Borland
VisiBroker” 8.0

VisiBroker for Java
Developer’'s Guide

Borland Software Corporation

20450 Stevens Creek Blvd., Suite 800
Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance
with the License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications
covering subject matter in this document. Please refer to the product CD or the About
dialog box for the list of applicable patents. The furnishing of this document does not give
you any license to these patents.

Copyright 1992—-2006 Borland Software Corporation. All rights reserved. All Borland brand
and product names are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries. All other marks are the property of
their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB 80 VisiBroker for Java Developer's Guide
April 2007

B I d‘ﬂ

Contents

Chapter 1

Understanding the CORBA model
WhatisCORBA? 1
What is VisiBroker? 2
VisiBroker Features. 2

VisiBroker's Smart Agent (osagent) Architecture . 2
Enhanced Object Discovery Using the

Location Service 3
Implementation and Object Activation Support . . 3
Robust thread and connection management . . . 3
IDLcompilers, 3
Dynamic invocation with DIland DSI 4
Interface and implementation repositories. 4
Server-side portability 4
Customizing the VisiBroker ORB with

interceptors and object wrappers 4
EventQueue. 4
Backing stores in the Naming Service. 4
Defining interfaces without IDL 5
GateKeeper, 5

VisiBroker CORBA compliance 5
VisiBroker Development Environment 5
Programmer'stools 5
CORBA sservicestools. 5
AdministrationTools 6
Java Development Environment 6
Java 2 Standard Edition 6
Java Runtime Environment 6
What's Required for GateKeeper 6
Java-enabled Web browser 6
Interoperability with VisiBroker 7
Interoperability with other ORB products 7
IDLtoJavamapping 7
Chapter 2
Developing an example application
with VisiBroker 9
Developmentprocess. 9
Step 1: Defining object interfaces. 10
Writing the account interface inIDL 11
Step 2: Generating client stubs and server servants . 11
Files produced by the idl compiler. 11
Step 3: Implementing theclient. 12
Clientjava 12
Binding to the AccountManager object. 12
Obtaining an Accountobject 13
Obtaining the balance 13
AccountManagerHelper.java. 13
Othermethods 13
Step 4: Implementingtheserver 13
Serverprograms. 13
Step 5: Buildingthe example 14
Compilingtheexample 14

Step 6: Starting the server and running the example . 15
Starting the SmartAgent 15
Startingtheserver. 15

Running theclient 15
Deploying applications with VisiBroker 15
VisiBroker Applications. 16
Deploying applications 16
Environment variables. 16
Support service availability 17
Usingvbj 17
Running the application. 17
Executing client Applications 17
Executing server applicationsinJava. 18
Chapter 3
Programmer tools for Java 21
Options 21
Generaloptions. 21
idi2ir ... 22
ir2idl ... 23
id2java. o 23
javazidl.o 25
javaziiopo 26
vbj .o 29
vbjc ... 30
Specifying the classpath. 31
Specifyingthe JVM 31
idl2wsj 31
Chapter 4
IDL to Java mapping 33
Names. 33
Reservednames. 34
Reservedwords, 34
Modules Lo 34
Basictypes 35
IDL type extensions. 35
Holderclasses 36
Javanull.o 0oL 39
Boolean. L. 39
Char 39
Octet 39
String. 39
WString. 39
Integertypes 39
Floating pointtypes. 39
Helperclasses. 40
Constants 41
Constants within aninterface. 41
Constants NOT within aninterface 41
Constructedtypes 42
Enum. 42
Struct. 43
Union. 44
Sequence.o 46
Array 47
Interfaces 47
Abstractinterfaces L. 49
Localinterfaces. 49
Passing parameters 49

Server implementation with inheritance. 50

Server implementation with delegation 51
Interfacescope 52
Mapping for exceptions. 52
User-defined exceptions 52
Systemexceptions L. 53
Mapping for the Any type. 53
Mapping for certain nested types. 53
Mapping for Typedef 54
Simple IDLtypes 54
Complex IDLtypes 54
Chapter 5
VisiBroker properties 57
JAVA RMI over IIOP properties. 57
Smart Agent and Smart Agent communication
propertieso 58
VisiBroker ORB properties 59
Format for SpecifyingIlOR 63
POA properties. 64
ServerManager properties 65
Additional Properties 65
Properties related to Server-side resource usage
65
Properties related to Client-side resource usage
65
Properties related to the Smart Agent (Smart
Agent) 66
Location Service properties 66
Event Service properties 67
Naming Service (VisiNaming) properties. 67
Pluggable Backing Store Properties. 70
Default properties common to all adapters. . . 70
JDBC Adapter properties 71
DataExpress Adapter properties. 72
JNDI adapter properties 73
VisiNaming Service Security-related properties 73
OAD properties. o 74
Interface Repository properties. 74
Client-side IIOP connection properties. 75
URL Naming properties 76
QoS-related Properties. 76
Client-side in-process connection properties. 76
Server-side server engine properties. 76
Server-side thread session IIOP_TS/IIOP_TS
connection properties. L. 77
Server-side thread session BOA_TS/BOA_TS
connection properties. 78
Server-side thread pool IIOP_TP/IIOP_TP
connection properties. 78
Server-side thread pool BOA_TP/BOA_TP
connection properties. 79
Chapter 6
Handling exceptions 81
Exceptions inthe CORBAmodel. 81
Systemexceptions L. 81
SystemExceptionclass 82
Obtaining completion status. 82

Catching system exceptions. 83

Downcasting exceptions to a system exception . .83

Catching specific types of system exceptions . . .84
Userexceptions. 84
Defining user exceptions. 84
Modifying the object to raise the exception . . .85
Catching user exceptions 85
Adding fields to user exceptions 86
Chapter 7
Server basics 89
Overview 89
Initializing the VisiBrokerORB 89
Creatingthe POA, 90
Obtaining a reference to the root POA. 90
Creatingthe child POA. 90
Implementing servant methods 91
Creating and Activating the Servant. 92
Activatingthe POA. 92
Activatingobjectso oo 92
Waiting for clientrequests. 92
Completeexample 93
Chapter 8
Using POAs 95
What is a Portable Object Adapter?. 95
POAterminology. 96
Steps for creating and using POAs 97
POA policies. 97
CreatingPOAs 99
POA naming convention 99
Obtainingthe rootPOA. 99
Setting the POA policies 99
Creating and activatingthe POA. 100
Activatingobjects 100
Activating objects explicitly. 100
Activating objectsondemand 101
Activating objects implicitly. 101
Activating with the default servant 101
Deactivatingobjects 102
Using servants and servant managers 103
ServantActivatorso 104
ServantLocators 106
Managing POAs with the POA manager 108
Getting the currentstate 109
Holdingstate. 109
Activestate. L. 109
Discardingstate 109
Inactivestate. 110
Listening and Dispatching: Server Engines, Server
Connection Managers, and their properties 110
Server Engineand POAs 111
Associating a POA with a Server Engine . . . 111
Defining Hosts for Endpoints for the
ServerEngine. 112
Server Connection Managers 113
Manager 113
Listener 113
Dispatcher 114
When to use these properties 114
Adapteractivators.o oL 115

Processingrequests 116
Chapter 9

Managing threads and connections 119
Usingthreads 119

Listener thread, dispatcher thread, and worker threads
120

Thread policies 120
Thread poolpolicy 120
Thread-per-session policy 124
Connection management. 125
PeerConnectionCurrent Interface. 126
ServerEngines oL 127
ServerEngine properties. 127
Setting dispatch policies and properties 128
Thread pool dispatch policy 128
Thread-per-session dispatch policy 129
Coding considerations 129
Setting connection management properties 129
Valid values for applicable properties 131
Effects of propertychanges 131
Dynamically alterable properties. 132
Determining whether property value
changestakeeffect 132
Impact of changing property values 132
High scalability configuration for VisiBroker
for Java (usingJavaNIO) 132
Garbage collection 133
How ORB garbage collection works 133

