updated
with definitions from the Bark.idl file.

idl2ir -irep TestIR -replace Bark.idl
Entries in an Interface Repository cannot be removed using the idl2iror irep utilities.
To remove an item:
= Exit or quit the irep program.
= Edit the IDL file named in the irepcommand line.
= Start irepagain with the updated file.

Interface repositories have a simple transaction service. If the specified IDL file fails to
load, the Interface Repository rolls back its content to its previous state. After loading
the IDL, the Interface Repository commits its state to be used in subsequent
transactions. For any repository, there is a file <IRname>.rollbackin the home directory
that contains the state of the last uncommitted transaction.

If you wish to remove all entries in the Interface Repository, you can replace the
contents with a new empty IDL file. For example, using an IDL file named Erpty. idl,
you could run the following command:

idl2ir -irep TestIR -replace Hmpty.idl

Understanding the structure of the Interface Repository

An Interface Repository organizes the objects it contains into a hierarchy that
corresponds to the way interfaces are defined in an IDL specification. Some objects in
the Interface Repository contain other objects, just as an IDL module definition might
contain several interface definitions. Consider how the example IDL file shown below
would translate to a hierarchy of objects in an Interface Repository.

// Bark.idl
module Bark {
interface Accamt {
float balance() ;
}

"terfaoeroamthbnager{
Aocount open(in string name) ;
}i

}i

302 VisiBroker for Java Developer’s Guide

Understanding the structure of the Interface Repository

Figure 21.1 Interface repository object hierarchy for Bank.idl

Inkerfacelef
nanes "ol nt'

(per arionDef
name="pdance"

Inkerfacelef
name:"ozcounianager”
Oper ationDef
name="opn"

Ineiface Feposiony

The OperatiaiDef object contains references to additional data structures (not
interfaces) that hold the parameters and return type.

Identifying objects in the Interface Repository

The following table shows the objects that are provided to identify and classify Interface
Repository objects.

Table 21.1 Objects used to identify and classify Interface Repository objects

Item Description

name A character string that corresponds to the identifier assigned in an IDL specification
to a module, interface, operation, and so forth. An identifier is not necessarily
unique.

id A character string that uniquely identifies an TRdoject. A RepositorylD contains three

components, separated by colon (:) delimiters. The first component is IL: and the
last is a version number such as :1.0. The second component is a sequence of
identifiers separated by slash (/) characters. The first identifier is typically a unique
prefix.

def kind An enumeration that defines values which represent all the possible types of
Interface Repository objects.

Types of objects that can be stored in the Interface Repository

The following table summarizes the objects that can be contained in an Interface
Repository. Most of these objects correspond to IDL syntax elements. A StructDef, for
example, contains the same information as an IDL struct declaration, an InterfaceDef
contains the same information as an IDL interface declaration, all the way down to a
PrimitiveDef which contains the same information as an IDL primitive (lboolean, lang,
and so forth.) declaration.

Table 21.2 Objects that can be stored in the Interface Repository

Object type Description

Repository Represents the top-level module that contains all other objects.

ModuleDef Represents an IDL module declaration that can contain ModuleDefs,
InterfaceDefs, ConstantDefs, AliasDefs, ExceptianDefs, and the IR equivalents of
other IDL constructs that can be defined in IDL modules.

InterfaceDef Represents an IDL interface declaration and contain OperatiaiDefs,
ExceptianDefs, AliasDefs, ConstantDefs, and AttributeDefs.

ArtributeDef Represents an IDL attribute declaration.

OperaticDef Represents an IDL operation (method) declaration. Defines an operation on
an interface. It includes a list of parameters required for this operation, the
return value, a list of exceptions that may be raised by this operation, and a list
of contexts.

Chapter 21: Using Interface Repositories 303

Understanding the structure of the Interface Repository

Table 21.2 Objects that can be stored in the Interface Repository (continued)

Object type Description

ConstantDef Represents an IDL constant declaration.
ExceptiaDef Represents an IDL exception declaration.
ValueDef Represents a valuetype definition containing lists of constants, types,

valuemembers, exceptions, operations, and attributes.
ValueBoxDef Represents a simple boxed valuetype of another IDL type.
ValueMenberDef Represents a member of the valuetype.

NativeDef Represents a native definition. Users can not define their own natives.

StructDef Represents an IDL structure declaration.

UniorDef Represents an IDL union declaration.

ErunDef Represents an IDL enumeration declaration.

AliasDef Represents an IDL typedef declaration. Note that the IR TypedefDef interface is
a base interface that defines common operations for StructDefs, UhiaiDefs, and
others.

StringDef Represents an IDL bounded string declaration.

SequenceDef Represents an IDL sequence declaration.

ArrayDef Represents an IDL array declaration.

PrimitiveDef Represents an IDL primitive declaration: ruill, void, lang, ushort, ulang, float,
double, boolean, char, octet, any, TypeCode, Principal, string, dojref, langlang,
ulaglog, longdouble, wehar, wstring

Inherited interfaces

Three non-instantiatable (that is, abstract) IDL interfaces define common methods that
are inherited by many of the objects contained in an IR (see the table above). The
following table summarizes these widely inherited interfaces. For more information on
the other methods for these interfaces, see the VisiBroker Programmer's Reference.

Table 21.3 Interfaces inherited by many IR objects

Interface Inherited by Principal query methods
IRject All IR objects including def kind() returns an IR object's definition kind,
Repository for example, module or interface
destroy () destroys an IR object
Contairer IR objects that can contain lockup() looks up a contained object by name
other IR objects, for example, aotents () lists the objects in a Container
module or interface describe omtents() describes the objects in a
Container
Contained IR objects that can be contained namre () name of this object
in other objects, that is, defined in() Container that contains an object
Containers descrike () describes an object

move () moves an object into another container

304 VisiBroker for Java Developer’s Guide

Accessing an Interface Repository

Accessing an Interface Repository

Note

Your client program can use an Interface Repository's IDL interface to obtain
information about the objects it contains. Your client program can bind to the
Repository and then invoke the methods shown below. A complete description of this
interface can be found in the Programmer's Reference.

A program that uses an Interface Repository must be compiled with the -
D VIS INCIILE IR flag.

package org.arg.CORBA;
pblic interface Repository extends Container {

org.ang.CORRA. Contained lockup id(string id);
org.ang.CORBA. PrimitiveDef get primitive (org.cmy.CORBA. PrimitiveKind kind) ;
org.arg.QORBA. StringDef create string(layg boud) ;
org.arg.QORBA. SequenceDef create sequence (1lang bound,
arg.arg.CORBA. ILLType element type) ;
org.arg.CORBA. ArrayDef create array (lang lergth,
org.arg.CORBA. I Type eleament type) ;

Interface Repository example program

This section describes a simple Interface Repository example which contains an
AccontMenacer interface to create an account and (re)open an account. This example
code can be found in the following directory:

<install dirs\vbe\examples\ir

At the initialization time the AccomtManager implementation bootstraps the Interface
Repository definition for the managed Account interface. This exposes the additional
operation that has been already implemented by this particular Accont implementation
to the clients. The clients now can access all known operations (which are described in
IDL) and, additionally, they can verify with the Interface Repository support for other
operations and invoke them. The example illustrates how we can manage Interface
Repository definition objects and how to introspect remote objects using the Interface
Repository.

Before this program can be tested, the following conditions should exist:

= OSgent should be up and running. For more information, see Chapter 14, “Using the
Smart Agent.”

= Interface repository should be started using irep. For more information, see
“Creating and viewing an Interface Repository with irep” on page 300.

= Interface Repository should be loaded with an IDL file either by the command line
when you start the Interface Repository, or by using idl2ir. For more information,
see “Updating an Interface Repository with idl2ir” on page 302.

= Start the client program.

Chapter 21: Using Interface Repositories 305

Interface Repository example program

Looking up an interface's operations and attributes in an IR:
//Client.java
import org.ong.CORBA. InterfaceDef ;
import org.arng.ORBA. ITnterfaceDefHelper;
import org.ang.CORBA.Request;
import java.util.Rendom;
public class Client {
pblic static void main(String[] args) {
try {
// Initialize the ORB.
org.arg.CORRA.CRB orb = org.org.CORRA.CRB. init (args,mull) ;
// Get the marager Id
byte[] menagerId = "BankManager" .getBytes() ;
// Locate an account menager. Give the full PQA name ard the
servant ID.

Bank . AccontManager menager =
Bank. AccountManagertelper.bind (orb, "/berk ir poa", menagerId) ;
// use args[0] as the accomt rame, or a default.
String nane = args.length > 0 ? args[0] : "Jack B. Quick";
// Request the account menager to cpen a named acoount.
Bank .Account acoount = mernager.cpen (name) ;
// Get the balance of the account.
float balance = account.balance() ;
// Print out the balance.
System.cut .printIn("The balance in " + name + "'s accont is $" +
balance) ;
// Calculate ard set a new balance
balance = args.length > 1 ? Float.parseFloat (args[1]) :
Math.abs (new Randam() .nextInt ()) % 100000 / 100f;
acoount . balance (balance) ;
// Get the balance description if it is possible and print it
String desc = getDescription (account) ;
System.out . printIn ("Balance description:\n" + desc) ;
} catch (org.ary.CORBA. SystenException e) {
System.err.println("System exception caught:" +) ;
} catch (Exception e) {
System.err.print1n ("Unexpected exception caught:") ;
e.printStackTrace () ;
}
}
static String getDescription (Bark.Accomt acoomt)
// Get the interface repository definition for this interface
InterfaceDef accountDef =
InterfaceDefHelper.narrow(account._get interface def()) ;
// Check if this *particular* implementation sugports "descrilbe"
operation
if (accomntDef.lockp("describe") != muill) {
// We camot use the static skeleton's method here because at the
// time of its creation this method was not present in the IDL's
// version of the Accomt interface. Use DIT instead.
Request request = account. request ("describe") ;
request.result () .value() .insert string("") ;
request . irvoke() ;
retum request.result () .value() .extract string();
} else {
retum "<no descriptians";
}

}
}

306 VisiBroker for Java Developer’s Guide

Using the Dynamic Invocation
Interface

The developers of most client programs know the types of the CORBA obijects their
code will invoke, and they include the compiler-generated stubs for these types in their
code. By contrast, developers of generic clients cannot know what kinds of objects
their users will want to invoke. Such developers use the Dynamic Invocation Interface
(DII) to write clients that can invoke any method on any CORBA object from knowledge
obtained at runtime.

What is the dynamic invocation interface?

The Dynamic Invocation Interface (DIl) enables a client program to invoke a method on
a CORBA object whose type was unknown at the time the client was written. The DII
contrasts with the default static invocation, which requires that the client source code
include a compiler-generated stub for each type of CORBA object that the client
intends to invoke. In other words, a client that uses static invocation declares in
advance the types of objects it will invoke. A client that uses the DIl makes no such
declaration because its programmer does not know what kinds of objects will be
invoked. The advantage of the DIl is flexibility; it can be used to write generic clients
that can invoke any object, including objects whose interfaces did not exist when the
client was compiled. The DIl has two disadvantages:

= Itis more difficult to program (in essence, your code must do the work of a stub).
= Invocations take longer because more work is done at runtime.

The DIl is purely a client interface. Static and dynamic invocations are identical from an
object implementation's point of view.

Chapter 22: Using the Dynamic Invocation Interface 307

What is the dynamic invocation interface?

Note

You can use the DIl to build clients like these:

= Bridges or adapters between script environments and CORBA objects. For
example, a script calls your bridge, passing object and method identifiers and
parameter values. Your bridge constructs and issues a dynamic request, receives
the result, and returns it to the scripting environment. Such a bridge could not use
static invocation because its developer could not know in advance what kinds of
objects the script environment would want to invoke.

= Generic object testers. For example, a client takes an arbitrary object identifier,
looks up its interface in the interface repository (see Chapter 21, “Using Interface
Repositories”), and then invokes each of its methods with artificial argument values.
Again, this style of generic tester could not be built with static invocation.

Clients must pass valid arguments in DIl requests. Failure to do so can produce
unpredictable results, including server crashes. Although it is possible to dynamically
type-check parameter values with the interface repository, it is expensive. For best
performance, ensure that the code (for example, script) that invokes a DII-using client
can be trusted to pass valid arguments.

Introducing the main DIl concepts

The dynamic invocation interface is actually distributed among a handful of CORBA
interfaces. Furthermore, the DIl frequently offers more than one way to accomplish a
task—the trade-off being programming simplicity versus performance in special
situations. As a result, DIl is one of the more difficult CORBA facilities to grasp. This
section is a starting point, a high-level description of the main ideas.

To use the DIl you need to understand these concepts, starting from the most general:
= Request objects

= Ay and Typecode objects

= Reguest sending options

= Replyreceiving options

Using request objects

A Request object represents one invocation of one method on one CORBA object. If
you want to invoke two methods on the same CORBA object, or the same method on
two different objects, you need two Request objects. To invoke a method you first need
the target reference, an object reference representing the CORBA object. Using the
target reference, you create a Request, populate it with arguments, send the Request,
wait for the reply, and obtain the result from the Request.

There are two ways to create a Request. The simpler way is to invoke the target object's
_request method, which all CORBA objects inherit. This does not, in fact, invoke the
target object. You pass _request the IDL name of the method you intend to invoke in
the Request, for example, “get balance.” To add argument values to a Request created
with _request, you invoke the Request's add value method for each argument required
by the method you intend to invoke. To pass one or more Context objects to the target,
you must add them to the Reguest with its ctxmethod.

Although not intuitively obvious, you must also specify the type of the Request's result
with its result method. For performance reasons, the messages exchanged between
the VisiBroker ORBs do not contain type information. By specifying a place holder
result type in the Request, you give the VisiBroker ORB the information it needs to
properly extract the result from the reply message sent by the target object. Similarly, if
the method you are invoking can raise user exceptions, you must add place holder
exceptions to the Request before sending it.

308 VisiBroker for Java Developer’s Guide

Note

What is the dynamic invocation interface?

The more complicated way to create a Request object is to invoke the target object's
_create request method, which, again, all CORBA objects inherit. This method takes
several arguments which populate the new Request with arguments and specify the
types of the result and user exceptions, if any, that it may return. To use the

_create request method you must have already built the components that it takes as
arguments. The potential advantage of the create request method is performance.
You can reuse the argument components in multiple _create request calls if you invoke
the same method on multiple target objects.

There are two overloaded forms of the _create request method: one that includes
Contextlist and Exceptianlist parameters, and one that does not. If you want to pass
one or more Context objects in your invocation, and/or the method you intend to invoke
can raise one or more user exceptions, you must use the _create request method that
has the extra parameters.

Encapsulating arguments with the Any type

The target method's arguments, result, and exceptions are each specified in special
objects called arys. An Any is a generic object that encapsulates an argument of any
type. An Ay can hold any type that can be described in IDL. Specifying an argument to
a Request as an Any allows a Reguest to hold arbitrary argument types and values
without making the compiler complain of type mismatches. (The same is true of results
and exceptions.)

An Any consists of a TypeCode and a value. A value is just a value, and a TypeCcde is an
object that describes how to interpret the bits in the value (that is, the value's type).
Simple TypeCode constants for simple IDL types, such as langand Ooject, are built into
the header files produced by the idl2java compiler. TypeCodes for IDL constructed
types, such as structs, unians, and typedefs, have to be constructed. Such TypeCodes
can be recursive because the types they describe can be recursive.

Consider a struct consisting of a langand a string. The TypeCde for the struct
contains a TypeCode for the langand a TypeCode for the string You can get a TypeCode at
runtime from an interface repository (see Chapter 21, “Using Interface Repositories”)
or by asking the VisiBroker ORB to create one by invoking CRB: :create struct tcor
ORB: :Ccreate exception tc

If you use the create request method, you need to put the Ary-encapsulated target
method arguments in another special object called an NVList. No matter how you
create a Request,, its result is encoded as an NVList. Everything said about arguments in
this paragraph applies to results as well. “NV” stands for named value, and an NVList
consists of a count and number of items, each of which has a name, a value, and a
flag. The name is the argument name, the value is the 2ry encapsulating the argument,
and the flag denotes the argument's IDL mode (for example, inor aut). The result of
Request is represented a single named value.

Options for sending requests

Once you create and populate a Request with arguments, a result type, and exception
types, you send it to the target object. There are several ways to send a Request,

= The simplest is to call the Request's irvoke method, which blocks until the reply
message is received.

= More complex, but not blocking, is the Request's serd deferred method. This is an
alternative to using threads for parallelism. For many operating systems the
serd deferred method is more economical than spawning a thread.

= If your motivation for using the send deferred method is to invoke multiple target
objects in parallel, you can use the VisiBroker ORB object's
serd miltiple requests deferred method instead. It takes a sequence of Request
objects.

Chapter 22: Using the Dynamic Invocation Interface 309

What is the dynamic invocation interface?

= Use the Request's send aneway method if, and only if, the target method has been
defined in IDL as aneway.

= You can invoke multiple cneway methods in parallel with the VisiBroker ORB's
serd miltiple requests aneway method.

Options for receiving replies

If you send a Request by calling its irvoke method, there is only one way to get the
result: use the Request object's ervmethod to test for an exception, and if none, extract
the NamedValue from the Request with its result method. If you used the send aneway
method, then there is no result. If you used the send deferred method, you can
periodically check for completion by calling the Request's poll respanse method which
returns a code indicating whether the reply has been received. If, after polling for a
while, you want to block waiting for completion of a deferred send, use the Request's

get_respanse method.

If you have sent Reguests with the send multiple requests deferred method, you can
find out if a particular Request is complete by invoking that Request's get response
method. To learn when any outstanding Request is complete, use the VisiBroker ORB's
get next respanse method. To do the same thing without risking blocking, use the
VisiBroker ORB's poll next response method.

Steps for invoking object operations dynamically

To summarize, here are the steps that a client follows when using the DII,
1 Obtain a generic reference to the target object you wish to use.

Create a Request object for the target object.

Initialize the request parameters and the result to be returned.

Invoke the request and wait for the results.

g AN

Retrieve the results.

Example programs for using the DI

Several example programs that illustrate the use of the DIl are included in the following
directory:

<install dirs/examples/vie/bernk dynamic
These example programs are used to illustrate DIl concepts in this section.

Using the idlI2java compiler

The idl2java compiler has a flag (-dynemic mershal) which, when switched on,
generates stub code using DII. To understand how to do any type of DII:

1 create an IDL file,
2 generate with -dynamic mershal,
3 and look at the stub code.

310 VisiBroker for Java Developer’s Guide

Obtaining a generic object reference

Obtaining a generic object reference

When using the DII, a client program does not have to use the traditional bind
mechanism to obtain a reference to the target object, because the class definition for
the target object may not have been known to the client at compile time.

The code sample below shows how your client program can use the bind method
offered by the VisiBroker ORB object to bind to any object by specifying its name. This
method returns a generic org.ang.CORRA.doject .

org.ang.CORRA. Qoject acoount ;
try {
// initialize the CRB.
org.arg.CORRA.CRB. init (args, rull);
} catch (Exception e) {
System.err.println ("Failure during CRB init");
e.printStackTrace () ;

}

try {
// Request ORB to bind to the doject sugporting the account interface.
account = orb.boind ("IDL:Account :1.0") ;
} catch(const CQORBA: :Exceptiong excep)
System.err.println ("Exrror binding to account") ;
excep . printStackTrace() ;

System.cut.println ("Bourd to accomt doject") ;

Creating and initializing a request

Note

When your client program invokes a method on an object, a Request object is created to
represent the method invocation. The Request object is written, or marshalled, to a
buffer and sent to the object implementation. When your client program uses client
stubs, this processing occurs transparently. Client programs that wish to use the DIl
must create and send the Request object themselves.

There is no constructor for this class. The doject’'s _request method or Goject's
_create request method are used to create a Request object.

Request interface

The following code sample shows the Request interface. The target of the request is
set implicitly from the object reference used to create the Request. The name of the
operation must be specified when the Request is created.

package org.ary.ORBA;

public abstract class Request {
public abstract org.arg.CORBA.Qoject target () ;
public abstract java.lang.String goeration() ;
public abstract org.omg.CORRA.NVIdst argurents() ;
public abstract org.omg.CORRA.NamedValue result () ;
pdblic abstract org.ang.CORBA.Envirament erv() ;
public abstract org.ong.CORBA.Exceptianlist exceptians() ;
public abstract org.arg.CORBA.Contextlist cotexts() ;
public abstract void ctx(org.arg.CORBA. Context ctx) ;
public abstract org.omg.CORBA.Context ctx() ;
public abstract org.ong.CCRRA.Ay add in arg() ;

Chapter 22: Using the Dynamic Invocation Interface 311

Creating and initializing a request

pdblic abstract org.any.CORBA.ATy add named in arg(
public abstract org.any.CORRA.Ay add inout arg() ;
public abstract org.arg.CORBA.Ay add named inout arg(
pablic abstract org.ong.CCRRA.Ay add aut arg() ;
pdblic abstract org.ang.CORBA.Ay add named aut arg(
pblic abstract void set retum type(

public abstract org.any.CORBA.ATY return value() ;
pdblic abstract void invcke() ;

public abstract void send aneway () ;

pablic abstract void serd deferred() ;

pblic abstract void get respanse() ;

pblic abstract boolean poll response() ;

}

Ways to create and initialize a DIl request

Once you have issued a bind to an object and obtained an object reference, you can
use one of two methods for creating a Request object.

The following sample shows the methods offered by the org.ang.CORRA.Goject
interface.

package org.arg.CORRA;
pblic interface Qoject {

pblic org.ong.GORBA.Request _request (java. lang.String operation;

pblic org.ong.QORBA.Request _create request (
org.ang.ORRA. Cantext ctx,
java.lang.String operatio,
arg.ang.QORBA.NVList arg list,
org.ang.ORRA. NamedValue result

)

pdblic org.ong.CORRA.Request _create request (
org.ang.ORBRA. Cantext ctx,
java.lang.String operatio,
arg.ang.QORBA.NVList arg list,
org.arg.CORBA. NamedValue result,
org.arg.CORRA. Exceptialist exosptions,
org.ang.CORBA. Contextlist contexts

Using the create_request method

You can use the _create request method to create a Request object, initialize the
Context, the operation name, the argument list to be passed, and the result. Optionally,
you can set the ContextI st for the request, which corresponds to the attributes defined
in the request's IDL. The request parameter points to the Request object that was
created for this operation.

312 VisiBroker for Java Developer’s Guide

Creating and initializing a request

Using the _request method

The code sample in “Example of creating a Request object” on page 313 shows the
use of the _request method to create a Request object, specifying only the operation
name. After creating a float request, calls to its add in argmethod add an input
parameter Account name. Its result type is initialized as an Object reference type via a
call to set retum type method. After a call has been made, the return value is
extracted with the result's call to the result method. The same steps are repeated to
invoke another method on an Account Manager instance with the only difference being
in-parameters and return types.

The reg, an Ay object is initialized with the desired account name and added to the
request's argument list as an input argument. The last step in initializing the request is
to set the result value to receive a flcat.

Example of creating a Request object

A Request object maintains ownership of all memory associated with the operation, the
arguments, and the result so you should never attempt to free these items. The
following code sample is an example of creating a request object.

// Client.java
pblic class Client {
public static void mein(String[] args) {
if (args.lergth | = 2) {
System.out.printIn("Usage: vbj Client <menager-nane> <account-names\
1'1") ;
retum;
}
String menageName = args [0] ;
String accontNare = args[1];
org.ang.CORRA. Qoject accountMenager, account;
org.any.CORBA.CRB orb = org.any.CORBA.CRB. init (args, muill) ;
acoontMenager = orb.oind ("I0L: Bark/AccountManager: 1.0",
merageName, rull, rull);
org.arg.CORBA.Request request = accountManager. request ("open") ;
request.add in arg() .insert string(accontNare) ;
request .set retum type (orb.get primitive tc(
org.arg.QORBA. TCKind. tk dojref)
);
request . irvoke () ;
account = request.result () .value() .extract doject () ;
org.arg.CORBA.Request request = account. request ("balance") ;
request .set retum type (orb.get primitive tc(
org.ang. CORBA. TCKird. tk fleoat)
);
request . irvoke () ;
float balance = reguest.result () .value() .extract float();
System.out .printIn("The balance in " + accomntNare + "'s accomt is
S" + balance) ;

Chapter 22: Using the Dynamic Invocation Interface 313

Creating and initializing a request

Note

Setting arguments for the request

The arguments for a Request are represented with a NVList object, which stores name-
value pairs as NamedValue objects. You can use the argurents method to obtain a pointer
to this list. This pointer can then be used to set the names and values of each of the
arguments.

Always initialize the arguments before sending a Request. Failure to do so will result in
marshalling errors and may even cause the server to abort.

Implementing a list of arguments with the NVList

This class implements a list of NamedValue objects that represent the arguments for a
method invocation. Methods are provided for adding, removing, and querying the
objects in the list. The following code sample is an example of the NVList class:

package org.arg.dORBA;
public abstract class NVIdist {
public int comnt() ;
pdblic void add(int flags) ;
pblic void add item(java.lang.String name, int flags);
pblic void add value(
java.lang.String name,
org.ang.CRRA. Aty value,
int flags
)i
public org.arng.ORBA.NemedValue item(int index) ;
public void remove (int index) ;

}

Setting input and output arguments with the NamedValue Class

This class implements a name-value pair that represents both input and output
arguments for a method invocation request. The NamedValue class is also used to
represent the result of a request that is returned to the client program. The name
property is simply a character string and the value property is represented by an any
class. The following code sample is an example of the NamedValue class.

There is no constructor for this class. The ORB.create named value method is used to
obtain a reference to a NamedValue object.

package org.ary.ORBA;

pblic abstract class NamedValue {
pdblic java.lang.String name() ;
public org.ong.CORBA. Aty value() ;
pdblic int flags();

}

The following table describes the methods in the Namedvalue class.

Table 22.1 NamedValue methods

Method Description

name Returns a pointer to the name of the item that you can then use to initialize the
name.

value Returns a pointer to an 2ny object representing the item's value that you can then use
to initialize the value. For more information, see “Passing type safely with the Any
class” on page 315.

flags Indicates if this item is an input argument, an output argument, or both an input and
output argument. If the item is both an input and output argument, you can specify a
flag indicating that the VisiBroker ORB should make a copy of the argument and
leave the caller's memory intact. Flags are 2RG IN, ARG OUT, and ARG INOUT.

314 VisiBroker for Java Developer’s Guide

Note

Creating and initializing a request

Passing type safely with the Any class

This class is used to hold an IDL-specified type so that it may be passed in a type-safe
manner.

Obijects of this class have a reference to a TypeCode that defines the contained object's
type and a reference to the contained object. Methods are provided to construct, copy,
and release an object as well as initialize and query the object's value and type. In
addition, streaming operators methods are provided to read and write the object from
and to a stream. The following code sample is an example.

package org.ang.CORRA;
pblic abstract class Ay

public abstract TypeCode type() ;

public abstract void type (TypeCode type) ;
pblic abstract void read value (TrputStream input, TypeCode type) ;
pblic abstract void write value (OuputStream cutpout) ;

pdblic abstract boolean equal (Ary rhs) ;

}

Representing argument or attribute types with the TypeCode class

This class is used by the Interface Repository and the IDL compiler to represent the
type of arguments or attributes. TypeCode objects are also used in a Request object to
specify an argument's type, in conjunction with the 2y class.

TypeCode objects have a kind and parameter list property, represented by one of the
values defined by the TCKind class.

There is no constructor for this class. Use the CRB.get primitive tcmethod or one of
the ORB.create * tcmethods to create a TypeCode object.

The following table shows the kinds and parameters for the TypeCode objects.

Table 22.2
Kind

tk abstract interface

TypeCode kinds and parameters

Parameter list
repository id, interface name

tk alias repository id, alias name, TypeCode

tk any None

tk array length, TypeCode

tk boolean None

tk char None

tk dauble None

tk emm repositary id, enumnae, enm-idt, er-id, ... emm-id"
tk except repository id, exception name, StructMarbers
tk fixed digits, scale

tk float None

tk lag None

tk longdouble None

tk laglayg None

tk native id, name

tk null None

tk dojref repositary id, interface id

tk octet None

tk Principal None

tk sequence TypeCode, mexlen

Chapter 22: Using the Dynamic

Invocation Interface 315

Creating and initializing a request

Table 22.2 TypeCode kinds and parameters (continued)

1

Kind Parameter list

tk short None

tk string mexlen-integer

tk struct repositary id, struct-name, {mabert, TypeCode! }, {menber”, Typetodd”}

tk TypeCode None

tk ulag None

tk ulaglag None

tk union rq;osn:ory id, monnane switch Type(]m{label ~valuel, menber-name!,
- TypeCode!), {label -value", member-name”, Typetode"}

tk ushort None

tk value repository id, value name, baxType

tk value bax repository id, value name, typeModifier, cancreteBase, menbers

tk void None

tk wehar None

tk wstring None

TypeCode class:
public abstract class TypeCode extends java.lang.doject

implements org.ong.CORBA. portable. ILENtity
public abstract boolean equal (org.arg.ORBA. TypeCode tc) ;
public boolean equivalent (org.omg.CORBA. TypeCode to) ;
public abstract org.omg.CORRA. TCKind kind() ;
public TypeCode get compact typecade ()
public abstract java.lang.String id()
throws org.ong. QORBA. TypeCodePackage . BadKind;
public abstract java.lang.String name()
throws org.ang. QORRA. TypeCodePackage . BadKind;
pdblic abstract int member count ()
throws org.ang. CORRA. TypeCodePackage . BadKind;
public abstract java.lang.String marber name (int index)
throws org.ang. QORRA. TypeCodePackage . BadKind,
org.ang. CORBA. TypeCodePackage . Bourds;;
public abstract org.any.CORBA. TypeCode mamber type (int index)
throws org.ang. QORRA. TypeCodePackage . BadKind,
org.ang. CORBA. TypeCodePackage . Bourds;;
public abstract org.any.CORBA.Ay member label (int index)
throws org.ang. QORRA. TypeCodePackage . BadKind,
org.arng. QORBA. TypeCodePackage .Bourds;
public abstract org.ang.CORBA. TypeCode dlscnmmator - type()
throws org.ang. CORRA. TypeCodePackage . BadKind,
pdblic abstract int default index()
throws org.ong. QORBA. TypeCodePackage . BadKind;
pdblic abstract int length()
throws org.ang. QORRA. TypeCodePackage . BadKind;
public abstract org.omg.CCORRA. TypeCode content type()
throws org.ong. QORRA. TypeCodePackage . BadKind;
puablic short fixed digits()
throws org.ang. QORRA. TypeCodePackage . BadKind;
pblic short fixed scale()
throws org.ang. CORRA. TypeCodePackage . BadKind;
public short member visibility(int index)
throws org.ang. QORRA. TypeCodePackage . BadKind,
org.ang.ORRA. Bourds;
public short type modifier()
throws org.arng.ORRA. 'IyperdePad<age.BadI<j:nd;
pblic TypeCode concrete base type()
throws org.ang. QORRA. TypeCodePackage . BadKind;

316 VisiBroker for Java Developer’s Guide

Sending DIl requests and receiving results

Sending DIl requests and receiving results

The Request class, as discussed in “Creating and initializing a request” on page 311,
provides several methods for sending a request once it has been properly initialized.

Invoking a request

The simplest way to send a request is to call its irvcke method, which sends the
request and waits for a response before returning to your client program. The
retum value method returns a reference to an Ay object that represents the return
value. The following code sample shows how to send a request with invoke.

try {

// Create request that will be sent to the accomt doject

request = acoount. request ("balance");

// Set the result type

request.set retum type(orb.get primitive tc
(org.omg.CORBA. TCKird. tk fleat)) ;

// Execute the request to the account doject

request . irvoke () ;

// Get the retum balance

float balance;

org.arg.CORBA. Aty balance result = request.returmn value() ;

kalance = balance result.extract float();

// Print aut the balance

System.out .printIn("The balance in " + name + "'s accont is $" +
balance) ;

} catch(Bxception e) {
e.printStackTrace() ;

Sending a deferred DIl request with the send_deferred method

A non-blocking method, send deferred, is also provided for sending operation requests.
It allows your client to send the request and then use the poll respanse method to
determine when the response is available. The get response method blocks until a
response is received. The following codes show how these methods are used. The
following sample shows you how to use the send deferredand poll respanse methods
to send a deferred DIl request.
try

// Create request that will ke sent to the menager doject

org.arg.CORBA.Request request = menager. request ("cpen") ;

// Create argurent to request

org.arg.QORBA. Aty custarer = orb.create any () ;

custarer. insert string(name) ;

org.ang.CORBA.NVList arguments = request.argurents() ;

arguments.add value ("name" , custamer, org.arg.CORBA.ARG IN.value) ;

// Set result type

request.set retum type (orb.get primitive tc

(org.omg. CORBA. TCKind. tk dojref)) ;

// Creation of a new account can take sare time

// Execute the deferred request to the manager doject-plist

request . serd deferred() ;

Thread. currentThread () .sleep(1000) ;

while (!request.poll respanse()) {

System.out.printIn(" Waiting for respose...");
Thread. currentThread () .sleep(1000) ; // Wait ane second ketween polls

}

Chapter 22: Using the Dynamic Invocation Interface 317

Sending DIl requests and receiving results

request.get respanse() ;
// Get the retum value
org.org.CORRA.doject acoount ;
org.ang.QORBA.Any cpen result = reguest.retum value() ;
acoont = gpen result.extract oject () ;

} cé‘&(l‘h(EXoeptim e {
e.printStackTrace () ;

Sending an asynchronous DIl request with the send_oneway
method

The send aneway method can be used to send an asynchronous request. Oneway
requests do not involve a response being returned to the client from the object
implementation.

Sending multiple requests

A sequence of DIl Request objects can be created using array of Request objects. A

sequence of requests can be sent using the VisiBroker ORB methods

serd miltiple requests aneway or send miltiple requests deferred If the sequence of
requests is sent as oneway requests, no response is expected from the server to any
of the requests.

Receiving multiple requests

When a sequence of requests is sent using send miltiple requests deferred, the
poll next respanse and get next respanse methods are used to receive the response
the server sends for each request.

The VisiBroker ORB method poll next respanse can be used to determine if a
response has been received from the server. This method returns trueif there is at
least one response available. This method returns falseif there are no responses
available.

The VisiBroker ORB method get next response can be used to receive a response. If
no response is available, this method will block until a response is received. If you do
not wish your client program to block, use the poll next respanse method to first
determine when a response is available and then use the get next respanse method to
receive the result. The following code sample shows an example of receiving multiple
requests.

VisiBroker ORB methods for sending multiple requests and receiving the results:

package org.arng.CORRA;
pblic abstract class ORB

public abstract org.ongy.CCRRA.Ervirament create envirament () ;

pblic abstract void send miltiple requests aneway (org.arg.CORBA.Request []
regs) ;

pblic abstract void send miltiple requests deferred(org.amy. CORBA.Request (]
regs) ;

public abstract boolean poll next respanse() ;

public abstract org.omy.CORRA.Request get next respanse() ;

}

318 VisiBroker for Java Developer’s Guide

Using the interface repository with the DIl

Using the interface repository with the DI

One source of the information needed to populate a DIl Request object is an interface
repository (IR) (see Chapter 21, “Using Interface Repositories”). The following
example uses an interface repository to get obtain the parameters of an operation.
Note that the example, atypical of real DIl applications, has built-in knowledge of a
remote object's type (Account) and the name of one of its methods (balance). An actual
DIl application would get that information from an outside source, for example, a user.

= Binds to any Account object.

= Looks up the Acoount's balance method in the IR and builds an operation list from the
IR OperatianDef.

= Creates argument and result components and passes these to the create request
method. Note that the balance method does not return an exception.

= Invokes the Request, extracts and prints the result.

Chapter 22: Using the Dynamic Invocation Interface 319

320 VisiBroker for Java Developer’s Guide

Using the Dynamic Skeleton
Interface

This section describes how object servers can dynamically create object
implementations at run time to service client requests.

What is the Dynamic Skeleton Interface?

Note

The Dynamic Skeleton Interface (DSI) provides a mechanism for creating an object
implementation that does not inherit from a generated skeleton interface. Normally, an
object implementation is derived from a skeleton class generated by the idl2java
compiler. The DSI allows an object to register itself with the VisiBroker ORB, receive
operation requests from a client, process the requests, and return the results to the
client without inheriting from a skeleton class generated by the idl2java compiler.

From the perspective of a client program, an object implemented with the DSI behaves
just like any other VisiBroker ORB object. Clients do not need to provide any special
handling to communicate with an object implementation that uses the DSI.

The VisiBroker ORB presents client operation requests to a DSI object implementation
by calling the object's irwvcke method and passing it a ServerRequest object. The object
implementation is responsible for determining the operation being requested,
interpreting the arguments associated with the request, invoking the appropriate
internal method or methods to fulfill the request, and returning the appropriate values.

Implementing objects with the DSI requires more manual programming activity than
using the normal language mapping provided by object skeletons. However, an object
implemented with the DSI can be very useful in providing inter-protocol bridging.

Using the idI2java compiler

The idl2java compiler has a flag (-dynamic mershal) which, when switched on,
generates skeleton code using DSI. To understand how to do any type of DSI: create
an IDL file, generate with -dynamic mershal, and look at the skeleton code.

Chapter 23: Using the Dynamic Skeleton Interface 321

Steps for creating object implementations dynamically

Steps for creating object implementations dynamically

To create object implementations dynamically using the DSI:
1 When compiling your IDL use the -dyramic mershal flag.

2 Design your object implementation so that it is derived from the
org.ony. PortableServer . Dynami cIimplementation interface instead of deriving your
object implementation from a skeleton class.

3 Declare and implement the irwvoke method, which the VisiBroker ORB will use to
dispatch client requests to your object.

4 Register your object implementation (POA servant) with the POA manager as the
default servant.

Example program for using the DSI

An example program that illustrates the use of the DSl is located in the following
directory:

<install dirs/examples/vice/basic/bank dynamic

This example is used to illustrate DSI concepts in this section. The Bark.idl file, shown
below, illustrates the interfaces implemented in this example.

// Bark.idl

module Bark {
interface Accomnt {

float balance() ;

i

interface AccontManager {

Accont open (in string nane) ;

i

i

Extending the Dynamiclmplementation class

To use the DSI, object implementations should be derived from the
DynamicImplementation base class shown below. This class offers several constructors
and the irvcke method, which you must implement.

package org.arg.CORBA;
public abstract class DynamicInplementation extends Servent {
public abstract void irvoke (ServerRequest request) ;

Example of designing objects for dynamic requests

The code sample below shows the declaration of the AcoountTnpl class that is to be
implemented with the DSI. It is derived from the DynamicInplenentationclass, which
declares the irwvcke method. The VisiBroker ORB will call the irmcke method to pass
client operation requests to the implementation in the form of ServerRequest objects.