Properties related to ORB garbage collection 134

Chapter 10

Using the tie mechanism 135
How does the tie mechanism work? 135
Example program. 135
Location of an example program using the
tie mechanism 135
Changestothe serverclass. 136
Changes to the AccountManager 136
Changes to the Accountclass. 137
Building the tieexample 137
Chapter 11
Client basics 139
Initializing the VisiBrokerORB 139
Bindingtoobjects. 140
Action performed during the bind process. . . . 140
Invoking operations on anobject 141
Manipulating object references 141
Converting a referencetoastring. 141
Obtaining object and interface names 141

Determining the type of an object reference. . . 141
Determining the location and state of bound objects
142

Narrowing object references. 142
Widening object references 142
Using Quality of Service (QoS) 143

Understanding Quality of Service (QoS) 143
Policy overrides and effective policies. 143
QoSinterfaces o 143
org.omg.CORBA.Object. 143

com.borland.vbroker. CORBA.Object (Borland) . .
143
org.omg.CORBA.PolicyManager
org.omg.CORBA.PolicyCurrent
com.borland.vbroker.QoSExt.DeferBindPolicy 144
com.borland.vbroker.QoSEXxt.ExclusiveConnectio
nPolicy
com.borland.vbroker.QoSExt::RelativeConnection
TimeoutPolicy
org.omg.Messaging.RebindPolicy.
org.omg.CORBA.Messaging.RelativeRequestTim

eoutPolicy 148
org.omg.CORBA.Messaging.RelativeRoundTripTi
meoutPolicy 148
org.omg.CORBA.Messaging.SyncScopePolicy . .
148
Exceptions o L. 149
Code Setsupport 149
Typesof Code Sets. 149
Native Code Set. 149
Conversion Code Set (CCS) 149
Transmission Code Set (TCS). 150
Code Set Negotiation. 150
SupportedCode Sets 150

Deploying client-only applications using Client Runtime.
150

Usage.« o oo 151
Chapter 12
Using IDL 153
Introductionto IDL 153
How the IDL compiler generates code. 154
Example IDL specification 154
Looking at the generatedcode 154
_<interface_name>Stub.java. 154
<interface_name>java. 155
<interface_name>Helperjava 155
<interface_name>Holderjava 156
<interface_name>Operations.java 156
<interface_name>POAjava 157
<interface_name>POATiejava. 157
Defining interface attributesinIDL. 158

Specifying one-way methods with no return value. .158
Specifying an interface in IDL that inherits

from anotherinterface 158
Chapter 13

Using the Smart Agent 161

What is the Smart Agent? 161

Best practices for Smart Agent

configuration and synchronization 161

General guidelines 162

Load balancing/ fault tolerance guidelines . .162

Location service guidelines 162
When not to use a Smart Agent 163
Locating SmartAgents 163

Locating objects through Smart Agent cooperation .
163

Cooperating with the OAD to connect with objects .
163

Starting a Smart Agent (osagent) 164
Verboseoutput. 165
Disablingtheagent. 165

Ensuring Smart Agent availability 165
Checking client existence 165

Working within VisiBroker ORB domains. 166

Connecting Smart Agents on different local networks .
166

How Smart Agents detect each other. 167
Working with multihomed hosts 167
Specifying interface usage for Smart Agents . . 168
Using point-to-point communications. 169
Specifying a host as a runtime parameter. . . . 169
Specifying an IP address with an
environment variable. 170
Specifying hosts with the agentaddr file. 170
Ensuring object availability 170
Invoking methods on stateless objects 170
Achieving fault-tolerance for objects that
maintainstate, 171
Replicating objects registered with the OAD . . 171
Migrating objects betweenhosts 171
Migrating objects that maintain state 171
Migrating instantiated objects 171
Migrating objects registered with the OAD . . . 172
Reporting all objects and services 172
Bindingto Objects 173
Chapter 14
Using the Location Service 175
What is the Location Service? 175
Location Service components 176

What is the Location Service agent? 176
Obtaining addresses of all hosts
running Smart Agents
Finding all accessible interfaces 177
Obtaining references to instances of an interface
178
Obtaining references to like-named

instances of aninterface 178
Whatisatrigger? 178
Looking at trigger methods. 178
Creatingtriggers 179
Looking at only the first instance found
byatrigger 179
Queryinganagent 179
Finding all instances of an interface. 179
Finding interfaces and instances known
toSmartAgents 180
Writing and registering a trigger handler 182

Chapter 15

Using the VisiNaming Service 185
Overview 185
Understanding the namespace 186
Namingcontexts 187
Naming context factories. 187
Names and NameComponent 188
Name resolution 188
Stringifiednames 188
Simple and complex names. 189
Running the VisiNaming Service 189
Installing the VisiNaming Service 189
Configuring the VisiNaming Service 189
Starting the VisiNaming Service 190
Starting the VisiNaming Service with the
vbjcommand 190

Invoking the VisiNaming Service from the command line
190
Configuringnsutil.
Running nsutil 191
Shutting down the VisiNaming Service using nsutil .
191

Bootstrapping the VisiNaming Service 192
Calling resolve_initial_references 192
Using -DSVCnameroot. 192
Using -DORBInitRef 192

UsingacorbalocURL. 192
Usingacorbaname URL 193
-DORBDefaultinitRef. 193

Using -DORBDefaultInitRef with a corbaloc URL.
193
Using -DORBDefaultinitRef with corbaname . 193

NamingContext 193
NamingContextExt 194
Default namingcontexts. 194
Obtaining the default naming context 194
Obtaining naming context factories 195
VisiNaming Service properties 195
Pluggable backing store. 198
Types of backingstores 198
In-memory adapter 198
JDBCadapter. 198
DataExpressadapter 199
JNDladapter 199
Configurationanduse 199
Propertiesfile. 200
JDBC Adapter properties 200
DataExpress Adapter properties 201

JNDI adapter properties 202
Configuration for OpenLDAP. 202
Cachingfacility 202

Important Notes for users of Caching Facility. 203

ObjectClusters 203
Object Clustering criteria 204
Cluster and ClusterManager interfaces 204
IDL Specification for the Cluster interface . . 204

IDL Specification for the ClusterManager interface
205
IDL Specification for the

NamingContextExtExtended interface . 205

Creating an objectcluster 206

Explicit and implicit object clusters 206
Load balancing 207
Objectfailover 207
Pruning stale object references in
VisiNaming objectclusters. 207
VisiNaming Service Clusters for Failover and
LoadBalancing 208

Configuring the VisiNaming Service Cluster. . . 209

Configuring the VisiNaming Service in Master/
Slavemode. 209

Starting up with a large number of connecting clients

210

VisiNaming service federation. 210
VisiNaming Service Security 211
Naming client authentication. 212
Configuring VisiNamingtouse SSL. 212
Method Level Authorization 212
Import statements. 214
Sampleprograms. 214
Bindinganame example 214
Configuring VisiNaming with JdataStore HA 216
Create a DB for the Primary mirror 216
Invoke JdsServer for each listening connection . 216
Configure JDataStore HA 217

Run the VisiNaming Explicit Clustering example 218
Run the VisiNaming Naming Failover example . 219

Chapter 16
Using the Event Service 223
Overview 223
Proxy consumers and suppliers 224
OMG Common Object Services specification . . 225
Communicationmodels. 225
Pushmodel 226
Pullmodel 226
Usingeventchannels. 227
Creating eventchannels 228
Examples of push supplier and consumer 229
Push supplier and consumer example. 229
Running the Push model example. 229
Running the PullModel example 229
Running the PullView example 230
PullSupply 230
Executing PullSupply 230
Implementation of the pull and try_pull methods .
230
Main method of PullSupply 231
PullConsume 232
Executing PullConsume 232
Starting the Event Service 233
Setting the queue length. 234
In-process eventchannel 234
Using the in-process Event Channel. 235
Java EventLibraryclass 235
Javaexample. 235
Import statements. oL, 236