322 VisiBroker for Java Developer’s Guide

Extending the Dynamiclmplementation class

The code sample below shows the Account class constructor and _primery interface
function.

import java.util.*;
import org.ang.PortableServer. *;
public class AccontInpl extends DynamicImplementation {
public AccontImpl (org.arg.CORBA.CRB orb, FOA poa) |
_orb = orb;
} _poa = poa;

public synchronized org.amg.CORBA.Ooject get (String name)
org.ang.CORRA.(oject dbj;
// Check if accout exists
Float balance = (Float) registry.get (name) ;
if (alance = rull) {
// similate delay while creating new acoount
try {
Thread. currentThread () .sleep(3000) ;
} catch (Exception e) {
e.printStackTrace() ;

// Make up the accomt's kalance, between 0 and 1000 dollars
balance = new Float (Math.abs (random.nextInt ()) % 100000 / 100f) ;
// Print cut the new account
System.cut .printIn("Created " + name + "'s account: " +

alance. flcatValue()) ;

_registry.put (name, balance) ;

// Returm doject reference
byte[] accountId = name.getBytes() ;

try {
doj = poa.create reference with id(accontId, "IDL:Bark/
Account:1.0") ;

} catch (org.ang. PortableServer. FoRPackage . Wrangkolicy e) {
throw new org.amng.CORBA. INTERNAL (e. toString ()) ;

retum doj;

pblic String[] all interfaces(POA poa, byte[] dbjectId) { retum rull; }
public void invoke (org.ang.CQORBA. ServerRequest request) {

Float balance;

// Get the acoount nane fram the doject id

String name = new String(doject id());

// Ensure that the goeration nane is correct

if (lrequest.operation() .equals("balance")) {

throw new org.any.CORBA.BAD CPERATION() ;

// Find out balance ard £ill out the result
org.ang.QORBA.NVList params = orb.create 1ist(0);
request .argurents (params) ;

kalance = (Float) registry.get (name) ;

if (balence =— mull) {

} throw new org.comg.CORBA.CBJECT NOT EXIST() ;

org.ang.CORBA. Ay result = orb.create any () ;
result.insert float (balance.floatValue()) ;

request.set result (result) ;

System.out .printIn("Checked " + name + "'s balance: " +

balance. floatValue()) ;

private Random _randam = new Random() ;
static private Hashtable registry = new Hashtable();

private FOA _poa;
private org.ong.CCRBA.CRB _orb;

Chapter 23: Using the Dynamic Skeleton Interface 323

Extending the Dynamiclmplementation class

The following code sample shows the implementation of the AcoountManagerTpl class
that need to be implemented with the DSI. It is also derived from the
DyramicImplenrentation class, which declares the irwvcke method. The VisiBroker ORB
will call the irvoke method to pass client operation requests to the implementation in

the form of ServerRequest objects.

import org.ang. PortableServer. *;
public class AccontManagerTnpl extends DynamicImplementation {
public AccontMenagerTnpl (org.ang.CORBA.ORB orb, AccountImpl accoants) {
_orb = orb;
} _acooants = accounts;
public syncdhronized org.ang. CORBA.Cbject open (String name)
retum accounts.get (name) ;

pblic String[] all interfaces(FOA poa, byte[]l dbjectld) { retum mill; }
public void invoke (org.amng.CORBA. ServerRequest request) {
// Ensure that the operation name is correct
if (lrequest.operatio() .equals("cpen")) {
throw new org.omg.CCRBA.BAD CPERATION() ;

}

// Fetch the irput parameter
String name = mill;
try {
org.ong.QORBA.NVList parems = orb.create 1ist(1);
org.ong.CQORRA.Any any = _orb.create any() ;
any.insert string(new String(""));
params.add value ("name", any, org.arg.CORBA.ARG IN.value) ;
request . argunents (parars) ;
name = params.item(0) .value() .extract string();

} catch (Bxception e) {
throw new org.omg.CORRA.BAD PARAM() ;

// Irvcke the actual implementation and fill cut the result
org.any.CQORRA.(oject account = cpen (nane) ;
org.arg.QORBA.Any result = orb.create any() ;
result.insert Coject (account) ;

J}:equest.set_result (result) ;

private AccontInpl _accoants;

private org.arg.CCRBA.CRB _orb;

Specifying repository ids

The_primery interface method should be implemented to return supported repository
identifiers. To determine the correct repository identifier to specify, start with the IDL
interface name of an object and use the following steps:

1 Replace all non-leading instances of the delimiter scope resolution operator (::) with
a slash (/).

2 Add “IDL:" to the beginning of the string.

3 Add “:1.0"to the end of the string.

For example, this code sample shows an IDL interface name:
Bark: :AccountMenager

The resulting repository identifier looks like this:

TDL:: Bark/AccountManager: 1.0

324 VisiBroker for Java Developer’s Guide

Looking at the ServerRequest class

Looking at the ServerRequest class

Note

A serverRequest object is passed as a parameter to an object implementation's irwvcke
method. The ServerRequest object represents the operation request and provides
methods for obtaining the name of the requested operation, the parameter list, and the
context. It also provides methods for setting the result to be returned to the caller and
for reflecting exceptions.

package org.ang.CORBA;
pwblic abstract class ServerRequest
public java.lang.String operation() ;
public void arguments (org.arg.CORBA.NVList args) ;
pablic void set result (org.any.CORBA. Ay result) ;
pblic void set exception(org.amy.CORBA.ATy except) ;
public abstract org.ang.QORBA.Context ctx() ;
// the following methods are deprecated
pdolic java.lang.String cp name(); // use gperation()
public void params (org.ang.CORRA. NVList perams) ; // use argurents ()
public void result (org.arg.CORBA.ATy result); // use set result()
puablic abstract void exoept (org.any.QORBA. ATy exoept) ; // use
set exception()
}
All arguments passed into the argurents, set result, or set_excepticnmethods are
thereafter owned by the VisiBroker ORB. The memory for these arguments will be
released by the VisiBroker ORB; you should not release them.

The following methods have been deprecated:
= op mame

= params

" result

" exoeption

Implementing the Account object

The Account interface declares only one method, so the processing done by the
AccontTpl class' irvoke method is fairly straightforward.

The irwvoke method first checks to see if the requested operation has the name
“balance.” If the name does not match, a BAD OPERATTQN exception is raised. If the
Account object were to offer more than one method, the irvcke method would need to
check for all possible operation names and use the appropriate internal methods to
process the operation request.

Since the balance method does not accept any parameters, there is no parameter list
associated with its operation request. The balance method is simply invoked and the
result is packaged in an Ay object that is returned to the caller, using the ServerRequest
object'sset_result method.

Chapter 23: Using the Dynamic Skeleton Interface 325

Implementing the AccountManager object

Implementing the AccountManager object

Note

Like the Account object, the AccomtManager interface also declares one method.
However, the AccomtManagerInpl object'scpen method does accept an account name
parameter. This makes the processing done by the irwvcke method a little more
complicated.

The method first checks to see that the requested operation has the name “cper?’. If the
name does not match, a BAD OPERATICN exception is raised. If the AccountManager object
were to offer more than one method, its irvoke method would need to check for all
possible operation names and use the appropriate internal methods to process the
operation request.

Processing input parameters

The following are the steps the AccomntMenagerInpl object's irvcke method uses to
process the operation request's input parameters.

1 Create an NVList to hold the parameter list for the operation.

2 Create Ay objects for each expected parameter and add them to the NVList, setting
their TypeCode and parameter type (ARG IN, ARG OUT, or ARG INOUI).

3 Invoke the ServerReguest object'sargurents method, passing the NVList, to update
the values for all the parameters in the list.

The geenmethod expects an account name parameter; therefore, an NVList object is
created to hold the parameters contained in the ServerRequest. The NVList class
implements a parameter list containing one or more Namedvalue objects. The NvList and
NamedValue classes are described in Chapter 22, “Using the Dynamic Invocation
Interface.”

An Ay object is created to hold the account name. This Ay is then added to NVList with
the argument's name set to name and the parameter type set to 2RG IN.

Once the NVList has been initialized, the ServerRequest object'sarouments method is
invoked to obtain the values of all of the parameters in the list.

After invoking the argurents method, the NvList will be owned by the VisiBroker ORB.
This means that if an object implementation modifies an 2RG INOUT parameter in the
NVList, the change will automatically be apparent to the VisiBroker ORB. This NVList
should not be released by the caller.

An alternative to constructing the NvList for the input arguments is to use the
VisiBroker ORB object'screate cperation list method. This method accepts an
Operatiabef and returns an NVList object, completely initialized with all the necessary
Any objects. The appropriate OperatiaiDef object may be obtained from the interface
repository, described in Chapter 21, “Using Interface Repositories.”

Setting the return value

After invoking the ServerRequest object's argurents method, the value of the name
parameter can be extracted and used to create a new Account object. An Aty object is
created to hold the newly created Account object, which is returned to the caller by
invoking the ServerRequest object's set_result method.

326 VisiBroker for Java Developer’s Guide

Server implementation

Server implementation

The implementation of the main routine, shown in the following code sample, is almost
identical to the original example in Chapter 3, “Developing an example application
with VisiBroker.”

import org.ang.PortableServer. *;
pwblic class Server {
public static void mein(String[] args) {
try
// Initialize the CRB
org.ang.CORBA.CRB orb = org.arg.CORRA.CRB. init (args, rwll) ;
// Get a reference to the root FQA
BOA rootPQA =
BCAHelper . narrow (orb. resolve initial references("RootPCA")) ;
// Get the PQA Manager
POVenager poaManager = rootPOA. the FOAManager () ;
// Create the accomnt POA with the right policies
org.arg.CORBA. Folicy[] accomtPolicies = {
TootPCA. create servent retention policy(
ServantRetentionPolicyValue NON RETAIN) ,
TootPCA. create request processing policy(
RequestProcessingPolicyValue.USE DEFAILT SERVANT)
}i
BA accountPOA = rootPOA.create FOA("barnk account poa,
poeMeEnager, accontPolicies) ;
// Create the account default servant
AccontImpl accomntServant = new AccountInpl (orb, accomntPR) ;
accountPOA. set servant (accountServant) ;
// Create the menager POA with the right policies
org.argy.CORBA. Folicy [] menagerPolicies = {
TootPCA. create lifespan policy (LifespanPolicyValue. PERSISTENT) ,
TootPCA. create request processing policy(
RequestProcessingPolicyValue . USE DEFAILT SERVANT)
}i
BCA menagerPOA = rootPOA. create BCOA("barnk agent poa,
posMenager, menagerPolicies) ;
// Create the menager default servant
AccomntManagerTnpl nenagerServant = new AccomntManagerTnpl (orb,
acoountServart) ;
menagerFCA. set servant (menagerServant) ;
// BActivate the FCOA Manager
posMenager.activate() ;
System.out .printIn ("AccontMenager is ready") ;
// Wait for incoming requests
orb.run() ;
} catch(Exception e) {
e.printStackTrace() ;
}
}
}

DSl implementation is instantiated as a default servant and the POA should be created
with the support of corresponding policies. For more information see Chapter 9, “Using
POAs.”

Chapter 23: Using the Dynamic Skeleton Interface 327

328 VisiBroker for Java Developer’s Guide

Using Portable Interceptors

This section provides an overview of Portable Interceptors. Several Portable
Interceptor examples are discussed as well as the advanced features of Portable
Interceptor factories.

For a complete description of Portable Interceptors, refer to the OMG Final Adopted
Specification, ptc/2001-04-03, Portable Interceptors.

Portable Interceptors overview

The VisiBroker ORB provides a set of interfaces known as interceptors which provide a
framework for plugging-in additional ORB behavior such as security, transactions, or
logging. These interceptor interfaces are based on a callback mechanism. For
example, using the interceptors, you can be notified of communications between
clients and servers, and modify these communications if you wish, effectively altering
the behavior of the VisiBroker ORB.

At its simplest usage, the interceptor is useful for tracing through code. Because you
can see the messages being sent between clients and servers, you can determine
exactly how the ORB is processing requests.

Figure 24.1 How Interceptors work

Gent | e Senw

Inercepton

ORE msssages

If you are building a more sophisticated application such as a monitoring tool or
security layer, interceptors give you the information and control you need to enable
these lower-level applications. For example, you can develop an application that
monitors the activity of various servers and performs load balancing.

Chapter 24: Using Portable Interceptors 329

Portable Interceptor and Information interfaces

Types of interceptors

There are two types of interceptors supported by the VisiBroker ORB.

Table24.1 Types of interceptors supported by the VisiBroker ORB

Portable Interceptors VisiBroker Interceptors

An OMG standardized feature that allows VisiBroker-specific interceptors. For more
writing of portable code as interceptors, which information, go to Chapter 25, “Using

can be used with different ORB vendors. VisiBroker Interceptors.”

Types of Portable Interceptors

The two kinds of Portable Interceptors defined by the OMG specification are: Request
Interceptors and IOR interceptors.

Table 24.2 Types of Portable Interceptors

Request Interceptors IOR interceptor

Can enable the VisiBroker ORB Used to enable a VisiBroker ORB service to add
services to transfer context information in an IOR describing the server's or object's
information between clients and ORB-service-related capabilities. For example, a

servers. Request Interceptors are security service (like SSL) can add its tagged

further divided into Client Request component into the IOR so that clients recognizing that
Interceptors and Server Request component can establish the connection with the server
Interceptors. based on the information in the component.

For additional information on using both Portable Interceptors and VisiBroker
Interceptors, see Chapter 25, “Using VisiBroker Interceptors.”

See also VisiBroker for Java APIs, and the “Portable Interceptor interfaces and classes
for C++” chapter of the VisiBroker for C++ API Reference.

Portable Interceptor and Information interfaces

All Portable Interceptors implement one of the following base interceptor API classes
which are defined and implemented by the VisiBroker ORB:

= Request Interceptor:
* (ClientRequestInterceptor
= ServerRequestInterceptor
= ICRInterceptor

Interceptor class

All the interceptor classes listed above are derived from a common class: Interceptor.
This Interceptor class has defined common methods that are available to its inherited

classes.

The Interceptor class:
public interface Interoeptor
exterds org.ong.CORBA.portable. IDLENtity, org.ang.CORBA.LocalInterface
{

public java.lang.String name () ;
pdblic void destroy () ;
}

330 VisiBroker for Java Developer’s Guide

Portable Interceptor and Information interfaces

Request Interceptor

A request interceptor is used to intercept the flow of a request/reply sequence at
specific interception points so that services can transfer context information between
clients and servers. For each interception point, the VisiBroker ORB gives an object
through which the interceptor can access request information. There are two kinds of
request interceptor and their respective request information interfaces:

= (lientRequestInterceptor and ClientRequestInfo
= ServerReguestInterceptor and ServerRequestInfo

Figure 24.2 Request Interception points

pm—_———————— ————— e — — — ——

—I-—} send_request [-recewe _request_service conbex:ﬁ]i)
f:*“ /@.
—|-—> send_poll /r' neu:ewe _request —l—b

send_reply

send_excepﬁun

|
|
: receive_reply | - —
|
|

A
Clientside interception pnlnts Server-side int2rception polms

For more detail information on Request Interceptors, see the VisiBroker for Java APIs,
and the “Portable Interceptor interfaces and classes for C++” chapter of the VisiBroker
for C++ API Reference.

ClientRequestinterceptor

ClientRequest Interceptor has its interception points implemented on the client-side.
There are five interception points defined in ClientRequestInterceptor by the OMG as
shown in the following table:

Table 24.3 ClientRequestinterceptor interception points

Interception Points Description

serd request Lets a client-side Interceptor query a request and modify the service
context before the request is sent to the server.

serd poll Lets a client-side Interceptor query a request during a Time-Independent
Invocation (TI1)! polling get reply sequence.

receive reply Lets a client-side Interceptor query the reply information after it is

returned from the server and before the client gains control.
receive exception Lets a client-side Interceptor query the exception's information, when an
exception occurs, before the exception is sent to the client.

receive other Lets a client-side Interceptor query the information which is available
when a request result other than normal reply or an exception is
received.

" TIl is not implemented in the VisiBroker ORB. As a result, the send poll() interception point will
never be invoked.

Chapter 24: Using Portable Interceptors 331

Portable Interceptor and Information interfaces

For more information on each interception point, see the VisiBroker for Java APIs, and
the “Portable Interceptor interfaces and classes for C++” chapter of the VisiBroker for
C++ API Reference.

package org.arg.PortableTnterceptor;
public interface ClientRequestInterceptor

extends Interoeptor, org.ong.CORBA.portable. IDLEntity,
org.ang.ORRA. ILocal Interface

pablic void send request (ClientRequestInfo ri) throws ForwardRequest;
pblic void send poll (ClientRequestnfo ri) throws ForwerdRequest;
pblic void receive reply(ClientRequestInfo ri) ;
pblic void receive exception(ClientRequestInfo ri) throws ForwerdRequest;
public void receive other (ClientRequestInfo ri) throws ForwardRequest;

}

Client-side rules
The following are the client-side rules:

= The starting interception points are: send request and serd poll. On any given
request/reply sequence, one and only one of these interception points is called.

= The ending interception points are: receive reply, receive exceptionand
receive other.

= There is no intermediate interception point.

= An ending interception point is called if and only if send request or send poll runs
successfully.

= A receive exceptimis called with the system exception BAD INV CRDER with a minor
code of 4 (ORB has shutdown) if a request is canceled because of ORB shutdown.

= A receive exceptionis called with the system exception TRANSIENT with a minor code
of 3if a request is canceled for any other reason.

Successful invocations send request is followed by receive reply; a start point is
followed by an end point

Retries serd request is followed by receive other; a start point is
followed by an end point

ServerRequestinterceptor

ServerRequest Interceptor has its interception points implemented on the server-side.
There are five interception points defined in SexrverRequestInterceptor. The following

table shows the ServerRequestInterceptor Interception points.

Table 24.4 ServerRequestinterceptor Interception points

Interception Points Description

receive request service amtexts Lets a server-side Interceptor get its service context
information from the incoming request and transfer it to
PortableInterceptor: :Crrent's slot.

receive request Lets a server-side Interceptor query request information
after all information, including operation parameters, is
available.

serd reply Lets a server-side Interceptor query reply information and

modify the reply service context after the target operation
has been invoked and before the reply is returned to the
client.

332 VisiBroker for Java Developer’s Guide

Portable Interceptor and Information interfaces

Table 24.4 ServerRequestinterceptor Interception points (continued)

Interception Points Description

serd exoeption Lets a server-side Interceptor query the exception's
information and modify the reply service context, when an
exception occurs, before the exception is sent to the client.

serd other Lets a server-side Interceptor query the information which is
available when a request result other than normal reply or
an exception is received.

For more detail on each interception point, see the VisiBroker for Java APls, and the

Portable Interceptor interfaces and classes for C++” chapter of the VisiBroker for C++

API Reference.
ServerRequest Interceptor Interface:

package org.arg.PortableTnterceptor;
public interface ServerRequestInterceptor
exterds Interosptor, org.ang.CORBA.portable. IDLEntity,
org.arg.QORBA. Local Interface
{
pblic void receive request service contexts (ServerRequestInfo ri)
throws ForwardRequest ;
pablic void receive request (ServerRequestInfo ri) throws ForwardRequest;
pablic void send reply (ServerRequestInfo ri) ;
pblic void send exception(ServerRequestInfo ri) throws ForwardRequest;
pblic void send other (ServerRequestInfo ri) throws ForwardRequest;
}

Server-side rules
The following are the server-side rules:

The starting interception point is: receive request service ootexts. This
interception point is called on any given request/reply sequence.

The ending interception points are: send reply; send exceptionand send other. On
any given request/reply sequence, one and only one of these interception points is
called.

The intermediate interception point is receive_request. It is called after
receive request service amtextsand before an ending interception point.

On an exception, receive request may not be called.

An ending interception point is called if and only if send request or send pollruns
successfully.

A serd exoeptianis called with the system exception BAD INV ORDER with a minor
code of 4 (ORB has shutdown) if a request is canceled because of ORB shutdown.

A send exoeptionis called with the system exception TRANSIENT with a minor code of
3if arequest is canceled for any other reason.

Successful invocations The order of interception points:
receive request service contexts, receive request,
serd reply; a start point is followed by an intermediate
point which is followed by an end point.

Chapter 24: Using Portable Interceptors 333

Portable Interceptor and Information interfaces

IOR Interceptor

IRInteroeptor give applications the ability to add information describing the server's or
object's ORB service related capabilities to object references to enable the VisiBroker
ORB service implementation in the client to function properly. This is done by calling
the interception point, establish components. An instance of IORInfois passed to the
interception point. For more information on ICRInfo, see the VisiBroker for Java APIs,
and the “Portable Interceptor interfaces and classes for C++” chapter of the VisiBroker
for C++ API Reference.

package org.ang.PortableTnterceptor;
public interface IORInterceptor
externds Interoeptor, org.ong.CORBA.portable. IDLEntity,
org.arng.CORBA.Local Interface
{
pblic void establish companents (ICRInfo info) ;
pblic void camponents established (IORInfo info) ;
pdblic void adapter menager state changed(int id, short state);
public void adapter state changed (
ojectReferenceTenplate[] templates, short state) ;

}

Portable Interceptor (PI) Current

The PortableInterceptor: :Current object (hereafter referred to as PICurrent) is a table
of slots that can be used by Portable Interceptors to transfer thread context information
to request context. Use of PICurrent may not be required. However, if client's thread
context information is required at interception point, PICurrent can be used to transfer
this information.

PICurrent is obtained through a call to:
ORB.resolve initial references("PIClrrent");
PortableInterceptor.Current interface:

package org.arg.PortableTnterceptor;
public interface Qurrent
exterds org.ang.ORRA. GurrentOperatians, org.ong.CORBA.portable. IDLENtity

{

public org.any.CORBA. Ay get slot (int id) throws InvalidSlot;

pblic void set slot (int id, org.omg.CORBA.Any data) throws InvalidSlot;

}

334 VisiBroker for Java Developer’s Guide

Portable Interceptor and Information interfaces

Codec

Qodec provides a mechanism for interceptors to transfer components between their IDL
data types and their CDR encapsulation representations. A Codecis obtained from
QodecFactory. For more information, see “CodecFactory” on page 335.

The Codecinterface:

package org.arg.IOP;
public interface Codec
extends org.ang.ORRA.portable. IDLEntity, org.ong.CORBA.Local Tnterface
{
public byte[] encode (org.ang.CORRA. Aty data) throws TrvalidlypeForFnooding;
public org.ong.CORBA. Aty decode (byte[] data) throws FormatMismetch;
pablic byte[] encode value (org.arg.CORBA.Ay data) throws
TrvalidTypeForFncoding;
public org.ang.CORBA.Ay decode value (byte[] data,
org.arg.QORBA. TypeCode tc)
throws FormatMigmatch, TypaMismatch;

}

CodecFactory

This class is used to create a Ccdec object by specifying the encoding format, the major
and minor versions. CodecFactory can be obtained with a call to:

CRB.resolve initial references ("CodecFactory")
The CodecFactory interface:

package org.arg.IOP;
public interface CodecFactory
extends org.ong.CORBA.portable. IDLEntity, org.ang.CORBA.LocalInterface

public Codec create codec (Encoding enc) throws UnknownEncoding;
}

Creating a Portable Interceptor

The generic steps to create a Portable Interceptor are:

1 The Interceptor must be inherited from one of the following Interceptor interfaces:
* ClientRequestInterceptor
= ServerReguestInterceptor
= ICRInterceptor

2 The Interceptor implements one or more interception points that are available to the
Interceptor.

3 The Interceptor can be named or anonymous. All names must be unique among all
Interceptors of the same type. However, any number of anonymous Interceptors
can be registered with the VisiBroker ORB.

Chapter 24: Using Portable Interceptors 335

Portable Interceptor and Information interfaces

Example: Creating a PortableInterceptor
import org.arg.PortableInterceptor. *;

public class SanmpleClientRequestInterceptor extends org.ang.CORBA.IocalToject
implements ClientRequestInterceptor
{
public java.lang.String name() {
retum "SampleClientRequestInterceptor”;
}

public void serd request (ClientRequestInfo ri)
throws ForwerdRequest {
....... // actual interceptor code here

public void serd poll (ClientRequestInfo ri)
throws ForwerdRequest {
....... // actual interceptor code here

public void receive reply (ClientRequestInfo ri)
....... // actual interceptor code here

pablic void receive exception(ClientRequestInfo ri)
throws ForwerdRequest
....... // actual interceptor oode here

public void receive other (ClientRequestInfo ri)
throws ForwerdRequest {
....... // actual interceptor code here

Registering Portable Interceptors

Portable Interceptors must be registered with the VisiBroker ORB before they can be
used. To register a Portable Interceptor, an CRBInitializer object must be
implemented and registered. Portable Interceptors are instantiated and registered
during ORB initialization by registering an associated CRBInitializer object which
implements its pre init() or post init() method, or both. The VisiBroker ORB will
call each registered CRBInitializer with an ORBInitInfo object during the initializing
process.

The CRBInitializerinterface:
package org.arg.PortableTnterceptor;

public interface CRBInitializer
exterds org.ang.ORRA.portable. I Entity, org.ong.CORBA.Local Tnterface

{
pdblic void pre init ((RBInitInfo info);
pblic void post init (RBInitInfo info) ;

}

336 VisiBroker for Java Developer’s Guide

Note

Portable Interceptor and Information interfaces

The CRBInitInfointerface:

package org.ang.PortableTnterceptor;
public interface CRBInitInfo
exterds org.ong.CORBA.portable. IDLEntity, org.ang.QORBA.IocalTnterface
{
public java.lang.String[] arguments();
pablic java.lang.String orb id() ;
pblic CodecFactory codec factory () ;
pblic void register initial reference(java.lang.String id,
org.arg.QORRA. Qoject doj)
throws IrvalidName;
pblic void resolve initial references(java.lang.String id) throws
TrvalidName;
public void add client request interceptor (ClientRequestInterceptor
interceptor)
throws DuplicateNane;
pblic void add server request interceptor (ServerRequestInterceptor
interceptor)
throws DuplicateNane;
pblic void add ior interceptor (ICRTnterceptor interceptor) throws
DuplicateName;
pdblic int allocate slot id() ;
pablic void register policy factory (int type, PolicyFactory policy factory) ;

}

Registering an ORBInitializer

To register an CRBInitializer, the global method register orb initializeris provided.
Each service that implements Interceptors provides an instance of CRBInitializer. To
use a service, an application:

1 calls register orb initializer() with the service's CRBInitializer; and

2 makes an instantiating ORB Init () call with a new ORB identifier to produce a new
ORB.

Since the register orb initializer() is a global method, it would break applet
security with respect to the ORB. As a result, CRBInitializers are registered with
VisiBroker ORB by using Java ORB properties instead of calling
register orb initializer().

The new property names are of the form:
org.ang. PortableInterceptor .ORBInitializerClass . <Service>

where <Servicesis the string name of a class which implements
org.ang. PortableInterceptor .ORBInitializer.

During ORB.init():

1 these ORB properties which begin with
org.arg. PortableInterceptor. CRBInitializerClass are collected.

2 the <Services portion of each property is collected.

3 an object is instantiated with the <Services string as its class name.
4 the pre init() and post _init() methods are called on that object.
5 if there is any exception, the ORB ignores them and proceeds.

To avoid name collisions, the reverse DNS name convention is recommended. For
example, if company ABC has two initializers, it could define the following properties:

org.ang. PortableInterceptor. ORBInitializerClass. can. aoc.ORBInit1l
org.ang. PortableInterceptor. ORBInitializerClass. aam. alboc. ORBINit2

Chapter 24: Using Portable Interceptors 337

Portable Interceptor and Information interfaces

Example: Registering ORBInitializer
A client-side monitoring tool written by company ABC may have the following
ORBInitializer implementation:

package oom.abc.Monitoring;

import org.ang. Portablenterceptor . Tnterceptor;
import org.ang. PortableInterceptor . CRBInitializer;
import org.arg. PortableInterceptor.ORBINi tInfo;

public class MmitoringService extends org.ang.QORRA.Localdoject
implements org.arg.PortableInterceptor .ORBInitializer

{

void pre init (ORBInitInfo info)

{
// instantiate the service's Interceptor.
Interceptor interceptor = new MonitoringInterceptor() ;

// register the Mmitoring's Interceptor.

info.add client request interceptor (interceptor) ;
}

void post init (RBInitInfo info)
// This init point is not needed.

}

The following command may be used to run a program called MyZgp using this
monitoring service:

Jjava -Dorg.arg.PortableInterceptor . CRBInitializerClass.oom.abc.
Moni toring.MonitoringService MyAop

VisiBroker extensions to Portable Interceptors

POA scoped Server Request Interceptors

Portable Interceptors specified by OMG are scoped globally. VisiBroker has defined
“POA scoped Server Request Interceptor”, a public extension to the Portable
Interceptors, by adding a new module call PortableInterceptorExt. This new module
holds a local interface, IORInfoExt, which is inherited from

PortableInterceptor: : IORInfoand has additional methods to install POA scoped server
request interceptor.

The ICRInfcExt interface:
package oom. irprise.vioroker . PortableInterceptor;

public interface IORInfoExt exterds

org.ang.CORRA. Local Interface,

org.arg. Portablenterceptor . I0RTnfo,

cam. inprise. vioroker . PortableInterceptor . IORInfoExtOperatians,

org.ong.CORBA.portable. IDLENtity
{

pablic void add server request interceptor (ServerReguestInterceptor
interoeptor)

throws DuplicateNane;
public java.lang.String[] full poa name() ;

338 VisiBroker for Java Developer’s Guide

Portable Interceptors examples

Inserting and extracting system exceptions

To conveniently insert and extract SysterExceptiansto and from an Ay, a utility helper
class is provided only for VisiBroker for Java. The

oam. inprise . vibroker . PortableInterceptor . SystarExosptiaielper class provides the
methods to insert and extract the SystenExoeptionsinto and out of an Ay respectively.
You need to import the following package:

import com. inprise.vbroker . PortableTnterosptor. *;
The two methods have the following signatures:

public static void insert (final org.ong.CORBA.Ay ary, final

org.ong.CORBA. SystenExoeptian se) ;

public static org.ang.CORRA. SystenExosption extract (final org.ong.CORBA.ATYy
ay) ;

Limitations of VisiBroker Portable Interceptors implementation

The following are limitations of the Portable Interceptor implementation in VisiBroker.

ClientRequestinfo limitations

= arguments(), result(), exceptions(), contexts(), and goeration contexts() are
only available for DIl invocations. For more information, see Chapter 23, “Using the
Dynamic Skeleton Interface.”

= received exception() and received exception id() will always return a
QORBA: :INKNOWN exception and its respective repository id if a user exception is
thrown by the application.

ServerRequestinfo limitations

= exceptions() does not return any value; it will raise a CORBA: :NO RESOURCES exception
in both dynamic invocations and static stub based invocation.

= amtexts() returns the list of contexts that are available during operation invocation.

= sending exception() returns the correct user exception only in the case of dynamic
invocation (provided the user exception can be inserted into an Ay or its TypeCode
information is available).

= arguments(), result(), contexts(), and operation contexts() are only available for
DSl invocations. For more information, see Chapter 23, “Using the Dynamic
Skeleton Interface.”

Portable Interceptors examples

This section discusses how applications are actually written to make use of Portable
Interceptors and how each request interceptor is implemented. Each example consists
of a set of client and server applications and their respective interceptors written in
Java and C++. For more information on the definition of each interface, see the
VisiBroker for Java APIs, and the “Portable Interceptor interfaces and classes for C++”
chapter of the VisiBroker for C++ API Reference.

We also recommend that developers who want to make use of Portable Interceptors
read the chapter on Portable Interceptors in the most recent CORBA specification.

The Portable Interceptors examples are located in the following directory:
<install dirs/exanples/vbe/pi

Chapter 24: Using Portable Interceptors 339

Example: client_server

Each example is associated with one of the following directory names to better
illustrate the objective of that example.

= client server

. chaini

Example: client_server

Note

Note

This section provides a detailed description, explanation, the compilation procedure,
and the execution or deployment of the examples in client server.

Objective of example

This example demonstrates how easily a Portable Interceptor can be added into an
existing CORBA application without altering any code. The Portable Interceptor can be
added to any application, both client and server-side, through executing the related
application again, together with the specified options or properties which can be
configured during runtime.

The client and server application used is similar to the one found in:
<install dirs/examples/vie/basic/benk agent

Portable Interceptors have been added to the entire example during runtime
configuration. This provides developers, who are familiar with VisiBroker Interceptors,
a fast way of coding between VisiBroker Interceptors and OMG specific Portable
Interceptors.

Importing required packages

To use Portable Interceptor interfaces, inclusion of the related packages or header files
is required.

If you are using any Portable Interceptors exceptions, such as, DuplicateName Or
TrivalidName, the ORBInitInfoPackace is optional.

Required packages for using Portable Interceptor are:

import org.ang. PortableInterceptor. *;
import org.arg. PortableInterceptor . ORBInitITnfoPackage. *;

To load a client-side request interceptor, a class that uses the CRBInitializerinterface
must be implemented. This is also applicable for server-side request interceptor as far
as initialization is concerned. The following example shows the code for loading:

Proper inheritance of a ORBInitializer in order to load a server request interceptor:

public class SanpleServerlcader extends org.ang.ORRA.Iocal(oject inplements
CRBInitializer
Each object that implements the interface, ORBInitializer, is also required to inherit

from the object LocalOoject. This is necessary because the IDL definition of
CRBInitializer uses the keyword local.

For more information on the IDL keyword, local, see “Understanding valuetypes” on
page 407.

During the initialization of the ORB, each request Interceptor is added through the
implementation of the interface, pre init (). Inside this interface, the client request
Interceptor is added through the method, add client request interceptor(). The
related client request interceptor is required to be instantiated before adding itself into
the ORB.

340 VisiBroker for Java Developer’s Guide

Windows
UNIX

Example: client_server

Client-side request interceptor initialization and registration to the
ORB

pdolic void pre init (RBMitInfo info) {
try {
info.add client request interceptor
(new SanpleClientInterceptor()) ;

According to the OMG specification, the required application registers the respective
interceptors through the method register orb initializer. For more information, see
“Developing the Client and Server Application” on page 349.

VisiBroker provides an optional way of registering these interceptors through a
dynamic link library (DLL). The advantage of using this method of registering is that the
applications do not require changing any code, only changing the way they are
executed. With an additional option during execution, the interceptors are registered
and executed. The option is similar to 4.x Interceptors:

vircker . orb. dynamicldbs=<I1, filenames

where <ILL filenamesis the filename of the dynamic link library (extension .sofor UNIX
or .IXLfor Windows). To load more than one DLL file, separate each filename with a

comma (“,”), for example:
vbroker.orb.dynamiclibs=a.dl1l,b.dll,c.dll
vibroker . orb.dynamiclibs=a.s0,b.so,c.so

In order to load the interceptor dynamically, the VISInit interface is used. This is similar
to the one used in VisiBroker Interceptors. For more information, see Chapter 25,
“Using VisiBroker Interceptors.” The registration of each interceptor loader is similar
within the CRB_init implementation.

Complete implementation of the client-side interceptor loader:
// SanpleClientTcader.java

import org.ang. PortableInterceptor. *;
import org.arg. PortableInterceptor . ORBInitITnfoPackage. *;

ic class 1 org.arg.CORRA. Jject
lic cl leClientIcader extends Local(oj
implements ORBInitializer

{
public void pre init (ORBInitInfo info) {
try {
System.out .printIn ("==—==>SanpleClientlcader: Installing ...");
info.add client request interceptor (new SampleClientInterceptor()) ;
System.out .printIn ("=—=>SanpleClientlcader: Interceptors loaded.");
catch (DuplicateName dn) {
System.out .printIn ("==—==>SanpleClientlcader: " + dn.name + " already
installed.");
}
catch (Exception e) {
e.printStackTrace() ;
throw new org.ong.QORBA. INITIALIZE (e. toString ()) ;
}
}

public void post init (RBInitInfo info) {
// We do not do anything here.
}

}

Chapter 24: Using Portable Interceptors 341

Example: client_server

Implementing the ORBInitializer for a server-side Interceptor

At this stage, the client request interceptor should already have been properly
instantiated and added. Subsequent code thereafter only provides exception handling
and result display. Similarly, on the server-side, the server request interceptor is also
done the same way except that it uses the, add server request interceptor() method
to add the related server request interceptor into the ORB.

Server-side request interceptor initialization and registration to the ORB:

pdolic void pre init (ORBInitInfo info) {
try {
info.add server request interceptor
(new SampleServerInterceptor()) ;

This method also applies similarly to loading the server-side ORBInitializer class
through a DLL implementation.
Server-side request ORB Initializer loading through DLL:
The complete implementation of the server-side interceptor loader:
// SanpleServerl cader.java

import org.arg.PortableInterceptor. *;
import org.arg. PortableInterceptor . ORBInitITnfoPackage. *;

public class SanpleServerloader externds org.ang.ORBA.IocalOoject

implements CRBInitializer

{
pdolic void pre init ((RBInitInfo info) {
try {
info.add server request interceptor (new
SanpleServerInterceptor ()) ;
System.out . printIn ("=—=——=>SanpleServerlcader: Interceptors loaded") ;
}
catch (DuplicateName dn)
System.out .printIn("Interceptor: " + dn.name + " already
installed.");
}
catch (Exception e) {
e.printStackTrace() ;
throw new org.omg.CORBA. INITIALIZE (e. toString()) ;
}
}

pblic void post init (ORBInitInfo info)

// We do not do anything here.
}
}

342 VisiBroker for Java Developer’s Guide

Example: client_server

Implementing the Requestinterceptor for client- or server-side
Request Interceptor

Upon implementation of either client- or server-side request interceptor, two other
interfaces must be implemented. They are nane () and destroy ().

The name () is important here because it provides the name to the ORB to identify the
correct interceptor that it will load and call during any request or reply. According to the
CORBA specification, an interceptor may be anonymous, for example, it has an empty
string as the name attribute. In this example, the name, SampleClientInterceptor, is
assigned to the client-side interceptor and SanmpleServerInterceptoris assigned to the
server-side interceptor.

Implementation of interface attribute, readonly attribute name:
public String name() {

retum rame;
}

Implementing the ClientRequestinterceptor for Client

For the client request interceptor, it is necessary to implement the
ClientRequest ITnterceptor interface for the request interceptor to work properly.

When the class implements the interface, the following five request interceptor
methods are implemented regardless of any implementation:

= send request()

= send poll()

= receive reply()

= receive exception()
= receive other()

In addition, the interface for the request interceptor must be implemented before hand.
On the client-side interceptor, the following request interceptor point will be triggered in
relation to its events.

serd request—provides an interception point for querying request information and
modifying the service context before the request is sent to the server.

Implementation of the public void send_request(ClientRequestinfo ri)
interface

public void send request (ClientRequestInfo ri) throws ForwardRequest {

Implementation of the void send_poll(ClientRequestinfo ri) interface

serd poll—provides an interception point for querying information during a Time-
Independent Invocation (Tll) polling to get reply sequence.

public void send poll (ClientRequestInfo ri) {

Chapter 24: Using Portable Interceptors 343

Example: client_server

Implementation of the void receive_reply(ClientRequestinfo ri) interface

receive reply—provides an interception point for querying information on a reply after
it is returned from the server and before control is returned to the client.

public void receive reply (ClientRequestInfo ri) {

Implementation of the void receive_exception(ClientRequestinfo ri)

interface
receive exceptian—provides an interception point for querying the exception's
information before it is raised to the client.

public void receive exception (ClientRequestInfo ri) throws ForwardRequest {

receive other—provides an interception point for querying information when a request
results in something other than a normal reply or an exception. For example, a request
could result in a retry (for example, a GIOP Reply with a LOCATION FORWARD status was

received); or on asynchronous calls, the reply does not immediately follow the request.
However, the control is returned to the client and an ending interception point is called.

public void receive other (ClientRequestInfo ri) throws ForwardRequest

The complete implementation of the client-side request interceptor follows.
// SampleClientInterceptor. java

import org.ong. PortableTnterceptor. *;
import org.arg.Dynamic. *;

public class SampleClientTnterceptor extends org.ang.CORBA.LocalCoject
inplements ClientRequestInterceptor {

public SampleClientInterceptor()
this ("SanpleClient Interceptor™) ;

public SampleClientInterceptor (String name)

_Tame = nane;
}
private String name = null;
/**
* InterceptorOperations inmplementation
*/

pdblic String name() {

returmn name;

}

public void destroy() {
System.out .printIn ("=—==>SampleServerl cader: Interceptors unlcaded") ;

/ *%
* (lientRequestInterceptor implementation
*/

/**

* This is similar to VisiBrcker 4.x ClientRequestInterceptor,

*

* public void preinvoke preamershal (org.amy.CORBA.Goject tarcet,

String operation,

* ServiceCmtextlistHolder service contexts holder, Closure
closure) ;

*/

344 VisiBroker for Java Developer’s Guide

Example: client_server

public void serd request (ClientRequestInfo ri) throws ForwardRequest {

System.out .printIn ("=—==> SanpleClientInterceptor id " +
ri.request id() +
" send request => " + ri.operation() +
} ": target = " + ri.target();

/**
* There is no equivalent interface for VisiBroker 4.x
* (ClientRequestInterceptor.

*/
public void serd poll (ClientRequestInfo ri) {
System.out .printIn(" > SampleClientTnterceptor id " +

ri.request id() +
" send poll => " + ri.cperation() +
": target = " + ri.target());
}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* public void postirvoke (org.ang.CORBA.(oject target,
* ServiceGmtext[] service contexts, IrputStream payload,
* org.any.CORRA.Envirament env, Closure closure) ;
*
* with erv not holding any exception value.
*/
pblic void receive reply (ClientRequestInfo ri) {

System.out .printIn ("=—==> SanpleClientInterceptor id " +

ri.request id() +
" receive reply => " + ri.operation());

}

/**

* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*

* public void postirvoke (org.ang.CORBA.Qoject target,

* ServiceOmtext[] service contexts, InputStream paylcoad,

* org.ang.CORRA. Ervirament env, Closure closure) ;

*

* with env holding the exception value.

*/

public void receive exoeption(ClientRequestInfo ri) throws ForwardRequest {

System.out . printIn ("==—===> SanpleClientTnterceptor id " +
ri.request id() +
" receive exception => " + ri.cperation() +
": exception = " + ri.received exception());
}

/**

* This is similar to VisiBrcker 4.x ClientRequestInterceptor,
*

* public void postirvoke (org.ang.CORBA.(oject target,

* ServiceGmtext[] service contexts, InputStream payload,

* org.ang.(ORRA. Ervirament env, Closure closure) ;

*

* with env holding the exception value.

*/

Chapter 24: Using Portable Interceptors

345

Example: client_server

public void receive other (ClientRequestInfo ri) throws ForwardRequest
System.out .printIn ("=—=> SanpleClientInterceptor id " +
ri.request id() +
" receive reply => " + ri.cperation() +
": exoeption = " + ri.received exception() +
", reply status = "+ getReplyStatus(ri)) ;

}

protected String getReplyStatus (RequestInfo ri) {
switch (ri.reply status()) {
case SUCCESSEUL.value:
retum "SUCCESSFUL";
case SYSTEM EXCEPTION.value:
return "SYSTEM EXCEPTION";
case USER EXCEPTICN.value:
return "USER EXCEPTICN";
case LOCATION FORWARD.value:
retum "LOCATICN FORWARD";
case TRANSFCRT REIRY.value:
retum "TRANSPCRT RETRY";
default:
retum "irwvalid reply status id";
}
}
}

On the server-side interceptor, the following request interceptor point will be triggered
in relation to its events.

receive request service cantexts—provides an interception point for getting service
context information from the incoming request and transferring it to
PortableInterceptor: :Current slot. This interception point is called before the Servant
Manager. For more information, see “Using servants and servant managers” on
page 112.

Implementation of the void receive_request_service_contexts
(ServerRequestinfo ri) interface

public void receive request service cmtexts (ServerRequestInfo ri) throws
ForwardRequest {

receive request—yprovides an interception point for querying all the information,
including operation parameters.

Implementation of the void receive_request (ServerRequestinfo ri) interface
public void receive request (ServerRequestInfo ri) throws ForwardRequest

serd reply—provides an interception point for querying reply information and modifying
the reply service context after the target operation has been invoked and before the
reply is returned to the client.

Implementation of the void receive_reply (ServerRequestinfo ri) interface
pblic void serd reply (ServerRequestInfo ri) {

serd exceptianr—provides an interception point for querying the exception information
and modifying the reply service context before the exception is raised to the client.

346 VisiBroker for Java Developer’s Guide

Example: client_server

Implementation of the void receive_exception (ServerRequestinfo ri)
interface

public void send exception (ServerRequestInfo ri) throws ForwardRequest {

serd other—provides an interception point for querying the information available when
a request results in something other than a normal reply or an exception. For example,
a request could result in a retry (such as, a GIOP Reply with a ZOCATION FORWARD status
was received); or, on asynchronous calls, the reply does not immediately follow the
request, but control is returned to the client and an ending interception point is called.

Implementation of the void receive_other (ServerRequestinfo ri) interface
public void serd other (ServerRequestInfo ri) throws ForwerdRequest {

All the interception points allow both the client and server to obtain different types of
information at different points of an invocation. In the example, this information is
displayed as a debugging tool.

The following code example shows the complete implementation of the server-side
request interceptor:

// SampleServerInterceptor.java

import org.ang. PortableInterceptor. *;

import org.ang.Dynamic. *;

import java.io.PrintStream;

public class SampleServerInterceptor extends org.ang.CORBA.LocalCoject
implements ServerRequestInterceptor {

private String name = rull;

public SampleServerTnterceptor() {
this ("SanpleServerIntercsptor") ;

public SampleServerTnterceptor (String name) {

_ame = name;

/**}

* InterceptorOperations implementation
*/

pblic String name() {

return name;
}

public void destroy() {
} System.out .printIn ("=—==>SanpleServerloader: Interceptors ulcaded");

/**
* ServerRequestInterceptor implementation
*/

/**

* This is similar to VisiBroker 4.x ServerRequestInterceptor,

*

* public void preimvoke (org.ang.CORRA.Qoject target, String gperatian,

* ServiceGmtext[] service contexts, IrputStresm paylcad, Closure closure) ;
*/

Chapter 24: Using Portable Interceptors 347

Example: client_server

pdblic void receive request service contexts (ServerRequestInfo ri)
throws ForwerdRequest {
System.out .printIn ("===> SanpleServerInterceptor id " + ri.request id() +
" receive request service contexts => " + ri.goeration());

}

/**
* There is no equivalent interface for VisiBroker 4.x
* SeverRequestInterceptor.
*/
public void receive request (ServerRequestInfo ri)
throws ForwerdRequest
System.out .printIn ("=—==> SanpleServerInterceptor id " + ri.request id() +
" receive request =>" + ri.goeration() +
": doject id = " + ri.doject id() +
", adapter id = " + ri.adapter id());

}

/**
* There is no equivalent interface for VisiBroker 4.x
* SeverRequestInterceptor.
*/
pblic void serd reply (ServerRequestInfo ri) {
System.out .printIn ("===> SanpleServerInterceptor id " + ri.request id() +
" serd reply =>" + ri.operation());

}

/**
* This is similar to VisiBroker 4.x ServerRequestInterceptor,
*
* public void postinvoke premershal (org.amg.CORBA.Coject target,
* Service(mtextlistHolder service cantexts holder,
* org.any.CORRA.Envirament env, Closure closure) ;
*
* with e holding the exception value.
*/
pdblic void send exception (ServerRequestInfo ri)
throws ForwerdRequest {
System.out .printIn ("===> SampleServerInterceptor id " + ri.request id() +
" send exception =>" + ri.operation() +
": exception = " + ri.sending exception() +
", reply status = " + getReplyStatus(ri)) ;

}

/**
* This is similar to VisiBroker 4.x ServerRequestInterceptor,

*

* public void postinvoke premershal (org.arg.QORBA.Qoject tarcet,
* ServiceCmtextlistHolder service contexts holder,

* org.ang.CORRA. Ervirament env, Closure closure) ;

*

* with ev holding the exception value.

*
/
public void serd other (ServerRequestInfo ri) throws ForwerdRequest {
System.out .print ("==—=> SanpleServerInterceptor id " + ri.request id() +
" serd other =>" + ri.operation() +
": exception = " + ri.sending exception() +
} ", reply status = " + getReplyStatus(ri)) ;

348 VisiBroker for Java Developer’s Guide

Example: client_server

protected String getReplyStatus (RequestInfo ri)
switch (ri.reply status()) {
case SUCCESSFUL.value:
retum "SUCCESSFUL';
case SYSTEM EXCEPTION.value:
retum "SYSTEM EXCEPTICN' ;
case USER EXCEPTION.value:
return "USER EXCEPTICN";
case LOCATION FORWARD.value:
retum "LOCATICN FORWARD";
case TRANSECRT REIRY.value:
return "TRANSECRT REIRY";
default:
retum "irwvalid reply status id";
}
}
}

Developing the Client and Server Application

After the interceptor classes are written, you need to register them with their respective
client and server applications.

The OMG specification has been strictly followed to implement the mappings of
register arb initializer; which is registered using Java ORB properties. In the
example, the client and server applications actually read the property files,
client.properties, and server.properties containing the property

org.ang. PortableInterceptor . ORBInitializerClass. <Services>

where <Servicesis the string name of a class which implements
org.arg. PortableInterceptor. CRBInitializer. In this case, the two classes are
SanpleClientToader and SanpleServerl cader.

IF you choose to write your application without reading any properties from a file, you
can also use the command line option. To do so, run the application with the following
parameters:

vbj -Dorg.arg.PortableInterceptor .ORBInitializerClass. SampleClientT cader=
SampleClientTcader Client
vbj -Dorg.arg.PortableInterceptor .ORBInitializerClass. SampleServer] cader=
SanpleServerlcader Server

Chapter 24: Using Portable Interceptors 349

Example: client_server

Implementation of the client application

// Client.java
import org.ang. PortableServer. *;

import java.util.Properties;
import java.io.FilelnputStream;

pwblic class Client {
private static Properties property = mill;

public static void main(String[] args) {
try {
property = new Properties() ;
property. load (new FileTrputStream("client.properties")) ;

// Initialize the ORB.

org.ang.CORRA.CRB orbo=crg.ang.CORBA.CRB. init (args, property) ;

// Get the menager Id

byte[] AccountMenagerId="RBankManager" .getBytes() ;

// locate an account menager. Give the full POA name ard the servent ID.

Bank . AccomntMenager menager =
Bark. AccountMenagerHelper . bind (orbo, "/kernk client server poa",
AccontManagerId) ;

// use args[0] as the accont nare, or a default.

String name = rull;

name = args.length > 0 ? args[0] : "Jack B. Quick";

// Request the account menager to gpen a named acoount.

Barnk.Accomt acoount = menager . cpen (name) ;

// Cet the balance of the account.

float balance = accomt.balance() ;

// Print aut the balance.

System.out .printIn("The balance in " + name + "'s accomnt is $" +
kalance) ;

catch (Bxception e) {
e.printStackTrace() ;
}

}
}

350 VisiBroker for Java Developer’s Guide

Example: client_server

Implementation of the server application
// Server.java

import org.ang. PortableServer. *;
import java.util.Properties;
import java.io.FileTrputStream;

pwblic class Server {
private static Properties property = mill;

public static void mein(String[] args) {
try {
property = new Properties() ;
property. load (new FileTnputStream("server.properties")) ;

// Initialize the ORB.
org.arg.(ORBA.CRB orb = org.ary.(ORBA.CRB. init (args, property) ;
// get a reference to the root BOA
PCA rootPA =
BCAHelper.narrow (orb. resolve initial references("RootPCA")) ;

// Create policies for our persistent BOA
org.ang.CORBA.Folicy[] policies = {
TootPOA. create lifespan policy (LifespanPolicyValue . PERSISTENT)

i

// Create myPQA with the right policies
BCA myPQA = rootRA. create POA("bark client server poa',
TOotPOA. the PFOAManager (), policies);

// Create Account servants

AccomntManagerTnpl menagerServant = new AccomtManagerTnpl () ;
byte[] menagerId = "BankManager" .getBytes () ;
myPQA.activate doject with id(menagerId, menagerServent) ;
TootPOA. the POAManager () .activate() ;

//Bmoance Servants are ready
System.out . printIn (myPOA. servant to reference (menagerServant) + " is
ready.") ;

// Wait for incaming requests
arb.nn() ;

}

catch (Exception e) {
e.printStackTrace() ;

}

}
}

Chapter 24: Using Portable Interceptors 351

Example: client_server

Windows

UNIX

Windows

UNIX

Compilation procedure

To compile the Java example, simply execute the following commands:
<install dirs\examples\vie\pi\client servers vimeke

or double-click the batch file icon if the environment variable, <install dirs\bin, has
already been added to the environment variable, PATH).

<install dirs/exanples/vice/pi/client servers> meke -f Makefile.java

Execution or deployment of Client and Server Applications

To run the Java example with Portable Interceptor installed, start the Server and Client
as follows:

Open two console windows:

<install dirs\examples\vie\pi\client servers start vbj Server (ruming under a
new camend pronpt window)

<install dirs\exanples\vbe\pi\client servers vibj Client Jdm (using a given
nane)

or
<install dirs\examples\vie\pi\client servers vbj Client (using the default name)
Open two console shells:
<install dirs/examples/vice/pi/client servers vbj Server(in the first window)
<install dirs/examples/vice/pi/client servers vbj Client Jdm (in the secad
window, using a given nane)
or
<install dirs/examples/vice/pi/client servers vbj Client (in the second window,
using the default nane)

352 VisiBroker for Java Developer’s Guide

Using VisiBroker Interceptors

This section provides an overview of the VisiBroker Interceptors (Interceptors)
framework, walks through a Interceptor example, and describes some advanced
features such as Interceptor factories and chaining Interceptors. This section also
covers the expected behaviors when both Portable Interceptors and VisiBroker
Interceptors are used in the same service.

Interceptors overview

Note

Similar to Portable Interceptors, VisiBroker Interceptors offers VisiBroker ORB services
a mechanism to intercept normal flow of execution of the ORB. There are two kinds of
VisiBroker Interceptors:

= Client Interceptors are system-level Interceptors which are called when a method is
invoked on a client object.

= Server Interceptors are system-level Interceptors which are called when a method is
invoked on a server object.

To use VisiBroker Interceptors, you declare a class which implements one of the
Interceptor interfaces. Once you have instantiated an Interceptor object, you register it
with its corresponding Interceptor manager. Your Interceptor object is then notified by
its manager when, for example, an object has had one of its methods invoked or its
parameters marshalled or demarshalled.

An important difference between VisiBroker interceptors and Portable interceptors is
that VisiBroker interceptors do not get invoked for co-located calls. Therefore, users
have to make a cautious decision when choosing which interceptor to use.

If you want to intercept an operation request before it is marshalled on the client side or
if you want to intercept an operation request before it is processed on the server side,
use object wrappers, described in Chapter 26, “Using object wrappers.”

Chapter 25: Using VisiBroker Interceptors 353

Interceptor interfaces and managers

Interceptor interfaces and managers

Interceptor developers derive classes from one or more of thle following base
Interceptor API classes which are defined and implemented by the VisiBroker.

= Client Interceptors:
= BirdInteroeptor
= ClientRequestInterceptor
= Server Interceptors:
= PALifeCycleInterceptor
= ActiveQojectlifeCyclelntercsptor
= ServerRequestInterceptor
= ICRCreationTnterceptor

= ServiceResolver Interceptor

Client Interceptors

There are currently two kinds of client Interceptor and their respective managers:
= BindInterceptor and BindInterceptorVianager
= ClientRequestInterceptor and ClientRequestInterceptorMenager

For more details about client Interceptors, see Chapter 24, “Using Portable
Interceptors.”

BindInterceptor

A BindInterceptor object is a global Interceptor which is called on the client side before
and after binds.

package oom. inprise.vioroker. Interceptorkxt ;
pblic interface BindInterceptor {
public ICRValue bind (ICRValue ior,
org.ang.CORBA.(oject target,
Icolean rebind,
Closure closure) ;
pblic ICRValue bind failed (ICRValue icr,
org.ang.CORBA.Qoject target,
Closure closure) ;
pablic void bind succeeded (IORValue ior,
org.ang.CORBA.Qoject target,
int Index,
InterceptorManagerControl cantrol,
Closure closure) ;
public void exception occurred (ICRValue ior,
org.ang.CORBA.Qoject tarcget,
org.ang.CORBA. Ervirament env,
Closure closure) ;

354 VisiBroker for Java Developer’s Guide

Interceptor interfaces and managers

ClientRequestinterceptor

A ClientRequestInterceptor object may be registered during a bind succeeded call of a
BindInterceptor object, and it remains active for the duration of the connection. Two of
its methods are called before the invocation on the client object, one

(preirvoke premarshal) before the parameters are marshalled and the other
(preimvoke postmershal) after they are. The third method (postirvoke) is called after the
request has completed.

package oam. inprise.vibroker . TnterceptorExt;
pwblic interface ClientRequestInterceptor {
pblic void preimvoke premarshal (org.omg.QORBA.Qoject target,
String operation,
ServicemtextlistHolder service contexts holder,
Closure closure) ;
pblic void preimvoke postmarshal (org.arg.CORBA.Goject tarcet,
QutputStream payload,
Closure closure) ;
public void postinvoke (org.arg.CORRA.Qoject target,
ServiceCmtext [] service contexts,
TrputStream paylcoad,
org.arg.CORRA. Brvirament ernv,
Closure closure) ;
pblic void exception occurred (org.any. CORBA.(oject target,
org.ang.CORBA. Ervirament env,
Closure closure) ;

Server Interceptors

There are the following kinds of server Interceptors:

= PRALifeCycleInterceptor and POALifeCyclelnterceptorVanager

= ActiveQojectlifeCycleInterceptor and ActiveQojectldfeCycleInteroeptorManacer
= ServerRequestInterceptor and ServerRequestInterceptorVanager

* IORCreationInterceptor and IORCreationInterceptorManager

For more details about server Interceptors see Chapter 24, “Using Portable
Interceptors.”

POALifeCycleInterceptor

A RALi feCycleInterceptor object is a global Interceptor which is called every time a
POA is created (using the create method) or destroyed (using the destroy method).

package oom. inprise.vioroker. Interceptorkxt ;
public interface POALifeCycleInterceptor {
public void create (org.arg. PortableServer . BOA poa,
org.ang.QORRA. PolicyldstHolder policies holder,
ICRValuetolder iorTenplate,
InterceptorManagerControl control) ;
pdblic void destroy (org.ang. PortableServer . FOA poa) ;

}

Chapter 25: Using VisiBroker Interceptors 355

Interceptor interfaces and managers

ActiveObjectLifeCyclelnterceptor

An ActiveQojectlifeCycleInterceptor object is called whenever an object is added to
the Active Object Map (using the create method) or after an object has been
deactivated and etherealized (using the destroy method). The Interceptor may be
registered by a RaLifeCycleInterceptor on a per-POA basis at POA creation time. This
Interceptor may only be registered if the POA has the REIAIN policy.

package oom. inprise.vioroker. Interceptorkxt ;
pwblic interface ActiveQojectlifeCyclelnterceptor {
public void create (byte[] oid,
org.arng. PortableServer. Servant servant,
org.ang. PortableServer . PFOA adapter) ;
pablic void destroy (oyte[] oid,
org.arg.PortableServer. Servant servant,
org.ang. PortableServer . FOA adapter) ;

}

ServerRequestinterceptor

A ServerRequestInterceptor object is called at various stages in the invocation of a
server implementation of a remote object before the invocation (using the preinvoke
method) and after the invocation both before and after the marshalling of the reply
(using the postirnvcke preamershal and postinvoke premershal methods respectively).
This Interceptor may be registered by a PQRLi feCycleInterceptor object at POA
creation time on a per-POA basis.

package oam. inprise.vioroker. Interceptorkxt ;
pwblic interface ServerRequestInterceptor {
public void preimvoke (org.arg.CORBA.Qoject target,
String gperatim,
ServiceCmtext [] service contexts,
TrputStream paylcoad,
Closure closure) ;
pblic void postinvoke premarshal (org.arg.CORBA.Goject tarcet,
ServiceCmtextlistHolder service contexts holder,
org.ang.CORBA. Brvirament env,
Closure closure) ;
public void postinvoke postmershal (org.ang.CORBA.(oject target,
QutputStream paylcoad,
Closure closure) ;
pdblic void exception occurred (org.any.CORBA.Goject tarcet,
org.ang.CORBA. Brvirament env,
Closure closure) ;

}

Note If an org.ony.CORRA. SystenExoeptian or any sub-classes (for example
org.arg.CORBA.NO PERMISSIQY) is raised on the server side, the exception should not be
encrypted. This is because the ORB uses some of these exceptions internally (for
example TRANSIENT for doing automatic rebind).

IORCreationinterceptor

An ICRCreationTnterceptar object is called whenever a POA creates an object
reference (using the create method). This Interceptor may be registered by a
PQALi feCycleInteroeptor at POA creation time on a per-POA basis.

package oam.inprise.vioroker. Interceptorkxt ;
pwblic interface IORCreationInterceptor {
public void create (org.any. PortableServer . FOA poa,
ICRValueHolder ior) ;

356 VisiBroker for Java Developer’s Guide

Interceptor interfaces and managers

Service Resolver Interceptor

This Interceptor is used to install a user service that you can then dynamically load.

pwblic interface ServiceResolverInterceptor {
public org.ang.CORBA.(oject resolve (java.larng.String nane) :

public interface ServiceResolverInterceptorManager extends
com. irprise. vbroker . interceptor. InterceptorMenager {
public void add (java.larg.String name,
oan. irprise. viorcker . interceptor. ServiceResol verInterceptor \interceptor)
pubic void remove (java.larg.String nane) :

}

When you call resolve initial references, the resolve on all installed services gets
called. The resolve then can return the appropriate object.

To write service initializers, you must obtain a ServiceResolver after getting an
InterceptorManagerControl to be able to add your services.

Default Interceptor classes

VisiBroker provides default Interceptor Java classes that you can extend and
implement. These default Interceptor classes offer the same methods as the
Interceptor interfaces; however, when you extend the default Interceptor class, you can
choose which methods to implement or override. When you use these classes, you can
accept the default behavior that they provide or change it.

= DefaultBindInterceptor class
= DefaultClientTnterceptor class
= DefaultServerInterceptor class

Registering Interceptors with the VisiBroker ORB

Each Interceptor interface has a corresponding Interceptor manager interface which is
used to register your Interceptor objects with the VisiBroker ORB. The following steps
are necessary to register an Interceptor:

1 Get a reference to an InterceptorManagerControl object by calling the
resolve initial references method on an ORB object with the parameter
VisiBrokerTnterceptorCantrol.

2 Call the get menager method on the InterceptorMenagerCntrol object with one of the
String values in the following table which shows the String values to pass to the

get_manager method of the InterceptorManagerGantrol object. (Be sure to cast the
object reference to its corresponding Interceptor manager interface.)

Table 25.1 String values of the InterceptorManagerControl object

Value Corresponding Interceptor interface
ClientRequest ClientRequestInterceptor

Bind BindInterceptor

PQALifeCycle PQALi feCycleInterceptor
Active(ojectlifeCycle ActiveQojectlifeCycleInterceptor
ServerRequest ServerRequest Interceptor

ICRCreation ICRCreationInterceptor
ServiceResolver ServiceResolverInterceptor

Chapter 25: Using VisiBroker Interceptors 357

Example Interceptors

Note

3 Create an instance of your Interceptor.
4 Register your Interceptor object with the manager object by calling the add method.

5 Load your Interceptor objects when running your client and server programs.

Creating Interceptor objects

Finally, you need to implement a factory class which creates instances of your
Interceptors and registers them with the VisiBroker ORB. Your factory class must or
implement the Serviceloader interface.

package oom. inprise.vioroker. interceptor;
pwblic interface Servicelocader {
// This method is called by the CRB when CRB.init () is called.
pudblic abstract void init (org.omy.CORRA.CRB orb) ;
// Called after CRB.init() is done but control hasn't been returned to
// the user. Can ke used to disable certain resources that were anly
// mede available to other service inits.
pblic abstract void init conplete (org.any.CORBA.CRB orb) ;
// Called when the orb is being shitdown.
puablic abstract void shutdown (org.ang.CORBA.CRB orb) ;

}

You can also create new instances of your Interceptors and register them with the
VisiBroker ORB from within other Interceptors as in the examples in “Example
Interceptors” on page 358.

Loading Interceptors

To load your Interceptor, you must set the vioroker.orb.dynamiclibs property. This
property can be set either in the properties file (see Chapter 6, “VisiBroker properties”)
or be passed into the VisiBroker ORB using the -Doption.

Example Interceptors

The example Interceptor in this section uses all of the Interceptor APl methods (listed
in Chapter 24, “Using Portable Interceptors”) so that you can see how these methods
are used, and when they are invoked.

Example code

In “Code listings” on page 361, each of the Interceptor APl methods is simply
implemented to print informational messages to the standard output.

The following example applications are located in the directory:
<install dirs\exanples\vbe\interceptors\

= active_object_lifecycle

= client_server

= jor_creation

= encryption

358 VisiBroker for Java Developer’s Guide

Example Interceptors

Client-server Interceptors example
To run the example, compile the files as you normally would. Then start up the server

and the client as follows:

pronptsvioj -Dvbraker . orb. dynamiclibs=SampleServerl cader Server
pramptsvbj -Dvbrcker . orb. dynamiclibs=SanmpleClientloader Client Jom

You specify as VisiBroker ORB services the two classes which implement the

Servicel cader interface.
Note

The ServiceInit class used in VisiBroker 3.x is replaced by implementing two

interfaces: Servicelcader and ServiceResolverInterceptor. For an example of how to do
this, see “ServiceResolverinterceptor example” on page 360.

The results of executing the example Interceptor are shown in the following table. The
execution by the client and server is listed in sequence.

Table 25.2
Client

Results of executing the example Interceptor

Bind Interceptors loaded= > SanpleBindInterceptor
binde======—==> SanpleBindInterceptor

bind succeeded: > SanpleClientInterceptor id
MyClientInterceptor preinvoke premershal=> cpen=—=—=
SampleClientTnterceptor id MyClientTnterceptor
preirvoke postmershal

=———=———> SanpleClientInterceptor id
MyClientTnterceptor postirnvoke———==
SampleBindInterceptor binde=————=>
SanpleBindInterceptor bind succeeded——=
SampleClientTnterceptor id MyClientTnterceptor
preimvoke premarshal => balance =——=——=—=>
SampleClientTnterceptor id MyClientTnterceptor
preinvoke postmarshal

=>

=>

> SanpleClientInterceptor id
MyClientInterceptor postinvoke The balance in jdm's
account is $245.64

Server

>SanpleServerlcader: Interceptors
lcaded > In KA /. Nothing to do.————=>
In POA bark agent poa, 1 ServerRequest interceptor
installedStub [repository 1d=IDL:Bank/AccountMenager :
1.0, key=ServiceId[service=/kark agent poa,id= {11 bytes:

(Bl [l) K] M [&]] [a] [d] [e] [x] }]] is ready.

==——=——> SanpleServerInterceptor id
MyServerInterceptor preirvcke => cpenCreated jom's
account : Stub [repository 1d=IDL:Bank/Acoount: 1.0,
key=TrensientId [pcaleme=/, id={4 bytes: (0) (0) (0) (0)},
sec=0,usec=0]]

==——=——> SanpleServerInterceptor id
MyServerInterceptor postinvoke premershal——=
SanpleServerInterceptor id MyServerInterceptor
postinvoke postmershal

Since the OAD is not running, the bind call fails and the server proceeds. The client
binds to the account object, and then calls the balance method. This request is received
by the server, processed, and results are returned to the client. The client prints the

results.

As demonstrated by the example code and results, the Interceptors for both the client
and server are installed when the respective process starts. Information about
registering an interceptor is covered in “Registering Interceptors with the VisiBroker

ORB” on page 357.

Chapter 25: Using VisiBroker Interceptors 359

Example Interceptors

ServiceResolverinterceptor example
The following code provides an example of how to implement a Serviceloaderinterface:

import cam. inprise.vioroker. properties. *;
import oam. irprise.vbroker. interceptor. *;
import cam. irprise.vioroker . Interceptorkxt. *;

public final class UtilityServiceloader inplements Servicelosder,
ServiceResolverInterceptor {
private com.inprise.vibroker.orb.ORB _orb = mill;
private Strirg[] serviceNames = { "TimeService", "WeatherService"};

public void init (org.ang.CORBA.CRB orb) {
// Just in case they are needed by resolve()
_orb = (cam. inprise.voroker.orb.CRB) orb;

PropertyManager pm = _orb.getPropertyManager () ;
// use the PropertyMenager to query property settings
// if needed (not used in this exanple)

/**x* Tngtalling the Initial Reference ***xx/

InterceptorMenagerControl aontrol = orb. interceptorManager () ;
ServiceResolverInterceptorManager merager =

(ServiceResolverInterceptaorManager) control .get menager ("ServiceResolver") ;
for (int 1 = 0; i < serviceNemes.length; i++) {
menager.add (serviceNames[i], this);

/**** end of installation ***/

if (_orb.debug)
_arb.printIn("UtilityServices package has been initialized");

public void init carplete (org.arg.CORBA.CRB orb) {
// can e used for post-initialization processing if desired

public void shutdown (org.ang.CORBA.CRB orb) {
_orb = rull;
_serviceNames = rull;

}

pblic org.ang.CQORBA.(oject resolve (java.lang.String service)
org.ang.CORRA.(oject srv = rull;
byte[] serviceld = service.getBytes();
try {
if (service = "TimeService") {
srv = UtilityServices.TimeServiceHelper.bind(orb, "/
time service poa", serviceld);

else if (service = "WeatherService") {
srv = UrilityServices.WeatherServiceHelper.bind (orb, "/
weather service poa",
serviceId) ;

} catch (org.ang.CORBA. SystenException e) {
if (_orb.deboug)
_orb.printIn("UtilityServices package resolve error: " + e);
srv = rull;

}

retum srv;

}
}

360 VisiBroker for Java Developer’s Guide

Example Interceptors

Code listings

SampleServerLoader

The SanpleServerlcader object is responsible for loading the BQALi feCyclenterceptor
class and instantiating an object. This class is linked to the VisiBroker ORB
dynamically by viroker.orb.dynamicLibs. The SanmpleServerloader class contains the
init method which is called by the VisiBroker ORB during initialization. Its sole purpose
is to install a POALi feCycleInterceptor object by creating it and registering it with the

InterceptorManager.

import java.util.*;
import cam. irprise.vioroker.orb. *;
import com. irprise.vbroker. interceptor. *;
import com. irprise.vbroker . PortableServerBxt . *;
public class SampleServerlcader inplements Servicelcader {

public void init (org.arg.CORBA.CRB orb) {

try {
InterceptorManagerCantrol cantrol =
InterceptorvEnagerControlHelper . narrow (

orb.resolve initial references("VisiBrokerInterceptorControl")) ;
// Install a POA interceptor
BCALi feCycleInterceptorManager poa Menager =
(PO i feCycl eInterceptorivanager)
ocantrol .get menager ("POALifeCycle") ;
poa. menager.add (new SamplePQALi feCycleInterceptor ()) ;
} catch(Exception e) {
e.printStackTrace() ;
throw new org.amy.CORBA. INTTIALIZE (e. toString ()) ;

}

System.out . printIn ("==—===—=—===>SanpleServerl cader : Interceptors
loaded") ;
}
public void init carplete (org.ang.CORBA.CRB orb) {
}
public void shutdown (org.arng.CORBA.CRB orb)
}

}

Chapter 25: Using VisiBroker Interceptors 361

Example Interceptors

SamplePOALifeCyclelnterceptor

The SanpleRALi feCycleInterceptor object is invoked every time a POA is created or
destroyed. Because we have two POAs in the client server example, this Interceptor
is invoked twice, first during rootPQA creation and then at the creation of myPQA We
install the SanpleServerInterceptor only at the creation of myPQa

import com. irprise.vbroker. interceptor. *;
import com. inprise.vbroker . PortableServerExt . *;
import com. inprise.voroker. IOP. *;
pblic class SampleFOALifeCyclelnterceptor implerents POAL feCyclelnterceptor {
public void create (org.angy. PortableServer . FOA poa,
arg.ang.QORBA. PolicylistHolder policies holder,
IRValuetolder iorTenplate,
InterceptorMenagerCantrol cantrol)
if (poa.the name () .equals ("bark agent poa)) {
// A the Request-level interceptor
SanpleServerInterceptor interceptor =
new SanpleServerInterceptor ("MyServerTnterceptor") ;
// Get the ICRCreation interceptor meneger
ServerRequest InterceptorMenager menager =
(ServerReguest InterceptorManager) control .get menager
("ServerRequest") ;
// B4 the interceptor
menacer . add (interceptor) ;
System.out .printIn ("=——= >In POA " + poa.the name() +
", 1 ServerRequest interceptor installed");

} else
System.out .printIn ("=———=
() + ". Nothing to do.");

>In FQA " + poa.the name

}
public void destroy (org.ary. PortableServer . PFOA poa) {
// To be a trace!
System.out .printIn(" > SanplePCAL i feCycleTnterceptor
destroy") ;

362 VisiBroker for Java Developer’s Guide

Example Interceptors

SampleServerinterceptor

The SanpleServerInterceptor object is invoked every time a request is received at or a
reply is made by the server.

import com. irprise.vioroker. interceptor. *;
import com. irprise.vioroker. IOP. *;
import com. irprise.vibroker . CORBA.portable. *;
public class SampleServerInterceptor implements ServerRequestInterceptor {
private String id;
public SampleServerTnterceptor (String id) {
_id = id;
}

public void preinvoke (org.arg.CORBA.Qoject target,
String cperatim,
ServiceCmtext [] service contexts,
TrputStream payload,
Closure closure) {
// Put the id of this ServerReguestInterceptor into the closure doject
closure.doject = new String(id);
System.out . printIn ("=—===—==—==> SanpleServerInterceptor id " +
closure.doject + " preirmvcke => " + gperatim) ;
}
pblic void postinvoke premarshal (org.ang.CCRBA.Qoject tarcet,
ServicemtextlistHolder service contexts holder,
org.ang.CORBA. Ervirament env,
Closure closure) {
System.out .printIn(" > SanpleServerInterceptor id " +
closure.doject + " postinvoke premershal") ;

}
public void postirnvoke postmershal (org.ang.CORBA.Qoject tarcet,
QuigputStream paylcoad,
Closure closure) {
System.out .printIn(" > SanpleServerInterceptor id " +
closure.doject + " postinvoke postmershal") ;

}
public void exception occurred (org.ang.CORBA.(oject taroet,
org.ang.CORBA. Ervirament env,
Closure closure) {
System.out .printIn ("=—=——==—=> SanpleServerInterceptor id " +
closure.doject + " exception occurred") ;

Chapter 25: Using VisiBroker Interceptors 363

Example Interceptors

SampleClientinterceptor

The SanpleClientInterceptoris invoked every time a request is made by or a reply is
received at the client.

import com. irprise.vioroker. interceptor. *;
import com. irprise.vioroker. IOP. *;
import com. irprise.vbroker . CORBA.portable. *;
public class SampleClientInterceptor implements ClientRequestInterceptor {
private String id;
public SampleClientInterceptor (String id) {
_id = id;
}
public void preinvoke premershal (org.omg.CORBA.Qoject target,
String cperatim,
ServiceCmtextlistHolder service contexts holder,
Closure closure) {
// Put the id of this ClientRequestInterceptor into the closure doject
closure.doject = new String(_id);
System.out . printIn ("==—===—=—=—==> SapleClientInterceptor id " +
closure.doject +
" preinvoke premershal => " + cgperation) ;
}

public void preirvoke postmarshal (org.arg.CORBA.Goject target,
QuigputStream paylcoad,
Closure closure) {
System.out . printIn ("=—===—=—-=> SampleClientInterceptor id " +
closure.doject + " preinvoke postmershal") ;
}

public void postinvoke (org.ong.CORBA.Qoject tarcget,
ServiceCmtext [] service contexts,
TrputStream paylcoad,
org.ang.CORBA. Ervirament env,
Closure closure) {

System.out .printIn(" > SanpleClientTnterceptor id " +
closure.doject + " postirvoke") ;
}

public void exception occurred (org.arng.CORBA.(oject tarcet,
org.ang.CORBA. Ervirament ernv,
Closure closure) {
System.out .printIn("== ==> SampleClientInterceptor id " +
closure.doject + " exception occurred") ;

364 VisiBroker for Java Developer’s Guide

Example Interceptors

SampleClientLoader

The SanpleClientTcaderis responsible for loading BindInterceptor objects. This class is
linked to the VisiBroker ORB dynamically by viorcker.orb.dynamiclilbs. The
SampleClientToader class contains the bindand bind succeeded methods. These
methods are called by the ORB during object binding. When the bind succeeds,

bind succeeded will be called by the ORB and a BindInterceptor doject is installed by
creating it and registering it the InterceptorManager.

import java.util.*;
import com. inprise.voroker.orb. *;
import com. irprise.vioroker. interceptor. *;
import com. irprise.vbroker . PortableServerExt . *;
pblic class SanpleClientlcader implements Serviceloader {

public void init (org.ang.CORBA.CRB orb) {

try {
InterceptorManagerCantrol control =
InterceptorvBnagerCantrolHelper . narrow (

orb.resolve initial references ("VisiBrokerInterceptorControl")) ;
BindInterceptorMenager bind menager =
(BindInterceptorMenager) ocontrol.get menager ("Bind") ;

bind menager.add (new SampleBindInterceptor()) ;

} catch(Exception e) {
e.printStackTrace() ;

} throw new arg.arg.CORBA. INTTIALIZE (e. toString ()) ;

System.out .printIn("Bind Interosptors loaded") ;

}

public void init corplete (org.arg.CORBA.CRB orb) {

}

public void shutdown (org.ang.CORRA.CRB orb) {

}
}

Chapter 25: Using VisiBroker Interceptors 365

Example Interceptors

SampleBindInterceptor

The SampleBindInterceptoris invoked when the client attempts to bind to an object. The
first step on the client side after ORB initialization is to bind to an AccountManager object.
This bind invokes the SampleBindInterceptor and a SanpleClientInterceptor is installed
when the bind succeeds.

import com. irprise.vbroker. interceptor. *;
import com. irprise.vbroker.IOP. *;
pblic class SampleBindInterceptor implements BindInterceptor {
public ICRValue bind (ICRValue ior, org.org.CORBA.(oject target,
boolean rebind, Closure closure) {
// To be a trace!
System.out .printIn ("=
retum mull;
}

pblic ICRValue bind failed(ICRValue ior, org.armg.CORBA.Qoject tarcet,
Closure closure) {
// To be a trace!
System.out .printIn ("=
retum mull;

==> SanpleBindInterceptor bind") ;

—> SanpleBindMnterceptor bind failed") ;

}
pblic void bind succeeded (ICRValue ior, org.omg.CQORBA.Qoject target,
int Tndex, InterceptorMenagerControl control,
Closure closure) {
// To be a trace!
System.aut . printIn ("=———=——> SampleBindInterceptor bind succeeded") ;
// Create the Client Request interceptor:
SanpleClientInterceptor interceptor =
new SanpleClientTnteroeptor ("MyClientTnterosptor") ;
// Get the menager
ClientRequest InterceptorMerager mernager =
(ClientRequest InterceptorMenager) control .get menager ("ClientRequest") ;
// Bdd CRQ to the list:
menager . add (interoeptor) ;

}
public void exception occurred (ICRValue ior, org.arng.(QORBA.(oject tarcet,

org.ang.CORBA. Ervirament env,
Closure closure) {
// To be a trace!
System.out . printIn ("=———=—==> SanpleBindMnterceptor exception cccured") ;

}
}

366 VisiBroker for Java Developer’s Guide

Passing information between your Interceptors

Passing information between your Interceptors

Closure objects are created by the ORB at the beginning of certain sequences of
Interceptor calls. The same Closure object is used for all calls in that particular
sequence. The Closure object contains a single public data field doject of type
java.lang.Qoject which may be set by the Interceptor to keep state information. The
sequences for which Closure objects are created vary depending on the Interceptor
type. In the ClientRequestInterceptor, a new Closure is created before calling
preinvake premershal and the same Closure is used for that request until the request
completes, successfully or not. Likewise, in the ServerInterceptor, a new Closureis
created before calling preirvoke, and that Closureis used for all Interceptor calls related
to processing that particular request.

For an example of how Closure is used, see the examples in the following directory:
<install dirs/exanples/vbe/interceptors/client server

The Closure object can be cast to ExtendedClosure to obtain response expectedand

request _idas follows:

int my response expected =
((ExtendedClosure) closure) . reginfo. respanse expected;

int my request id =
((ExtendedClosure) closure) .regInfo.request id;

Using both Portable Interceptors and VisiBroker Interceptors
simultaneously

Both Portable Interceptors and VisiBroker Interceptors can be installed simultaneously
with the VisiBroker ORB. However, as they have different implementations, there are
several rules of flow and constrains that developers need to understand when using
both Interceptors, as described in the following.

Order of invocation of interception points

The order of invocation of interception points follows the interception point ordering
rules of individual versions of Interceptors, regardless of whether the developer
actually chooses to install one of more than one version.

Client side Interceptors

When both Portable Interceptors and VisiBroker client side Interceptors are installed,
the order of events, (assuming no Interceptor throws an exception) is:

1 serd request (Portable Interceptor), followed by preimvcke premershal (Interceptors)
construct request message

preinvake postmarshal (Interceptor)

send request message and wait for reply

g AN

postirvoke (Interceptor), followed by received reply/receive exceptian/receive other
(Portable Interceptor) depending on the type of reply.

Chapter 25: Using VisiBroker Interceptors 367

Using both Portable Interceptors and VisiBroker Interceptors simultaneously

Server side Interceptors

When both Portable Interceptors and VisiBroker server side Interceptors are installed,
the order of events is received (locate requests do not fire Interceptors, which is the
same as VisiBroker behavior), assuming no Interceptor throws an exception, is:

1 received request service amtexts (Portable Interceptor), followed by preimcke
(Interceptor)

servantI ocator. preirvake (if using servant locator)

receive request (Portable Interceptor)

invoke operation on servant

postirvoke premarshal (Interceptor)

servantl ocator. postinvake (if using servant locator)

serd reply/send exceptian'send other, depending on the outcome of the request
postirvoke postrershal (Interceptor)

o N oo o B oW N

Order of ORB events during POA creation

The order of ORB events during creation of a POA is listed as follows:
1 AnIOR template is created based on profiles of server engines servicing the POA.