Chapter 17

Using the VisiBroker Server Manager 237
Getting Started with the Server Manager 237
Enabling the Server Manager on a server237
Obtaining a Server Manager reference. 237
Working with Containers 238
The Storage Interface 238
The Container Interface 239
Containerclass. 239
Container Methods fordava 239

Methods related to property
manipulation and queries 239
Methods related to operations. 240
Methods related to children containers240
Methods related to storage 241
The Storage Interface 241
Storage Interface Class and Methods 241
StorageClass 241
Storage Interface Methods 241
Limiting access to the Server Manager 242
ServerManagerIDL 242
Server Manager examples. 244

Obtaining the reference to the top-level container244

Getting all the containers and their properties . .244
Getting and Setting properties and saving
themintothefile 245
Invoking an operation in a Container. 246
Custom Containers. 246
Chapter 18
Using VisiBroker Native Messaging 249
Introduction L 249
Two-phase invocation 2PI). 249
Polling-Pulling and Callback models 249
Non-native messaging and IDL mangling250
Native Messaging solution 250
RequestAgent 250
Native Messaging Current 251
Coreoperations 251
StockManagerexample 251
Polling-pullingmodel 252
Callbackmodel 254
Advanced Topics. 256
Grouppolling. 256

Cookie and reply de-multiplexing in reply recipients .
258

Evolving invocations into two-phases. 259
Replydropping 260
Manual trash collection. 261
Unsuppressed premature return mode. 261
Suppress poller generation in callback model . .262
Native Messaging API Specification. 263
Interface RequestAgentEx 263
create_request_proxy() 263
destroy_request() 263
Interface RequestProxy. 264

the_receiver. 264

poll) 264

destroy() 265
Local interface Current 265
suppress_mode() 265
wait_timeouto 265
the_cookie 265
request tag 266
the_poller. 266
reply_not_available. 266
Interface ReplyRecipient 267
reply_available() 267
Semantics of core operations 268
Native Messaging Interoperability Specification . . 268
Native Messaging uses native GIOP 268
Native Messaging service context. 269
NativeMessaging tagged component 270
Using Borland Native Messaging. 270
Using request agent and client model. 270
Start the Borland Request Agent 270
Borland Request AgentURL. 270
Using the Borland Native Messaging client model
271
Borland Request Agent vbroker properties . . . 271
vbroker.requestagent.maxThreads. 271
vbroker.requestagent.maxQOutstandingRequests
271
vbroker.requestagent.blockingTimeout. . . . 271
vbroker.requestagent.router.ior. 271
vbroker.requestagent.listener.port 271
vbroker.requestagent.requestTimeout 271
Interoperability with CORBA Messaging 272
Chapter 19
Using the Object Activation Daemon (OAD)
273
Automatic activation of objects and servers 2783
Locating the Implementation Repository data. . 273
Activatingservers 274
Usingthe OAD 274
Startingthe OAD 274
Using the OAD utilities 275
Converting interface names to repository IDs. . 275
Listing objects with oadutil list. 276
Registering objects with oadutil 277
Example: Specifying repository ID. 278

Example: Specifying IDL interface name. . . 278
Remote registrationtoan OAD 279
Using the OAD without using the Smart Agent279
Using the OAD with the Naming Service. . . 279
Distinguishing between multiple instances

ofanobject 280
Setting activation properties using the
CreationlmplDefclass 280

Dynamically changing an ORB implementation. 280
OAD Registration using OAD::reg_implementation .
281

Example of object creation and registration. . . 281
Arguments passed by the OAD 282
Un-registeringobjects 282

Un-registering objects using the oadutil tool . . 282

Unregistrationexample 283
Unregistering with the OAD operations 283
Displaying the contents of the

Implementation Repository. 284

IDL interfacetothe OAD 284
Chapter 20

Using Interface Repositories 287

What is an Interface Repository? 287

What does an Interface Repository contain? . . 287

How many Interface Repositories can you have? 288
Creating and viewing an Interface Repository with irep .
288

Creating an Interface Repository with irep. . . . 288
Viewing the contents of the Interface Repository 289
Updating an Interface Repository with idl2ir. 289

Understanding the structure of the Interface Repository
290
Identifying objects in the Interface Repository . . 291
Types of objects that can be stored in the

Interface Repository 291
Inherited interfaces. 292
Accessing an Interface Repository 292
Interface Repository example program 292
Chapter 21

Using the Dynamic Invocation Interface 295

What is the dynamic invocation interface? 295
Introducing the main DIl concepts 296
Using requestobjects. 296
Encapsulating arguments with the Any type . 297
Options for sending requests 297
Options for receiving replies 298

Steps for invoking object operations dynamically 298

Example programs for usingthe DIl 298
Using the idI2java compiler. 298
Obtaining a generic object reference 298
Creating and initializingarequest. 299
Requestinterface 299
Ways to create and initialize a DIl request. . . . 300
Using the create_request method 300
Using the _requestmethod 300
Example of creating a Request object. 300
Setting arguments for the request 301
Implementing a list of arguments with the NVList.
301
Setting input and output arguments with the

NamedValueClass 302
Passing type safely with the Any class. 302

Representing argument or attribute types
with the TypeCodeclass 302
Sending DIl requests and receiving results 304
Invokingarequest 304

Sending a deferred DIl request with the

send_deferred method 305

Sending an asynchronous DIl request with

the send_oneway method 305
Sending multiplerequests 305
Receiving multiplerequests 305

Using the interface repository with the DIl 306

Chapter 22

Using the Dynamic Skeleton Interface 309
309
Using the idl2java compiler 309
Steps for creating object implementations dynamically .
309
Example program for usingthe DSI
Extending the Dynamiclmplementation class. . . . 310
Example of designing objects for dynamic requests.
310

Specifying repositoryids. 312
Looking at the ServerRequestclass 312
Implementing the Accountobject. 313
Implementing the AccountManager object 313

Processing input parameters 313

Setting thereturnvalue 314
Server implementation 314
Chapter 23
Using Portable Interceptors 317
Portable Interceptors overview 317

Types of interceptors. 318

Types of Portable Interceptors. 318
Portable Interceptor and Information interfaces. . . 318

Interceptorclass. 318

Request Interceptor 319

ClientRequestinterceptor. 319
Client-siderules 320
ServerRequestinterceptor 320
Server-siderules 321

IOR Interceptor 321

Portable Interceptor (PI) Current. 322

Codec 322

CodecFactory 322

Creating a Portable Interceptor 323

Example: Creating a Portablelnterceptor. . . 323
Registering Portable Interceptors 323
Registering an ORBInitializer 324

Example: Registering ORBlnitializer 325
VisiBroker extensions to Portable Interceptors . 325

POA scoped Server Request Interceptors . . 325

Inserting and extracting system exceptions . 326
Limitations of VisiBroker Portable

Interceptors implementation 326
ClientRequestinfo limitations 326
ServerRequestinfo limitations 326
Portable Interceptors examples. 326
Example: client_server 328

Objective ofexample 328

Importing required packages 328

Client-side request interceptor initialization

and registrationtothe ORB 329

Implementing the ORBInitializer for a

server-side Interceptor. 330
Implementing the Requestinterceptor for
client- or server-side Request Interceptor . . . 331

vii

Implementing the ClientRequestinterceptor for Client
331

Implementation of the public void
send_request(ClientRequestinfo ri) interface 331

Implementation of the void
send_poll(ClientRequestinfo ri) interface .