2 An Interceptors' POA life cycle Interceptors' create () method is invoked. This
method can potentially add new policies or modify the IOR template created in the
previous step.

3 A Portable Interceptor's ICRInfo object is created and the IORInterceptors'
establish companents () method is invoked. This interception point allows the
Interceptor to query the policies passed to create P& () and those added in the
previous step, and also add components to the IOR template based on those
policies.

4 An object reference factory and object reference template for the POA are created,
and the Portable Interceptor's IORInterceptors' carpanents established () method is
invoked. This interception point allows the Interceptor to change the POA's object
reference factory, which will be used to manufacture object references.

Order of ORB events during object reference creation

The following events occur during calls to POA that create object reference, such as
create reference(), create reference with id().

1 Call the object reference factory's meke doject () method to create the object
reference (this does not call the VisiBroker IOR creation Interceptors, and the
factory may be user -supplied). If there are no VisiBroker IOR creation Interceptors
installed, this should be the object reference returned to the application; otherwise,
proceed to step 2.

2 Extract the IOR from the delegate of the returned object reference, and call the
VisiBroker IOR creation Interceptors' create () method.

3 IOR from step 2 is returned as the object reference to the caller of
create reference(), create reference with id()

368 VisiBroker for Java Developer’s Guide

Using object wrappers

This section describes the object wrapper feature of VisiBroker, which allows your
applications to be notified or to trap an operation request for an object.

Object wrappers overview

Note

The VisiBroker object wrapper feature allows you to define methods that are called
when a client application invokes a method on a bound object or when a server
application receives an operation request. Unlike the interceptor feature which is
invoked at the VisiBroker ORB level, object wrappers are invoked before an operation
request has been marshalled. In fact, you can design object wrappers to return results
without the operation request having ever been marshalled, sent across the network, or
actually presented to the object implementation. For more information about VisiBroker
Interceptors, see Chapter 25, “Using VisiBroker Interceptors.”

Object wrappers may be installed on just the client-side, just the server-side, or they
may be installed in both the client and server portions of a single application.

The following are a few examples of how you might use object wrappers in your
application:

= Log information about the operation requests issued by a client or received by a
server.

= Measure the time required for operation requests to complete.

= Cache the results of frequently issued operation requests so results can be
immediately returned, without actually contacting the object implementation each
time.

Externalizing a reference to an object for which object wrappers have been installed,
using the VisiBroker CRB Object's doject to stringmethod, will not propagate those
wrappers to the recipient of the stringified reference if the recipient is a different
process.

Chapter 26: Using object wrappers 369

Untyped object wrappers

Typed and un-typed object wrappers

VisiBroker offers two kinds of object wrappers: typed and untyped. You can mix the use
of both of these object wrappers within a single application. For information on typed
wrappers, see “Typed object wrappers” on page 376. For information on untyped
wrappers, see “Untyped object wrappers” on page 370. The following table
summarizes the important distinctions between these two kinds of object wrappers.

Table 26.1 Comparison of features for typed and untyped object wrappers

Features Typed Untyped

Receives all arguments that are to be passed to the stub. Yes No

Can return control to the caller without actually invoking the next wrapper, Yes No
the stub, or the object implementation.

Will be invoked for all operation requests for all objects. No Yes

Special idI2java requirements

Whenever you plan to use typed or untyped object wrappers, you must ensure that you
use the -doj_wrapper option with the idl2java compiler when you generate the code for
your applications. This will result in the generation of:

= An object wrapper base class for each of your interfaces.

= Additional Helper class methods for adding or removing object wrappers.

Object wrapper example applications

The sample client and server applications used to illustrate both the typed and untyped
object wrapper concepts in this section are located in the following directory:

<install dirs\exanples\vbe\interceptors\dojectirapoers\

Untyped object wrappers

Note

Untyped object wrappers allow you to define methods that are to be invoked before an
operation request is processed, after an operation request is processed, or both.
Untyped wrappers can be installed for client or server applications and you can also
install multiple versions.

You may also mix the use of both typed and untyped object wrappers within the same
client or server application.

By default, untyped object wrappers have a global scope and will be invoked for any
operation request. You can design untyped wrappers so that they have no effect for
operation requests on object types in which you are not interested.

Unlike typed object wrappers, untyped wrapper methods do not receive the arguments
that the stub or object implementation would receive nor can they prevent the
invocation of the stub or object implementation.

The following figure shows how an untyped object wrapper's pre methodis invoked
before the client stub method and how the post methodis invoked afterward. It also
shows the calling sequence on the server-side with respect to the object
implementation.

370 VisiBroker for Java Developer’s Guide

Untyped object wrappers

Figure 26.1 Single untyped object wrapper

Haost &, Host B

Clientappication * Dhjgct
implermentaion

Servant ‘J

r"'

e —
OpeRtm requestand replyvia TEPAP

Using multiple, untyped object wrappers

Figure 26.2 Multiple untyped object wrappers

Hosta, Host B

Client F":I’f‘ N B
application Implmen
v) - (j A

O peraton request and pply a TEPAP

Order of pre_method invocation

When a client invokes a method on a bound object, each untyped object wrapper

pre methodwill receive control before the client's stub routine is invoked. When a server
receives an operation request, each untyped object wrapper pre methodwill be invoked
before the object implementation receives control. In both cases, the first pre methodto
receive control will be the one belonging to the object wrapper that was registered first.

Order of post_method invocation

When a server's object implementation completes its processing, each post method will
be invoked before the reply is sent to the client. When a client receives a reply to an
operation request, each post method will be invoked before control is returned to the
client. In both cases, the first post methodto receive control will be the one belonging to
the object wrapper that was registered last.

Note If you choose to use both typed and untyped object wrappers, see “Combined use of
untyped and typed object wrappers” on page 381 for information on the invocation
order.

Chapter 26: Using object wrappers 371

Using untyped object wrappers

Using untyped object wrappers

The following are the required steps for using untyped object wrappers. Each step is
discussed in further detail in the following sections.

1 ldentify the interface, or interfaces, for which you want to create a untyped object
wrapper.

2 Generate the code from your IDL specification using the id12java compiler with the -
doj_wrapper option.

3 Create an implementation for your untyped object wrapper factory, derived from the
UntypeddojectiWrapperFactory class.

4 Create an implementation for your untyped object wrapper, derived from the
UntypeddojectWrapper class.

5 Modify your client or server application to access the appropriate type of
6 Modify your application to create your untyped object wrapper factory.

7 Use the ChairlintypeddojectiWrapperFactory add method to add your factory to the
chain.

Implementing an untyped object wrapper factory

The implementation of the TimingUnTypeddojectiWrapperFactory, part of the
dojectWrappers sample applications, shows how to define an untyped object wrapper

factory, derived from the UntypeddojectiWrapperFactory.

Your factory's create method will be invoked to create an untyped object wrapper
whenever a client binds to an object or a server invokes a method on an object
implementation. The create method receives the target object, which allows you to
design your factory to not create an untyped object wrapper for those object types you
wish to ignore. It also receives an enum specifying whether the object wrapper created
is for the server side object implementation or the client side object.

The following code sample illustrates an example of the TimingdojectWrapperFactory,
which is used to create an untyped object wrapper that displays timing information for
method calls.

package UtilityQojectWrapoers;
import com. irprise.vbroker. interceptor. *;
public class TimingUntypeddojectWrapperFactory inmplements
Untypedbjectirapperfactory {
public UntypeddojectWrapper create (org.org.CORRA.(oject target,
com. irprise. voroker . interceptor. Iocation loc) |
} retum new TimingUntypeddojectiWrapper () ;
}

372 VisiBroker for Java Developer’s Guide

Using untyped object wrappers

Implementing an untyped object wrapper

The following code sample shows the implementation of the TimingOojectWrapper. Your
untyped wrapper must be derived from the UntypeddojectiWrapper class, and you may
provide an implementation for both the pre method or post method methods in your
untyped object wrapper.

Once your factory has been installed, either automatically by the factory's constructor
or manually by invoking the GairthtypeddojectiWrapper: :addmethod, an untyped object
wrapper object will be created automatically whenever your client binds to an object or
when your server invokes a method on an object implementation.

The pre method shown in the following code sample obtains the current time, saves it in
a private variable, and prints a message. The post methodalso obtains the current time,
determines how much time that has elapsed since the pre methodwas called, and
prints the elapsed time.
package UtilityQojectiWrappers;
import com. irprise.vbroker. interceptor. *;
Public class TimingUhtypeddojectiWrapper implements Untypeddojectirapgper {
private lag time;
pdblic void pre method (String operation,
org.ong.CORRA.(oject target,
Closure closure) {
System.out .printIn ("Timing: " +
((com. inprise.vibrcker .CORBA.(oject) target) . doject rame() + "->"
+ goeration + "()");
time = System.currentTimaMillis() ;
}
pdblic void post method (String goeration,
org.arg.CQORBA.oject tarcet,
org.ang.CORBA. Ervirament v,
Closure closure) {
laog diff = System.curventTimeMillis() - time;
System.out.printIn ("Timing: Time for call \t" +
((cam. irprise. viorocker . GCORBA. Coject)
target) . doject name() + "->" + gpoeration + "() = " + Aiff + "
ms.");
}
}

pre_method and post_method parameters
Both the pre methodand post methodreceive the parameters shown in the following
table.

Table 26.2 Common arguments for the pre_method and post_method methods

Parameter ~ Description

operation Name of the operation that was requested on the target object.
target Target object.
closure Area where data can be saved across method invocations for this wrapper.

environment post methodonly parameter used to inform the user of any exceptions that might
have occurred during the previous steps of the method invocation.

Chapter 26: Using object wrappers 373

Using untyped object wrappers

Creating and registering untyped object wrapper factories

The following code shows a portion of the sample file UntypedClient.java, which shows
the creation and installation of two untyped object wrapper factories for a client. The
factories are created after the VisiBroker ORB has been initialized, but before the client
binds to any objects.

// UntypedClient.java
import com. inprise.voroker. interceptor. *;
Public class UntypedClient {
public static void mein(Strirg[] args) throws Exception {
// Initialize the CRB.
org.any.CORBA.CRB orb = org.any.CORBA.CRB. init (args,rull) ;
} ddbin (arb, args);
public static void darein(org.org.CORRA.ORB orb, String[] args) throws
Exception {
GhaintntypeddojectiWrapperFactory Cfactory =
ChairiintypeddojectiWrapperFactoryHelper . narrow (

orb.resolve initial references ("ChainlhtypeddojectiWrapperFactory™)
)i
Cfactory.add (new UtilityQojectWrappers . TimingUhtypeddojectiWrapperFactory () ,
Location.CLIENT) ;
Cfactory.add (new

UtilityQojectirappers . TracingUntypeddojectWrapperFactory ()
ILocation.CLIENT) ;
// locate an account mernager. .. .

}
}

The following code sample illustrates the sample file UntypedServer.Java, which shows
the creation and registration of untyped object wrapper factories for a server. The
factories are created after the VisiBroker ORB is initialized, but before any object
implementations are created.

// UntypedServer.java
import com. irprise.vbroker. interceptor. *
import org.arg.PortableServer. *;
TImport cam. inprise. voroker . PortableServerExt BindSupportPolicyValue;
import cam. inprise. vbroker . PortableServerExt . BindSugportPol icyWalueHelper;
import cam. irprise. vioroker . PortableServerfxt .BIND SUPPORT POLICY TYPE;
public class UntypedServer {
public static void main(String[] args) throws Exception {
// Initialize the CRB.
org.ong.CORRA.ORB orb = org.ang.ORBA.CRB. init (args,mill) ;
ChainthtypeddojectiWrapperFactory Sfactory =
ChairitintypeddojectiWrapperFactorytelper . narrow
(orb.resolve initial references ("ChainlhntypeddojectiWrapperFactory™)) ;
Sfactory.add (new
UtilityQojectWrappers . TracingUntypeddojectWrapperFactory () ,
ILocation.SERVER) ;
// get a reference to the root RQA
POA rootRKA =
BQAHelper. narrow (orb. resolve initial references("RootPQA")) ;
// Create a BindSugport Policy that mekes POA register each servant
// with osagent
org.arg.CORBA. Aty any = orb.create any () ;
BindSupcortPolicyValueHelper . insert (arty,
BindSupportPolicyValue .BY INSTANCE) ;

374 VisiBroker for Java Developer’s Guide

Note

Using untyped object wrappers

org.ong.QORBA. Policy bsPolicy =

orb.create policy (BIND SUPFCRT FOLICY TYPE.value, ary);
// Create policies for ocur testRA
org.arg.CORBA. Folicy[] policies = {

TootPCA. create lifespan policy

(LifespanPolicyValue. PERSISTENT) , bsPolicy

}i
// Create myPCOA with the right policies
RCA myPCOA = rootPOA. create POA("bark agent poa",

TOOtFCA. the FOAMarnager () ,

policies) ;

// Create the account menager doject.
AccomntMenagerTpl nenagerServant = new AccountMenagerTnpl () ;
// Decide on the ID for the servant
byte[] menagerId = "BarkMenager" .getBytes() ;
// Activate the servant with the ID on myPQA
myPQA.activate doject with id(menagerId, menagerServent);
// Bctivate the FOA menager
TootPOA. the POAManager () .activate() ;
System.out . printIn ("AccontMenager: BankManager is ready.");
for(int i = 0; 1 < args.length; i+) {
if (args[i] .equalsIgnoreCase ("-runColocated")) {
if (args[i+1] .equalsIgnoreCase ("Client")) {
Client.ddvkin(orb, new String[0]);
} else if(args[i+1] .equalsIgnoreCase ("TypedClient")) {
TypedClient .ddvain (orb, new String[0]) ;
}

if (args [i+1] .equalsIgnoreCase ("UntypedClient")) {
UntypedClient .ddMain (orb, new String[0]) ;
1

System.exit (1) ;
}
}
// Weit for incoming requests
orb.run() ;

}
}

Removing untyped object wrappers

The GhairthtypeddojectWrapperFactory class remove method can be used to remove an
untyped object wrapper factory from a client or server application. You must specify a
location when removing a factory. This means that if you have added a factory with a

location of Both, you can selectively remove it from the Client location, the Sexrver

location, or Both

Removing one or more object wrapper factories from a client will not affect objects of
that class that are already bound by the client. Only subsequently bound objects will be

affected. Removing object wrapper factories from a server will not affect object
implementations that have already been created. Only subsequently created object

implementations will be affected.

Chapter 26: Using object wrappers

375

Typed object wrappers

Typed object wrappers

Note

When you implement a typed object wrapper for a particular class, you define the
processing that is to take place when a method is invoked on a bound object. The
following figure shows how an object wrapper method on the client is invoked before
the client stub class method and how an object wrapper on the server-side is invoked
before the server's implementation method.

Your typed object wrapper implementation is not required to implement all methods
offered by the object it is wrapping.

You may also mix the use of both typed and untyped object wrappers within the same
client or server application. For more information, see “Combined use of untyped and
typed object wrappers” on page 381.

Figure 26.3 Single typed object wrapper registered

Hosta Host B

Obpct
implementai on

Gient
application

g Sewant [—7

j‘i

Using multiple, typed object wrappers

Cportim requestand rsplyvia TGP AP

You can implement and register more than one typed object wrapper for a particular
class of object, as shown in the following figure.

On the client side, the first object wrapper registered is client wrapper 1, SO its
methods will be the first to receive control. After performing its processing, the

client wrapeer 1 method may pass control to the next object's method in the chain or it
may return control to the client.

On the server side, the first object wrapper registered is server wrapper 1, SO its
methods will be the first to receive control. After performing its processing, the

server wrapper 1method may pass control to the next object's method in the chain or it
may return control to the servant.

376 VisiBroker for Java Developer’s Guide

Typed object wrappers

Figure 26.4 Multiple, typed object wrappers registered

Ho 4,

CGlent Host B
applica fon

Chject
mplamente ion

L AA |

(; Senvant

‘OHE

/

Operton requestand repy Ma TCPAP

Order of invocation

The methods for a typed object wrapper that are registered for a particular class will
receive all of the arguments that are normally passed to the stub method on the client
side or to the skeleton on the server side. Each object wrapper method can pass
control to the next wrapper method in the chain by invoking the parent class' method,
super. <rethod names . If an object wrapper wishes to return control without calling the
next wrapper method in the chain, it can returm with the appropriate return value.

A typed object wrapper method's ability to return control to the previous method in the
chain allows you to create a wrapper method that never invokes a client stub or object
implementation. For example, you can create an object wrapper method that caches
the results of a frequently requested operation. In this scenario, the first invocation of a
method on the bound object results in an operation request being sent to the object
implementation. As control flows back through the object wrapper method, the result is
stored. On subsequent invocations of the same method, the object wrapper method
can simply return the cached result without actually issuing the operation request to the
object implementation.

If you choose to use both typed and untyped object wrappers, see “Combined use of
untyped and typed object wrappers” on page 381 for information on the invocation
order.

Typed object wrappers with co-located client and servers

When the client and server are both packaged in the same process, the first object
wrapper method to receive control will belong to the first client-side object wrapper that
was installed. The following figure illustrates the invocation order.

Figure 26.5 Typed object wrapper invocation order

Ay TR Ty

Ofect
inplementatian

Y YEE YR Y.

Process address space

Chapter 26: Using object wrappers 377

Using typed object wrappers

Using typed object wrappers

The following are the required steps for using typed object wrappers. Each step is
discussed in further detail in the following sections.

1 ldentify the interface, or interfaces, for which you want to create a typed object
wrapper.

2 Generate the code from your IDL specification using the id12java compiler with the -
doj_wrapper option.

3 Derive your typed object wrapper class from the <interface namesCojectWrapper
class generated by the compiler, and provide an implementation of those methods
you wish to wrap.

4 Modify your application to register the typed object wrapper.

Implementing typed object wrappers

You derive typed object wrappers from the <interface namesCojectWrapper class that is
generated by the idl2java compiler.

The following code sample shows the implementation of a typed object wrapper for the
Account interface in Java.

Notice that this class is derived from the AccontQojectiWrapper interface and provides a
simple caching implementation of the balance method, which provides these
processing steps:

1 Check the initializedflag to see if this method has been invoked before.

2 If this is the first invocation, the lalance method on the next object in the chain is
invoked and the result is saved to _lalance, the initializedflag is setto true and
the value is returned.

3 If this method has been invoked before, simply return the cached value.

package BarkWrappers;
pblic class CachingAccomtOojectWrapper extends Bark.AccomtOojectirapper {
private boolean initialized = false;
private float lalance;
public float kalance() {
System.out .println("+ CachingpccomntQojectWrapper: Befare calling|
balance:

")
try {
if (! initialized) {
_balance = super.balance() ;
_initialized = true;
} else {
System.out .printIn("+ CachingpocomtCojectWrapper: Returming Cached
value") ;
}
return lalance;
} finally {
System.out .printIn("+ CachingAccomtQojectWrapper: After calling
balance: ");

378 VisiBroker for Java Developer’s Guide

Using typed object wrappers

Registering typed object wrappers for a client

A typed object wrapper is registered on the client-side by invoking the
addClientQojectiWrapperClass method in Java that is generated for the class by the
idl2java compiler. Client-side object wrappers must be registered after the ORB. init
method has been called, but before any objects are bound. The following code sample
shows a portion of the TypedClient.java file that creates and registers a typed object
wrapper.

// TypedClient.java
import com. irprise.vioroker. interceptor. *;
Public class TypedClient {
pblic static void main(String[] args) throws Exception {
// Initialize the CRB.
org.ong.CORRA.ORB orb = org.ang.CORBA.CRB. init (axgs,mill) ;
} dorein (orb, args);
public static void dorein (org.amy.CORBA.ORB orb, String[] args) {
// B a typed doject wrapper for Account dojects
Bank . AccauntHelper . addClientQojectiWrapperClass (orb,
BankiWrappers . CachingAcoountojectiWrapper . class) ;
// Locate an acoount menadger.
Bark. AccontManager nernager =
Bark . AccountManagerHelper. bind (orb, "BankManager") ;

}
}

The VisiBroker ORB keeps track of any object wrappers that have been registered for it
on the client side. When a client invokes the bind method to bind to an object of that
type, the necessary object wrappers will be created. If a client binds to more than one
instance of a particular class of object, each instance will have its own set of wrappers.

Registering typed object wrappers for a server

As with a client application, a typed object wrapper is registered on the server side by
invoking the addserverQojectiWrapperClass method offered by the Helper class. Server
side, typed object wrappers must be registered after the ORB.init method has been
called, but before an object implementation services a request. The following code
sample shows a portion of the TypedServer.java file that installs a typed object wrapper.

// TypedServer.java
import org.arg.PortableServer. *;
import cam. inprise. vbroker . PortableServerExt . BindSupportPolicyValue;
import cam. inprise. vbroker . PortableServerExt . BindSupportPolicyValueHelper;
import cam. irprise. vioroker . PortableServerfixt .BIND SUPPORT POLICY TYPE;
public class TypedServer {
public static void mein(String[] args) throws Exception {
// Initialize the CRB.
org.ang.CORBA.CRB orb = org.ang.QORRA.CRB. init (args,mill) ;
// BAA two typed doject wrappers for AccomntMenager dojects
Bank . AccomtMenagertelper . addServerQojectifrapperClass (orb,
BankiWrappers . SecurercoountMenagerdojectiWrapper . class) ;
Bark . AccountManagertelper . addServerQojectWrapperClass (orb,
BankiWrappers . CachingAcoountMenagerQojectWrapper . class) ;
// get a reference to the root RQA
POA rootRKA =
BQrHelper.narrow (orb. resolve initial references ("RootPA")) ;
// Create a BindSugport Policy that mekes RQA register each servant
// with osagent

Chapter 26: Using object wrappers 379

Using typed object wrappers

}

org.ang.CORRA. Ay any = orb.create any () ;
BindSupcortPolicyValueHelper . insert (arty,
BindSupportPolicyValue .BY INSIANCE) ;
org.ang.CORRA. Policy bsPolicy =
orb.create policy (BIND SUPRCRT POLICY TYPE.value, any);
// Create policies for cur testPA
org.ang.CQORBA. Policy[] policies =
TootPOA. create lifespan policy (LifespenPolicyValue. PERSISTENT) ,
bsPolicy
}i
// Create myPQA with the right policies
BCA myPQA = rootPQA.create POA("1ilo", rootPCA.the POAManager (),
policies

// Create the account menager doject.

AccomtManagerTnpl menagerServant = new AccountMenagerTpl () ;
// Decide on the ID for the servant

byte[] menagerId = "BarkMenager" .getBytes() ;

// Bctivate the servant with the ID an myPQA
myPQA.activate doject with id(menagerId, menagerServent) ;

// Bctivate the POA menager

TOOotEQA. the POAMenager () Activate () ;

System.out .printIn ("AccountMenager: BankManager is ready.");

For(int 1 = 0; i < args.length; i+) {
if (args[i] .equalsIgnoreCase ("-nnColocated")) {

if (args[i+1] .equalsIgnoreCase ("Client")) {
Client.ddvkin(orb, new String[0]) ;

} else 1f(args[i+l] .equalsIonoreCase ("TypedClient")) {
TypedClient .ddvlin (orb, new String[0]) ;

!

if (args[i+1] .equalsIgnoreCase ("UntypedClient")) {
UntypedClient .dMain (orb, new Stringl[0]);

1

System.exit (1) ;

}

// Wait for incoming requests
orb.run() ;

If a server creates more than one instance of a particular class of object, a set of
wrappers will be created for each instance.

380 VisiBroker for Java Developer’s Guide

Combined use of untyped and typed object wrappers

Removing typed object wrappers

The Helper class also provides methods for removing a typed object wrapper from a
client or server application.

Note Removing one or more object wrappers from a client will not affect objects of that class
that are already bound by the client. Only subsequently bound objects will be affected.
Removing object wrappers from a server will not affect object implementations that
have already serviced requests. Only subsequently created object implementations will
be affected.

Combined use of untyped and typed object wrappers

If you choose to use both typed and untyped object wrappers in your application, all
pre methodmethods defined for the untyped wrappers will be invoked prior to any typed
object wrapper methods defined for an object. Upon return, all typed object wrapper
methods defined for the object will be invoked prior to any post methodmethods defined
for the untyped wrappers.

The sample applications Client.javaand Server.java make use of a sophisticated
design that allows you to use command-line properties to specify which, if any, typed
and untyped object wrappers are to be used.

Command-line arguments for typed wrappers

The typed wrappers may are enabled by specifying the following on the command-line:

1 -Dvbroker.orb.dynamicldbs=Rankifrappers. Tnit

2 Using one or more of the properties described in the following table.

Table 26.3 Command-line properties for enabling or disabling BankWrappers

BankWrappers properties Description

-DCachingAcoount: [=<client |servers] Installs a typed object wrapper that caches the
results of the balance method for a client or a
server. If no value for sub-property is specified,
both the client and server wrappers are installed.

-DCachingAccountMenager [=<client |servers] Installs a typed object wrapper that caches the
results of the open method for a client or a server. If
no value for the sub-property is specified, both the
client and server wrappers are installed.

-DSecurelccontManager [=<client [servers] Installs a typed object wrapper that detects
unauthorized users passed on the cpen method for
a client or a server. If no value for sub-property is
specified, both the client and server wrappers are
installed.

Chapter 26: Using object wrappers 381

Combined use of untyped and typed object wrappers

Initializer for typed wrappers

The typed wrappers are defined in the Bankitrappers package and include a service
initializer, Barkirappers/Init. java, as shown in the following code. This initializer will be
invoked if you specify -Dviorcker . orb. dynami cLilbs=RarkiNrappers. Init on the command-
line when starting the client or server with vij. Various typed object wrappers can be
installed, based on the command-line properties you supply.

package BarkiWrappers;
import java.util.*;
import cam. inprise. vioroker . orb.ORB;
import cam. inprise.voroker . properties. PropertyManager;
import cam. irprise.vioroker. interceptor. *;
pblic class Init implements Servicelcader {
cam. inprise.vbraker.orb.CRB _orb;
public void init (final org.ang.CORBA.CRB orb) {
_orb = ((RB) arb;
PropertyManager pm = orb.getPropertyManager ()
// install my CadﬁIgAcoamtd)jectV\Tragper
String val = pn.getString ("CachingAcoount", this.toString())
Class ¢ = CachingAcoountQojectiWrapper . class;
if(Ival.equals (this.toString())) {

£(val.equalsIgnoreCase ("client")) {
Bark. AccountHelper . addC] ientOojectiWrapperClass (orb, ¢) ;
} else if (val.equlsIgnoreCase ("server")) {
} (Bank . AccountHelper . addServerQojectiWrapperClass (orb, ©) ;
else
Bark. AccountHelper . addClientOojectiWrapperClass (orb,) ;
\ Bank . AccountHelper . addServerQojectiWrapperClass (orb, ©) ;

}
// install my CachingAccomtMenacerQojectWrapper
val = pm.getString ("CachingAcocountManager”, this.toString()
c = CachingAccomntManager(oj ectWIa}_:per class;
Ival.equals (this.toString())) {
£(val.ec_{ualslgrxarecase("client")){
Bark. AccountMenagerHel per . addCl ientQojectWrapperClass (orb, <) ;
} else if(val.equalsIgnoreCase ("server")) {
} { Bark . AccountMenagerHel per . addServerQojectWrapgperClass (orb, ©) ;
else

Bank . AccountManagertelper . addCl ientQojectiWrapperClass (orb, ©) ;
Bark . AccountMenagerHel per . addServerQojectWrapperClass (orb, ©) ;

}
// install my CachingAccomntMenagerQojectWrapper
val = pm.getString ("SecurePccountMenager™,
this.toString()) ;
¢ = SecureAccomntManagerQojectWrapper. class;
if (lval.equals (this.toString())) {
if (val.equalsIgnoreCase ("client")) {
Bark . AccountMenagerHel per . addCl ientOojectWrapgperClass (orb, <) ;
} else if(val.equalsIonoreCase ("server™)) {
} Balﬂqiﬁooamﬂ/}anageﬁlelper.addgerverd)jectma;perdass (orb, o) ;
else
Bark. AccountMenagerHelper . addClientQojectWrapperClass (orb, <) ;
Bank . AccountMenagertielper . addServerQojectiWrapperClass (orb,) ;

}

pdolic void init carplete (org.amg.CORBA.CRB orb) {}
public void shutdown (org.ary. CORBA.CRB orb) {}

382 VisiBroker for Java Developer’s Guide

Combined use of untyped and typed object wrappers

Command-line arguments for untyped wrappers

The untyped wrappers may are enabled by specifying the following on the command-
line:

1 -Dvbroker.orb.dynamiclibs=UtilityQojectWrappers. Tnit
2 Using one or more of the properties summarized in the following table.

Table 26.4 Command-line properties for enabling or disabling UtilityObjectWrappers
UtilityObjectWrappers properties Description

-DTiming [=<client | server>] Installs an untyped object wrapper that timing information
for a client or a server. If no value for the sub-property is
specified, both the client and server wrappers are
installed.

-DIracing [=<client | servers] Installs an untyped object wrapper that tracing information
for a client or a server. If no value for the sub-property is
specified, both the client and server wrappers are
installed.

Initializers for untyped wrappers

The untyped wrappers are defined in the UtilityQojectiWrappers package and include a
service initializer, UtilityQojectWrappers/Init. java, shown below. This initializer will be
invoked if you specify -Dviorcker . orb.dynamiclibs=UtilityQojectiWrappers. Init on the
command-line when starting the client or server with vioj. The Command-line properties
for enabling or disabling UtilityObjectWrappers table summarizes the command-line
arguments that you can use to install the various untyped object wrappers.

package UtilityOojectWrappers;
import java.util.*;
Import cam. inprise. vioroker . orb.ORB;
import com. irprise.vioroker . properties. PropertyManager;
import com. irprise.vbroker. interceptor. *;
Public class Init implements Servicelocader {
cam. inprise.vbroker.orb.CRB _orb;
public void init (final org.ary.CORBA.CRB arb) {
_orb = (ORB) orb;
PropertyManager BM= _orb.getPropertyManager () ;
try {
i jectWrapperFactory factory =
ChairlntypeddojectiWrapperFactoryHelper . narrow

orb.resolve initial references ("ChainihtypeddojectiWrapperFactory™)) ;
// install my Timing QojectWrapper
String val = pm.getString ("Timing", this.toString());
if (val.equals (this.toString())) {
UntypeddojectiWrapperFactory f= new
TimingUntypedbojectiWrapperFactory () ;
if (val.equalsIgnoreCase ("client")) {
factory.add(f, Location.CLIENT);
} else if (val.equalsIgnoreCase ("server")) {
factory.add(f, Location.SERVER) ;
} else {
factory.add(f, Location.BOTH) ;

}

// install my Tracing QojectWrapper
val = pm.getString ("Tracing", this.toString());
if (Ival.equals(this.toString())) {
UntypeddojectiWrapperFactory f= new
TracingUhtypeddbojectWrapperFactory () ;

Chapter 26: Using object wrappers 383

Combined use of untyped and typed object wrappers

if (val.equalsIgnoreCase ("client")) {
factory.add(f, Location.CLIENT);
} else if(val.equalsIgnoreCase ("server”)) {
factory.add(f, Location.SERVER) ;
} else {
factory.add(f, Location.BOTH);

} catch(org.arng.CORBA.CRBPackage. IrvalidNene e)
retum;

}

public void init carplete (org.arg.CORBA.CRB orb) {}
public void shutdown (org.ary. CORBA.CRB orb) {}

}

Executing the sample applications

Before executing the sample applications, make sure that an osagent is running on
your network. For more information, see “Starting a Smart Agent (osagent)” on
page 172. You can then execute the server application without any tracing or timing
object wrappers by using the following command:

pronpt> vioj Server
Note The server is designed as a co-located application. It implements both the server and a
client.

From another window, you can execute the client application without any tracing or
timing object wrappers to query the balance in a user's account using the following
command:

prapt> vioj Client Jom
You can also execute the following command if you want a default name to be used:

prarpt> vioj Client

Turning on timing and tracing object wrappers
To execute the client with untyped timing and tracing object wrappers enabled, use the
following command:

pronpt> vbj -Dvbrcker . orb. dynami clibs=Uti1ityQojectiWrappers . Tnit
-DTiming=client\
-Dracing=client Client Jdm
To execute the server with untyped wrappers for timing and tracing enabled, use the
following command:

pronpt> vbj -Dvbrcker . orb. dynami clibs=Uti1ityQojectiWrappers . Tnit
-DTiming=server\
-DIracing=server Server

Turning on caching and security object wrappers
To execute the client with the typed wrappers for caching and security enabled, use
this command:

pravpt> vioj -Dvbrcker . orb. dynemi clibs=RankiWrappers . Tnit -
DCachingpcoount=client\
-DCachingpcooumntManager=client\
-DSecureAccountMenager=client
Client Jdm

384 VisiBroker for Java Developer’s Guide

Combined use of untyped and typed object wrappers

To execute the server with typed wrappers for caching and security enabled, use the
followiong command:

prampt> vioj -Dvbrcker . orb . dynamiclibs=Bankirapeers . Tnit
—DCadungPotnmt—server \

Turning on typed and untyped wrappers

To execute the client with all typed and untyped wrappers enabled, use the following
command:

pronpt> vibj -Doviorcker . orb . dynami clibs=RBankiWrappers .. Tnit,
UtilityQojectWrappers. Trit \

-DCachingAcooumnt=client \
-DCachingAcoomntManager=client\
-DSecureAcoountMenager=client \
-Diming=client \
-DTracing=client \
Client Jdm

To execute the server with all typed and untyped wrappers enabled, use the following
command:

pronpt> vioj -Dviorcker . orb. dynami clibs=RBankiWrappers .. Tnit,

UtilityOojectWrapeers. Init \

-DCachingAcooumnt=server \

-DCachingAcooumntManager=server\

-DSecureAccountMenager=server \

-Driming=server \

-DIracing=server \

Server

Executing a CO-located client and server

The following command will execute a CO-located server and client with all typed
wrappers enabled, the untyped wrapper enabled for just the client, and the untyped
tracing wrapper for just the server:

pronpt> vbj -Dvbrcker . orb. dynami clibs=RankiWrappers .. Tnit,
UtilityOojectWrappers. Init \
-DCachingAcoomt -DSecureAcooumntManager \
-Dliming=client -Dlracing=server \
Server -runCalocated Client

Specifying the -nunCoLocated command-line option allows you to execute the client and
server within the same process.

Property Description
-nnlocated Client Executes the Server.java and the Client.java within the same
process.

-nnolocated TypedClient Executes the Server.java and the TypedClient.java within the
same process.

-nnlocated UntypedClient Executes the Server.java and the UntypedClient.java within the
same process.

Chapter 26: Using object wrappers 385

386 VisiBroker for Java Developer’s Guide

Event types

Event Queue

This section provides information about the Event Queue feature. This feature is
provided for the server-side only.

A server can register listeners to the event queue based on event types that the server
is interested and therefore can process those events when the server needs to do so.

Currently, connection event type is the only event type generated.

Connection events

There are two connection events that the VisiBroker ORB will generate and push to the
registered connection event, as follows:

= Connection established: indicates that a new client is connected to the server
successfully.

= Connection closed: indicates that an existing client is disconnected from the server.

Chapter 27: Event Queue 387

Event listeners

Event listeners

A server implements and registers listeners with the VisiBroker ORB based on event
types the server needs to process. The connection event listener is the only event
listener supported.

IDL definition

The interface definitions are as follows:

module EventQueue {

// Camection event types

erum EventType {UNDEFINED, CONN EVENT TYPE};

// Peer (Client) comection info

struct CamInfo {
string ipaddress; // in %d.%d.%d.%d format
lag port;
lag comID;

}i

// Marker interface for all types of event listeners

local interface Eventlistener {};

typedef sequence<Bventlisteners Eventldsteners;

// camection event listener interface

local interface CamBventlistener : Eventlistener{
void cam established (in CamInfo info) ;
void cam closed(in ComInfo info) ;

}i

// The EventQueue wenager

local interface EventQueueManager : interceptor: : InterceptorMenager {
void register listener(in Eventlistener listener, in EventType type) ;
void unregister listener(in Eventlistener listener, in EventType type);
Eventlisteners get listeners(in EventType type);

}i

}i

The details of the interface definitions are described in the following sections.

Conninfo structure
The CamInfo structure contains the following client connection information.

Table 27.1 Connlnfo structure client connection information

Parameter Description

ipaddress stores the client ip address

port stores the client port number

conniD stores the per server unique identification for this client connection

EventListener interface

The EventListenerinterface section is the marker interface for all types of event
listeners.

388 VisiBroker for Java Developer’s Guide

ConnEventListeners interface

Event listeners

The CamEventlisteners interface defines the following operations.

Table 27.2 ConnEventListeners interface operations

Operation
void cam established (in CamInfo info)

void cam closed (in ComInfo info)

Description

This operation is called back by the VisiBroker ORB
to push the connection established event. The
VisiBroker ORB fills in the client connection
information into the in camInfoinfo parameter and
passes this value into the callback operation.

This operation is called back by the VisiBroker ORB
to push the connection closed event. The VisiBroker
ORB fills in the client connection information into the
in camInfoinfo parameter and passes this value into
the callback operation.

The server-side application is responsible for the implementation of the
ComEventlistener interface as well as the processing of the events being pushed into

the listener.

EventQueueManager interface

The EventQueueManacer interface is used as a handle by the server-side implementation
for the registration of event listeners. This interface defines the the following

operations.

Operation

void register listener (in EventListener
listener, in EventType type)
Eventlisteners get listeners (in
EventType type)

Description

This operation is provided for the registration of an
event listener with the specified event type.

This operation returns the list of registered event
listeners for the specified type.

void uregister listener (in Eventlistener This operation removes a pre-registered listener

listener, in EventType type)

of the specified type.

How to return the EventQueueManager

An EventQueueManager object is created upon ORB initialization. Server-side
implementation returns the EventQueuaVanager object reference using the following

code:

com. inprise . viorcker . interceptor . TnteroceptorManagerControl oontrol =
com. irprise. vibroker . interceptor. InterceptorvenagerCantrol Helper . narrow (
orb.resolve initial references("VisiBrokerTnterceptorControl")) ;

EventQueueManager menager =

(BventQueueManager) aontrol .get menager ("EventQueue") ;

Eventlistener thelistener = ...

menager. register listeners (thelistener) ;

Event Queue code samples

This section contains some code samples for registering EventListeners and
implementing a connection EventListener.

Chapter 27: Event Queue 389

Event listeners

Registering EventListeners
The SanpleServerl cader class contains the init () method which is called by the ORB
during initialization. The purpose of the ServerLoader is to register an Eventlistener by

creating and registering it to the EventQueusVenager.

import com. irprise.vbroker . EventQuete. *;

import com. irprise.vbroker. interceptor. *;

import cam. inprise.vioroker . PortableServerExt . *;

pblic class SanmpleServerlcader inplements Servicelcader {

pdolic void init (org.omy.CORRA.CRB orb) {
try {
InterceptorManagerCantrol aontrol =
InterosptorvbnagerControlHelper . narrow (

orb.resolve initial references("VisiBrokerInterceptorControl")) ;

EventQueueMenager queue menader =
(EventQueueManager) cantrol.get menager ("EventQueue") ;
queue menager. register listener ((Eventlistener)new
CamEventlistenerTmpl () , EventType.CONN_EVENT TYPE) ;
}

catch (Exception e) {
e.printStackTrace() ;
throw new org.ang.CORBA. INTTTALIZE (e. toString()) ;

}
registered") ;
l}mblic void init corplete (org.amy.CORBA.CRB orb)
%ublic void shutdown (org.arg. CORBA.CRB orb) {
}

Implementing EventListeners
The CarmEventlistenerTmpl contains a connection event listener implementation
sample. The CamEventlistener interface implements the cam establishedand

aam closed cperatians at the server-side application. For more information, see
“ConnEventListeners interface” on page 389. The implementation enables the
connection to idle for 30000 milliseconds while waiting for a request at the server-side.
These operations are called when the connection is established by the client and when

the connection is dropped, respectively.

import com. irprise.vbroker . EventQuete. *;
import org.ong.CQORBA.Localdoject ;

public class CamEventlistenerTnpl extends LocalQoject implements
CamEventlistener {
pblic void cam established (CamInfo info) {
System.aut.printIn("Received cam established: address = " +
info.ipaddress + " port = " + info.port +
" camID = " + info.camID) ;
System.out .printIn ("Processing the event ...");
try {
Thread. sleep (30000) ;
} catch (Exoeption e) { e.printStackTrace(); }

pblic void cam closed (ComInfo info) {
System.aut.printIn("Received cam closed: address = " +
info.ipaddress+ " port = " + info.port +
" oomID = " + info.comID) ;

390 VisiBroker for Java Developer’s Guide

System.out .println ("==—==—==—=>SanpleServerloader: CorEventlistener

Using RMI over IIOP

This section describes the VisiBroker for Java tools which enable you to use RMI over
IIOP, and also describes the setup permissions required when running Java applets
that use RMI-1IOP.

Overview of RMI over [IOP

RMI (remote method invocation) is a Java mechanism which allows objects to be
created and used in a distributed environment. In this sense, RMI is a VisiBroker ORB,
which is language-specific (Java) and non-CORBA compliant. The OMG has issued a
specification, the Java language to IDL Mapping, which allows Java classes written
using RMI to interoperate with CORBA objects using the IIOP encoding.

Setting up Java applets with RMI-IIOP

You can run an applet that uses RMI-IIOP. However, you need to set the permissions
in Reflect and Runtime. These permissions are set in the java.policyfile located in the
JRE installed directory. The following is an example of how to set the permissions in
the java.policyfile:

grant codeBase "http: /00300, 306K 30K : 8088/-" {
permission java.larng.reflect.ReflectPermission "suppresshccessChecks";

permission java.lang.RntimePermission "accessDeclaredVenbers";

i

javaziiop and javazidl tools

VisiBroker has two compilers which allow you to adapt your existing Java classes to
work with other objects using the VisiBroker ORB.

= The java2iicp compiler lets you adapt your RMI-compliant classes to use IIOP by
generating all the proper skeleton, stub, and helper classes.

= The java2idl compiler generates IDL from your Java classes, allowing you to
implement them in languages other than Java.

Chapter 28: Using RMI over IIOP 391

Using javaZ2iiop

Using javaz2iiop

The java2iiop compiler lets you define interfaces and data types in Java, rather than
IDL, that can then be used as interfaces and data types in CORBA. The compiler does
not read Java source code (javafiles) or IDL, but rather Java bytecode (classfiles). The
compiler then generates [IOP-compliant stubs and skeletons needed to do all the
marshalling and communication required for CORBA.

Supported interfaces

When you run the java2iicp compiler, it generates the same files as if you had written
the interface in IDL. All primitive data types like the numeric types (short, int, loxg,
fleat, and double), string, CORBA objects or interface objects, 2y objects, typeacde
objects are understood by the java2iicgp compiler and mapped to the corresponding
IDL types.

You can use java2iicpon any Java class or interface. For example, if a Java interface
adheres to one of the following rules:

= Extends java.mi.Remote and all of its methods throw java.rmi .ReamoteExosption
= Extends org.omg.QORRA.Qoject
then, java2iicpwill translate the interface to a CORBA interface in IDL.

The following code sample illustrates a Java RMI interface. This code example can be
found in:

<install dirs/vbe/examples/rmi-iicp/

pwblic interface Account extends java.rmi.Remote {
String nane() throws java.rmi.RemoteFxosption;
float getBalance() throws java.rmi.RemoteException;
void setBalance (float bal) throws java.rmi.RemoteExceptian;

}

Running java2iiop

You must compile your Java classes before you can use the java2iicp compiler. Once
you have generated bytecode, you can run java2iicpto generate client stubs, server
skeletons, and the associated auxiliary files.

For example, after running java2iicpon the Accont.class file found in
<install dirs/vie/examples/rmi-iicp/Bank/

you would have the following files:

= Accouant Stub

= AccountHelper

= AccountHolder

" AccountFCA

= Accomnt Tie

= AcocountOperations

392 VisiBroker for Java Developer’s Guide

Note

Using javaZ2iiop

Reverse mapping of Java classes to IDL

When mapping IDL interfaces to Java classes, using the idl2java compiler, the
interface name may use any of the generated classes suffixes (for example, Belper,
Holder, B3, and so on), and the idl2javatool will handle the situation correctly by
mangling the interface name (prefixing an underscore “_" to the identifier).

For example, if you define both a Fooand a Fodolder interface in IDL, id12java will
generate, amongst others, Fco.java, FodHolder.java, FodHolder.java, and
_Fodoldertolder. javafiles.

On the other hand, when generating 1IOP-compliant Java classes from RMI Java
classes, using the java2iicp compiler, the tool cannot generate the mangled classes.

So, when declaring interfaces which use reserved suffixes, you cannot have them in
the same package as the interface with the same name, (for example, you can not
have a Fooand a Foddolder class in the same package when using the java2iicp
compiler).

Completing the development process

After generating the associated files from your interfaces, you need to provide
implementations for the interfaces. Follow these steps:

Create an implementation for the interface classes.
Compile your server class.

Write and compile your client code.

A ow N P

Start the Server program.
5 Run the Client program.

If you attempt to marshal a non-conforming class, an org.ang.CORRA.MARSHAL:: Carmot
marshal non-anforming value of class <class names> will be thrown. For instance, if you
create the following two classes,

// This is a oconforming class
pblic class Value inplements java.io.Serializable
java.lang.doject any;

}

// This is a non-aonforming class
pwblic class Sarething

}

and then attempt the following,

Value val = new Value() ;
val.ary = new Sarething() ;

You will raise an org.arg.CORBA.MARSHAL exception when you attempt to marshal val.

Chapter 28: Using RMI over IIOP 393

RMI-IIOP Bank example

RMI-1IOP Bank example

This code example is located in the following directory:
<install dirs/vbe/exanples/rmi-iicp/

The Account interface extends the java.rmi.Rarcte interface and is implemented by the
2AccountInpl class.

The Client class (below) first creates all the specified Account objects with the
appropriate balances by creating 2coountData objects for each account and passing
them to the AccountManager to create the accounts. It then confirms that the balance
is correct on the created account. The client then queries the AccountManager for a list
of all the accounts, and proceeds to credit $10.00 to each account. It then verifies if the
new balance on the account is accurate.

pblic class AccontInpl extends Bark.AccomntPA {
pdolic AccountTmpl (Barnk.AccountData data) {
_name = data.getName() ;
_balance = data.getBalance() ;

}
public String name() throws java.umi.RemoteException {
returm name;

}
public float getBalance() throws java.rmi.ReroteException {
retum lbalance;

public void setBalance (float balance) throws java.rmi.RemoteException {
_balance = kalance;

private float balance;
private String name;
}

The Client class:

pblic class Client {
pblic static void main(String[] args) {
try {
// Initialize the CRB.
org.arg.CORRA.CRB orb = org.ong.CORRA.CRB. init (args,mull) ;
// Get the marager Id
byte[] menagerId = "RMIBarkMenager" .getBytes() ;
// Locate an account menager. Give the full PQA name ard the
servant ID.
Bark . AccomtManager nenager =
Bank. AccountManagerHelper.bind (orb, "/rmi bank poa", menagerId) ;
// Use any muber of argurent pairs to indicate name,balance of
acoounts to create
if (args.length = 0 || args.length % 2 != 0) {
args = new String[2] ;
args[0] = "Jack B. Quick";
args[1] = "123.23";

int 1 = 0;
while (i < args.length) {
String nane = args [i++] ;
float balance;
try {
kalance = new Float (args [i++]) . floatValue() ;
} catch (NumberFormatException n) {
balance = 0;

}

394 VisiBroker for Java Developer’s Guide

Supported data types

Bank.AccontData data = new Bank.AcocountData (name, balance) ;
Bank.Account acoount = menager . create (data) ;
System.out .printIn("Created accomt for " + name

+ " with opening balance of $" + kalance) ;
}
java.util.Hashtable accomts = menager.getAccomts () ;
for (java.util.Fomeration e = acconts.elements() ;
e.hasMoreRlements () ;) {
Bark.Accomt accouant =
Bark.2ccontHelper.narrow ((org.ong.QORBA.Qoject) e .nextElarent ()) ;
String name = account.rame() ;
float kalance = acoount.getBalance() ;
System.cut .printIn ("Qurent balance in " + name + "'s accont is
S" + balance) ;
System.out .printIn("Crediting $10 to " + name + "'s account.");
acoount . setBalance (balance + (float)10.0) ;
balance = account .getBalance() ;
System.cut .printIn("New alance in " + name + "'s accont is
S" + balance) ;
}
} catch (java.rmi.RemoteFxception e) {
System.err.println(e) ;
}
}
}

Supported data types

In addition to all of the Java primitive data types, RMI-IIOP supports a subset of Java
classes.

Mapping primitive data types

Client stubs generated by java2iicp handle the marshalling of the Java primitive data
types that represent an operation request so that they may be transmitted to the object
server. When a Java primitive data type is marshalled, it must be converted into an
IIOP-compatible format. The following table summarizes the mapping of Java primitive
data types to IDL/IIOP types.

Table 28.1 Mapping Java types to IDL/IIOP
Java type IDL/IIOP type
void void
boolean boolean
byte octet
char char
short ghort
int lag
lag lag lag
float float
double double
java.lang.Goject any
java.io.Serializable any

java.io.Extemalizable any

Chapter 28: Using RMI over IIOP 395

Supported data types

Mapping complex data types

This section shows how the java2iicgp compiler can be used to handle complex data
types.

Interfaces

Java interfaces are represented in IDL as CORBA interfaces, and they must inherit
from the org.ang.CORBA Ooject interface. When passing objects that implement these
interfaces, they are passed by reference.

Arrays
Another complex data type that may be defined in classes is an array. If you have an
interface or definitions that use arrays, the arrays map to CORBA boxed sequence of

boxed type.

396 VisiBroker for Java Developer’s Guide

Using the dynamically managed
types

This section describes the Dynarny feature of VisiBroker, which allows you to construct
and interpret data types at runtime.

DynAny interface overview

The Dynary interface provides a way to dynamically create basic and constructed data
types at runtime. It also allows information to be interpreted and extracted from an 2y
object, even if the type it contains was not known to the server at compile-time. Using
the Dynany interface, you can build powerful client and server applications that create
and interpret data types at runtime.

DynAny examples

Example client and server applications that illustrate the use of Dynary are included as
part of the VisiBroker distribution. The examples are located in the following directory:

<install dirs\exanples\vie\dynary\

These example programs are used to illustrate DynArty concepts throughout this
section.

Chapter 29: Using the dynamically managed types 397

DynAny types

DynAny types

A Dynary object has an associated value that may either be a basic data type (such as
boolean, int, or float) or a constructed data type. The Dynaryinterface, its methods and
classes are also documented in the VisiBroker API References. Chapter 4,
“Programmer tools for Java” provides methods for determining the type of the
contained data as well as for setting and extracting the value of primitive data types.

Constructed data types are represented by the following interfaces, which are all
derived from Dynany. Each of these interfaces provides its own set of methods that are
appropriate for setting and extracting the values it contains.

Table29.1 Interfaces derived from DynAny that represent constructed data types

Interface TypeCode Description

DyrArray _tk array An array of values with the same data type that has a fixed number
of elements.

DyriErnm _tk erum A single enumeration value.

DyriFixed _tk fixed Not supported.

DynSequence _tk sequence A sequence of values with the same data type. The number of
elements may be increased or decreased.

DynStruct _tk struct A structure.
Dyrilnicn _tk nion A union.
Dyrivalue _tk value Not supported.

DynAny usage restrictions

A Dynarty object may only be used locally by the process which created it. Any attempt
to use a DynAry Object as a parameter on an operation request for a bound object or to
externalize it using the ORB.doject to stringmethod will cause a MARSHAL exception to
be raised.

Furthermore, any attempt to use a DynArny object as a parameter on DIl request will
cause a NO_IMPLEMENT exception to be raised.

This version does not support the long double and fixed types as specified in CORBA
2.6.

Creating a DynAny

A Dynany object is created by invoking an operation on a DynfryFactory object. First
obtain a reference to the DynAryFactory object, and then use that object to create the

new DyrAry object.

// Resolve Dynamic Aty Factory
DynAryFactory factory =
DynArtyFactoryHelper . narrow (
orb.resolve initial references("DyrAryFactory"));
byte[] oid = "PrinterManager" .getBytes () ;
// Create the printer menager doject.
PrinterManagerTnpl merager =
new PrinterManagerTnpl ((com.borland. vioroker.CORBA.CRB) ordb,
factory, serverPoa, oid);
// Export the newly create doject.
serverPoa.activate doject with id(oid, menager);
System.out .printIn (menager + " is ready.");

398 VisiBroker for Java Developer’s Guide

Constructed data types

Initializing and accessing the value in a DynAny

The DynAny. insert <type>methods allow you to initialize a DynAry object with a variety
of basic data types, where <type>is boolean, octet, char, and so on. Any attempt to
insert a type that does not match the TypeCode defined for the Dynamy will cause an
TypeMismatch exception to be raised.

The DynArty: :get <type>methods in C++ or the DynAny.get <type>methods in Java
allow you to access the value contained in a DynArty object, where <type> is boolean,

octet, char; and so on. Any attempt to access a value from a Dynfry component which
does not match the TypeCode defined for the Dynary will cause a TypeMismatch exception
to be raised.

The Dynany interface also provides methods for copying, assigning, and converting to or
from an Ay object. The sample programs, described in “DynAny example client
application” on page 401 and “DynAny example server application” on page 402,
provide examples of how to use some of these methods.

Constructed data types

The following types are derived from the DynAny interface and are used to represent
constructed data types.

Traversing the components in a constructed data type

Several of the interfaces that are derived from DynaAry actually contain multiple
components. The DynAry interface provides methods that allow you to iterate through
these components. The DynAry-derived objects that contain multiple components
maintain a pointer to the current component.

DynAny method Description

rewind Resets the current component pointer to the first component. Has no effect
if the object contains only one component.
next Advances the pointer to the next component. If there are no more

components or if the object contains only one component, falseis returned.

current copaent Returns a Dynary object, which may be narrowed to the appropriate type,
based on the component's TypeCtde.

seek Sets the current component pointer to the component with the specified,
zero-based index. Returns falseif there is no component at the specified
index. Sets the current component pointer to -1 (no component) if specified
with a negative index.

DynEnum

The DynEruminterface represents a single enumeration constant. Methods are provided
for setting and obtaining the value as a string or as an integral value.

Chapter 29: Using the dynamically managed types 399

DynAny example IDL

DynStruct

The DynStruct interface represents a dynamically constructed struct type. The
members of the structure can be retrieved or set using a sequence of NaneValuePair
objects. Each NaneValuePair object contains the member's name and an Ay containing
the member's Type and value.

You may use the rewind, next, current companent, and seek methods to traverse the
members in the structure. Methods are provided for setting and obtaining the
structure's members.

DynUnion

The Dyrinicn interface represents a unionand contains two components. The first
component represents the discriminator and the second represents the member value.

You may use the rewind, next, current campanent, and seek methods to traverse the
components. Methods are provided for setting and obtaining the union's discriminator
and member value.

DynSequence and DynArray

A DynSequence Or DynArray represents a sequence of basic or constructed data types
without the need of generating a separate DynAry object for each component in the
sequence or array. The number of components in a DynSequence may be changed, while
the number of components in a DynArrayis fixed.

You can use the rewind, next, current corpanent, and seek methods to traverse the
members in a DynArray Or DynSequence.

DynAny example IDL

The following code sample shows the IDL used in the example client and server
applications. The StructType structure contains two basic data types and an
enumeration value. The PrinterManager interface is used to display the contents of an
Ay without any static information about the data type it contains.

// Printer.idl
module Printer {
enum Enunlype {first, secand, third, fourth};
struct StructType {
string str;
Enunflype e;
float f1;
i
interface PrinterManager {
void printAry (in ary info) ;
anevay void shutdown () ;
i
i

400 VisiBroker for Java Developer’s Guide

DynAny example client application

DynAny example client application

Note

The following code sample shows a client application that can be found in the following
VisiBroker distribution directory:

<install dir>\exanples\vbe\dynarty\

The client application uses the DynStruct interface to dynamically create a StructType
structure.

The DynStruct interface uses a sequence of NameValuePair objects to represent the
structure members and their corresponding values. Each name-value pair consists of a
string containing the structure member's name and an Ay object containing the
structure member's value.

After initializing the VisiBroker ORB in the usual manner and binding to a PrintManager
object, the client performs the following steps:

1 Creates an empty DynStruct with the appropriate type.

2 Creates a sequence of NameValuePair objects that will contain the structure
members.

Creates and initializes ary objects for each of the structure member's values.
Initializes each NamevaluePair with the appropriate member name and value.
Initializes the DynStruct object with the NameValuePair sequence.

o o B~ W

Invokes the PrinterManager.printZiy method, passing the DynStruct converted to a
regular Ary.

You must use the DynArty. to arny method to convert a DynAry object, or one of its derived
types, to an Ay before passing it as a parameter on an operation request.

The following code sample is an example of a client application that uses DynStruct:

// Client.java
import org.ong.DynamicAry. *;
pblic class Client {
public static void mein(String[] args) {
try {
// Initialize the ORB.
org.ang.CORBA.CRB orb = org.arg.QORBA.CRB. init (args, mull);
DynAryFactory factory =
DynArtyFactoryHelper . narrow (
orb.resolve initial references("DynAryFactory™));
// Locate a printer nenager.
Printer.PrinterManager menager =
Printer. PrinterManagerHelper . bind (orb, "PrinterManager") ;
// Create Dyrnamic struct
DynStruct info =
DynStructHelper.narrow (factory.create dyn arty fram type code
(Printer. StructTypetelper.type())) ;
// Create cur NemeValuePair sequence (array)
NemeValugPair [] NVPair = new NameValuePair [3] ;
// Create ard initialize Dynamic Struct data as any's
org.arg.QORBA. Aty str any = arb.create any () ;
str any.insert string("Strirg");
org.arg.CORBA. Aty e anly = orb.create any() ;
Printer. EnniTypetlelper. insert (e any, Printer.EmniType.secad) ;
org.ang.CORBA. Ay £l any = orb.create any () ;
fl any.insert float ((float)864.50) ;
NVPair [0] = new NameValuePair ("str", str any);
NVPair[1] = new NameValuePair("e", e ary);

Chapter 29: Using the dynamically managed types 401

DynAny example server application

NVPair[2] = new NameValuePair ("f1", fl any);
// Initialize the Dyrnamic Struct
info.set marbers (NWPair) ;
merager . printAny (info.to any()) ;
menager . shutdown () ;

}

catch (Exception e) {
e.printStackTrace () ;

}

}
}

DynAny example server application

The following code sample shows a server application that can be found in the
following VisiBroker distribution directory:

<install dir>\exanples\vbe\dyrary\
The server application performs the following steps.
1 Initializes the VisiBroker ORB.
2 Creates the policies for the POA.
3 Creates a PrintManager object.
4 Exports the PrintManager object.
5 Prints a message and waits for incoming operation requests.
// Server.java
import java.util.*;
import org.ong.DynamicAry. *;
import org.ang.PortableServer. *;
import aam.borland. vbroker . PortableServerExt . *;
pwblic class Server {
public static void main(String[] args) {
try {
// Initialize the ORB.
org.ang.CORRA.CRB orb = org.org.ORBA.CRB. init (args,mill) ;
// Resolve Root ROA
PQA rootPoa =
BAHelper.narrow (orb. resolve initial references(
"RootEQA")) ;
rootPoa. the POAMEnager () .activate() ;
// Create a BindSupport Policy that mekes PQA register
// each servant with osagent
org.arg.CORBA. Aty arty = orb.create any () ;
BindSupportPolicyValueHelper. insert (arty,
BindSugeartPolicyValue . BY INSIANCE) ;
org.ang.CORRA. Policy bsPolicy =
orb.create policy (BIND SUPRCRT POLICY TYPE.value, any) ;
// Create policies for cur testPOA
org.ang.CORBA. Folicy [] policies = {
rootPea.create lifespan policy (LifespanPolicyValue. PERSISTENT) ,
bsPolicy
}i

// Create menagerPQA with the right policies

402 VisiBroker for Java Developer’s Guide

DynAny example server application

BOA serverbPoa =
rootPoa. create BOA(
"serverPoa",
rootPoa. the POAManager () ,
policies) ;
// Resolve Dynamic Aty Factory
DynAryFactory factory =
DynAnyFactorytelper . narrow (
orb.resolve initial references("DynfryFactory™)) ;
byte[] oid = "PrinterMenager" .getBytes () ;
// Create the printer menager doject.
PrinterMenagerTnpl menager =
new PrinterManagerTnpl ((
ocm.borland. vioraker . CORBA.CRB) orb,
factory,
serverPoa,
oid) ;
// Export the newly create doject.
serverPoa.activate doject with id(oid, menager);
System.out .printIn (menager + " is ready.");
// Wait for incoming requests
orb.run () ;
}
catch (Exception e) {
e.printStackTrace() ;
}
}
}

The following code sample shows how the PrinterManager implementation follows
these steps in using a DynAry to process the 2ny object, without any compile-time
knowledge of the type the &y contains.

1

2
3
4

Creates a DynArty object, initializing it with the received any.
Performs a switchon the DynAy object's type.
If the DynArny contains a basic data type, simply prints out the value.

If the DynAry contains an Ay type, creates a Dynary for it, determines it's contents,
and then prints out the value.

If the DynAry contains an erum creates a DynErumfor it and then prints out the string
value.

If the Dynfry contains a union, creates a Dyriinian for it and then prints out the union's
discriminator and the member.

If the DynAry contains a struct, array, or sequence, traverses through the contained
components and prints out each value.

// PrinterManagerTnpl . java
import java.util.*;
import org.ong.DynamicAry. *;
import org.ang.PortableServer. *;
public class PrinterManagerTnpl extends Printer. PrinterMenagerPOA {
private cam.borland.viorcker .CQORBA.CRB _orb;
private DynAryFactory factory;
private FOA pos;
private byte[] oid;

Chapter 29: Using the dynamically managed types 403

DynAny example server application

public PrinterManagerTnpl (com.borland. vioroker. CORBA.CRB orb,
DynAnyFactory factory, BOA poa, byte[] oid) {
_orb = orb;
_factory = factory;
_poa = poa;
_old = oid;
}
public synchronized void printAny (org.arg.CORBA.Any info) {
// Display info with the assumption that we don't have
// any info statically about the type inside the ary
try {
// Create a DynAry doject
DyrnAry dynAry = factory.create dyn ary (info) ;
display (dynAny) ;

catch (Exception e) {
e.printStackTrace() ;
}
}
public void shutdown () {
try {
_poa.deactivate doject (_oid) ;
System.out .printIn("Server shutting down") ;
_orb. shutdown (false) ;
}
catch (Exception e) {
System.out.printin(e) ;
\ }
private void display (DynAry value) throws Exception
switch (value. type () kind() .value()) {
case org.ang.CORBA.TCKird. tk rull:
case org.arg.(ORBA. TCKird._ tk void: {
break;
}
case org.ary.(QORBA. TCKird. tk short: {
System.out .printIn (value.get short());
break;
}
case org.arg.(QORBA.TCKind. tk ushort: {
System.out .println(value.get ushort());
break;
}
case org.arg.CORBA.TCKird._tk lang: {
System.out .println(value.get lag());
reak;
}
case org.arg.(QORBA. TCKird. tk ulang: {
System.out .printIn (value.get ulang()) ;
break;
}
case org.arg.CORBA. TCKird. tk float: {
System.out .println(value.get float());
break;
}
case org.ary.QORBA. TCKird._tk double:
System.out .printIn (value.get double()) ;
reak;

}

404 VisiBroker for Java Developer’s Guide

DynAny example server application

case org.ary.CORBA. TCKird. tk boolean: {
System.out .println(value.get boolean()) ;
break;
}
case org.ary.CORBA. TCKird. tk dhar: {
System.aut.printIn(value.get char()) ;
break;
}
case org.arg.(ORBA. TCKind. tk octet: {
System.out .println(value.get octet());
break;
}
case org.ary.QORBA. TCKird. tk string: {
System.out .println(value.get string());
break;
}
case org.ary.CORBA. TCKid. tk any:
DynAny dynAry = factory.create dyn ary (value.get ary () ;
display (dynAry) ;
break;
}
case org.arg.(QORBA.TCKind. tk Type(ode: {
System.out .printIn (value.get typecode()) ;
break;
}
case org.arg.(ORBA.TCKind. tk dojref: {
System.out .printin (value.get reference());
break;
}
case org.ary.CORBA. TCKird. tk erum: {
DynErum dynErum = DynErinHelper.narrow (value) ;
System.out . printIn (dynErum.get as string()) ;
break;
}
case org.ary.(QORBA. TCKind. tk union: {
Dyrilhion dyrihion = DyrithiaiHelper.narrow (value) ;
display (dyrihion.get discriminator()) ;
display (dyrihion.memoer ()) ;
break;
}
case org.ang.CORBA.TCKirnd. tk struct:
case org.arg.CCRRA.TCKind. tk array:
case arg.ary.CQORBA.TCKird. tk sequence: {
value.rewind () ;
boolean next = true;
while (next) {
DyrAry d = value.current companent () ;
display(d) ;
next = value.next () ;
}
break;
}
case org.arg.(QORBA.TCKird. tk laglag: {
System.aut.printIn (value.get laglang()) ;
break;
}
case org.arg.(ORBA.TCKind. tk ulanglang:
System.out .printin (value.get ulaglag()) ;
break;

}

Chapter 29: Using the dynamically managed types

405

DynAny example server application

case org.ary.CQORBA. TCKird. tk wstring: {
System.out .println(value.get wstring());
break;

}

case org.ary.(ORBA. TCKird. tk wahar: {
System.out .println(value.get wchar()) ;
break;

}

default:
System.out .printin ("Irvalid type") ;

406 VisiBroker for Java Developer’s Guide

Using valuetypes

This section explains how to use the valuetype IDL type in VisiBroker.

Understanding valuetypes

The valuetype IDL type is used to pass state data over the wire. A valuetype is best
thought of as a struct with inheritance and methods. Valuetypes differ from normal
interfaces in that they contain properties to describe the valuetype's state, and contain
implementation details beyond that of an interface.

Valuetype IDL code sample

The following IDL code declares a simple valuetype:

module Mep {
valuetype Point {
public layg x;
public layg y;
private string label;
factory create (in lag x, in lag y, in string z);
void print () ;
}i
}i

Valuetypes are always local. They are not registered with the VisiBroker ORB, and
require no identity, as their value is their identity. They can not be called remotely.

Chapter 30: Using valuetypes 407

Understanding valuetypes

Concrete valuetypes

Concrete valuetypes contain state data. They extend the expressive power of IDL
structs by allowing:

= Single concrete valuetype derivation and multiple abstract valuetype derivation
= Multiple interface support (one concrete and multiple abstract)

= Arbitrary recursive valuetype definitions

= Null value semantics

= Sharing semantics

Valuetype derivation

You can derive a concrete valuetype from one other concrete valuetype. However,
valuetypes can be derived from multiple other abstract valuetypes.

Sharing semantics

Valuetype instances can be shared by other valuetypes across or within other
instances. Other IDL data types such as struct, unian, or sequence cannot be shared.
Valuetypes that are shared are isomorphic between the sending context and the
receiving context.

In addition, when the same valuetype is passed into an operation for two or more
arguments, the receiving context receives the same valuetype reference for both
arguments.

Null semantics

Null valuetypes can be passed over the wire, unlike IDL data types such as structs,
unions, and sequences. For instance, by boxing a struct as a boxed valuetype, you can
pass a null value struct. For more information, see “Boxed valuetypes” on page 411.

Factories

Factories are methods that can be declared in valuetypes to create valuetypes in a
portable way. For more information on Factories, see “Implementing factories” on
page 410.

Abstract valuetypes

Abstract valuetypes contain only methods and do not have state. They may not be
instantiated. Abstract valuetypes are a bundle of operation signatures with a purely
local implementation.

For instance, the following IDL defines an abstract valuetype Account that contains no
state, but one method, get name!

abstract valuetype Accomt(
string get nane() ;

Now, two valuetypes are defined that inherit the get name method from the abstract
valuetype
valuetype savingsAccount :Account{
private lang balance;
}
valuetype checkingAccount :Account {
private lag kbalance;

These two valuetypes contain a variable kalance, and they inherit the get name method
from the abstract valuetype Accont.

408 VisiBroker for Java Developer’s Guide

Implementing valuetypes

Implementing valuetypes

To implement valuetypes in an application, do the following:
Define the valuetypes in an IDL file.
Compile the IDL file using idl2java

Implement your valuetypes by inheriting the valuetype base class.

Implement the create for umershal method.

1
2
3
4 Implement the Factory class to implement any factory methods defined in IDL.
5
6 If necessary, register your Factory with the VisiBroker ORB.

7

Either implement the add ref, renove ref, and ref comntvalue methods or derive
from CORRA: :DefaultValueRefCountBase.

Defining your valuetypes

In the IDL sample (for more information, see “Valuetype IDL code sample” on

page 407), you define a valuetype named Point that defines a point on a graph. It
contains two public variables, the xand y coordinates, one private variable that is the
lakel of the point, the valuetype's factory, and a print method to print the point.

Compiling your IDL file

When you have defined your IDL, compile it using idl2java to create source files. You
then modify the source files to implement your valuetypes.

If you compile the IDL shown in “Valuetype IDL code sample” on page 407, your output
consists of the following files:

= Point.java

= PointDefaultFactory.java

= PointHelper.java

= PointHolder.java

= PointValueFactory.java

Inheriting the valuetype base class

After compiling your IDL, create your implementation of the valuetype. The
implementation class will inherit the base class. This class contains the constructor that
is called in your ValueFactory, and contains all the variables and methods declared in
your IDL.

In the dov\PointImpl . java, the PointImpl class extends the Foint class, which is
generated from the IDL.

Inheriting the valuetype base class:

public class PointInpl extends Point {
public PointTmpl () {}
public PointTnpl (int a %, int a y, String a label) {
X =ax;
y=ay;
lakel = a label;
}
pblic void print () {
System.cut.printIn("Point is [" + label + ": (" +x+ ", "+y+ ")]");

Chapter 30: Using valuetypes 409

Implementing factories

Implementing the Factory class

When you have created an implementation class, implement the Factory for your
valuetype.

In the following example, the generated Point init class contains the create method
declared in your IDL. This class extends org.arg.QORBA. portable. ValueFactory . The
PointDefaultFactory class implements PointValueFactory as shown in the following
example.

pwblic class RPointDefaultFactory implements PointValueFactory
pblic java.io.Serializable read value (org.amy.CORBA.portable. IputStream
is) {
java.io.Serializeble val = new PointInpl(); // Called the inplementation
class
// create ard initialize value
val = ((org.any.CORBA 2 3.portable. IrputStream) is) .read value (val) ;
retum val;
}
// It is up to the user to inplement the valuetype however they went:
public Point create (int x,
int y,
java.lang.String z) {
// IMPLEMENT:
retum mull;
}
}

PointTmpl () is called to create a new valuetype, which is read in from the IrputStream
by read value

You must call read value or your Factory will not work, and you may not call any other
method.

Registering your Factory with the VisiBroker ORB

To register your Factory with the VisiBroker ORB, call ORB.register value factory. This
is required only if you do not name your factory valuetypenameDefaul tFactary. For more
information on registering Factories, see “Registering valuetypes” on page 411.

Implementing factories

When the VisiBroker ORB receives a valuetype, it must first be demarshaled, and then
the appropriate factory for that type must be found in order to create a new instance of
that type. Once the instance has been created, the value data is unmarshaled into the
instance. The type is identified by the RepositoryID that is passed as part of the
invocation. The mapping between the type and the factory is language specific.

VisiBroker version 4.5 or later version will generate the correct signatures for either the
JDK 1.3 or JDK 1.4 default value factory method. Existing (version 4.0) generated code
is not designed to run under JDK 1.3, unless you modify the default value factory
method signature as shown below. If you use your existing code with JDK 1.3 and do
not modify default value factory, the code will not compile or will throw a NO_IMPLEMENT
exception. Consequently, we recommend that you regenerate your code to generate
the correct signatures.

410 VisiBroker for Java Developer’s Guide

Boxed valuetypes

The following code sample shows how you should modify the default value factory
method signature to make sure that it compiles under JDK 1.3:

public class PointDefaultFactory implements PointValugFactory {
pblic java.io.Serializable read value (
org.arg.CORBA 2 3.portable. IrputStream is) {
java.io.Serializable val = new PointTmpl () ;
// create ard initialize value
// It is very inmportant that this call is made.
val = ((org.omg.CORRA 2 3.portable. IrputStream) is) .read value (val) ;
retum val;
}
pblic Roint create (int x, int y, java.lang.String z) {
// IMPLEMENT:
retum NO_IMPLEMENT;
}
}

Factories and valuetypes

When the VisiBroker ORB receives a valuetype, it will look for that type's factory. It will
look for a factory named <valuetypesDefaultFactory. For instance, the Point valuetype's
factory is called PointDefaultFactory:. If the correct factory doesn't conform to this
naming schema (<valuetypesDefaul tFactory), you must register the correct factory so
the VisiBroker ORB can create an instance of the valuetype.

If the VisiBroker ORB cannot find the correct factory for a given valuetype, a MMRSHAL
exception is raised, with an identified minor code.

Registering valuetypes

Each language mapping specifies how and when registration occurs. If you created a
factory with the <valuetypesDefaultFactory naming convention, this is considered
implicitly registering that factory, and you do not need to explicitly register your factory
with the VisiBroker ORB.

To register a factory that does not conform to the <valuetypesDefaultFactory naming
convention, call register value factory. To unregister a factory, call
unregister value factoryon the VisiBroker ORB. You can also lookup a registered
valuetype factory by calling lockup value factoryon the VisiBroker ORB.

Boxed valuetypes

Boxed valuetypes allow you to wrap non-value IDL data types as valuetypes. For
example, the following IDL boxed valuetype declaration,

valuetype Lakel string;
is equivalent to this IDL valuetype declaration:

valuetype Label{
public string name;

By boxing other data types as valuetypes, it allows you to use valuetype's null
semantics and sharing semantics.

Valueboxes are implemented purely with generated code. No user code is required.

Chapter 30: Using valuetypes 411

Abstract interfaces

Abstract interfaces

Abstract interfaces allow you to choose at runtime whether the object will be passed by
value or by reference.

Abstract interfaces differ from IDL interfaces in the following ways:

The actual parameter type determines whether the object is passed by reference or
a valuetype is passed. The parameter type is determined based on two rules. It is
treated as an object reference if it is a regular interface type or sub-type, the
interface type is a sub-type of the signature abstract interface type, and the object is
already registered with the VisiBroker ORB. It is treated as a value if it can not be
passed as an object reference, but can be passed as a value. If it fails to pass as a
value, a BAD PARAM exception is raised.

Abstract interfaces do not implicitly derive from org.arng.CORRA.Coject because they
can represent either object references or valuetypes. Valuetypes do not necessarily
support common object reference operations. If the abstract interface can be
successfully narrowed to an object reference type, you can invoke the operations of
org.ong.CORRA.doject .

Abstract interfaces may only inherit from other abstract interfaces.

Valuetypes can support one or more abstract interfaces.

For example, examine the following abstract interface.

abstract interface ai{

i
i ace itp : aif
i
valuetype vtp supports aif
interface x {
void m(ai aitp);
i
valuetype v {
void op(ai aitp);
i

For the argument to method mt

itpis always passed as an object reference.

vtpis passed as a value.

412 VisiBroker for Java Developer’s Guide

Custom valuetypes

Custom valuetypes

By declaring a custom valuetype in IDL, you bypass the default marshalling and
unmarshalling model and are responsible for encoding and decoding.

custom valuetype custarPoint{
public lag x;
public lag y;
private string label;
factory create(in lag x, in lag y, in string z);
}i
You must implement the marshal and unmarshal methods from the Custanvershal
interface.

When you declare a custom valuetype, the valuetype extends org.arg.CORBA.portable.
CustarValue, as opposed to org.ang.CORBA.portable. StreamebleValue, as in a regular
valuetype. The compiler does not generate read or write methods for your valuetype.

You must implement your own read and write methods by using org.omng.CORRA.

portable.DataTrputStreamand org.arg.QORBA. portable . DataOutputStreamto read and
write the values, respectively.

Truncatable valuetypes

Note

Truncatable valuetypes allow you to treat an inherited valuetype as its parent.

The following IDL defines a valuetype checkingpcoount that is inherited from the base
type Account and can be truncated in the receiving object.

valuetype checkinghcoont: truncatable Account(
private lang balance;

This is useful if the receiving context doesn't need the new data members or methods
in the derived valuetype, and if the receiving context isn't aware of the derived
valuetype. However, any state data from the derived valuetype that isn't in the parent
data type will be lost when the valuetype is passed to the receiving context.

You cannot make a custom valuetype truncatable.

Chapter 30: Using valuetypes 413

414 VisiBroker for Java Developer’s Guide

Using URL naming

This section explains how to use the URL Naming Service which allows you to
associate a URL (Uniform Resource Locator) with an object's IOR (Interoperable
Object Reference). Once a URL has been bound to an object, client applications can
obtain a reference to the object by specifying the URL as a string instead of the object's
name. If you want client applications to locate objects without using the osagent or a
CORBA Naming Service, specifying a URL is an alternative.

URL Naming Service

Note

The URL Naming Service is a simple mechanism that lets a server object associate its
IOR with a URL in the form of a string in a file. Client programs can then locate the
object using the URL pointing to the file containing the stringified URL on the web
server. The URL Naming Service supports the http URL scheme for registering objects
and locating an object by the URL.

This URL name service provides a way to locate objects without using the Smart Agent
or a CORBA Naming Service. It enables client applications to locate objects provided
by any vendor.

The VisiBroker URL Naming supports whatever form of URL handling that your Java
environment supports.

URL Naming Service examples

The code for the URL Naming Service examples are located in your VisiBroker
distribution in the following directory:

<install dirs\examples\vie\basic\kerk URL
The following is the IDL specification for this service. IDL sample (WebNaming module)
// WeldNaming. idl
#oragma prefix "borland.com"
module URINaming
exception TvalidlRL{string reasm; };
exception CamFailure{string reasm;};
exception RegFailure(string reasm; };
exception AlreadyFxists{string reasm; };

Chapter 31: Using URL naming 415

Registering objects

abstract interface Resolver {
// Read Qperations
(oject locate(in string url s)
raises (TrvalidlRL, CamfFailure, RegFailure);
// Write Qperations
void foroce J:eg:.ster url (in string url s, in Ooject doj)
raises (TrvalidlRL, ComFailure, Regfailure);
void register url (in string url s, in Qoject dbj)
} raises (TrvalidlRL, ComFailure, RegFailure, AlreadyExists);

}i

Registering objects

Object servers register objects by binding to the Resolver and then using the
register url or the force register url method to associate a URL with an object's
IOR. register urlis used to associate a URL with an object's IOR if no prior
association exists. Using the force register url method associates a URL with an
object's IOR regardless of whether an URL has already been bound to that object. If
you use the register url method under the same circumstances, an AlreadyExists
exception is raised.

For an example illustrating the server-side use of this feature, see “URL Naming
Service examples” on page 415. This example uses force register url. For

force register url to be successful, the web server must be allowed to issue HITP PUT
commands.