Implementation of the void
receive_reply(ClientRequestinfo ri) interface 331

Implementation of the void
receive_exception(ClientRequestinfo ri)

. 331

interface L. 332
Implementation of the void
receive_request_service_contexts
(ServerRequestinfo ri) interface 334
Implementation of the void receive_request
(ServerRequestinfo ri) interface 334
Implementation of the void receive_reply
(ServerRequestinfo ri)interface 334
Implementation of the void receive_exception
(ServerRequestinfo ri) interface 334
Implementation of the void receive_other
(ServerRequestinfo ri) interface 335
Developing the Client and Server Application . .337
Implementation of the client application. . . .337
Implementation of the server application . . .338
Compilation procedure 338
Execution or deployment of Client and
Server Applications 339
Chapter 24
Using VisiBroker Interceptors 341
Interceptors overview 341
Interceptor interfaces and managers 341
Client Interceptors 342
BindInterceptor 342
ClientRequestinterceptor 342
ServerInterceptors. 343
POALifeCycleinterceptor 343
ActiveObjectLifeCyclelnterceptor 343
ServerRequestinterceptor. 343
IORCreationinterceptor 344
Service Resolver Interceptor 344
Default Interceptorclasses 345

Registering Interceptors with the VisiBroker ORB345

Creating Interceptorobjects 345
Loading Interceptors 346
Example Interceptorso L. 346
Examplecode 346
Client-server Interceptors example 346
ServiceResolverinterceptor example 347
Codelistings 348
SampleServerloader 348
SamplePOALifeCycleinterceptor 349
SampleServerinterceptor 350
SampleClientinterceptor. 350
SampleClientLoader. 351
SampleBindInterceptor 352

Passing information between your Interceptors . . 352
Using both Portable Interceptors and
VisiBroker Interceptors simultaneously 353
Order of invocation of interception points 353
Client side Interceptors 353
Server side Interceptors. 353
Order of ORB events during POA creation . . . 354
Order of ORB events during object
referencecreation 354
Chapter 25
Using object wrappers 357
Object wrappers overview 357
Typed and un-typed object wrappers 357
Special idl2java requirements 358
Object wrapper example applications. 358
Untyped object wrappers. 358
Using multiple, untyped object wrappers 359
Order of pre_method invocation. 359
Order of post_method invocation 359
Using untyped object wrappers. 360

Implementing an untyped object wrapper factory 360

Implementing an untyped object wrapper. . . . 360
pre_method and post_method parameters . 361
Creating and registering untyped object
wrapper factories L. 361
Removing untyped object wrappers. 363
Typed objectwrappers 363
Using multiple, typed object wrappers. 364
Order of invocation 365
Typed object wrappers with co-located
clientandservers 365
Using typed object wrappers 366
Implementing typed object wrappers 366
Registering typed object wrappers for a client . 367
Registering typed object wrappers for a server . 367
Removing typed object wrappers 368

Combined use of untyped and typed object wrappers .
369

Command-line arguments for typed wrappers . 369
Initializer for typed wrappers. 369
Command-line arguments for untyped wrappers 370
Initializers for untyped wrappers 370
Executing the sample applications 371
Turning on timing and tracing object wrappers 372

Turning on caching and security object wrappers

372

Turning on typed and untyped wrappers. . . 372
Executing a CO-located client and server . . 373
Chapter 26
Event Queue 375
Eventtypes. L. 375
Connectionevents. 375
Eventlisteners 375
IDL definition 375
Conninfo structure 376
EventListenerinterface. 376
ConnEventlListeners interface 376
EventQueueManager interface. 377

viii

How to return the EventQueueManager 377
Event Queue code samples 377
Registering EventListeners 377
Implementing EventListeners. 378
Chapter 27
Using RMI over lIOP 379
Overview of RMloverllOP 379
Setting up Java applets with RMI-IIOP. 379
javaziiop and java2idltools. 379
Usingjava2iiop 380
Supportedinterfaces. 380
Running java2iiop 380

Reverse mapping of Java classes to IDL . . . 380

Completing the development process 381
RMI-IIOP Bank example. 381
Supported datatypes 383

Mapping primitive datatypes. 383

Mapping complex datatypes. 383

Interfaces 383
Arrays.o 383
Chapter 28

Using the dynamically managed types 385

DynAny interface overview 385
DynAny examples 385
DynAnytypes L. 385
DynAny usage restrictions 386
CreatingaDynAny. 386

Initializing and accessing the value in a DynAny. 386

Constructed datatypes 387
Traversing the components in a
constructed datatype. 387
DynEnum. o oL 387
DynStruct. 387
DynUnion. 387
DynSequence and DynArray. 387
DynAny example IDL 388
DynAny example client application 388
DynAny example server application. 389
Chapter 29
Using valuetypes 395
Understanding valuetypes. 395
Valuetype IDL code sample 395
Concrete valuetypes 395
Valuetype derivation 396
Sharing semantics 396
Null semantics 396
Factories 396
Abstract valuetypes 396
Implementing valuetypes 396
Defining your valuetypes. 397
Compiling your IDLfile. 397
Inheriting the valuetype baseclass 397
Implementing the Factoryclass 397

Registering your Factory with the VisiBroker ORB. .
398

Implementing factories

Factories and valuetypes

Registering valuetypes. 399
Boxed valuetypes 399
Abstractinterfaces 399
Customvaluetypes 400
Truncatable valuetypes 400
Chapter 30
Using URL naming 403
URL Naming Service 403

URL Naming Service examples 403
Registeringobjects 404
Locating an objectby URL 405
Chapter 31
Bidirectional Communication 407
Using bidirectional IOP. 407
Bidirectional VisiBroker ORB properties 407
About the BiDirectional examples. 408

Enabling bidirectional IIOP for existing applications 409

Explicitly enabling bidirectional IOP 409
Unidirectional or bidirectional connections. . . . 410
Enabling bidirectional IIOP for POAs 410

Security considerations 411

Chapter 32

Using the BOA with VisiBroker 413

Compiling your BOA code with VisiBroker 413

Supporting BOAoptions 413

Limitations inusingthe BOA 413

Using object activators 414

Naming objects underthe BOA. 414
Objectnames 414

Chapter 33

Using object activators 415

Deferring object activation 415

Activatorinterface. 415

Using the service activation approach 416

Deferring object activation using service activators .
417

Example of deferred object activation for a service .
417

odb.idlinterface. 418
Implementing a service activator. 418
Instantiating the service activator. 419

Using a service activator to activate an object 419

Chapter 34

CORBA exceptions 421

CORBA exception descriptions 421

Heuristic OMG-specified exceptions 426

Other OMG-specified exceptions 427

Chapter 35

Web Services Overview 429
Web Services Architecture 429

Standard Web Services Architecture. 430
VisiBroker Web Services Architecture. 430
Web Services Artifacts 431
Web Service Runtime 431
Exposing a CORBA object as Web Service 433
Development 434
Deployment. 435
SOAP/WSDL compatibility. 436
Index 437

Understanding the CORBA model

This section introduces VisiBroker, which comprises both the VisiBroker for C++ and
the VisiBroker for Java ORBs. Both are complete implementations of the CORBA 3.0
specification. This section describes VisiBroker features and components.

What is CORBA?

The Common Object Request Broker Architecture (CORBA) allows distributed
applications to interoperate (application-to-application communication), regardless of
what language they are written in or where these applications reside.

The CORBA specification was adopted by the Object Management Group to address
the complexity and high cost of developing distributed object applications. CORBA
uses an object-oriented approach for creating software components that can be reused
and shared between applications. Each object encapsulates the details of its inner
workings by presenting a well-defined interface. Use of these interfaces, themselves
written in the standardized Interface Definition Language (IDL) reduces application
complexity. The cost of developing applications is reduced, because once an object is
implemented and tested, it can be used over and over again.

The role of the Object Request Broker (ORB) is to track and maintain these interfaces,
facilitate communication between them, and provide services to applications making
use of them. The ORB itself is not a separate process. It is a collection of libraries and
network resources that integrates within end-user applications, and allows your client
applications to locate and use disparate objects.