Note To get a reference to the Resolver, use the VisiBroker ORB's
resolve initial references method, as shown in the example.

pblic class Server {
public static void mein(String[] args) {

if (args.length = 0) {
System.out .printIn("Usage: vibj Server <URL string>")

} retum;

String url = args[0] ;

try {
// Initialize the CRB.
org.ang.CORBA.CRB orb = org.ang.QORRA.CRB. init (args, rull) ;
// get a reference to the root KA
PQA rootRAA =

BQAHelper . narrow (orb. resolve initial references("RootPQA")) ;
// Create the servant
Tmpl menagerServant = new AccountMenagerTnpl ()
// Decide on the ID for the servant
byte[] menagerId = "BarkManager" .getBytes ()
// BActivate the servant with the ID on myRQA
rootPCA.activate doject with id(menagerld, menagerServent) ;
// Activate the ROA menager
rootPCA. the POAManager () .activate() ;
// Create the doject reference
org.arg.CORRA.Joject merager =
TootPOA. servant to reference (menagerServant) ;
// Ootain the URINaming Resolver
Resolver resolver = Resolvertielper.narrow (
orb.resolve initial references ("URINamingResolver"))

// Register the doject reference (overwrite if exists)
resolver. force register url (url, menager) ;
System.out.printIn (menager + " is ready.");
// Wait for inocoming requests
orb.run() ;

416 VisiBroker for Java Developer’s Guide

Locating an object by URL

} catch (Exception e) {
e.printStackTrace() ;

}
}

In this code sample args[0] is of the form:
http: //<host name>:<http server ports/<ior file paths/<ior file name>

The ior file nameis the user-specified file name where the stringified object reference
is stored. The suffix of the ior file name must be .icrif the Gatekeeper will be used
instead of an HTTP server. An example using the Gatekeeper and its default port
number is as follows:

http: //mars:15000/URINaming/Bark Menager . ior

Locating an object by URL

Client applications do not need to bind to the Resolver, they simply specify the URL
when they call the bind method, as shown in the following code sample. The bind
accepts the URL as the object name. If the URL is invalid, an TrvalidURL exception is
raised. The bind method transparently callslocate () for you.

// ResolverClient.java
import cam.borland. vibroker . URINaming. *;
pblic class ResolverClient {
pdblic static void mein(String[] args) {
if (args.length = 0) {
System.out .printIn("Usage: vibj Client <URL string> [Accont name]");
retum;
}
String url = args[0] ;
try {
// Initialize the ORB.
org.arg.CORRA.CRB orb = org.ong.CORBA.CRB. init (args,mull) ;

For an example of how to use locate(), see the following code sample.

// Ootain the URINaming Resolver
Resolver resolver = Resolvertielper.narrow (
arb.resolve initial references ("URINamingResolver")) ;
// Locate the doject
Bank . AccontMenager menager =
Bank . AccontManagerHelper . narrow (resolver . locate (url)) ;
// use args[0] as the accout rame, or a default.
String name = args.length > 1 ? args[l] : "Jack B. Quick";
// Request the accont menager to cpen a named acoount.
Bank.Account acoount = menager.cpen (name) ;
// Get the balance of the account.
float kalance = account.balance() ;
// Print out the balance.
System.cut .printIn("The balance in " + name + "'s accont is $" +

balance) ;

} catch(Exception e) {

e.printStackTrace() ;
}
}
}

Chapter 31: Using URL naming 417

Locating an object by URL

Obtaining an object reference using the Resolver.locate method:

// Client.java
pblic class Client {
public static void mein(String[] args) {
if (args.length = 0) {
System.cut .printIn("Usage: vioj Client <dRL string> [Accomt name] ") ;
retum;
}
String url = args[0] ;
// Initialize the CRB.
org.ong.CORRA.ORB orb = org.ang.ORBA.CRB. init (axgs,mill) ;
// locate the doject
Bank . AccomtMenager menager = Bank.AccomtMenagertelper.bind (orb, url) ;
// use args[0] as the accomt name, or a default.
String name = args.length > 1 ? args[1l] : "Jack B. Quick";
// Request the account menager to gpen a named account.
Barnk.Accomt account = menager.cpen (name) ;
// Get the balance of the account.
float balance = account.balance() ;
// Print aut the kalance.
System.out .printIn("The balance in " + name + "'s accont is $" +
balance) ;

418 VisiBroker for Java Developer’s Guide

Bidirectional Communication

This section explains how to establish bidirectional connections in VisiBroker without
using the GateKeeper. For information about bidirectional communications when using
GateKeeper, see Chapter 2, “Introduction to GateKeeper.”

Note Before enabling bidirectional 1IOP, please read about “Security considerations” on
page 423

Using bidirectional [IOP

Most clients and servers that exchange information by way of the Internet are typically
protected by corporate firewalls. In systems where requests are initiated only by the
clients, the presence of firewalls is usually transparent to the clients. However, there
are cases where clients need information asynchronously, that is, information must
arrive that is not in response to a request. Client-side firewalls prevent servers from
initiating connections back to clients. Therefore, if a client is to receive asynchronous
information, it usually requires additional configuration.

In earlier versions of IOP and VisiBroker, the only way to make it possible for a server
to send asynchronous information to a client was to use a client-side GateKeeper to
handle the callbacks from the server.

If you use bidirectional IIOP, rather than having servers open separate connections to
clients when asynchronous information needs to be transmitted back to clients (these
would be rejected by client-side firewalls anyway), servers use the client-initiated
connections to transmit information to clients. The CORBA specification also adds a
new policy to portably control this feature.

Because bidirectional 1IOP allows callbacks to be set up without a GateKeeper, it
greatly facilitates deployment of clients.

Chapter 32: Bidirectional Communication 419

Bidirectional VisiBroker ORB properties

Bidirectional VisiBroker ORB properties

The following properties provide bidirectional support:
vbroker . orb. ensbleBiDir=client | server | both |none
vioroker . se . <seranes . San. <SAmares> . fenager . exportBiDir=true | false
vbroker . se. <senames . San. <samanes . renager . importBiDi r=true | false

enableBiDir property

The vbroker.orb.enableBiDir property can be used on both the server and the client to
enable bidirectional communication. This property allows you to change an existing
unidirectional application into a bidirectional one without changing any code. The
following table describes the viorcker.orb.ensbleBiDir property value options:

Table 32.1 enableBiDir Property Values

Value Description

client Enables bidirectional IOP for all POAs and for all outgoing connections. This setting is
equivalent to creating all POAs with a setting of the BiDirectional policy to both and
setting the policy override for the BiDirectional policy to othon the VisiBroker ORB
level. Furthermore, all created SCMs will permit bidirectional connections, as if the
exportBiDir property had been set to true for every SCM.

server Causes the server to accept and use connections that are bidirectional. This is
equivalent to setting the inmportBiDir property on all SCMs to true.

both Sets the property to both client and server.
nme Disables bidirectional IIOP altogether. This is the default value.

exportBiDir property
The vioroker . se. <senames>. sam. <samames> . menager . exportBiDir property is a client-side
property. By default, it is not set to anything by the VisiBroker ORB.

Setting it to true enables creation of a bidirectional callback POA on the specified
server engine.

Setting it to false disables creation of a bidirectional POA on the specified server
engine.

importBiDir property
The vibroker . se. <se-nane>. san. <san-names .mereger . importBiDir property is a server-
side property. By default, it is not set to anything by the VisiBroker ORB.

Setting it to true allows the server-side to reuse the connection already established by
the client for sending requests to the client.

Setting it to false prevents reuse of connections in this fashion.

Note These properties are evaluated only once—when the SCMs are created. In all cases,
the exportBiDir and inmportBiDir properties on the SCMs govern the enableBiDir
property. In other words, if both properties are set to conflicting values, the SCM-
specific properties take effect. This allows you to set the enableBiDir property globally
and specifically turn off BiDir in individual SCMs.

420 VisiBroker for Java Developer’s Guide

About the BiDirectional examples

About the BiDirectional examples

Examples demonstrating use of this feature are installed as part of your VisiBroker
distribution in subdirectories in the following location:

<install dir>\exanples\vie\bidir-iicp
All the examples are based on a simple stock quote callback application:
1 The client creates a CORBA object that processes stock quote updates.
2 The client sends the object reference of this CORBA object to the server.
3 The server invokes this callback object to periodically update stock quotes.

In the sections that follow, these examples are used to explain different aspects of the
bidirectional 11OP feature.

Enabling bidirectional IIOP for existing applications

UNIX

Windows

You can enable bidirectional communication in existing VisiBroker for Java and C++
applications without modifying any source code. A simple callback application that
does not use bidirectional 1IOP at all is located in the following directory:

<install dirs\examples\vie\bidir-iicp\basic

To enable bidirectional IIOP for the callback example, you set the
vioroker . orb. enableRiDir property as follows:

1 Make sure the osagent is running.
2 Start the server.
prarpt> vioj -Dvbrcker.orb.enableBiDir=server Server &
prampt> start vibj -Dvbroker.orb.ensbleBiDir=server Server
3 Start the client.
prampet> vioj -Dvbrcker.orb.enableBiDir=client RegularClient

The existing callback application now uses bidirectional IIOP and works through a
client-side firewall.

Explicitly enabling bidirectional IIOP

The client in directory <install dirs\examples\vbe\bidir-iicp\besicis derived from the
RegularClient described in “Enabling bidirectional I1IOP for existing applications” on
page 421, except that this client enables bidirectional IOP programmatically.

The changes required are in the client code only. To convert the unidirectional client
into a bidirectional client, all you need to do is:

1 Include the BiDirectional policy in the list of policies for the callback POA.

2 Add the BiDirectional policy to the list of overrides for the object reference that refers
to the server for which we want to enable bidirectional 11OP.

3 Set the exportBiDir property to truein the client.

Chapter 32: Bidirectional Communication 421

Explicitly enabling bidirectional IIOP

In the following code sample, the code that implements bidirectional IIOP is displayed
in bold:

public static void main (String[] args) {

try {
org.ang.CORBA.CRB orb = org.ang.QORRA.CRB. init (args, mull) ;
org.arg. PortableServer . FOA rootPOA =
org.arg. PortableServer . FORHelper . narrow
orb.resolve initial references("RootPA")) ;
org.ang.CQORRA.Any bidirPolicy = orb.create any () ;
bidirPolicy.insert short (BOIH.value);
org.arg.QORBA. Policy[] policies = {
//set bidir policy
orb.create policy (BIDIRECTIONAL POLICY TYPE.value, bidirPolicy)
}i
org.ang. PortableServer. FOA calllbackPA =
TootPCA. create POA("bidir", rootPOA.the FOAManager (), policies);
QuoteConsurerInpl ¢ = new QuoteConsurerInpl () ;
callbackPOA.activate doject(c);
callbackPA. the POAManager () .activate() ;
QuoteServer serv =
QuoteServertielper.bind (orb, "/QuoteServer poa",
"QuoteServer" .getBytes()) ;
serv=QuoteServerHelper.narrow(serv. set policy override(
policies, org.arg.QORBA. SetOverrideType.ADD OVERRIDE)) ;
serv. registerConsurer (QuoteConsumertelper . narrow (
callbackPA. servant to reference(c)));
System.cut .println ("Client: consurer registered");
//sleeping for 60 seconds, receiving messace
try{
Thread. currentThread () . slesp (60%1000) ;
}

catch (java. larg. Interruptedixception e) { }

serv.unregisterConsumer (QuoteConsumertielper . narrow (
callbackPA. servant to reference(c)));

System.out .printIn("Client: consurer unregistered. Good bye.") ;

orb. shutdown (true) ;

Unidirectional or bidirectional connections

A client connection can be either unidirectional or bidirectional. A server can use a
bidirectional connection to call back the client without opening a new connection.
Otherwise, the connection is considered unidirectional.

422 VisiBroker for Java Developer’s Guide

Security considerations

Enabling bidirectional IIOP for POAs

The POA on which the callback object is hosted must enable bidirectional [IOP by
setting the BiDirectional policy to BOTH This POA must be created on an SCM which
has been enabled for bidirectional support by setting the

vioroker . <senane:s> . san. <samanmes . menager . exportBiDir property on the SCM manager.
Otherwise, the POA will not be able to receive requests from the server over a client-
initiated connection.

If a POA does not specify the BiDirectional policy, it must not be exposed in outgoing
connections. To satisfy this requirement, a POA which does not have the BiDirectional
policy set cannot be created on a server engine which has even one SCM whose
exportBiDir property is set. If an attempt is made to create a POA on a unidirectional
SE, an IrvalidPolicy exception is raised, with the ServerfnginePolicyin error.

Note Different objects using the same client connection may set conflicting overrides for the
BiDirectional policy. Nevertheless, once a connection is made bidirectional, it always
remains bidirectional, regardless of the policy effective at a later time.

Once you have full control over the bidirectional configuration, you enable bidirectional
IIOP on the iicp tp SMonly:

prampt> vibj -Dvbrcker.se.iigp tp.sam.iicp tp.menager. exportBiDir=
true Client

Security considerations

Use of bidirectional IIOP may raise significant security issues. In the absence of other
security mechanisms, a malicious client may claim that its connection is bidirectional
for use with any host and port it chooses. In particular, a client may specify the host
and port of security-sensitive objects not even resident on its host. In the absence of
other security mechanisms, a server that has accepted an incoming connection has no
way to discover the identity or verify the integrity of the client that initiated the
connection. Further, the server might gain access to other objects accessible through
the bidirectional connection. This is why use of a separate, bidirectional SCM for
callback objects is encouraged. If there are any doubts as to the integrity of the client, it
is recommended that bidirectional IIOP not be used.

For security reasons, a server running VisiBroker will not use bidirectional IIOP unless
explicitly configured to do so. The property vioroker . <se>. <senames>. san. <samanes.
menager . importBiDir gives you control of bidirectionality on a per-SCM basis. For
example, you might choose to enable bidirectional IIOP only on a server engine that
uses SSL to authenticate the client, and to not make other, regular IIOP connections
available for bidirectional use. (See “Bidirectional VisiBroker ORB properties” on

page 420 for more information.) In addition, on the client-side, you might want to
enable bidirectional connections only to those servers that do callbacks outside of the
client firewall. To establish a high degree of security between the client and server, you
should use SSL with mutual authentication (set

vioraker . security . peerAuthenticatiaiMode to REJUIRE AND TRUST on both the client and
server).

Chapter 32: Bidirectional Communication 423

424 VisiBroker for Java Developer’s Guide

Using the BOA with VisiBroker

This section describes how to use the BOA with VisiBroker.

Note BOA support is provided as backward compatibility for VisiBroker version 4.0 (CORBA
spec. 2.1) and 3.x versions. For current CORBA specification support, see Chapter 9,
“Using POAs.”

Compiling your BOA code with VisiBroker

If you have existing BOA code that you developed with a previous version of
VisiBroker, you can continue to use it with the current version as long as you keep the
following in mind:

= To generate the necessary BOA base code, you must use the “-bog” option with the
idl2javatool. For more information on using idl2javato generate the code, see
Chapter 5, “IDL to Java mapping.”

= Because the BA init() is no longer available under org.cng.GORBA.CRB, you must
cast the VisiBroker ORB to cam.borland. viorcker . CORBA.CRB.

= Because the BAclass is no longer available in the org.ang.CORRA package, you must
now refer to it in the cam.borland.viorcker . CORBA package. For more information on
the VisiBroker ORB package, see VisiBroker for Java APlIs.

Supporting BOA options

All BOA command line options supported by VisiBroker 4.x are still supported.

Limitations in using the BOA

Two features are not supported with VisiBroker 4.x BOA:
= Persistent DSI objects are not supported.

= Doa() on DSI objects is not supported.

Chapter 33: Using the BOA with VisiBroker 425

Using object activators

Using object activators

BOA object activators are supported by VisiBroker. However, these activators can be
used only with BOA, not POA. The POA uses servant activators and servant locators in
place of object activators.

In this release of VisiBroker, the Portable Object Adaptor (POA) supports the features
that were provided by the BOA in VisiBroker 3.x releases. For backward compatibility
reasons, you may still use the object activators with your code.

Naming objects under the BOA

Though the BOA is deprecated in VisiBroker, you may still use it in conjunction with the
Smart Agent to specify a name for your server objects which may be bound to in your
client programs.

Object names

When creating an object, a server must specify an object name if the object is to be
made available to client applications through the osagent. When the server calls the
BOA.doj_is ready method, the object's interface name will only be registered with the
VisiBroker osagent if the object is named. Objects that are given an object name when
they are created return persistent object references, while objects which are not given
object names are created as transient.

Note If you pass an empty string for the object name to the object constructor in VisiBroker
for Java, a transient object is created (an object which is not registered with the Smart
Agent). If you pass a null reference to the constructor, a transient object is created.

The use of an object name by your client application is required if it plans to bind to
more than one instance of an object at a time. The object name distinguishes between
multiple instances of an interface. If an object name is not specified when the bind()
method is called, the osagent will return any suitable object with the specified interface.

Note In VisiBroker 3.x, it was possible to have a server process that provided different
interfaces, all of which had the same object name, but in the current version of
VisiBroker, different interfaces may not have string-equivalent names.

426 VisiBroker for Java Developer’s Guide

Using object activators

This section describes how to use the VisiBroker object activators.

In this release, as well as the VisiBroker 4.1 release and later, the Portable Object
Adaptor (POA) supports the features that were provided by the BOA in the VisiBroker
3.x and 4.0 releases. For backward compatibility reasons, you may still use the object
activators as described in this section with your code. For more information on how to
use the BOA activators with this release, see Chapter 33, “Using the BOA with
VisiBroker.”

Deferring object activation

You can defer activation of multiple object implementations using service activation
with a single Activator when a server needs to provide implementations for a large
number of objects.

Activator interface

You can derive your own interface from the Activator class. This allows you to
implement the activate and deactivate methods that the VisiBroker ORB will use for
the DBObjectImpl object. You can then delay the instantiation of the DRJojectImpl object
until the BOA receives a request for that object. It also allows you to provide clean-up
processing when the BOA deactivates the object.

This code sample shows the 2Activator interface, which provide methods invoked by
the BOA to activate and deactivate an VisiBroker ORB object.

package oam.borland. viorcker . extension;
pwblic interface Activator
pdblic abstract org.ang.CORRA.(bject activate (ImplementatianDef impl) ;
public abstract void deactivate (org.arg.CQORRA.Qoject doj, ImplementatianDef
impl) ;

}

Chapter 34: Using object activators 427

Using the service activation approach

The following code sample shows you how to create an Activator for the DROJojectInpl
interface.

// Server.java
import cam.borland. vbroker.extension. *;

class DRActivator implements Activator {
private static int count;
private cam.borland.vbrcker . CORBA.BOA boa;
public DRActivator (cam.borland. viorcker. CORBA.BOA boa) {
_boa = boa;
}
public org.any.CORRA.Qoject activate(
cam.borland . voroker . extension. InplerentatiariDef impl)
System.out .printIn("Activator called " + ++ comt + " times");
bytel] ref data = ((ActivationInplDef) impl) .id();
DBEdbjectInpl cbj = new DBObjectInpl (new String (ref data)) ;
boa.dbj_is ready(doj) ;
retum doj;
}
public void deactivate (org.arg.CORBA.Qoject doj,
com.korland. voroker . extension. InplementatianDef inpl) {
// nothing to do here. ..

Using the service activation approach

Service activation can be used when a server needs to provide implementations for a
large number of objects (commonly thousands of objects, possibly millions) but only a
small number of implementations need to be active at any specific time. The server can
supply a single Activator which is notified whenever any of these subsidiary objects
are needed. The server can also deactivate these objects when they are not in use.

For example, you might use service activation for a server that loads object
implementations whose states are stored in a database. The Activatoris responsible
for loading all objects of a given type or logical distinction. When VisiBroker ORB
requests are made on the references to these objects, the Activator is notified and
creates a new implementation whose state is loaded from the database. When the
Activator determines that the object should no longer be in memory and, if the object
had been modified, it writes the object's state to the database and releases the
implementation.

Figure 34.1 Process of Deferring Activation for a Service

Aotiva on achvates obiects in senice
LD pIOCes s ciclmrsqussts

bindl) o chigots
insanice g
[O+ | ®
MmN Tala]
O m
L =
Senicei ||
Ohisets in snice & attivated and Semver o
pady 1o process clent Ut I - Aiive ohjsct

428 VisiBroker for Java Developer’s Guide

Using the service activation approach

Deferring object activation using service activators

Assuming the objects that will make up the service have already been created, the
following steps are required to implement a server that uses service activation:

1 Define a service name that describes all objects activated and deactivated by the
Activator.

2 Provide implementations for the interface which are service objects, rather than
persistent objects. This is done when the object constructs itself as an activatable
part of a service.

3 Implement the Activator which creates the object implementations on demand. In
the implementation, you derive an Activator interface from extension: :Activator,
overriding the activate and deactivate methods.

4 Register the service name and the Activator interface with the BOA.

Example of deferred object activation for a service

The following sections describe the odoexample for service activation which is located
in the following VisiBroker directory:

<install dirs/examples/vice/boa/cdo
This directory contains the following files:

Table 34.1 Files in the odb example for service activation

Name Description

odb.idl IDL for DB and DBObject interfaces.

Server.java Creates objects using service activators, returns IORs for the objects, and
deactivates the objects.

Creator.java Calls the DB interface to create 100 objects and stores the resulting stringified
object references in a file (dojref.cut).

Client.java Reads the stringified object references to the objects from a file and makes calls
on them, causing the activators in the server to create the objects.

Mekefile When meke or meke (on Windows) is invoked in the odo subdirectory, builds the
following client and server programs:
Server, Creator, and Client.

The odb example shows how an arbitrary number of objects can be created by a single
service. The service alone is registered with the BOA, instead of each individual object,
with the reference data for each object stored as part of the IOR. This facilitates object-
oriented database (OODB) integration, since you can store object keys as part of an
object reference. When a client calls for an object that has not yet been created, the
BOA calls a user-defined Activator. The application can then load the appropriate
object from persistent storage.

In this example, an Activatoris created that is responsible for activating and
deactivating objects for the service named “DBService.” References to objects created
by this Activator contain enough information for the VisiBroker ORB to relocate the
Activator for the DBService service, and for the Activatorto recreate these objects on
demand.

The DBService service is responsible for objects that implement the DROoject interface.
An interface (contained in odb.idl) is provided to enable manual creation of these
objects.

Chapter 34: Using object activators 429

Using the service activation approach

odb.idl interface

The odb.idl interface enables manual creation of objects that implement the DROoject
odb interface.

interface DRbject {
string get nane() ;

typedef sequence<iBdoject> DBdojectSequence;
interface DB {

DBOoject create doject (in string name) ;
}i
The DBdoject interface represents an object created by the IBinterface, and can be
treated as a service object.

DRojectSequence is a sequence of IBojects. The server uses this sequence to keep
track of currently active objects.

The DBinterface creates one or more DBJojects using the create doject operation. The
objects created by the DB interface can be grouped together as a service.

Implementing a service activator

Normally, an object is activated when a server instantiates the classes implementing
the object, and then calls doj_is readyfollowed by inpl is ready. To defer activation
of objects, it is necessary to gain control of the activate method that the BOA invokes
during object activation. You obtain this control by deriving a new class from

oan. borland. viorcker . extention. Activator and overriding the activate method, using
the overridden activate method to instantiate classes specific to the object.

In the odo example, the DRActivator class derives from
com.borland. vbroker . extenstion.Activatar, and overrides the activate and deactivate
methods. The DROoject is constructed in the activate method.

Th following code sample is an example of overriding activate and deactivate.

// Server.java
class DRActivator implements Activator {
private static int coant;
private cam.borland.vbrcker . CORBA.BOA boa;
public DRActivator (cam.borland. viorcker. CORBA.BOA boa) {
_boa = boa;
}

public org.arng.QORRA.Qoject activate(
com.borlard. vioroker . extension. InplementaticriDef impl)
System.out .printIn("Activator called " + ++ comt + " times");
byte[] ref data = ((ActivationTmplDef) impl).id();
DBJojectInpl doj = new DBJojectImpl (new String (ref data)) ;
_boa.dbj_is ready(dbj) ;
retum doj;
}
public void deactivate (org.ang.CORRA.Cbject cdbj, InmplementaticanDef impl) {
// nothing to do here. ..

}

When the BOA receives a client request for an object under the responsibility of the
Activator, the BOA invokes the activate method on the Activator. When calling this
method, the BOA uniquely identifies the activated object implementation by passing
the Activator an ImplenmentatiaiDef parameter, from which the implementation can
obtain the Referencelata , the requested object's unique identifier.

430 VisiBroker for Java Developer’s Guide

Note

Using the service activation approach

The following code sample gives you an example of implementing a server activator.

pdolic org.ang.CORRA.doject activate (ImplementationDef impl) {
System.cut .printIn("Activator called " + ++ comt + " times");
byte[] ref data = ((ActivationTmplDef) impl).id();
DBOojectImpl doj = new DBOojectTmpl (new String(ref data)) ;
_boa.doj_is ready(doj) ;
retum doj;

}

Instantiating the service activator

The DBRActivator service activator is responsible for all objects that belong to the
DRService service. All requests for objects of the DRService service are directed through
the DRActivator service activator. All objects activated by this service activator have
references that inform the VisiBroker ORB that they belong to the DBService service.

The following code sample creates and registers the DRActivator service activator with
an impl is readycall in the main server program.

pwblic static void mein(Strirg[] args) {
org.any.CORBA.CRB orb = CRB.init (args, muill);
aom.borland. vioroker . CORBA.BOA boa = ((com.borland. viorcker .orb.CRB
)orb) .BAA init();
B do = new DBInpl ("Database Manager") ;
boa.doj_is ready (db) ;
koa.impl is ready ("DBService", new DRActivator (boa)) ;

The call to inpl is readyis a variation on the usual call to inpl is ready . It takes two
arguments:

= Service name.

= Instance of an Activator interface that will be used by the BOA to activate objects
belonging to the service.

Using a service activator to activate an object

Whenever an object is constructed, doj_is readymust be explicitly invoked in activate.
There are two calls to doj_is readyin the server program. One call occurs when the
server creates a service object and returns an IOR to the creator program.

public DBObject create doject (String name) {
System.out .printIn("Creating: " + nane) ;
DRoject dodbject = new DBGbjectImpl (name) ;
_bea() .doj_is ready(dodoject, "DBService", name.getBytes());
retum dodoject;
}
The second occurrence of doj_is readyis in activate, and this needs to be explicitly
called.

Chapter 34: Using object activators 431

432 VisiBroker for Java Developer’s Guide

CORBA exceptions

This section provides information about CORBA exceptions that can be thrown by the
VisiBroker ORB, and explains possible causes for VisiBroker throwing them.

CORBA exception descriptions

The following table lists CORBA exceptions, and explains reasons why the VisiBroker
ORB might throw them.

Exception Explanation Possible causes
CORBA: :BAD QONTEXT An invalid context has been An operation may raise this exception if a client
passed to the server. invokes the operation, but the passed context does
not contain the context values required by the
operation.
CORBA: :BAD INV ORDER The necessary prerequisite An attempt to call the QORBA: :Request: :get_respanse ()

operations have not been called or CORBA: :Request : :poll respanse() methods may

prior to the offending operation have occurred prior to actually sending the request.

request. An attempt to call the exoeption: :get client info()
method may have occurred outside of the
implementation of a remote method invocation. This
function is only valid within the implementation of a
remote invocation. An operation was called on the
VisiBroker ORB that was already shut down.

CORBA: :BAD OPERATICN An invalid operation has been A server throws this exception if a request is

performed. received for an operation that is not defined on that
implementation's interface. Ensure that the client
and server were compiled from the same IDL. The
QORBA: :Request : :return value () method throws this
exception if the request was not set to have a return
value. If a return value is expected when making a
DIl call, be sure to set the return value type by
calling the CORRA: :Request: :set_retum type () method.

Chapter 35: CORBA exceptions 433

CORBA exception descriptions

Exception
QORBA: :BAD PARAM

CQORBA: :CCDESET INCOMPATIELE

CQORBA: :DATA CONVERSTON

Explanation

A parameter passed to the
VisiBroker ORB is invalid.

Quality of service cannot be
supported.

The ORB has encountered a
malformed type code.

Communication between client
and server native code sets fails
because the code sets are
incompatible.

Communication is lost while an
operation is in progress, after
the request was sent by the
client, but before the reply has
been returned.

The VisiBroker ORB cannot

convert the representation of
marshaled data into its native
representation or vice-versa.

An implementation limit was
exceeded in the VisiBroker ORB
run time.

A necessary initialization has not
been performed.

An internal VisiBroker ORB error
has occurred.

434 VisiBroker for Java Developer’s Guide

(continued)

Possible causes

Sequences throw CORBA: :BAD PARAMf an access is
attempted to an invalid index. Make sure you use the
lerngth() method to set the length of the sequence
before storing or retrieving elements of the
sequence.

The VisiBroker ORB throws this exception if null
reference is passed. An attempt may have been
made to insert a null object reference into an any.

An attempt was made to send a value that is out of
range for an enumerated data type.

An attempt may have been made to construct a
TypeCode with an invalid kind value.

Using the DIl and one way method invocations, an
aurargument may have been specified. An interface
repository throws this exception if an argument
passed into an IR object's operation conflicts with its
existing settings. See the compiler errors for more
information.

Can be raised whenever an object cannot support
the quality of service required by an invocation
parameter that has a quality of service semantics
associated with it.

The code sets used by the client and server cannot
work together. For instance, the client uses ISO
8859-1 and the server uses the Japanese code set.

This exception is raised if communication is lost
while an operation is in progress, after the request
was sent by the client, but before the reply from the
server has been returned to the client.

An attempt to marshal Unicode characters with
Output.write char() Or Output.write strindfails.

The VisiBroker ORB may have reached the
maximum number of references it can hold
simultaneously in an address space. The size of the
parameter may have exceeded the allowed
maximum. The maximum number of running clients
and servers has been exceeded.

The CRB init () method may not have been called. All
clients must call the cRB init () method prior to
performing any VisiBroker ORB-related operations.
This call is typically made immediately upon
program startup at the top of the main routine.

An internal VisiBroker ORB error may have
occurred. For instance, the internal data structures
of the VisiBroker ORB may have been corrupted.

Exception
CORBA: : INIF_REFOS

QORBA: : INV_POLICY

QORBA: : INVALID TRANSACTION

CORBA: :NO_PERVMISSICN

Explanation

An instance of the Interface
Repository could not be located.

An invalid flag was passed to an
operation.

An IDL identifier is syntactically
invalid.

An invalid object reference has
been encountered.

An invalid policy override has
been encountered.

A request carried an invalid
transaction context.

Error marshalling parameter or
result.

The requested object could not
be located.

The VisiBroker ORB runtime has
run out of memory.

The caller has insufficient
privileges to complete an
invocation.

A necessary resource could not
be acquired.

CORBA exception descriptions

(continued)

Possible causes

If an object implementation cannot locate an
interface repository during an invocation of the

get interface () method, this exception will be thrown
to the client. Ensure that an Interface Repository is
running, and that the requested object's interface
definition has been loaded into the Interface
Repository.

A Dynamic Invocation Interface request was created
with an invalid flag.

An identifier passed to the interface repository is not
well formed. An illegal operation name is used with
the Dynamic Invocation Interface.

The VisiBroker ORB will throw this exception if an
object reference is obtained that contains no usable
profiles. The ORB: :string to doject () method will
throw this exception if the stringified object reference
does not begin with the characters "IcRr:".

This exception can be thrown from any invocation. It
can be raised when an invocation cannot be made
due to an incompatibility between policy overrides
that apply to the particular invocation.

This exception could be raised if an error occurred
while trying to register a Resource.

A request or reply from the network is structurally
invalid. This error typically indicates a bug in either
the client-side or server-side run time. For example,
if a reply from the server indicates that the message
contains 1000 bytes, but the actual message is
shorter or longer than 1000 bytes, the VisiBroker
ORB raises this exception. A MBRSHAL exception can
also be caused by using the DIl or DSI incorrectly.
For example, if the type of the actual parameters
sent does not agree with IDL signature of an
operation.

Indicates that even though the operation that was
invoked exists (it has an IDL definition), no
implementation for that operation exists. For
example, a NO_IMPLEMENTATION is raised when
a server doesn't exist or is not running when a client
initiates a bind.

The Object::get_implementation() and
BOA::dispose() methods throw this exception if they
are called on the client side. It is only valid to call
these methods within the server that activated the
object implementation.

An object other than the transaction originator has
attempted Current::commit() or Current::rollback().

If a new thread cannot be created, this exception will
be thrown. A server will throw this exception when a
remote client attempts to establish a connection if
the server cannot create a socket—for example, if
the server runs out of file descriptors. The minor
code contains the system error number obtained
after the server's failed ::socket () or ::accept() call.
A client will similarly throw this exception if a
::oamect () call fails due to running out of file
descriptors.

Chapter 35: CORBA exceptions 435

CORBA exception descriptions

Exception
QORBA: :NO_RESECONSE

QORBA: :CBJ ADAPTER

CORBA: :CRJECT NOT EXTST

CQOREA: : PERSIST SICRE

COREA: :REBIND

CORBA:TIMEOUT

COREA: : TRANSACTTION REQUIRED

QORBA: : TRANSACTTION ROLLEDBACK

QORBA: : TRANSACTTION MCDE

Explanation

A client attempts to retrieve the
result of a deferred synchronous
call, but the response for the
request is not yet available.

An administrative mismatch has
occurred.

The requested object does not
exist.

A persistent storage failure has
occurred.

The client has received an IOR
which conflicts with QOS
policies.

The VisiBroker ORB timed out
an operation

The request has a null
transaction context, and an
active transaction is required.

The transaction associated with
a request has already been
rolled back, or marked for roll
back.

Raised by the VisiBroker ORB,
when it detects a mismatch
between the TransactionPolicyin
the IOR and the current
transaction mode.

436 VisiBroker for Java Developer’s Guide

(continued)

Possible causes

If BindOptions are used to set timeouts, this
exception is raised when send and receive calls do
not occur within the specified time.

A server has attempted to register itself with an
implementation repository under a name that is
already in use, or is unknown to the repository. The
POA has raised an 0BT 2DAPTER error due to problems
with the application's servant managers.

A server throws this exception if an attempt is made
to perform an operation on an implementation that
does not exist within that server. This will be seen by
the client when attempting to invoke operations on
deactivated implementations. For instance, if an
attempt to bind to an object fails, or an auto-rebind
fails, CRJECT NOT' EXTST will be raised

Attempts to establish a connection to a database
has failed, or the database is corrupt.

Thrown anytime the client gets an IOR which will
conflict with the QOS policies that have been set. If
the Rebind Policy has a value of

NO REBIND,NO CONNECT, Or VB NOTIFY REBIND and an
invocation on a bound object reference results in an
object forward or a location forward message.

When attempting to establish a connection or
waiting for a request/reply, if the operation does not
complete before the specified time, a TIMEOUT
exception is thrown. CORBA:TIMEOUT has the
following minor codes:

= 0x56420001: connection timed out (could not
connect within the connection timeout)

= 0x56420002: request timed out (could not send
the request within the timeout specified)

= 0x56420003: Reply timed out (the reply was not
received within the round trip timeout specified)

A method was invoked that must execute as part of
a transaction, but no transaction was active on the
client thread.

A requested operation could not be performed
because the transaction has already been marked
for rollback.

Exception

CQORBA: : TRANSACTTON UNAVATTABLE

CORBA: : TRANSTENT

CORBA: : UNKNOAN

Explanation

Raised by the VisiBroker ORB,
when it cannot process a
transaction service context

CORBA exception descriptions

(continued)

Possible causes

because its connection to the
Transaction Service has been

abnormally terminated.

An error has occurred, but the A communications failure may have occurred and
VisiBroker ORB believes it is the VisiBroker ORB is signalling that an attempt
possible to retry the operation. should be made to rebind to the server with which

communications have failed. This exception will not
occur if the Bindoptions are set to false with the
erdble rebind() method, or the RebindPolicy is
properly set.

The VisiBroker ORB could not The server throws something other than a correct
determine the thrown exception. exception, such as a Java runtime exception. There

is an IDL mismatch between the server and the
client, and the exception is not defined in the client
program. In DII, if the server throws an exception not
known to the client at the time of compilation and the
client did not specify an exception list for the

CORBA: :Request. Set the property viorcker.orb. warn=2
on the server to see which runtime exception caused
the problem.

System exception
BAD PRARM

BAD PARAM

BAD PARAM
BAD PRARIM

BAD PARAM

BAD PARAM
MARSHAL
NO_IMPLEMENT
NO_TMPLEMENT
BAD TNV ORDER

BAD TNV ORDER
BAD TNV ORDER

BAD TNV ORDER
CBJECT NOT EXIST

Minor code Explanation

N N S N R S

Failure to register, unregister, or lookup the value factory
RID already defined in the interface repository

Name already used in the context in the interface repository
Target is not a valid container

Name clash in inherited context

Incorrect type for abstract interface

Unable to locate value factory

Missing local value implementation

Incompatible value implementation version

Dependency exists in the interface repository preventing the
destruction of the object

Attempt to destroy indestructible objects in the interface
repository

Operation would deadlock
VisiBroker ORB has shut down

Attempt to pass a deactivated (unregistered) value as an
object reference

Chapter 35: CORBA exceptions 437

Heuristic OMG-specified exceptions

Heuristic OMG-specified exceptions

A heuristic decision is a unilateral decision made by a participant in a transaction to
commit or rollback updates without first obtaining the consensus outcome determined
by the VisiTransact Transaction Service. See the VisiTransact Guide for more
information about heuristics.

The following table lists heuristic exceptions as defined by the OMG CORBAservices
specification, and explains reasons why they might be thrown.

Table 35.1

Exception

QosTransactions: :
HeuristicComit

QosTransactions: :
HeuristidHazard

QosTransactions: :
HeuristicdMixed

QosTransactions: :
HeuristicRollback

Description

A heuristic decision was
made and all relevant
updates have been
committed by the Resource.

A Resource may or may not
have made a heuristic
decision, and does not know
if all relevant updates have
been made. For updates that
are known, all have been
committed or rolled back.
This exception takes priority
over HeuristidVixed

A heuristic decision was
made, and some relevant
updates have been
committed, and others have
been rolled back.

A heuristic decision was
made and all relevant
updates have been rolled
back by the Resource.

Heuristic exceptions defined by the OMG CORBAservices specification

Possible causes

The VisiTransact Transaction Service
invoked rollkback() on a Resource object
that already made a heuristic decision to
commit its work. The Resource raises the
HeuristicComit exception to indicate its
state to the VisiTransact Transaction
Service.

The VisiTransact Transaction Service
invokes camit () or rollback() on a
Resource object that may or may not have
made a heuristic decision.

The Resource raises this exception to
indicate to the VisiTransact Transaction
Service that its own state is not entirely
known. The VisiTransact Transaction
Service returns this exception to the
application if it does not know if all
Resources have made updates.

The VisiTransact Transaction Service
invokes camit () or rollback() on a
Resource object that has made a heuristic
decision, but not made all the relevant
updates.

The Resource raises this exception to
indicate to the VisiTransact Transaction
Service that its state is not entirely
consistent. The VisiTransact Transaction
Service returns this exception to the
application if it receives mixed responses
from Resources.

The VisiTransact Transaction Service
invokes camit () on a Resource object that
has made a heuristic decision to rollback
its work. The Resource raises the
HeuristicRollback exception to indicate its
state to the VisiTransact Transaction
Service.

438 VisiBroker for Java Developer’s Guide

Other OMG-specified exceptions

Other OMG-specified exceptions

The following table lists other exceptions as defined by the OMG CORBAservices
specification, and explains reasons why the VisiTransact Transaction Service might
throw them. For more information see Chapter 3, “Overview of transaction

processing.”.

Table 35.2

Exception

CosTransactions: : Tnactive

CosTransactions: : TivalidControl

QosTransactions: :
:NdTransaction

CosTransactions:

CosTransactions: :NotSubtransaction

CosTransactians: :
Subtransactionslnavailable

CosTransactians: :
Synchranizatianhavailable

Description

The transaction has
already been prepared
or terminated.

An invalid Control has
been passed.

A Resource has not
been prepared.

No transaction is
associated with the
client thread.

The current transaction

is not a subtransaction.

The client thread
already has an
associated transaction.
The VisiTransact
Transaction Service
does not support
nested transactions.

The Coordinator does
not support
Synchronization
objects.

Chapter 35: CORBA exceptions

Other exceptions defined by the OMG CORBAservices specification

Possible causes

This exception could be raised if
register synchronization() is
invoked after the transaction has
already been prepared.

This exception is raised when
resure () is invoked and the
parameter is not a null object
reference, and is also not valid
in the current execution
environment.

An invocation of

replay completion() Of comit ()
on a Resource that has not yet
prepared will result in this
exception.

The comit (), rollback(), or
rollback anly() methods may
raise this exception if there is no
transaction associated with the
client thread at invocation.

This exception is not raised by
VisiTransact Transaction
Manager since nested
transactions are not supported.
The NoTransaction exception is
raised instead.

A subsequent begin() invocation
was performed after a
transaction was already begun.
If your transactional object
needs to operate within a
transaction, it must first check to
see if a transaction has already
begun before invoking begin().

The create subtransaction()
method was invoked, but
VisiTransact Transaction
Manager does not support
subtransactions.

This exception is not raised by
VisiTransact Transaction
Manager since Synchronization
objects are supported.