The Object Request Broker in the following figure connects a client application with the
objects it wants to use. The client program does not need to know whether the object it
seeks resides on the same computer or is located on a remote computer somewhere
on the network. The client program only needs to know the object's name and
understand how to use the object's interface. The ORB takes care of the details of
locating the object, routing the request, and returning the result.

1: Understanding the CORBA model 1

What is VisiBroker?

Figure 1.1 Client program acting on an object

Client
Cibject A
" Cliert Program COFRB locates
O requests a reference G Chject & and
to Object A, hindz client to it
| Ohbject Reqguest Broker I

What is VisiBroker?

VisiBroker provides a complete CORBA 3.0 ORB runtime and supporting development
environment for building, deploying, and managing distributed applications for both
C++ and Java that are open, flexible, and interoperable. Objects built with VisiBroker
are easily accessed by Web-based applications that communicate using the Internet
Inter-ORB Protocol (IIOP) standard for communication between distributed objects
through the Internet or through local intranets. VisiBroker has a built-in implementation
of IIOP that ensures high-performance and interoperability.

Figure 1.2 VisiBroker Architecture

Intranet
- Ca+ Oject Client
- Maming Service

VisiBroker
for lava
Runtime

Weh Server
- GateKeeper

- SmartAgent

Java Intranet/
Applet Enterprise
VisiBroker VisiBroker visiBroker Enterprise
Runtime forlava for G4+ Client
Rurtime Runtime
Crt+
- Java Ohject Applica
- Event Service
- SmartAgent
VisiBroker
for C++
Runtime
VisiBroker Features

VisiBroker has several key features as described in the following sections.

VisiBroker's Smart Agent (osagent) Architecture

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory service that
provides naming facilities for both client applications and object implementations.

2 VisiBroker for Java Developer’s Guide

VisiBroker Features

Multiple Smart Agents on a network cooperate to provide load-balancing and high
availability for client access to server objects. The Smart Agent keeps track of objects
that are available on a network, and locates objects for client applications at object-
invocation time. VisiBroker can determine if the connection between your client
application and a server object has been lost (due to an error such as a server crash or
a network failure). When a failure is detected, an attempt is automatically made to
connect your client to another server on a different host, if it is so configured. For
dgtasils on the Smart Agent see “Using the Smart Agent” and “Using Quality of Service
(QoS)”.

Enhanced Object Discovery Using the Location Service

VisiBroker provides a powerful Location Service—an extension to the CORBA
specification—that enables you to access the information from multiple Smart Agents.
Working with the Smart Agents on a network, the Location Service can see all the
available instances of an object to which a client can bind. Using triggers, a callback
mechanism, client applications can be instantly notified of changes to an object's
availability. Used in combination with interceptors, the Location Service is useful for
developing enhanced load balancing of client requests to server objects. See “Using
the Location Service.”

Implementation and Object Activation Support

The Object Activation Daemon (OAD) is the VisiBroker implementation of the
Implementation Repository. The OAD can be used to automatically start object
implementations when clients need to use them. Additionally, VisiBroker provides
functionality that enables you to defer object activation until a client request is received.
You can defer activation for a particular object or an entire class of objects on a server.

Robust thread and connection management

VisiBroker provides native support for single- and multi-threaded thread management.
With VisiBroker's thread-per-session model, threads are automatically allocated on the
server (per client connection) to service multiple requests, and then are terminated
when each connection ends. With the thread pooling model, threads are allocated
based on the amount of request traffic to and from server objects. This means that a
highly active client will be serviced by multiple threads—ensuring that the requests are
quickly executed—while less active clients can share a single thread and still have their
requests immediately serviced.

VisiBroker's connection management minimizes the number of client connections to
the server. All client requests for objects residing on the same server are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same
server, eliminating the need for clients to incur the overhead of new connections to the
same server.

All thread and connection behavior is fully configurable. See “Managing threads and
connections” for details on how VisiBroker manages threads and connections.

IDL compilers

VisiBroker comes with three IDL compilers that make object development easier,

- idl12java: The id12java compiler takes IDL files as input and produces the necessary
client stubs and server skeletons in Java.

- 1d12cpp: The idl2cpp compiler takes IDL files as input and produces the necessary
client stubs and server skeletons in C++.

- idl2ir: The id12ir compiler takes an IDL file and populates an interface repository
with its contents. Unlike the previous two compilers, id121ir functions with both the
C++ and Java ORBs.

See “Using IDL” and “Using Interface Repositories” for details on these compilers.

1: Understanding the CORBA model 3

VisiBroker Features

Dynamic invocation with DIl and DSI

VisiBroker provides implementations of both the Dynamic Invocation Interface (DII) and
the Dynamic Skeleton Interface (DSI) for dynamic invocation. The DIl allows client
applications to dynamically create requests for objects that were not defined at compile
time. The DSI allows servers to dispatch client operation requests to objects that were
not defined at compile time. See “Using the Dynamic Invocation Interface” and “Using
the Dynamic Skeleton Interface” for more information.

Interface and implementation repositories

The Interface Repository (IR) is an online database of meta information about the
VisiBroker ORB objects. Meta information stored for objects includes information about
modules, interfaces, operations, attributes, and exceptions. “Using Interface
Repositories” covers how to start an instance of the Interface Repository, add
information to an interface repository from an IDL file, and extract information from an
interface repository.

The Object Activation Daemon is a VisiBroker interface to the Implementation
Repository that is used to automatically activate the implementation when a client
references the object. See “Using the Object Activation Daemon (OAD)” for more
information.

Server-side portability

VisiBroker supports the CORBA Portable Object Adapter (POA), which is a
replacement to the Basic Object Adapter (BOA). The POA shares some of the same
functionality as the BOA, such as activating objects, support for transient or persistent
objects, and so forth. The POA also has additional functionality, such as the POA
Manager and Servant Manager which create and manages instances of your objects.
See “Using POAs” for more information.

Customizing the VisiBroker ORB with interceptors and object
wrappers

VisiBroker's Interceptors enable developers to view under-the-cover communications
between clients and servers. The VisiBroker Interceptors are Borland's proprietary
interceptors. Interceptors can be used to extend the VisiBroker ORB with customized
client and server code that enables load balancing, monitoring, or security to meet the
specialized needs of distributed applications. See “Using Portable Interceptors” for
information.

VisiBroker also includes the Portable Interceptors, based on the OMG standardized
feature, that allow you to write portable code for interceptors and use it with different
vendor ORBs. For more information, refer to the COBRA 3.0 specification.

VisiBroker's object wrappers allow you to define methods that are called when a client
application invokes a method on a bound object or when a server application receives
an operation request. See “Using object wrappers” for information.

Event Queue

The event queue is designed as a server-side only feature. A server can register the
listeners to the event queue based on the event types that the server is interested in,
and the server processes those events when the need arises. See “Event Queue” for
more information.

Backing stores in the Naming Service

The new interoperable Naming Service integrates with pluggable backing stores to
make its state persistent. This ensures easy fault tolerance and failover functionality in
the Naming Service. See “Using the VisiNaming Service” for more information.

4 VisiBroker for Java Developer’s Guide

VisiBroker CORBA compliance

Defining interfaces without IDL

VisiBroker's java2iiop compiler lets you use the Java language to define interfaces
instead of using the Interface Definition Language (IDL). You can use the java2iiop
compiler if you have existing Java code that you wish to adapt to interoperate with
CORBA distributed objects or if you do not wish to learn IDL.

GateKeeper

The GateKeeper allows client programs to issue operation requests to objects that
reside on a web server and to receive callbacks from those objects, all the while
conforming to the security restrictions imposed by web browsers. The Gatekeeper also
handles communication through firewalls and can be used as an HTTP daemon. It is
fully compliant with the OMG CORBA Firewall Specification. For more information see
“Introduction to GateKeeper.”

VisiBroker CORBA compliance

VisiBroker is fully compliant with the CORBA specification (version 3.0) from the Object
Management Group (OMG). For more details, refer to the CORBA specification located
at http://www.omg.org/.

VisiBroker Development Environment

VisiBroker can be used in both the development and deployment phases. The
development environment includes the following components:

- Administration and programming tools
- VisiBroker ORB

Programmer's tools

The following tools are used during the development phase:

Tool Purpose

idl2ir This tool allows you to populate an interface repository with interfaces defined in an
IDL file for both the VisiBroker for Java and VisiBroker for C++.

id12cpp This tool generates C++ stubs and skeletons from an IDL file.
idl2java | This tool generates Java stubs and skeletons from an IDL file

java2iiop | Generates Java stubs and skeletons from a Java file. This tool allows you to define
your interfaces in Java, rather than in IDL.

java2idl | Generates an IDL file from a file containing Java bytecode.

CORBA services tools

The following tools are used to administer the VisiBroker ORB during development:

Tool Purpose
irep Used to manage the Interface Repository. See “Using Interface Repositories.”
oad Used to manage the Object Activation Daemon (OAD). See “Using the Object

Activation Daemon (OAD).”

nameserv | Used to start an instance of the Naming Service. See “Using the VisiNaming
Service.”

1: Understanding the CORBA model 5

http://www.omg.org/

Java Development Environment

Administration Tools

The following tools are used to administer the VisiBroker ORB during development:

Tool Purpose

oadutil list |Lists VisiBroker ORB object implementations registered with the OAD.

oadutil reg Registers an VisiBroker ORB object implementation with the OAD.

oadutil unreg |Unregisters an VisiBroker ORB object implementation with the OAD.

osagent Used to manage the Smart Agent. See “Using the Smart Agent.”

osfind Reports on objects running on a given network.

Java Development Environment

The VisiBroker uses the following components in the Java runtime environment:
- Java 2 Standard Edition

- Java runtime environment

Java 2 Standard Edition

A Java development environment, such as Borland JBuilder, is required for developing
applets or applications that use the VisiBroker ORB. JavaSoft's Java Developer's Kit
(JDK) also includes a Java runtime environment.

Sun Microsystems has made JavaSoft's JDK—including its Java runtime
environment—available for Solaris, and Windows NT platforms. You can download the
JDK from Sun Microsystems' web site:

http://java.sun.com

The JDK has also been ported to IBM AlX, OS/2, SGI IRIX, and HP-UX. These other
versions can be downloaded from the respective hardware vendor's web site. To see
what is available for various platforms, visit Sun Microsystems' JavaSoft web site:

http://java.sun.com/products/jdk

Java Runtime Environment

A Java runtime environment is required for any end user who wishes to execute
VisiBroker services and tools. A Java runtime environment is an engine that interprets
and executes a Java application. Typically, Java runtime environments are bundled
with Java development environments. See “Java 2 Standard Edition” for details.

What's Required for GateKeeper

In order to use the VisiBroker Gatekeeper, you will need to use Servlet 2.1 API that is
obtained in JavaServer Web Development Kit 1.0.1.

Java-enabled Web browser

Applets can be run in any Java-enabled web browser—such as Netscape
Communicator, Netscape Navigator, or Microsoft's Internet Explorer. You can obtain
these Java-enabled web browsers by navigating to one of the following URLs:

- http://www.netscape.com/

- http://microsoft.com/ie/

6 VisiBroker for Java Developer’s Guide

http://microsoft.com/ie/
http://www.netscape.com/
http://java.sun.com/products/jdk
http://java.sun.com

Interoperability with VisiBroker

Interoperability with VisiBroker

Applications created with VisiBroker for Java can communicate with object
implementations developed with VisiBroker for C++. Likewise, for applications created
with VisiBroker for C++, these applications can also communicate with objects
implementations developed with VisiBroker for Java. For example, if you want to use
Java application on VisiBroker for C++, simply use the same IDL you used to develop
your Java application as input to the VisiBroker IDL compiler, supplied with VisiBroker
for C++. You may then use the resulting C++ skeletons to develop the object
implementation. To use the C++ application on VisiBroker for Java, repeat the process.
However, you will use the VisiBroker IDL complier with VisiBroker for Java instead.

Also, object implementations written with VisiBroker for Java will work with clients
written in VisiBroker for C++. In fact, a server written with VisiBroker for Java will work
with any CORBA-compliant client; a client written with VisiBroker for Java will work with
any CORBA-compliant server. This also applies to any VisiBroker for C++ object
implementations.

Interoperability with other ORB products

CORBA-compliant software objects communicate using the Internet Inter-ORB
Protocol (IIOP) and are fully interoperable, even when they are developed by different
vendors who have no knowledge of each other's implementations. VisiBroker's use of
IIOP allows client and server applications you develop with VisiBroker to interoperate
with a variety of ORB products from other vendors.

IDL to Java mapping

VisiBroker conforms with the OMG IDL/Java Language Mapping Specification. See the
VisiBroker Programmer's Reference for a summary of VisiBroker's current IDL to Java
language mapping, as implemented by the id12java compiler. For each IDL construct
there is a section that describes the corresponding Java construct, along with code
samples.

For more information about the mapping specification, refer to the OMG IDL/Java
Language Mapping Specification.

1: Understanding the CORBA model 7

IDL to Java mapping

8 VisiBroker for Java Developer’s Guide

Developing an example application
with VisiBroker

This section uses an example application to describe the development process for
creating distributed, object-based applications for both Java and C++.

The code for the example application is provided in the bank_agent_java.html file. You
can find this file in:

<install_dir>/examples/Vbroker/basic/bank_agent/

Development process

When you develop distributed applications with VisiBroker, you must first identify the
objects required by the application. The following figure illustrates the steps to develop
a sample bank application. Here is a summary of the steps taken to develop the bank
sample:

1

Write a specification for each object using the Interface Definition Language (IDL).

IDL is the language that an implementer uses to specify the operations that an
object will provide and how they should be invoked. In this example, we define, in
IDL, the Account interface with a balance () method and the AccountManager interface
with an open () method.

Use the IDL compilers to generate the client stub code and server POA servant
code.

With the interface specification described in step 1, use the id12java or idl2cpp
compilers to generate the client-side stubs and the server-side classes for the
implementation of the remote objects.

Write the client program code.

To complete the implementation of the client program, initialize the VisiBroker ORB,
bind to the Account and the AccountManager objects, invoke the methods on these
objects, and print out the balance.

2: Developing an example application with VisiBroker 9

Step 1: Defining object interfaces

4 Write the server object code.

To complete the implementation of the server object code, we must derive from the
AccountPOA and AccountManagerPOA classes, provide implementations of the
interfaces' methods, and implement the server's main routine.

5 Compile the client and server code using the appropriate stubs and skeletons.
6 Start the server.
7 Run the client program.

Figure 2.1 Developing the sample bank application

n Object specification in 1BL

idlZepp
idl2jawa

Add client 4 Add Object
Fragram Code Implementation
("’E++.|’Jaxra = ""rl::T."..la_\.r.a—_H“"
n CampilerLinker - CompilerLinke

- .
E client |+——— client program Senrar .Sen.rfartlhject
clazzes mnning claszes running

Client | Server |

| isiBroker Edition Object Request

* C++: If you are creating the application in C++,
yiou will need to compile and link the server object code

Step 1: Defining object interfaces

The first step to creating an application with VisiBroker is to specify all of your objects
and their interfaces using the OMG's Interface Definition Language (IDL). The IDL can
be mapped to a variety of programming languages.

You then use the id12java compiler to generate stub routines and servant code
compliant with the IDL specification. The stub routines are used by your client program
to invoke operations on an object. You use the servant code, along with code you write,
to create a server that implements the object.

10 VisiBroker for Java Developer’s Guide

Step 2: Generating client stubs and server servants

Writing the account interface in IDL

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data
structures, and more.