439

Other OMG-specified exceptions

Table 35.2 Other exceptions defined by the OMG CORBAservices specification (continued)

Exception

CosTransactians: :Unavailable

QORRA: :WrangTransaction

Description

The requested object
cannot be provided.

Raised by the ORB
when returning the
response to a deferred
synchronous request.
This exception can
only be raised if the
request is implicitly
associated with the
current transaction at
the time the request
was issued.

Possible causes

The Control object cannot
provide the Terminator or
Coordinator objects when
Control : :get _terminator() or
Control : :get coordinator () are
invoked.

The VisiTransact Transaction
Service restricts the availability
of the PropagationCntext, and
will not return it upon an
invocation of

Coordinator: :get txoontext ().

The get respanse() and

et next respanse () methods
may raise this exception if the
transaction associated with the
request is not the same as the
transaction associated with the
invoking thread.

440 VisiBroker for Java Developer’s Guide

Web Services Overview

A Web Service is an application component that you can describe, publish, locate, and
invoke over a network using standardized XML messaging. Defined by new
technologies like SOAP, Web Services Description Language (WSDL), and Universal
Discovery, Description and Integration (UDDI), this is a new model for creating e-
business applications from reusable software modules that are accessed on the World
Wide Web and also providing a means for integration of older disparate applications.

Web Services Architecture

The standard Web Service architecture consists of the three roles that perform the web
services publish, find, and bind operations:

The Service Provider registers all available web services with the Service Broker

The Service Provider hosts the web service and makes it available to clients via the
Web. The Service Provider publishes the web service definition and binding
information to the Universal Description, Discovery, and Integration (UDDI) registry.
The Web Service Description Language (WSDL) documents contain the information
about the web service, including its incoming message and returning response
messages.

The Service Broker publishes the web services for the Service Requestor to access.
The information published describes the web service and its location. Apart from
publishing the web service, it also co-ordinates in hosting the web service.

The Service Broker manages the interaction between the Service Provider and
Service Requestor. The Service Broker makes available all service definitions and
binding information. Currently, SOAP (an XML-based, messaging and encoding
protocol format for exchange of information in a decentralized, distributed
environment) is the standard for communication between the Service Requestor
and Service Broker.

The Service Requestor interacts with the Service Broker to find the web services.
The Service Requestor can then bind or invoke the web services.

The Service Requestor is a client program that consumes the web service. The
Service Requestor finds web services by using UDDI or through other means, such
as email. It then binds or invokes the web service.

Chapter 36: Web Services Overview 441

VisiBroker Web Services Architecture

Standard Web Services Architecture

Publish '|I
(uD01, WSDL,) |

Find
(UDDI, WSDL)

VisiBroker Web Services Architecture

There are two aspects to the architecture:

= Exposing the CORBA interface for Service Requestors to make invocations using
WSDL.

= Providing a runtime environment for enabling CORBA objects to be accessible for
the Service Requestors through SOAP/HTTP. This involves the infrastructure to
support Services Providers and a Service Broker.

The first aspect is achieved by using a Web Service development tool that converts an
IDL interface to a WSDL document using the standard as specified by OMG’s CORBA
to WSDL/SOAP Inter-working specification (Version 1.1). Service Requestors or Web
Services clients to make invocations can use the generated WSDL using SOAP over
HTTP/HTTPS as transport.

To provide a Web services runtime, VisiBroker uses Apache Axis technology to handle
the intricacies of a Services Broker. Using a proprietary type-specific bridge (generated
by the tool), deployed stateless CORBA objects can be made accessible. The type-
specific bridge instances act as the Service Providers bringing forward the functionality
of the CORBA object back end to the Service Requestors.

442 VisiBroker for Java Developer’s Guide

VisiBroker Web Services Architecture

Web Services Artifacts

The figure below explains the Web Services development tool provided with VisiBroker
that generates the WSDL document and the Bridge code from an IDL file. The WSDL

document is useful for the Services Requesters and along with the service description;
it also provides the SOAP binding information, which allows any SOAP compliant client
to make invocation.

The generated bridge artifact is actually a language/type-specific service provider
component that gets deployed in the Service Broker (Axis runtime) and an instance of
this is responsible for adapting the incoming SOAP message from the Service
Requester to a bound CORBA object.

JAVA
BRIDGE

WISIBROEEER

IDL2WS

Web Service Runtime

To explain the runtime behavior, the figure below shows a SOAP client making use of
the generated WSDL to make SOAP/HTTP or SOAP/HTTPS invocations on three
CORBA objects exposed as Web Services in VisiBroker for C++, Java and a pre 7.0
VisiBroker process.

VisiBroker for Java process comes with the infrastructure for HTTP/SOAP and HTTPS/
SOAP listeners, which are by default turned off. By setting the command line property
vbroker.ws.enable=true, HTTP/SOAP runtime infrastructure can be started. With web
services enabled, HTTPS/SOAP infrastructure in VisiBroker for Java can be activated
using the property vbroker.security.disable=false. Once the infrastructure is started, the
Service providers (bridge) for the CORBA objects can be deployed using Axis’s WSDD
mechanism. Using few VisiBroker proprietary CORBA object binding related WSDD
elements, the deployed bridge instances can be bound to CORBA objects and any
SOAP invocations on the bridge is adapted to an in-process CORBA invocation. The
bridge in reality is a morph of the Axis’s server side generated code, with each web
service implementation skeleton mapped to a method on a type specific CORBA object
stub. Because the bridge is generated directly from IDL, all the type-safety and fidelity
of IDL types is inherently built in. Also, because the bridge is loaded in the same
process as the CORBA objects, all invocation on the CORBA object from the bridge is
optimized because of VisiBroker’s “inprocess” bidder.

Chapter 36: Web Services Overview 443

VisiBroker Web Services Architecture

In the figure the cloud “Ax” depicts the Axis + HTTP listener component loaded into the
VisiBroker process. “Ob” cloud depicts a CORBA object inside the ORB. The
association between the “Ax” and “Ob” cloud as shown by the two small circles
between them indicates the deployment of a bridge on the Axis runtime exposing the
CORBA object to Service Requesters. Existing CORBA clients can continue making
GIOP over IIOP invocations through the GIOP/IIOP listener as usual without

any impact.

GIOPIIOP VisiBroker for C-++ Process

VisiBroker for Java Process

Pre T VisiBroker Process
1 Toweat/Aoasi VBBrndge

1 SOAP over HTTPS is only supported for VisiBroker for Java

To support exposing CORBA objects in Pre 7.0 VisiBroker deployments, the bridge can
be deployed on an Axis instance running externally to the VisiBroker process. The only
difference in this case is that that SOAP to GIOP adaptation will be remote and hence
will be over the wire. In the above figure, this is shown by deploying the bridge on Axis
for Java embedded in Apache Tomcat. The cloud “Ob” indicates the CORBA object
instance running on a remote Pre 7 VisiBroker Process and the request from the bridge
comes in through the GIOP/IIOP end point.

444 VisiBroker for Java Developer’s Guide

VisiBroker Web Services Architecture

The figure below explains the components inside a VisiBroker process. The “Axis
runtime” cloud contains the Axis runtime, the HTTP listener along with the SOAP
request dispatcher. A CORBA object inside the process is exposed as a Web Service
by deploying its Service provider or the bridge as a Web Service using the Axis WSDD
mechanism. When a SOAP client makes an invocation on the Web Service, the HTTP
listener picks up the SOAP request and the request is passed to the dispatcher. The
dispatcher invokes on the Axis runtime passing in the SOAP request. The Axis runtime
decodes the SOAP request and makes invocation on an instance of the deployed
Service provider (bridge). The bridge then makes use of the binding information
provided in the WSDD to bind to the actual CORBA object and make the CORBA
invocation.

WSDD endry

Leavic e none="Bak A coomt" provida="CPP.EPC"s
“pwranster name= "clasH ane " wabae=""Atvbak s0"/=
“paraneter narme= “sllovred Methods ® vahne="open balune e =
Cparaneter naznes "obje bl ane " wabsew Bard Ac cont
“paranster name="lo ¢ e Using " vadue="os agant "=
SpararneteT R tne=] o4 Hithe vahsa=fet poa f=

< jeemrice>

CORBA Object

VisiBroker Process

GIOF/TIOP

In the above context, the Service Broker includes only a SOAP node on a HTTP
transport. Other services needed for a Web Services deployment such as a UDDI
service etc are not provided. Various implementations of these are available and can
easily be used.

Chapter 36: Web Services Overview 445

Exposing a CORBA object as Web Service

Exposing a CORBA object as Web Service

To expose a CORBA object as a Web Service in VisiBroker for Java, the following
steps need to be performed:

1 Development
a Generate the server-side servant skeletons
b Generate the interface type-specific Java bridge from the IDL file
¢ Generate WSDL document for the IDL interface from the IDL file
2 Deployment
a Enable/Configure Web Service Runtime

b Deploy the bridge classes in the VisiBroker process using Axis WSDD
mechanism.

This section illustrates an example provided in the “vbe/ws/bank” sub directory of
examples directory (SOAP over HTTPS example for VisiBroker for Java server
processes can be found under the directory “security/ws/animal”). This example is an
adaptation of the “vbe/basic/bank_agent” example and consists of two interfaces
Account and AccountManager. The AccountManager allows for creation of new named
accounts. If an account for a particular name already exists, the account is retrieved
without creating a new account. Account interface allows for querying of balance in the
account. The Server sets up a POA under the root POA and activates an object
implementing the AccountManager interface. On making the open operation on this
object, separate objects implementing Account interface are created, stored and
returned. The code sample shown below illustrates the two interfaces.

// Bark.idl
module Bark {
interface Accomnt {
float kalance() ;
b

interface AccontManager {

Account open (in string nane) ;
}i

}i

In this example, it will be shown how this stateful application can be enhanced to
support SOA using Web Services. As a first step in the development, the stateful
operations need to be converted to a coarser grained abstraction suitable for SOA. The
interface shown below is one such example. This interface as shown, supports a single
operation that opens a named account if the account does not already exist and returns
the balance in the account.

// BarkieService.idl
module BankieoService {
interface AccontManageriWebService {
// opens accomnt if not already cpened, ard returns balance
float gpenBndQueryBalance (in string name) ;
}i
}i
A CORBA object is then implemented which implements this interface, which internally

uses the Account and AccountManager interfaces and activated on a known POA with
a well known object ID.

Once the server has been enhanced to for stateless operations, web service support
can be implemented as illustrated in the following sections.

446 VisiBroker for Java Developer’s Guide

Exposing a CORBA object as Web Service

Development

1

Generating the server POA servant code

Using the idl2java compiler, generate the server side skeleton classes for the
CORBA interfaces Account and AccountManager in Bank.idl, and
AccountManagerWebService in BankWebService.idl.

pronpt> idl2java Bank.idl

pravpt> idl2java BankilebService.idl
Generating the Java interface type specific bridge
Using the idl2wsj compiler with —gen_java_bridge option, the Java bridge for all
interfaces can be generated. The following command will generate bridge code for
BankWebService.idl in a file named AccountManagerWebService.java. This code is
opaque to the applications and should not be changed.

prompt> idl2ws] -gen java bridge BankiWebService.idl
Generating WSDL from IDL
In addition to bridge code, idl2wsj in step 2 will also generate a WSDL document for
the IDL file according to OMG’s CORBA to WSDL/SOAP Inter-working specification
(version 1.1). This WSDL document can then be published through external means

to potential Web Service clients or Client development teams. idl2wsj can also be
used to generate only WSDL document as follows:

pronpt> idl2ws] BankiWebService.idl

The generated bridge code is then deployed as a Web Service.

For a complete list of the options available, refer the idl2wsj section of “Programmer
tools for Java” chapter.

Deployment

1

The first step is to deploy WSDD document in AXIS run-time. WSDD or Web
Service Deployment Descriptor is a standard Axis means to instruct on deployment
related information. A WSDD (deploy.wsdd) for the bridge is created during the
bridge creation. A sample WSDD is shown below which aims to deploy a Web
Service hosted in a CORBA object with object id “BankManagerWebService”.

<?xml versian="1.0" encoding="UIF-8"?>
<deployment xmlns="http://xml .apache.org/axis/wsdd/"
xmlns: java="http: //xml .apache . org/axis/wedd/providers/java">
<service
name="BankilebService . AccontManageriWebServicePort"
provider="java: VISIEROKERPROVIDER" >
<nanespace>
http: //BankiebService . AccontMenagerWeoService
</ramespace>
<paraneter
name="className"
value=" [package] .BarkiebService AccountManagerWeloService "/>

<operation name="cpenPndQueryBalance">
<parameter gname="name" type="tns:string"
xrilns : tns="http: //www.w3 .org/2001/XM Schera/" />
</operatian>
</services>
</deployment>

Chapter 36: Web Services Overview 447

SOAP/WSDL compatibility

2 Create a property file server.prop to set up the Web Service runtime. Following is a
sample property file. The following properties configure the Service Broker to start
up a HTTP server on host 143.186.141.54 at port 19000. The connection manager
is set up to allow maximum of 30 concurrent connections with 300 seconds to mark
the connection idle time. The thread pool to service the incoming SOAP request is
setup to have maximum of 300 threads with thread idle time set to 300 seconds. For
a complete list of configurable properties, refer the “Web Service Runtime
Properties” section of “VisiBroker properties” chapter.

vbroker . ws.enable=true
vorcker.se.ws.host=143.186.141.54
vbroker.se.ws.sam.ws_ts.listener.port=19000
vbrcker.se.ws.san.ws_ts.menager. camectiaiMex=30
voroker.se.ws.san.ws_ts.menager. camectiaiMaxIdle=300
voroker.se.ws.san.ws_ts.dispatcher. threadVin=0
voroker.se.ws.san.ws_ts.dispatcher. threadvbex=300
vbroker.se.ws.san.ws_ts.dispatcher. threadVexTdle=300

3 Run the Server as follows:
prompt> vioj -DORBoropStorage=server . prop Server
4 The generated bridge code can be deployed with deploy.wsdd (generated with
bridge) in AXIS runtime using AXIS utility AdminClient as follows:

prarpt> java org.apache.axds.client . AdminClient
—lhttp:// 143.186.141.54:19000/axis/ deploy.wsdd

SOAP/WSDL compatibility

SOAP version 1.1 and WSDL version 1.1 is supported.

448 VisiBroker for Java Developer’s Guide

Symbols

[] brackets 4
| vertical bar 4
... ellipsis 4

A

abstract interfaces 55, 412
abstract valuetypes 408
account.idl
files produced from account_c.cc 17
files produced from account_c.hh 17
files produced from account_s.cc 17
files produced from account_s.hh 17
AccountManager interface, DSI 326
activate() method 427
activating objects 293
arguments passed by OAD 294
deferring 427
deferring with service activators 429
activation 9
service activation 428
Activator class
deactivating an ORB object 427
deferring object activation 427, 429
ActiveObjectLifeCyclelnterceptor 355
class 354
adapter
Naming Service 208
VisiNaming Service 208
adapters, DIl 308
adding fields to user exceptions 94
administration commands
oadutil list 288
oadutil unreg 295
osfind 181
Agent interface 185
agent, reporting 181
agentaddr file, specifying IP addresses 178
Any
Any type DSI 326
Any type mapping 60
class 315
object 308
applets properties 87
application development costs, reducing 7
applications
defining object interfaces 16
deploying 22
enabling bidirectional IOP 421
locating osagent via vbj command 34
running 21
starting client program 22
starting server object 21
starting Smart Agent 21
thread pool 130
thread-per-session 133
arguments, -ORBshmsize 34
arrays, mapping 48
asynchronous communication 419

Index

authentication
bidirectional IIOP 423
Naming Service client 222
VisiNaming client 222

authorization
method level for the Naming Service 223
method level for VisiNaming 223
Naming Service method level 222
VisiNaming method level 222

B

backing store 206

improving performance 211
backward compatibility, Event Service 233
BAD_CONTEXT exception 433
BAD_INV_ORDER exception 433
BAD_OPERATION exception 433
BAD_PARAM exception 433
BAD_TYPECODE exception 433
basic types, IDL types 41
bidirectional communication 68
bidirectional IOP 419

enabling for existing applications 421

examples 421, 422

InvalidPolicy exception 423

POAs 423

security 423

unidirectional connections 422
BiDirectional policy 423
bidirectional properties 420
bidirectional SCM 419, 423
bind

generic object references 311

nsutil 198

process 148
bind process

actions performed by _bind() 148

binding to objects 148

connection to objects established 148

proxy object created 148
bind(), osagent 173
bind_context, nsutil 198
binding, ORB’s tasks 181
BindInterceptor, class 354
bind_new_context, nsutil 198
BOA

backward support 427

binding 181

class moved 425

compiling code 425

limitations in using 425

naming objects 426

object activators 426, 427

options 425

supported options 425

using with VisiBroker 425
BOA _init, change to package 425
boolean type,mapping 45
Borland Developer Support, contacting 4
Borland Technical Support, contacting 4

Index

449

Borland Web site 4,5 referencing a Server Manager 248

bound objects, determining location and state 150 runtime 159
boxed valuetypes 411 unidirectional connection to server 422
bridges, DIl 308 using the DIl 310
broadcast address 177 using thread pool 130
broadcast messages 171 using thread-per-session 133
client and server, running 21, 23
C client request interceptors, examples 343
_ - client stubs, generating 17
caching facility 211 o ClientRequestinterceptor 354
Caffeine compiler, description 32 class 331, 354
callbacks and bidirectional communication 68 implementing 342
catching exceptions clients, building with Dynamic Invocation Interface 308
modifying object to 94 Cluster Manager interface 215
system exceptions 92 cluster, creating in a Naming Server 215
user exceptions 94 ClusterManager 213
ChainUntypedObjectWrapper 373 clusters 213
char type, mapping 45 code
class _ _ _ building 21
ActiveObjectLifeCyclelnterceptor 354 building with nmake 21
Any 315 building with vbmake 21
BindInterceptor 354 compiling BOA 425
ClientRequestinterceptor 331, 354 generation 17
Codec 335 code set support 158
CodecFactory 335 classification 158
CreationimplDef 292 conversion code set 158
DefaultBindInterceptor 357 native code set 158
DefaultClientinterceptor 357 negotiation 158
DefaultServerinterceptor 357 transmission code set 158
Dynamiclmplementation 322 types 158
Interceptor 330 Codec 335
IORCreationinterceptor 354 class 335
IORInterceptor 334 interface 335
NamedValue 314 CodecFactory 335
Naming Context 201 class 335
NVList 326 interface 335
NVList ARG_IN parameter 326 commands
NVList ARG_INOUT parameter 326 idI2ir 28, 29
NVList ARG_OUT parameter 326 idl2java 29
ORBInitializer 336 javazidl 31
ORBInitinfo 336 javaziiop 32
ORInfoExt 338 vbj 34
POALifeCyclelnterceptor 354 commands, conventions 4
PullConsume 241 COMM_FAILURE exception 433
PullConsumerPOA 241 Common Object Request Broker. See CORBA
PuIISupleerPOA 239 compilers
Repository 305 IDL, feature summary 10
Request 311 javazidl 391
ServerRequest 325 java2iiop 391
ServerRequestinterceptor 354 nmake 21
TypeCode 315 vbmake 21
classes compiling BOA code 425
default Interceptor 357 completion status 91
PICurrent 334 obtaining for system exceptions 91
_tie 143 complex name 196
CLASSPATH 34 connecting
classpath 36 client applications with objects 7
client o .) point-to-point communications 178
authentication Naming Service 222 Smart Agents on different local networks 175
bidirectional connection to server 422 connection management 9, 134
bidirectional 11OP 419 properties 137
implementing 18 connections
initializing the ORB 147 garbage collection 140
Intergeptors 353 .) managing, feature summary 9
locating osagent via vbj command 34 ConnEventListener interface 388
receiving asynchronous information 419 connlD 388

450 VisiBroker for Java Developer’s Guide

Conninfo 388
conniD 388
ipaddress 388
port 388
constants, mapping 47
constructed types mapping 48
Container class 249
container, Server Manager 248
conversion code set 158
CORBA
Common Object Request Broker Architecture 7
defined 7
definition 143
description of 7
exceptions 433
VisiBroker compliance 11
corbaloc URL 200
corbaname URL 200
CosNaming operations, supported by VisiNaming 198
CosNaming, calling from the command line 198
creating software components 7
CreationlmplDef class 292
activation_policy property 292
args property 292
env property 292
path_name property 292
CreationlmplDef struct, activating an object 293
Current interface 334
custom valuetypes 413

D

DATA_CONVERSION exception 433
DataExpress adapter 206
deactivate() method 427
debug logging properties 85
default factories 411
DefaultBindInterceptor class 357
DefaultClientInterceptor class 357
DefaultServerinterceptor class 357
deferring object activation 429
service activation 429
delegation, with server implementations 57
deployment, description 22
destroy, nsutil 198
Developer Support, contacting 4
development, defining object interfaces 16
DIl 10
Any objects 308
asynchronous requests 318
building clients 308
client 310
concepts 308
creating a DIl request 312
creating a request 311
disadvantages 307
examples 310
feature summary 10
generating portable stubs 32
generic object reference 311
initializing a request 311
Interface Repository 299, 319
NamedValue class 314
NamedValue interface 314
NVList objects 309
overview 307

receiving multiple requests 318
receiving replies 310
receiving results 317
Reply recieving options 308
Request interface 311
Request objects 308
Request sending options 308
send_deferred method 317
sending a request 317
sending multiple requests 318
sending requests 309
send_oneway method 318
setting request arguments 314
Typecode objects 308
using idl2java compiler 310
using request objects 308
using the create_request method 312
using the _request method 313
disabling Smart Agent 172
dispatch policies and properties 135
dispatch policy
thread pool 135
thread-per-session 137
Dispatcher properties 123
distributed applications, development process for 15
documentation 2
accessing Help Topics 3
Borland Security Guide 2
on the web 5
.pdf format 3
platform conventions used in 4
type conventions used in 4
updates on the web 3
VisiBroker for C++ API Reference 2
VisiBroker for C++ Developer's Guide 2
VisiBroker for Java Developer's Guide 2
VisiBroker for .NET Developer's Guide 2
VisiBroker GateKeeper Guide 3
VisiBroker Installation Guide 2
VisiBroker VisiNotify Guide 2
VisiBroker VisiTelcoLog Guide 2
VisiBroker VisiTime Guide 2
VisiBroker VisiTransact Guide 2
domains, running multiple 174
DSI
AccountManager interface 326
activating objects 327
Any type 326
BAD_OPERATION exception 326
compiling object servers 322
creating object implementations dynamically 322
deriving classes 322
deriving from Dynamiclmplementation class 322
examples 322
feature summary 10
implementing server object 325
input parameters 326
inter-protocol bridging 321
object dynamic creation 322
overview 321
processing input in DSI 326
protocol bridging 321
return values 326
scope resolution operator 324
ServerRequest class 325
using idl2java compiler 321

Index 451

-D_VIS_INCLUDE_IR flag 305
Dynamic Invocation Interface. See DIl
Dynamic Skeleton Interface. See DSI
Dynamiclmplementation class 322
example of deriving from 322
DynAny
access and initializing 399
creating 398
initializing and accessing the value 399
overview 397
types 398
DynAny interface 397
constructed data types 399
current_component method 399
DynAnyFactory object 398
DynArray data type 400
DynEnum interface 399
DynSequrence data type 400
DynStruct interface 400, 401
DynUnion interface 400
example application 400
example client application 401
example IDL 400
example server application 402
examples 397
NameValuePair 401
next method 399
restrictions 398
rewind method 399
seek method 399
to_any method 401
DynArray data type 400
DynEnum interface 399
DynSequence data type 400
DynStruct interface 400
DynUnion interface 400

E

effective policies 151
enableBiDir property 420
enums mapping 48
environment variables
for OAD 286
OSAGENT_ADDR 178
OSAGENT_LOCAL FILE 177
event channel 237
in-process implementation 245
event listeners 388
Conninfo 388
Event queue 387
code samples 389
connection EventListener 389
connection events 387
ConnEventListener interface 388
event listeners 388
event types 387
EventListener interface 388
EventQueueManager interface 388
overview 387
registering EventListeners 389
Event Service
communication models 235
examples 238
in-process event channel 246
overview 233

452 VisiBroker for Java Developer’s Guide

pull model 236

push model 236

setting queue length 244

starting 244
event types 387

connection types 387
EventChannel 236
EventLibrary 245, 246
EventListener 388

implementing a connection 389

registering 389
EventQueueManager interface 388
example

DynAny IDL 400

oadutil unreg utility 296
example application

building the example 21

compiling 21

defining object interfaces 16

deploying the application 22

development process 15

generating client stubs 17

implementing the client 18

implementing the server 20

running the example 21

server servants 17

starting the server 21

with VisiBroker 15

writing account interface in IDL 17
examples

activating objects 427, 430

activation 429

bidirectional IOP 421

deferred method in object activation 429

DSI 322

Interceptors 358

Interface Repository 305

IR 305

Naming Service 225

object wrappers 370

odb 429

Portable Interceptors 339

push consumer 238

push supplier 238

request interceptors 343

RMI-IIOP 392, 394

Server Manager 255

Smart Agent localaddr file 177

_tie class 144

URL Naming Service 415

using the DIl 310

VisiBroker Interceptors 358

VisiNaming Service 225
exceptions

adding fields to user exceptions 94

catching user exceptions 94

completion status for exceptions 91

CORBA 433

CORBA overview 89

CORBA-defined system exceptions 89

handling 91

heuristic 438

InvalidPolicy 423

Java IDL system 59

mapping 58

narrowing to system exceptions 92
system 59
SystemException class 89
throwing 93
user-defined 59
exportBiDir property 420

F

Factories 408
default 411
implementing 410
valuetypes 410
Factory class 410
factory_name 198
failover
Naming Service 218
VisiNaming Service 218
fault tolerance 9
Naming Service 219
replicating objects registered with OAD 179
VisiNaming Service 219
features of VisiBroker 9
activating objects and implementations 9
compilers, IDL 10
connection management 9
dynamic invocation 10
IDL compilers 10
IDL interface to Smart Agent 9
implementation activation 9
implementation repository 10
interface repository 10
Location Service 9
multithreading 9
object activation 9
object database integration 11
Smart Agent architecture 9
thread management 9
file extensions 17
files
impl_rep 285
localaddr 177
produced by compiling 17
produced by idl compiler 17
floating point, mapping 45
FREE_MEM exception 433

G

garbage collection 140
GateKeeper
bidirectional callbacks 68
bidirectional communication 68
Generic object testers, DIl 308
get_listeners 388
_get_policy 152

globally scoped objects, Smart Agent registration 169

F{

handling system exceptions 91
Help Topics, accessing 3
Helper classes, mapping 46
heuristic exceptions 438
Holder classes, mapping 42

id field, NameComponent 195
IDL
compilers 17

constructs represented in Interface Repository 300

creating from Java 31
defining one-way methods 166
DynAny example 400
example specification 162
generating Java code 29
information contained in IR 299
interface inheritance 166
mapping constants 47
mapping constructed types 48
mapping interfaces 53, 57
mapping modules 40
mapping names to Java 39
mapping nested types 60
mapping parameters 56
mapping to Java 16, 39
mapping typedefs 60
mapping types 41
OAD interface 297
reserved names 40
reserved words 40
Server Manager 249
specifying objects 17
type extensions 41
using Java to define IDL 32
IDL file, #pragma mechanisms 287
IDL type
basic types 41
boolean 45
char 45
complex 60
floating point type 45
Holder classes 42
integer type 45
octet 45
simple 60
string 45
wstring 45
idl2cpp compiler 17
attribute methods 166
defining one-way methods 166
generating code 162
interface inheritance 166
idi2ir 28
command info 28, 29
description 28, 29
options 28
idl2ir compiler 302
command info 12
description 12
idl2java
command info 29
generating portable stubs for DIl 29
options 29
idl2java compiler
generating stub code using DIl 310
generating stub code using DSI 321
-portable flag 310, 321

Index

453

IIOP
bidirectional examples 421, 422
enabling bidirectional 421
using bidirectional 419
implementation
activation 9
connections with Smart Agents 169
fault tolerance 179
stateless, invoking methods on 179
support 9
unregistering with the OAD 295
Implementation Repository 10
feature summary 10
for OAD 288
impl_rep file 285
listing contents 296
removed when unregistered with the OAD 295
specifying directory with OAD 286
stored registration information 285
unregistering objects 295
using OAD 286
implementations
binding 181
reporting 181
unregistering with OAD 295, 296
using delegation 57
using thread-per-session 133
implementing
the server 20
valuetypes 409
IMP_LIMIT exception 433
impl_rep file 285
import statements
Naming service 224
VisiNaming Service 224
importBiDir 423
importBiDir property 420
inheritance
allowing from implementations 143
implementing servers 57
interface 166
inheritance of interfaces, specifying 166
INITIALIZE exception 433
In-memory adapter 206
in-process event channel 245, 246
input parameters, processing in DSI 326
input/output arguments for method invocation
requests 314
instances
determining for object reference 150
finding with Location Service 183
integer mapping 45
interception points
order of invocation 367
request interception points 331, 332
ServerRequestinterceptor 332
Interceptor
class 330
default Interceptor classes 357
interface 330
Interceptor interface
example 358
registering with the ORB 357
Interceptor objects, creating 358

454 VisiBroker for Java Developer’s Guide

Interceptors
ActiveObjectLifeCyclelnterceptor 355
and client side Portable Interceptors 367
and server side Portable Interceptors 368
API classes 354
BindInterceptor 354
client 354
client Interceptors 353
ClientRequestinterceptor 354
creating Interceptor objects 358
example program 358
interfaces 354
IORCreationinterceptor 356
loading 358
managers 354
overview 353
passing data between 367
POALifeCyclelnterceptor 355
registering Interceptors with the ORB 357
server 355
server Interceptors 353
ServerRequestinterceptor 356
ServiceResolverinterceptor 357
using 353
using with Porable Interceptors 367

interceptors
customizing the ORB 11
IOR 329

interface
attributes 166
Codec 335
CodecFactory 335
Current 334
defining in IDL 17
inheritance 166
Interceptor 330
IORInterceptor 334
looking up 305
ORBlnitializer 336
ORBInitinfo 336
ORInfoExt 338

Interface Definition Language. See IDL

interface name
converting to repository ID 287
defining 162
obtaining 149
unregistering objects with OAD 295

Interface Repository 10
accessing object information 305
contents 303
contents of 300
creating 301
description 299
examples 305
feature summary 10
_get_interface() method 300
identifying objects within 303
inherited interfaces 304
populating with idl2ir 12, 28, 29
properties 79
structure 302
types of objects stored in 303
updating contents with idl2ir 302
viewing contents of 301

interface scope mapping 58
InterfaceDef object, in Interface Repository 300
*_interface_name() method 149
interfaces

ConnEventListeners 388

descriptions of in Interface Repository 299

EventListener 388

EventQueueManager 388

mapping 53, 57

NamingContextExt 202

Quality of Service 152

reporting 181

specifying inheritance 166

using java2iiop 396
INTERNAL exception 433
interoperability 14

ORB interoperability 14

with other ORB products 14

with VisiBroker for C++ 14

with VisiBroker for Java 14
INTF_REPOS exception 433
InvalidPolicy exception 423
INVALID_TRANSACTION exception 433
InvalidURL exception 417
INV_FLAG exception 433
INV_INDENT exception 433
INV_OBJREF exception 433
invocation feature summary 10
invoke() method 321, 322

example of implementing 322
IOR interceptors 329
IORCreationinterceptor 356

class 354
IORInfoExt class 338
IORInterceptor

class 334

interface 334
IP subnet mask

broadcast messages specifying scope of 175

localaddr file 177
ipaddress 388
IR

accessing object information 305

contents 303

description 299

examples 305

identifying objects within 303

inherited interfaces 304

structure 302

types of objects stored in 303

See also Interface Repository
ir2idl 29

options 29
ir2idl utility, viewing contents of IR 301
irep tool

creating an Interface Repository 301

creating Interface Repository 300

viewing Interface Repository 301
_is_a() method 150
_is_bound() method 150
_is_local() method 150
_is_remote() method 150

J

Java
creating an IDL file from Java 31
defining IDL interfaces 32
generating code from IDL file 29
Java Development Kit (JDK) 13
mapping from IDL 39
null 44
ORB version 88
RMI over IIOP properties 63
runtime environment 13
starting the interpreter via vbj 34
Java applets, setting up with RMI-IIOP 391
java2idl 391
command info 31
description 31
options 31
javaziiop 391
command info 32
generating portable stubs for DIl 32
mapping complex data types 396
mapping primitive types 395
options 32
JDBC adapter 206
JVM 37

K

kind field, NameComponent 195

L

list, nsutil 198
Listener properties 122
listener threads 128
load balancing
migrating objects between hosts 180
Naming Service 216
using Location Service 184
VisiNaming Service 216
Local interfaces 55
localaddr file, specifying interface usage 177
Location Service 183
Agent interface 185
components of agent 185
enhanced object discovery 9
feature summary 9
properties 73
trigger 187
triggers 185
location service, Smart Agent 171
location, determining for an object reference 150
logging properties, debug 85

Index

455

M

makefile sample for Solaris 21
mapping 46

abstract interfaces 55

Any type 60

arrays 48

boolean type 45

char type 45

constants 47

constructed types 48

enums 48

exceptions 58

floating point 45

Holder classes 42

IDL names 39

IDL type 41

integer 45

interface scope 58

interfaces 53

local interfaces 55

modules 40

nested types 60

octet 45

passing parameters 56

reserved names 40

reserved words 40

sequences 48

string 45

structs 48

typedefs 60

unions 48
MARSHAL exception 433
marshalling, using java2iiop 395
maxQueuelLength 244
messages

broadcast 171

broadcasting via vbj command 34
method 152

method level authorization, Naming Service 222

methods
activate() 427
boa.obj_is_ready() 322
deactivate() 427
defining one-way 166
example of implementing invoke() 322
_get_policy 152
*_interface_name() 149
invoke() 321, 322
_is_a() 150
_is_bound() 150
_is_local() 150
_is_remote() 150
*_object_name() 149
objects maintaining state 179
*object_to_string() 149
ORB_init(), ORBshmsize 34
*_repository_id() 149
_set_policy_override method 152
stateless objects, invoking on 179
string_to_object() 149

migrating
instantiated objects 180
objects 180
objects between hosts 180

456 VisiBroker for Java Developer’s Guide

objects registered with OAD 180

objects with state 180
modifying object to throwing exceptions 93
ModuleDef object in Interface Repository 300
modules, mapping 40
multihomed hosts 176

specifying interface usage 177
multithreading 127

feature summary 9

N

name
complex 196
defined 195
resolution 195, 196
simple 196
stringified 196
Name, binding names to objects 193
NameComponent
defined 195
id field 195
kind field 195
NamedValue
class 314
objects 314
pair 314
namespace 193
Naming Context class 201
naming contexts, default 202
Naming Service
adapters 208
bootstrapping 199, 223
caching facility 211
client authentication 222
clusters 213
configuring 197
configuring to use SSL 222
CosNaming operations supported 198
creating a cluster 215
default naming context 202
enabling security (C++) 222
enabling security (Java) 222
examples 225
failover 218
fault tolerance 219
import statements 224
initializing in Java 202
installing 197
load balancing 216
method level authorization 222, 223
OMG compliant features 224
pluggable backing store 206
properties 203
properties file 208
properties for SSL (C++) 222
properties for SSL (Java) 222
sample programs 225
security 222
shutting down 199
starting 197
URL 415
using SSL 222
VisiBroker ORB extensions 224
naming service properties 74

NamingContext

bootstrapping 195

factories 195
NamingContextExt 202
NamingContexts

defined 195

use by client applications 195

use by object implementations 195
narrowing exceptions to system exception 92
native code set 158
Native Messaging 259
nested types, mapping 60
network, reporting objects and services 181
new_context, nsutil 198
Newsgroups 5
nmake compiler 21
nmake, compiling with 21
NO_IMPLEMENT exception 433
NO_MEMORY exception 433
NO_PERMISSION exception 433
NO_RESOURCES exception 433
NO_RESPONSE exception 433
nsutil 198

bind 198

bind_context 198

bind_new_context 198

destroy 198

list 198

new_context 198

rebind 198

rebind_context 198

resolve 198

shutdown 198

unbind 198
null

Java 44

semantics 411

valuetypes 408
NVList class 326

ARG_IN parameter 326

ARG_INOUT parameter 326

ARG_OUT parameter 326

implementing a list of arguments 314
NVList object 309

0

OAD
and osagent 172
and Smart Agent 172
and the Smart Agent 286
arguments passed by 294
IDL interface to 297
Implementation Repository 285
impl_rep file 285
interface names 287
listing objects 288
migrating objects registered with 180
oadutil list 288
overview 286

programming interface 297
properties 79

registering objects 289, 293
registration information 285
replicating objects registered with 179
repository IDs 287

setting the activation policy 293
specifying time-out 286
starting 286

storing registration info 288
unregistering objects 295

OAD command, setting environment variables 286

oadj, reporting 181
oadutil
listing objects registered with OAD 288
unregistering implementations 295
oadutil list 288
oadutil tool
displaying contents of Implementation
Repository 296
registering object implementations 285
OBJ_ADAPTOR exception 433
object
accessing information from Interface
Repository 305
activating 429
changing characteristics dynamically 293
connecting to with OAD 172
connections with Smart Agents 169
dynamic creation with DSI 322
finding with Location Service 183
listing 288
multiple instances 292
registering 293
replicating 179
reporting objects on a network 181
setting the activation policy 293
specifying in IDL 17
state invoking methods on 179
stateless, invoking methods on 179
unregistering with the OAD 295
using CreationimplDef struct 293
object activation 9
defering 427
example of deferred method 429
service activation 428
support 9
Object Activation Daemon. See OAD
object activators 427

Object Database Activator, feature summary 11

object discovery, enhanced with the Location Service 9

object implementation
changing dynamically 293
fault tolerance 179
implementations that maintain state 179
Object Management Group 7
object migration 180
object names
obtaining 149
qualifying binding with 148

Index

457

object reference
checking equivalent implementations 150
converting to string 149
converting to super-type 151
converting type 150
determining instance of type 150
determining location 150
determining state 150
determining type 150
narrowing 150, 151
obtaining hash value 150
obtaining interface name 149
obtaining object name 149
obtaining repository id 149
operations on 149
sub-type 150
using the _is_a() method 150
widening 151
object references, persistent 426
object registration, changing 293
Object Request Broker. See ORB
object wrappers
adding factories 374
adding typed wrappers 379
co-located client and server 377
customizing the ORB 11
deriving a typed wrapper 378
description 369
example programs 370
idI2java requirement 370
implementing untyped 372
installing untyped 373
overview 369
post_method 371
pre_method 371
removing typed wrappers 381
removing untyped factories 375
running sample applications 384
typed 370, 376
typed order of invocation 377
un-typed 370
untyped 370
untyped factory 372
using both typed and untyped wrappers 381
using multiple typed 376
using untyped 372
OBJECT_NOT_EXIST exception 433
object-oriented approach, software component
creation 7
objects
associating a URL 415
binding 181
executable's path 293
locating using URL 415
registering 292
*object_to_string() method 149
ObjectWrapper 378
octet, mapping 45
OMG 7
Common Object Services specification 235
Event Service 233
Notification Service 233

458 VisiBroker for Java Developer’s Guide

OMG compliant features
Naming Service 224
VisiNaming Service 224
one-way methods, defining 166
online Help Topics, accessing 3
open() method 326
OpenLDAP 211
OperationDef object in Interface Repository 300
operator, scope resolution 324
ORB
binding to objects 148
client runtime 159
connection to objects during bind process 148
creating proxy 181
customizing with interceptors and object
wrappers 11
definition 181
domains 174
function of 7
getting the ORB 88
initializing 97, 147
interoperability 14
object implementations 288
properties 66
resolve_initial_references 200
ORBDefaultInitRef property 201
ORB_init() method, -ORBshmsize 34
ORBlnitializer
class 336
implementing 341
interface 336
registering 337
registration 341
ORBInitinfo
class 336
interface 336
ORBInitRef 198
ORBInitRef property 200
ORInfoExt interface 338
osagent
bind() 173
binding 181
checking client existing (heartbeat) 173
detecting other agents 175
disabling 172, 173
ensuring availability 173
locating objects 171
object name 426
reporting 181
Smart Agent 169
starting 172
starting Smart Agents with 21
verbose output 172
OSAgent (Smart Agent), VisiBroker architecture 9
osagent log file, options 173
OSAgent, locating via vbj command 34
OSAGENT_ADDR 34
OSAGENT_ADDR environment variable 178