The sample below shows the contents of the Bank.1idl file for the bank_agent example.
The Account interface provides a single method for obtaining the current balance. The
AccountManager interface creates an account for the user if one does not already exist.

module Bank{
interface Account {
float balance();
}i
interface AccountManager {
Account open(in string name);
}i
}i

Step 2: Generating client stubs and server servants

The interface specification you create in IDL is used by VisiBroker's id12java compiler
to generate Java classes for the client program, and skeleton code for the object
implementation.

The client program uses the Java class for all method invocations.

You use the skeleton code, along with code you write, to create the server that
implements the objects.

The code for the client program and server object, once completed, is used as input to
your Java compiler to produce the client and server executables classes.

Because the Bank.1dl file requires no special handling, you can compile the file with the
following command.

prompt> idl2java Bank.idl

For more information on the command-line options for the id12java compiler, see
“Using IDL.”

Files produced by the idl compiler

Java

Because Java allows only one public interface or class per file, compiling the IDL file
will generate several . java files. These files are stored in a generated sub-directory
called Bank, which is the module name specified in the IDL and is the package to which
the generated files belong. The following is a list of . java files generated:

- _AccountManagerStub.java: Stub code for the AccountManager object on the client side.
- _AccountStub. java: Stub code for the Account object on the client side.
- Account.java: The Account interface declaration.

- AccountHelper.java: Declares the AccountHelper class, which defines helpful utility
methods.

- AccountHolder.java: Declares the AccountHolder class, which provides a holder for
passing Account objects.

- AccountManager.java: The AccountManager interface declaration.

- AccountManagerHelper.java: Declares the AccountManagerHelper class, which defines
helpful utility methods.

- AccountManagerHolder.java: Declares the AccountManagerHolder class, which provides
a holder for passing AccountManager objects.

2: Developing an example application with VisiBroker 11

Step 3: Implementing the client

AccountManagerOperation.java: This interface provides declares the method
signatures defined in the AccountManager interface in the Bank.1idl file.

AccountManagerPOA. java: POA servant code (implementation base code) for the
AccountManager object implementation on the server side.

AccountManagerPOATie. java: Class used to implement the AccountManager object on the
server side using the tie mechanism, described in “Using the tie mechanism.”

AccountOperations.java: This interface provides declares the method signatures
defined in the Account interface in the Bank.id1 file

AccountPOA. java: POA servant code (implementation base code) for the Account
object implementation on the server side.

AccountPOATie.java: Class used to implement the Account object on the server side
using the tie mechanism, described in “Using the tie mechanism.”

Step 3: Implementing the client

Client.java

Many of the classes used in implementing the bank client are contained in the Bank
package generated by the 1d12java compiler as shown in the previous example.

The Client.java file illustrates this example and is included in the bank_agent directory.
Normally, you would create this file.

The Client class implements the client application which obtains the current balance of
a bank account. The bank client program performs these steps:

1
2
3

Initializes the VisiBroker ORB.

Binds to an AccountManager object.

Obtains an Account object by invoking open on the AccountManager object.
Obtains the balance by invoking balance on the Account object.

public class Client {
public static void main(String[] args) {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args,null);
// Get the manager Id
byte[] managerId = "BankManager".getBytes();
// Locate an account manager. Give the full POA name and the servant ID.
Bank.AccountManager manager =
Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa", managerId);
// use args[0] as the account name, or a default.
String name = args.length > 0 ? args([0] : "Jack B. Quick";
// Request the account manager to open a named account.
Bank.Account account = manager.open (name);
// Get the balance of the account.
float balance = account.balance();
// Print out the balance.
System.out.println("The balance in " + name + "'s account is $" +
balance) ;
}
}

Binding to the AccountManager object

Before your client program can invoke the open (String name) method, the client must
first use the bind() method to establish a connection to the server that implements the
AccountManager object.

12 VisiBroker for Java Developer’s Guide

Step 4: Implementing the server

The implementation of the bind () method is generated automatically by the id12java
compiler. The bind () method requests the VisiBroker ORB to locate and establish a
connection to the server.

If the server is successfully located and a connection is established, a proxy object is
created to represent the server's AccountManagerPOA object. An object reference to the
AccountManager object is returned to your client program.

Obtaining an Account object

Next, your client class needs to call the open () method on the AccountManager object to
get an object reference to the Account object for the specified customer name.

Obtaining the balance

Once your client program has established a connection with an Account object, the
balance () method can be used to obtain the balance. The balance() method on the
client side is actually a stub generated by the 1d12java compiler that gathers all the data
required for the request and sends it to the server object.

AccountManagerHelper.java

Java

This file is located in the Bank package. It contains an AccountManagerHelper object and
defines several methods for binding to the server that implements this object. The
bind() class method contacts the specified POA manager to resolve the object. Our
example application uses the version of the bind method that accepts an object name,
but the client may optionally specify a particular host and special bind options. For
more information about Helper classes, see the VisiBroker Programmer's Reference.

package Bank;
public final class AccountManagerHelper {

public static Bank.AccountManager bind(org.omg.CORBA.ORB orb) {
return bind(orb, null, null, null);

}

Other methods

Several other methods are provided that allow your client program to manipulate an
AccountManager object reference.

Many of these methods and member functions are not used in the example client
application, but they are described in detail in the VisiBroker Programmer's Reference.

Step 4: Implementing the server

Just as with the client, many of the classes used in implementing the bank server are
contained in the Bank package generated by the id12java compiler. The Server. java file
is a server implementation included for the purposes of illustrating this example.
Normally you, the programmer, would create this file.

Server programs

This file implements the Server class for the server side of our banking example. The
code samples below are examples of server side programs for C++ and Java. The
server program does the following:

- Initializes the Object Request Broker.

- Creates a Portable Object Adapter with the required policies.

2: Developing an example application with VisiBroker 13

Step 5: Building the example

Creates the account manager servant object.

Activates the servant object.
Activates the POA manager (and the POA).

Waits for incoming requests.

public class Server {
public static void main(String[] args) f{
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.1init (args,null);
// get a reference to the root POA
POA roOtPOA =

POAHelper.narrow (orb.resolve_initial_references("RootPOA"));
// Create policies for our persistent POA

org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy (LifespanPolicyValue.PERSISTENT)

}i
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa",

rootPOA. the_POAManager (),

policies);
// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, managerServant);
// Activate the POA manager
00t POA.the_POAManager () .activate();
System.out.println(myPOA.servant_to_reference(managerServant) + " is

ready.");
// Wait for incoming requests
orb.run();
} catch (Exception e) {

e.printStackTrace();

}

Step 5: Building the example

The examples directory of your VisiBroker release contains a vbmake.bat for this
example and other VisiBroker examples.

Compiling the example

Windows

Assuming VisiBroker is installed in C:\vbroker, type the following to compile the
example:

prompt> vbmake

The command vbmake is a batch file which runs the id12java compiler and then
compiles each file.

If you encounter some problems while running vbmake , check that your path
environment variable points to the bin directory where you installed the VisiBroker
software.

14 VisiBroker for Java Developer’s Guide

Step 6: Starting the server and running the example

UNIX

Assuming VisiBroker is installed in /usr/local, type the following to compile the
example:

prompt> make java

In this example, make is the standard UNIX facility. If you do not have it in your PATH, see
your system administrator.

Step 6: Starting the server and running the example

Now that you have compiled your client program and server implementation, you are
ready to run your first VisiBroker application.

Starting the Smart Agent

Before you attempt to run VisiBroker client programs or server implementations, you
must first start the Smart Agent on at least one host in your local network.

The basic command for starting the Smart Agent is as follows:
prompt> osagent

The Smart Agent is described in detail in “Using the Smart Agent.”

Starting the server

Windows

Open a DOS prompt window and start your server by using the following DOS
command:

prompt> start vbj Server

UNIX
Start your Account server by typing:

prompt> vbj Server&

Running the client

Windows

Open a separate DOS prompt window and start your client by using the following DOS
command:

prompt> vbj Client

UNIX
To start your client program, type the following command:
prompt> vbj Client

You should see output similar to that shown below (the account balance is computed
randomly).

The balance in the account in $168.38.

Deploying applications with VisiBroker

VisiBroker is also used in the deployment phase. This phase occurs when a developer
has created client programs or server applications that have been tested and are ready

2: Developing an example application with VisiBroker 15

Deploying applications with VisiBroker

for production. At this point a system administrator is ready to deploy the client
programs on end-users’ desktops or server applications on server-class machines.

For deployment, the VisiBroker ORB supports client programs on the front end. You
must install the VisiBroker ORB on each machine that runs the client program. Clients
(that make use of the VisiBroker ORB) on the same host share the VisiBroker ORB.
The VisiBroker ORB also supports server applications on the middle tier. You must
install the full VisiBroker ORB on each machine that runs the server application. Server
applications or objects (that make use of the VisiBroker ORB) on the same server
machine share the VisiBroker ORB. Clients may be GUI front ends, applets, or client
programs. Server implementations contain the business logic on the middle tier.

Figure 2.2 Client and server programs deployed with VisiBroker ORBs

Client
Pregrarm

YisiBroker |l

G front
nd

YWisiBrokar [1

Java Applet
WisiBroker

|

| nberneti| ntraneat

Chject A
Chject B
Cbject
WisiBroker
ZRE Server

VisiBroker Applications

Deploying applications

In order to deploy applications developed with VisiBroker, you must first set up a
runtime environment on the host where the application is to be executed and ensure
that the necessary support services are available on the local network.

The runtime environment required for applications developed with the Java includes
these components:

- Java Runtime Environment.

- VisiBroker Java packages archived in the vbjorb. jar file, located in the 1ib
subdirectory where you installed VisiBroker.

- Availability of the support services required by the application.

A Java Runtime Environment must be installed on the host where the deployed
application is to execute, and the VisiBroker packages must be installed on the host
where the deployed application is to execute.

Environment variables

When you use the vbj executable, the environmental variables are automatically set up
for you.

16 VisiBroker for Java Developer’s Guide

Deploying applications with VisiBroker

If the deployed application is to use a Smart Agent (osagent) on a particular host, you
must set the 0SAGENT_ADDR environment variable before running the application. You can
use the vbroker.agent.addr property as a command-line argument to specify a
hostname or IP address. The table below lists the necessary command-line
arguments.

If the deployed application is to use a particular UDP port when communicating with a
Smart Agent, you must set the 0SAGENT_PORT environment variable before running the
application.

You can use vbroker.agent.port (Java) command-line argument to specify the UDP
port number.

For more information about environment variables, see the Borland VisiBroker
Installation Guide.

Support service availability

A Smart Agent must be executing somewhere on the network where the deployed
application is to be executed. Depending on the requirements of the application being
deployed, you may need to ensure that other VisiBroker runtime support services are
available, as well. These services include:

Support services Needed when:

Object Activation Daemon (0zd) | A deployed application is a server that implements object
which needs to be started on demand.

Interface Repository (irep) A deployed application uses either the dynamic skeleton
interface or dynamic implementation interface. See “Using
Interface Repositories” for a description of these interfaces.

GateKeeper A deployed application needs to execute in an environment
that uses firewalls for network security.

Using vbj

Java

You can use the vbj command to start your application and enter command-line
arguments that control the behavior of your application.

vbj -Dvbroker.agent.port=10000 <class>

Running the application

Before you attempt to run VisiBroker client programs or server implementations, you
must first start the Smart Agent on at least one host in your local network. The Smart
Agent is described in detail in “Starting the Smart Agent”.

Executing client Applications
A client application is one that uses VisiBroker ORB objects, but does not offer any
VisiBroker ORB objects of its own to other client applications.

A client may be started with the vbj command, or from within a Java-enabled web
browser.

2: Developing an example application with VisiBroker 17

Deploying applications with VisiBroker

The following table summarizes the command-line arguments that may be specified for
a Java client application.

Options Description

-DORBagentAddr=<hostname| ip_address> | Specifies the hostname or IP address of the host
running the Smart Agent this client should use. If a
Smart Agent is not found at the specified address or if
this option is not specified, broadcast messages will be
used to locate a Smart Agent.

-DORBagent Port=<port_number> Specifies the port number of the Smart Agent. This
option is useful if multiple ORB domains are required. If
the port number is not specified, the default value is set
to 14000.

-DORBmbufSize=<buffer_size> Specifies the size of the intermediate buffer used by
VisiBroker for operation request processing. To improve
performance, the VisiBroker ORB does more complex
buffer management than in previous versions of
VisiBroker. The default size of send and receive buffers
is 4—4kb. If data sent or received is larger than the
default, new buffers will be allocated for each request/
reply. If your application frequently sends data larger
than 4kb and you wish to take advantage of buffer
management, you may use this system property to a
specify a larger number of bytes for a default buffer size.

-DORBtcpNoDelay=<false|true> When set to true, all network connections will send data
immediately. The default is false, which allows a
network connection to send data in batches, as the
buffer fills.

-DORBconnectionMax=<integer> Specifies the maximum number of connections allowed
for an object implementation when 0aid TSession is
selected. If you do not specify a value, the default is
unlimited.

-DORBconnectionMaxIdle=<integer> Specifies the number of milliseconds which a network
connection can be idle before being shutdown by
VisiBroker. By default, this is set to 360 which means
that connections will never time-out. This option should
be set for Internet applications.

Executing server applications in Java

A server application is one that offers one or more VisiBroker ORB objects to client
applications. A server application may be started with the vbj command or it may be
activated by the Object Activation Daemon (oad).

The following table summarizes the command-line arguments that may be specified for
a Java server application.

Options Description

-DOAipAddr <hostname|ip_address> | Specifies the hostname or IP address to be used for the
Object Adaptor. Use this option if your host has multiple
network interfaces and the BOA is associated with only one
of those interfaces. If no option is specified, the host's
default address is used.

-DOAport <port_number> Specifies the port number to be used by the object adapter
when listening for a new connection.
-DOA1d <TPool |TSession> Specifies the thread policy to be used by the BOA. The

default is TPool unless you are in backward compatibility
mode; if you are in backward compatibility, the default is
TSession.

-DOAthreadMax <integer> Specifies the maximum number of threads allowed when
OAid TPool is selected. If you do not specify or you specify
0, this selects unlimited number of threads or, to be more
precise, a number of threads limited only by your system
resources.

18 VisiBroker for Java Developer’s Guide

Deploying applications with VisiBroker

Options

Description

-DOAthreadMin <integer>

Specifies the minimum number of threads available in the
thread pool. If you do not specify, the default is 0. You can
specify this only when 0aid Tpool is selected.

-DOAthreadMaxIdle <integer>

This specifies the time in seconds during which a thread can
exist without servicing any requests. Threads that idle
beyond the time specified can be returned to the system. By
default, this is set to 300.

-DOAconnectionMax <integer>>

Specifies the maximum number of connections allowed
when 021d TSession is selected. If you do not specify, the
default is unlimited.

-DOAconnectionMaxIdle <integer>

This specifies the time which a connection can idle without
any traffic. Connections that idle beyond this time can be
shutdown by VisiBroker. By default, this is set to 0, meaning
that connections will never automatically time-out. This
option should be set for Internet applications.

2: Developing an example application with VisiBroker

19

20 VisiBroker for Java Developer’s Guide

Options

Programmer tools for Java

This chapter describes the programmer tools offered by VisiBroker for Java. In this
section, command syntax consists of the commands, the arguments necessary to
execute them, and command-line options. Some commands take no arguments, but
their options are provided.

VisiBroker, version 6.5 and later, provides additional features in the VisiBroker for