OSAGENT_LOCAL_FILE environment variable 177

OSAGENT_PORT 34
osfind, command info 181
overrides policy 151
overview 1

VisiNaming Service 193

P

parameters, mapping 56
PDF documentation 3
persistent objects, ODA feature summary 11
PERSIST_STORE exception 433
PICurrent class 334
pluggable backing store
configuration 208
properties file 208
types 206
POA
activating 108
activating objects 109, 112
activating with default servant 110
Active Object Map 104
adapter activator 104
adapter activators 125
and Server Engine 120
BiDirectional policy 423
creating 98, 105, 107
deactivating objects 111
definition 103
dispatcher properties 123
dispatching properties 119
enabling bidirectional IOP 423
etherealize 104
incarnate 104
listener port property 123
listener properties 122
listening properties 119
managing POAs 117
ObjectID 104
POA manager 104, 117
policies 105
Policy 104
processing requests 125
properties 71
rootPOA 104, 108
servant 104
servant manager 104
servant managers 112
ServantLocators 115
Server Connection Managers 122
transient object 104
using servants 112
POALifeCyclelnterceptor 355
class 354
point-to-point communication 178
policies 151
effective 151
POA 105
policy overrides 151
port number, listener 123
portability, server-side 10
Portable Interceptors
creating 335
Current 334
examples 339
extensions 338
interception points 332
Interceptor 330
IOR Interceptor 334
IOR interceptors 329

limitations 339

overview 329

PICurrent 334

POA scoped server request 338
registering 336

request interception points 331
request interceptor 331
request interceptors 329
ServerRequestinterceptor 332
system exception 338

types 329

Portable Object Adapter. See POA
#pragma mechanisms 287
process, bind 148

programmer tools

idi2ir 28
ir2idl 29

properties

applets 87

debug logging 85

dispatcher 123

enableBiDir 420

Interface Repository 79

Java RMI over IIOP 63

listener 122

Location Service 73

Naming Service 203

naming service 74

OAD 79

ORB 66

ORBDefaultinitRef 201

ORBInitRef 200

POA 71

POA dispatching 119

POA listening 119

QoS 81

Server Manager 71

server-side server engine 81, 84

server-side thread Pool BOA_TP connection 84
server-side thread pool IIOP_TP connection 83
server-side thread session BOA_TS connection 82
server-side thread session IIOP_TS connection 82
setting connection management 137

Smart Agent 64

Smart Agent Communication 65

SVCnameroot 200

thread management 138

URL Naming 81

vbroker.naming.cache 211
vbroker.naming.enableSlave 219
vbroker.naming.propBindOn 216
vbroker.naming.serverAddresses 219
vbroker.naming.serverClusterName 219
vbroker.naming.serverNames 219
vbroker.naming.slaveMode 219
vbroker.orb.dynamicLibs 358
vbroker.orb.enableBiDir 420
vbroker.orb.enableServerManager 253
vbroker.serverManager.enableOperations 253
vbroker.serverManager.enableSetProperty 253
vbroker.serverManager.name 248

VisiBroker BiDirectional 420

VisiNaming Service 74, 203

properties file, VisiNaming Service 208

Index 459

proxy

consumer 234

supplier 234
proxy object, created during binding process 148
proxy objects, binding 181
ProxyPullConsumer 236
ProxyPullSupplier 236
ProxyPushConsumer 236
ProxyPushSupplier 236
pull

consumer 236

model 236

supplier 236
PullConsume 241
PullModel 239
PullSupplierPOA class 239
PullSupply 239, 241
push

consumer 236

model 236
push supplier 236

example 238

implementin 238
PushConsumer, example 238
PushModel 239

class 238
PushSupplier

implementing 238

interface 238

Q

Quality of Service (Qos) 151
interfaces 152
properties 81

queue length, setting 244

R

Requestinterceptor, implementing 342
REQUIRE_AND_TRUST 423
reserved keywords 40
reserved names, mapping 40
reserved words, mapping 40
resolve, nsutil 198
Resolver interface, associating a URL with an
object 416
RMI 391
RMI over IIOP 391
See also RMI-IIOP
RMI-IIOP 391
examples 392, 394
java applets 391
Java classes supported 395
java2idl 391
javaziiop 391
javaziiop interfaces 392
java.policy file 391
mapping IDL interfaces to Java classes 393
overview 391
running java2iiop 392
setting applet permissions 391
root NamingContext 195
rootPOA 108
RoundRobin
Naming Service 216
VisiNaming Service 216
running applications, starting client program 22
runtime, client 159

S

rebind, nsutil 198
rebind_context, nsutil 198
rebinds, enabling in Smart Agent 179
reducing application development costs 7
ref_data parameter 292
reference data 292
registering objects using oadutil 289
register_listener 388
registration
OAD Implementation Repository 285
Smart Agents 169
Remote Method Invocation. See RMI
Reply recieving options 308
Repository class 305
repository id, obtaining 149, 287
*_repository_id() method 149
Request class 311
request interceptor 331
request interceptors 329
examples 343, 347
interception points 331, 332
POA scoped server request 338
ServerRequestinterceptor 332
Request object 308
request objects, DIl 308
Request sending options 308

460 VisiBroker for Java Developer’s Guide

sample programs
Naming Service 225
VisiNaming Service 225
SCM, bidirectional IIOP 419
scope resolution operator 324
security
bidirectional IOP 423
Naming Service 222
Naming Service client authentication 222
Naming Service method level authorization 222
VisiNaming Service 222
VisiNaming Service client authentication 222
VisiNaming Service method level authorization 222
security (C++)
enabling in Naming Service 222
enabling in VisiNaming 222
security (Java)
enabling in Naming Service 222
enabling in VisiNaming 222
sequences, mapping 48
server
and receiving client requests 97
bidirectional IOP 419
implementing 20
initiating connections to clients 419
sending asynchronous info. to clients 419
Server Manager 248
setting the activation policy 293
setup 97
unidirectional connection to clients 422
waiting for client requests 100

Server Connnection Managers and POAs 122
Server Engine and POAs 120
server Interceptors 353
Server Manager
accessibility 253
Container class 249
Container interface 249
container methods for Java 249
containers 248
custom containers 257
enabling 247
examples 255
getting started 247
IDL definition 253
obtaining a reference 248
overview 247
properties 71
Storage interface 249, 252
writing custom containers 258
Server Manager IDL 249
server request interceptors
examples 343, 347
POA scoped 338
server servants, generating 17
ServerRequest class 325
ServerRequestinterceptor 356
class 354
implementing 342
interception points 332
servers
callbacks without a GateKeeper 419
example of tie mechanism 144
threading considerations 137
using inheritance 57
server-side
portability 10
server engine properties 81, 84
thread Pool BOA_TP connection properties 84
thread pool IIOP_TP connection properties 83
thread session BOA_TS connection properties 82
thread session IIOP_TS connection properties 82
service activation
deferring object activation 429
example 429
implementing deferred 429
Servicelnit class 358
ServiceLoader interface 358
ServiceResolverinterceptor 357
services, reporting services on a network 181
_set_policy_override method 152
sharing semantics 411
shutdown, nsutil 198
simple name 196
skeletons 17
Smart Agent
about 169
and OAD 172, 286
availability 173
best practices 171
bind() 173
binding 181
checking client existing (heartbeat) 173

communication 171
connecting on different networks 175
connecting to objects with OAD 172
cooperation with other agents 171
detecting other agents 175
disabling 172, 173
fault tolerance for objects 179
feature summary 9
locating 171
Location Service 183
location service 171
multihomed hosts 176
Naming Service load balancing 216
object name 426
objects removed from 295
osagent 169
OSAGENT_ADDR environment variable 178
OSAGENT_LOCAL_FILE file 177
point-to-point communication 178
properties 64, 65
reregistration of objects automatically 173
running under multiple domains 174
specifying interface usage 177
starting 172
starting multiple instances 171
verbose output 172
Smart Agent (OSAgent) architecture 9
Software updates 5
specifying IP addresses 178
SSL
bidirectional IOP 423
configuring the Naming Service 222
configuring VisiNaming 222
Naming Service 222
VisiNaming 222
state, determining for an object reference 150
stateless objects, invoking methods on 179
status completion, obtaining for system exceptions 91
Storage interface 252
Server Manager 249
string
converting to object references 149
mapping 45
stringification, using object_to_string() method 149
stringified names 196
string_to_object() method 149
structs. mapping 48
stub, routines 17
stubs, generating portable for DIl 29, 32
subnet mask 175, 177
supplier-consumer communication model 233
suppliers, connecting to an EventChannel 237
Support, contacting 4
support, implementation and object activation 9
SVCnameroot 198
SVCnameroot property 200

symbols
brackets[] 4
ellipsis ... 4

vertical bar | 4
system exception, Portable Interceptors 338

Index 461

system exceptions
BAD_CONTEXT 433
BAD_INV_ORDER 433
BAD_OPERATION 433
BAD_PARAM 433
BAD_QOS 433
BAD_TYPECODE 433
catching 92
COMM_FAILURE 433
CompletionStatus values 91
CORBA-defined 89
DATA_CONVERSION 433
FREE_MEM 433
handling 91
IMP_LIMIT 433
INITIALIZE 433
INTERNAL 433
INTF_REPOS 433
INVALID_TRANSACTION 433
INV_FLAG 433
INV_INDENT 433
INV_OBJREF 433
mapping Java 59
MARSHAL 433
narrowing exceptions to 92
NO_IMPLEMENT 433
NO_MEMORY 433
NO_PERMISSION 433
NO_RESOURCES 433
NO_RESPONSE 433
OBJ_ADAPTOR 433
OBJECT_NOT_EXIST 433
obtaining completion status 91
PERSIST_STORE 433
SystemException class 89
TRANSACTION_MODE 433
TRANSACTION_REQUIRED 433
TRANSACTION_ROLLEDBACK 433
TRANSACTION_UNAVAILABLE 433
TRANSIENT 433
UNKNOWN 433

T

Technical Support, contacting 4
thread management 9
thread policies 129
thread pool dispatch policy 135
threading
dispatch policies and properties 135
garbage collection 140
listener threads 128
properties 138
thread policies 129
thread pool policy 129
thread-per-session policy 133
using synchronized block 137
using threads 127
worker threads 128, 129, 133
thread-per-session
dispatch policy 137
implementation 133

462 VisiBroker for Java Developer’s Guide

threads
multithreading, feature summary 9
using 127
throwing user exceptions 93
_tie class 143
delegator implementation 143
examples 144
tools
administration 12
CORBA services 12
idl2cpp 17
idl2ir 12, 28, 29
idl2java 29
java2idl 31
java2iiop 32
oadutil 289
oadutil unreg 295
osfind 181
programming 12
vbj 34
TRANSACTION_MODE exception 433
TRANSACTION_REQUIRED exception 433
TRANSACTION_ROLLEDBACK exception 433
TRANSACTION_UNAVAILABLE exception 433
TRANSIENT exception 433
transmission code set 158
trigger 185, 187
creating 187
truncatable valuetypes 413
type
Any 326
determining for an object reference 150
determining instance 150
determining sub-type 150
extensions 41
TypeCode class 315
Typecode object 308

typecodes, represented in Interface Repository 300

typedefs, mapping 60
types
DynAny 398
mapping 41

U

UDP protocol 171
unbind, nsutil 198
unions, mapping 48
UNKNOWN exception 433
unregistered_listener 388
unregistering objects
OAD 295
using oadutil 295
untyped object wrappers 370
UntypedObjectWrapper
post_method 373
pre_method 373
URL Naming properties 81
URL Naming Service 415
associating a URL with an object 416
examples 415
InvalidURL exception 417
locating an object 417

user exceptions
adding fields to 94
adding to fields 94
defining 93
modifying object to catch 94
modifying object to throwing exceptions 93
UserException class 93
utilities
idl2ir 302
irep 300
osagent 21

\%

valuetypes 407

abstract 408

abstract interfaces 412

base classes 409

boxed 411

compiling the IDL file 409

concrete 408

custom 413

CustomMarshal interface 413

defining 409

derivation 408

Factories 408

factories 408, 411

implementation class 409

implementing 409

implementing factories 410

implementing the Factory class 410

inheriting valuetype base classes 409

isomorphic 408

marshal method 413

marshalling 413

null 408

null semantics 411

overview 407

read methods 413

registering 411

registering Factory with the ORB 410

shared 408

sharing semantics 411

truncatable 413

unmarshal method 413

unmarshalling 413

write methods 413
vbj command description 34
vbmake, compiling with 21
vbroker.naming.cache 211
vbroker.naming.enableSlave property 219
vbroker.naming.propBindOn 216
vbroker.naming.serverAddresses property 219
vbroker.naming.serverClusterName property 219
vbroker.naming.serverNames property 219
vbroker.naming.slaveMode property 219
vbroker.orb.dynamicLibs property 358
vbroker.orb.enableBiDir property 420
vbroker.orb.enableServerManager property 253
vbroker.security.peerAuthenticationMode 423
vbroker.serverManager.enableOperations

property 253

vbroker.serverManager.enableSetProperty

property 253

vbroker.serverManager.name property 248

version of product 12, 29, 31, 32, 34
VisiBroker
BOA backward compatibility 425
CORBA compliance 11
described 8
example application 15
features of 9
overview 1

VisiBroker Interceptors (Interceptors) 353

VisiBroker Interceptors example 358
VisiBroker ORB extensions
Naming Service 224
VisiNaming Service 224
VisiBroker ORB, initializing 147
VisiNaming
bootstrapping 223
caching facility 211
configuring OpenLDAP 211
configuring to use SSL 222
method level authorization 223
properties for SSL (C++) 222
properties for SSL (Java) 222
using SSL 222
VisiNaming Service
adapters 208
bootstrapping 199
client authentication 222
clusters 213
configuring 197

CosNaming operations supported 198

creating a cluster 215

default naming context 202

examples 225

failover 218

fault tolerance 219

import statements 224

initializing in Java 202

installing 197

load balancing 216

master/slave mode 220

method level authorization 222

nsutil utility 198

OMG compliant features 224

overview 193

pluggable backing store 206

properties 74, 203

properties file 208

sample programs 225

security 222

shutting down 199

starting 197

VisiBroker ORB extensions 224
VISObjectWrapper

ChainUntypedObjectWrapper 373

UntypedObjectWrapper 373

UntypedObjectWrapperFactory 372

Visual C++ nmake compiler 21

Index

463

W words, reserved 40
worker threads 128

web naming, associating a URL with an object 415 World Wide Web
web sites, CORBA specification 11 Borland documentation on the 5
Windows services Borland newsgroups 5
console mode 172 Borland updated software 5
osagent 172 wstring, mapping 45

464 VisiBroker for Java Developer’s Guide

	VisiBroker for Java Developer’s Guide
	Contents
	Ch 1: Introduction to Borland VisiBroker
	VisiBroker Overview
	VisiBroker features

	VisiBroker Documentation
	Accessing VisiBroker online help topics in the�standalone Help Viewer
	Accessing VisiBroker online help topics from�within�the VisiBroker Console
	Documentation conventions �����
	Platform conventions

	Contacting Borland support
	Online resources
	World Wide Web
	Borland newsgroups

	Ch 2: Understanding the CORBA model
	What is CORBA?
	What is VisiBroker?
	VisiBroker Features
	VisiBroker's Smart Agent (osagent) Architecture
	Enhanced Object Discovery Using the Location�Service
	Implementation and Object Activation Support
	Robust thread and connection management
	IDL compilers
	Dynamic invocation with DII and DSI
	Interface and implementation repositories
	Server-side portability
	Customizing the VisiBroker ORB with interceptors�and�object wrappers
	Event Queue
	Backing stores in the Naming Service
	Defining interfaces without IDL
	GateKeeper

	VisiBroker CORBA compliance
	VisiBroker Development Environment
	Programmer's tools
	CORBA services tools
	Administration Tools

	Java Development Environment
	Java 2 Standard Edition
	Java Runtime Environment
	What's Required for GateKeeper
	Java-enabled Web browser

	Interoperability with VisiBroker
	Interoperability with other ORB products
	IDL to Java mapping

	Ch 3: Developing an example application with VisiBroker
	Development process
	Step 1: Defining object interfaces
	Writing the account interface in IDL

	Step 2: Generating client stubs and server servants
	Files produced by the idl compiler

	Step 3: Implementing the client
	Client.java
	Binding to the AccountManager object
	Obtaining an Account object
	Obtaining the balance

	AccountManagerHelper.java
	Other methods

	Step 4: Implementing the server
	Server programs

	Step 5: Building the example
	Compiling the example

	Step 6: Starting the server and running the example
	Starting the Smart Agent
	Starting the server
	Running the client

	Deploying applications with VisiBroker
	VisiBroker Applications
	Deploying applications
	Environment variables
	Support service availability
	Using vbj
	Running the application
	Executing client Applications
	Executing server applications in Java

	Ch 4: Programmer tools for Java
	Options
	General options

	idl2ir
	ir2idl
	idl2java
	java2idl
	java2iiop
	vbj
	vbjc
	Specifying the classpath
	Specifying the JVM
	idl2wsj

	Ch 5: IDL to Java mapping
	Names
	Reserved names
	Reserved words
	Modules
	Basic types
	IDL type extensions
	Holder classes
	Java null

	Boolean
	Char
	Octet
	String
	WString
	Integer types
	Floating point types

	Helper classes
	Constants
	Constants within an interface
	Constants NOT within an interface

	Constructed types
	Enum
	Struct
	Union
	Sequence
	Array

	Interfaces
	Abstract interfaces
	Local interfaces
	Passing parameters
	Server implementation with inheritance
	Server implementation with delegation
	Interface scope

	Mapping for exceptions
	User-defined exceptions
	System exceptions
	Mapping for the Any type
	Mapping for certain nested types
	Mapping for Typedef
	Simple IDL types
	Complex IDL types

	Ch 6: VisiBroker properties
	JAVA RMI over IIOP properties
	Smart Agent properties
	Smart Agent Communication properties
	VisiBroker ORB properties
	POA properties
	ServerManager properties
	Additional Properties

	Location Service properties
	Event Service properties
	Naming Service (VisiNaming) properties
	Object Clustering Related Properties
	VisiNaming Service Cluster Related properties
	Pluggable Backing Store Properties

	JDBC Adapter properties
	DataExpress Adapter properties
	JNDI adapter properties
	OAD properties
	Interface Repository properties
	Client-side IIOP connection properties
	URL Naming properties
	QoS-related Properties
	Server-side server engine properties
	Server-side thread session IIOP_TS/IIOP_TS connection properties
	Server-side thread session BOA_TS/BOA_TS connection properties
	Server-side thread pool IIOP_TP/IIOP_TP connection�properties
	Server-side thread pool BOA_TP/BOA_TP connection�properties
	Properties that support bi-directional communication
	Debug Logging properties
	Enabling and Filtering
	Appending and Formatting
	Deprecated Properties
	Setting Properties in an Applet
	Web Services Runtime Properties
	Web Services HTTP Listener properties
	Web Services Connection Manager properties
	SOAP Request Dispatcher properties

	Getting the ORB version programmatically

	Ch 7: Handling exceptions
	Exceptions in the CORBA model
	System exceptions
	SystemException class
	Obtaining completion status
	Catching system exceptions
	Downcasting exceptions to a system exception
	Catching specific types of system exceptions

	User exceptions
	Defining user exceptions
	Modifying the object to raise the exception
	Catching user exceptions
	Adding fields to user exceptions

	Ch 8: Server basics
	Overview
	Initializing the VisiBroker ORB
	Creating the POA
	Obtaining a reference to the root POA
	Creating the child POA
	Implementing servant methods

	Creating and Activating the Servant
	Activating the POA

	Activating objects
	Waiting for client requests
	Complete example

	Ch 9: Using POAs
	What is a Portable Object Adapter?
	POA terminology
	Steps for creating and using POAs

	POA policies
	Creating POAs
	POA naming convention
	Obtaining the rootPOA
	Setting the POA policies
	Creating and activating the POA

	Activating objects
	Activating objects explicitly
	Activating objects on demand
	Activating objects implicitly
	Activating with the default servant
	Deactivating objects

	Using servants and servant managers
	ServantActivators
	ServantLocators

	Managing POAs with the POA manager
	Getting the current state
	Holding state
	Active state
	Discarding state
	Inactive state

	Listening and Dispatching: Server Engines, Server�Connection Managers, and their properties
	Server Engine and POAs
	Associating a POA with a Server Engine
	Defining Hosts for Endpoints for the Server�Engine

	Server Connection Managers
	Manager
	Listener
	Dispatcher

	When to use these properties

	Adapter activators
	Processing requests

	Ch
 10: Managing threads and connections
	Using threads
	Listener thread, dispatcher thread, and worker threads
	Thread policies
	Thread pool policy
	Thread-per-session policy
	Connection management
	ServerEngines
	ServerEngine properties

	Setting dispatch policies and properties
	Thread pool dispatch policy
	Thread-per-session dispatch policy
	Coding considerations

	Setting connection management properties
	Valid values for applicable properties
	Effects of property changes
	Dynamically alterable properties
	Determining whether property value changes�take�effect
	Impact of changing property values

	High scalability configuration for VisiBroker for�Java�(using Java NIO)
	Garbage collection
	How ORB garbage collection works
	Properties related to ORB garbage collection

	Ch 11: Using the tie mechanism
	How does the tie mechanism work?
	Example program
	Location of an example program using the tie�mechanism
	Changes to the server class
	Changes to the AccountManager
	Changes to the Account class
	Building the tie example

	Ch 12: Client basics
	Initializing the VisiBroker ORB
	Binding to objects
	Action performed during the bind process

	Invoking operations on an object
	Manipulating object references
	Converting a reference to a string
	Obtaining object and interface names
	Determining the type of an object reference
	Determining the location and state of bound objects
	Narrowing object references
	Widening object references

	Using Quality of Service (QoS)
	Understanding Quality of Service (QoS)
	Policy overrides and effective policies

	QoS interfaces
	org.omg.CORBA.Object
	com.borland.vbroker.CORBA.Object (Borland)
	org.omg.CORBA.PolicyManager
	org.omg.CORBA.PolicyCurrent
	com.borland.vbroker.QoSExt.DeferBindPolicy
	com.borland.vbroker.QoSExt.ExclusiveConnectionPolicy
	com.borland.vbroker.QoSExt::RelativeConnectionTimeoutPolicy
	org.omg.Messaging.RebindPolicy
	org.omg.CORBA.Messaging.RelativeRequestTimeoutPolicy
	org.omg.CORBA.Messaging.RelativeRoundTripTimeoutPolicy
	org.omg.CORBA.Messaging.SyncScopePolicy

	Exceptions

	Code Set support
	Types of Code Sets
	Native Code Set
	Conversion Code Set (CCS)
	Transmission Code Set (TCS)

	Code Set Negotiation
	Supported Code Sets

	Deploying client-only applications using Client Runtime
	Usage

	Ch 13: Using IDL
	Introduction to IDL
	How the IDL compiler generates code
	Example IDL specification

	Looking at the generated code
	_<interface_name>Stub.java
	<interface_name>.java
	<interface_name>Helper.java
	<interface_name>Holder.java
	<interface_name>Operations.java
	<interface_name>POA.java
	<interface_name>POATie.java

	Defining interface attributes in IDL
	Specifying one-way methods with no return value
	Specifying an interface in IDL that inherits from�another�interface

	Ch 14: Using the Smart Agent
	What is the Smart Agent?
	Best practices for Smart Agent configuration�and�synchronization
	General guidelines
	Load balancing/ fault tolerance guidelines
	Location service guidelines
	When not to use a Smart Agent

	Locating Smart Agents
	Locating objects through Smart Agent cooperation
	Cooperating with the OAD to connect with objects
	Starting a Smart Agent (osagent)
	Verbose output
	Disabling the agent

	Ensuring Smart Agent availability
	Checking client existence

	Working within VisiBroker ORB domains
	Connecting Smart Agents on different local networks
	How Smart Agents detect each other

	Working with multihomed hosts
	Specifying interface usage for Smart Agents

	Using point-to-point communications
	Specifying a host as a runtime parameter
	Specifying an IP address with an environment�variable
	Specifying hosts with the agentaddr file

	Ensuring object availability
	Invoking methods on stateless objects
	Achieving fault-tolerance for objects that maintain�state
	Replicating objects registered with the OAD

	Migrating objects between hosts
	Migrating objects that maintain state
	Migrating instantiated objects
	Migrating objects registered with the OAD

	Reporting all objects and services
	Binding to Objects

	Ch 15: Using the Location Service
	What is the Location Service?
	Location Service components
	What is the Location Service agent?
	Obtaining addresses of all hosts running�Smart�Agents
	Finding all accessible interfaces
	Obtaining references to instances of an interface
	Obtaining references to like-named instances�of�an�interface

	What is a trigger?
	Looking at trigger methods
	Creating triggers
	Looking at only the first instance found by�a�trigger

	Querying an agent
	Finding all instances of an interface
	Finding interfaces and instances known to�Smart�Agents

	Writing and registering a trigger handler

	Ch 16: Using the VisiNaming Service
	Overview
	Understanding the namespace
	Naming contexts
	Naming context factories
	Names and NameComponent
	Name resolution
	Stringified names
	Simple and complex names

	Running the VisiNaming Service
	Installing the VisiNaming Service
	Configuring the VisiNaming Service
	Starting the VisiNaming Service
	Starting the VisiNaming Service with the vbj�command

	Invoking the VisiNaming Service from the command line
	Configuring nsutil
	Running nsutil
	Shutting down the VisiNaming Service using nsutil

	Bootstrapping the VisiNaming Service
	Calling resolve_initial_references
	Using -DSVCnameroot
	Using -DORBInitRef
	Using a corbaloc URL
	Using a corbaname URL

	-DORBDefaultInitRef
	Using -DORBDefaultInitRef with a corbaloc URL
	Using -DORBDefaultInitRef with corbaname

	NamingContext
	NamingContextExt
	Default naming contexts
	Obtaining the default naming context
	Obtaining naming context factories

	VisiNaming Service properties
	Pluggable backing store
	Types of backing stores
	In-memory adapter
	JDBC adapter
	DataExpress adapter
	JNDI adapter

	Configuration and use
	Properties file
	JDBC Adapter properties
	DataExpress Adapter properties
	JNDI adapter properties

	Configuration for OpenLDAP
	Caching facility
	Important Notes for users of Caching Facility

	Object Clusters
	Object Clustering criteria
	Cluster and ClusterManager interfaces
	IDL Specification for the Cluster interface
	IDL Specification for the ClusterManager interface
	IDL Specification for the NamingContextExtExtended interface

	Creating an object cluster
	Explicit and implicit object clusters

	Load balancing
	Object failover
	Pruning stale object references in VisiNaming�object�clusters

	VisiNaming Service Clusters for Failover and Load�Balancing
	Configuring the VisiNaming Service Cluster
	Configuring the VisiNaming Service in Master/Slave�mode
	Starting up with a large number of connecting clients
	VisiNaming service federation

	VisiNaming Service Security
	Naming client authentication
	Configuring VisiNaming to use SSL
	Method Level Authorization

	Import statements
	Sample programs
	Binding a name example

	Configuring VisiNaming with JdataStore HA
	Create a DB for the Primary mirror
	Invoke JdsServer for each listening connection
	Configure JDataStore HA
	Run the VisiNaming Explicit Clustering example
	Run the VisiNaming Naming Failover example

	Ch 17: Using the Event Service
	Overview
	Proxy consumers and suppliers
	OMG Common Object Services specification

	Communication models
	Push model
	Pull model

	Using event channels
	Creating event channels
	Examples of push supplier and consumer
	Push supplier and consumer example
	Running the Push model example
	Running the PullModel example
	Running the PullView example
	PullSupply
	Executing PullSupply
	Implementation of the pull and try_pull methods
	Main method of PullSupply
	PullConsume
	Executing PullConsume

	Starting the Event Service
	Setting the queue length

	In�process event channel
	Using the in-process Event Channel
	Java EventLibrary class
	Java example

	Import statements

	Ch 18: Using the VisiBroker Server Manager
	Getting Started with the Server Manager
	Enabling the Server Manager on a server
	Obtaining a Server Manager reference
	Working with Containers
	The Storage Interface

	The Container Interface
	Container class
	Container Methods for Java
	Methods related to property manipulation�and�queries
	Methods related to operations
	Methods related to children containers
	Methods related to storage

	The Storage Interface
	Storage Interface Class and Methods
	Storage Class
	Storage Interface Methods

	Limiting access to the Server Manager
	Server Manager IDL

	Server Manager examples
	Obtaining the reference to the top-level container
	Getting all the containers and their properties
	Getting and Setting properties and saving them�into�the�file
	Invoking an operation in a Container
	Custom Containers

	Ch 19: Using VisiBroker Native Messaging
	Introduction
	Two-phase invocation (2PI)
	Polling-Pulling and Callback models
	Non-native messaging and IDL mangling
	Native Messaging solution
	Request Agent
	Native Messaging Current
	Core operations

	StockManager example
	Polling-pulling model
	Callback model

	Advanced Topics
	Group polling
	Cookie and reply de-multiplexing in reply recipients
	Evolving invocations into two-phases
	Reply dropping
	Manual trash collection
	Unsuppressed premature return mode
	Suppress poller generation in callback model

	Native Messaging API Specification
	Interface RequestAgentEx
	create_request_proxy()
	destroy_request()

	Interface RequestProxy
	the_receiver
	poll()
	destroy()

	Local interface Current
	suppress_mode()
	wait_timeout
	the_cookie
	request_tag
	the_poller
	reply_not_available

	Interface ReplyRecipient
	reply_available()

	Semantics of core operations

	Native Messaging Interoperability Specification
	Native Messaging uses native GIOP
	Native Messaging service context
	NativeMessaging tagged component

	Using Borland Native Messaging
	Using request agent and client model
	Start the Borland Request Agent
	Borland Request Agent URL
	Using the Borland Native Messaging client model

	Borland Request Agent vbroker properties
	vbroker.requestagent.maxThreads
	vbroker.requestagent.maxOutstandingRequests
	vbroker.requestagent.blockingTimeout
	vbroker.requestagent.router.ior
	vbroker.requestagent.listener.port
	vbroker.requestagent.requestTimeout

	Interoperability with CORBA Messaging

	Ch 20: Using the Object Activation Daemon (OAD)
	Automatic activation of objects and servers
	Locating the Implementation Repository data
	Activating servers

	Using the OAD
	Starting the OAD

	Using the OAD utilities
	Converting interface names to repository IDs
	Listing objects with oadutil list
	Registering objects with oadutil
	Example: Specifying repository ID
	Example: Specifying IDL interface name
	Remote registration to an OAD
	Using the OAD without using the Smart Agent
	Using the OAD with the Naming Service

	Distinguishing between multiple instances of�an�object
	Setting activation properties using the CreationImplDef class
	Dynamically changing an ORB implementation
	OAD Registration using OAD::reg_implementation
	Example of object creation and registration
	Arguments passed by the OAD

	Un-registering objects
	Un-registering objects using the oadutil tool
	Unregistration example

	Unregistering with the OAD operations
	Displaying the contents of the Implementation�Repository

	IDL interface to the OAD

	Ch 21: Using Interface Repositories
	What is an Interface Repository?
	What does an Interface Repository contain?
	How many Interface Repositories can you have?

	Creating and viewing an Interface Repository with irep
	Creating an Interface Repository with irep
	Viewing the contents of the Interface Repository

	Updating an Interface Repository with idl2ir
	Understanding the structure of the Interface Repository
	Identifying objects in the Interface Repository
	Types of objects that can be stored in the Interface�Repository
	Inherited interfaces

	Accessing an Interface Repository
	Interface Repository example program

	Ch 22: Using the Dynamic Invocation Interface
	What is the dynamic invocation interface?
	Introducing the main DII concepts
	Using request objects
	Encapsulating arguments with the Any type
	Options for sending requests
	Options for receiving replies

	Steps for invoking object operations dynamically
	Example programs for using the DII
	Using the idl2java compiler

	Obtaining a generic object reference
	Creating and initializing a request
	Request interface
	Ways to create and initialize a DII request
	Using the create_request method
	Using the _request method
	Example of creating a Request object
	Setting arguments for the request
	Implementing a list of arguments with the NVList
	Setting input and output arguments with the�NamedValue�Class

	Passing type safely with the Any class
	Representing argument or attribute types with�the�TypeCode class

	Sending DII requests and receiving results
	Invoking a request
	Sending a deferred DII request with the send_deferred method
	Sending an asynchronous DII request with the�send_oneway method
	Sending multiple requests
	Receiving multiple requests

	Using the interface repository with the DII

	Ch 23: Using the Dynamic Skeleton Interface
	What is the Dynamic Skeleton Interface?
	Using the idl2java compiler

	Steps for creating object implementations dynamically
	Example program for using the DSI

	Extending the DynamicImplementation class
	Example of designing objects for dynamic requests
	Specifying repository ids

	Looking at the ServerRequest class
	Implementing the Account object
	Implementing the AccountManager object
	Processing input parameters
	Setting the return value

	Server implementation

	Ch 24: Using Portable Interceptors
	Portable Interceptors overview
	Types of interceptors
	Types of Portable Interceptors

	Portable Interceptor and Information interfaces
	Interceptor class
	Request Interceptor
	ClientRequestInterceptor
	Client-side rules
	ServerRequestInterceptor
	Server-side rules

	IOR Interceptor
	Portable Interceptor (PI) Current
	Codec
	CodecFactory
	Creating a Portable Interceptor
	Example: Creating a PortableInterceptor

	Registering Portable Interceptors
	Registering an ORBInitializer
	Example: Registering ORBInitializer

	VisiBroker extensions to Portable Interceptors
	POA scoped Server Request Interceptors
	Inserting and extracting system exceptions

	Limitations of VisiBroker Portable Interceptors�implementation
	ClientRequestInfo limitations
	ServerRequestInfo limitations

	Portable Interceptors examples
	Example: client_server
	Objective of example
	Importing required packages
	Client-side request interceptor initialization and�registration�to�the ORB
	Implementing the ORBInitializer for a server�side�Interceptor
	Implementing the RequestInterceptor for client��or�server�side Request Interceptor
	Implementing the ClientRequestInterceptor for Client
	Implementation of the public void send_request(ClientRequestInfo ri) interface
	Implementation of the void send_poll(ClientRequestInfo ri) interface
	Implementation of the void receive_reply(ClientRequestInfo ri) interface
	Implementation of the void receive_exception(ClientRequestInfo ri) interface
	Implementation of the void receive_request_service_contexts (ServerRequestInfo ri) interface
	Implementation of the void receive_request (ServerRequestInfo ri) interface
	Implementation of the void receive_reply (ServerRequestInfo ri) interface
	Implementation of the void receive_exception (ServerRequestInfo ri) interface
	Implementation of the void receive_other (ServerRequestInfo ri) interface

	Developing the Client and Server Application
	Implementation of the client application
	Implementation of the server application

	Compilation procedure
	Execution or deployment of Client and Server�Applications

	Ch 25: Using VisiBroker Interceptors
	Interceptors overview
	Interceptor interfaces and managers
	Client Interceptors
	BindInterceptor
	ClientRequestInterceptor

	Server Interceptors
	POALifeCycleInterceptor
	ActiveObjectLifeCycleInterceptor
	ServerRequestInterceptor
	IORCreationInterceptor

	Service Resolver Interceptor
	Default Interceptor classes
	Registering Interceptors with the VisiBroker ORB
	Creating Interceptor objects
	Loading Interceptors

	Example Interceptors
	Example code
	Client-server Interceptors example
	ServiceResolverInterceptor example

	Code listings
	SampleServerLoader
	SamplePOALifeCycleInterceptor
	SampleServerInterceptor
	SampleClientInterceptor
	SampleClientLoader
	SampleBindInterceptor

	Passing information between your Interceptors
	Using both Portable Interceptors and VisiBroker�Interceptors simultaneously
	Order of invocation of interception points
	Client side Interceptors
	Server side Interceptors
	Order of ORB events during POA creation
	Order of ORB events during object reference�creation

	Ch 26: Using object wrappers
	Object wrappers overview
	Typed and un-typed object wrappers
	Special idl2java requirements
	Object wrapper example applications

	Untyped object wrappers
	Using multiple, untyped object wrappers
	Order of pre_method invocation
	Order of post_method invocation

	Using untyped object wrappers
	Implementing an untyped object wrapper factory
	Implementing an untyped object wrapper
	pre_method and post_method parameters

	Creating and registering untyped object wrapper�factories
	Removing untyped object wrappers

	Typed object wrappers
	Using multiple, typed object wrappers
	Order of invocation
	Typed object wrappers with co-located client�and�servers

	Using typed object wrappers
	Implementing typed object wrappers
	Registering typed object wrappers for a client
	Registering typed object wrappers for a server
	Removing typed object wrappers

	Combined use of untyped and typed object wrappers
	Command-line arguments for typed wrappers
	Initializer for typed wrappers
	Command-line arguments for untyped wrappers
	Initializers for untyped wrappers
	Executing the sample applications
	Turning on timing and tracing object wrappers
	Turning on caching and security object wrappers
	Turning on typed and untyped wrappers
	Executing a CO-located client and server

	Ch 27: Event Queue
	Event types
	Connection events

	Event listeners
	IDL definition
	ConnInfo structure
	EventListener interface
	ConnEventListeners interface
	EventQueueManager interface

	How to return the EventQueueManager
	Event Queue code samples
	Registering EventListeners
	Implementing EventListeners

	Ch 28: Using RMI over IIOP
	Overview of RMI over IIOP
	Setting up Java applets with RMI-IIOP
	java2iiop and java2idl tools

	Using java2iiop
	Supported interfaces
	Running java2iiop
	Reverse mapping of Java classes to IDL

	Completing the development process

	RMI-IIOP Bank example
	Supported data types
	Mapping primitive data types
	Mapping complex data types
	Interfaces
	Arrays

	Ch 29: Using the dynamically managed types
	DynAny interface overview
	DynAny examples

	DynAny types
	DynAny usage restrictions
	Creating a DynAny
	Initializing and accessing the value in a DynAny

	Constructed data types
	Traversing the components in a constructed�data�type
	DynEnum
	DynStruct
	DynUnion
	DynSequence and DynArray

	DynAny example IDL
	DynAny example client application
	DynAny example server application

	Ch 30: Using valuetypes
	Understanding valuetypes
	Valuetype IDL code sample
	Concrete valuetypes
	Valuetype derivation
	Sharing semantics
	Null semantics
	Factories

	Abstract valuetypes

	Implementing valuetypes
	Defining your valuetypes
	Compiling your IDL file
	Inheriting the valuetype base class
	Implementing the Factory class
	Registering your Factory with the VisiBroker ORB

	Implementing factories
	Factories and valuetypes
	Registering valuetypes

	Boxed valuetypes
	Abstract interfaces
	Custom valuetypes
	Truncatable valuetypes

	Ch 31: Using URL naming
	URL Naming Service
	URL Naming Service examples

	Registering objects
	Locating an object by URL

	Ch 32: Bidirectional Communication
	Using bidirectional IIOP
	Bidirectional VisiBroker ORB properties
	About the BiDirectional examples
	Enabling bidirectional IIOP for existing applications
	Explicitly enabling bidirectional IIOP
	Unidirectional or bidirectional connections
	Enabling bidirectional IIOP for POAs

	Security considerations

	Ch 33: Using the BOA with VisiBroker
	Compiling your BOA code with VisiBroker
	Supporting BOA options
	Limitations in using the BOA
	Using object activators
	Naming objects under the BOA
	Object names

	Ch 34: Using object activators
	Deferring object activation
	Activator interface
	Using the service activation approach
	Deferring object activation using service activators
	Example of deferred object activation for a service
	odb.idl interface
	Implementing a service activator
	Instantiating the service activator
	Using a service activator to activate an object

	Ch 35: CORBA exceptions
	CORBA exception descriptions
	Heuristic OMG-specified exceptions
	Other OMG-specified exceptions

	Ch 36: Web Services Overview
	Web Services Architecture
	Standard Web Services Architecture
	VisiBroker Web Services Architecture
	Web Services Artifacts
	Web Service Runtime

	Exposing a CORBA object as Web Service
	Development
	Deployment

	SOAP/WSDL compatibility

	Index
	Symbols
	A – B
	C
	D
	E
	F – I
	J – L
	M – N
	O
	P
	Q – S
	T – U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

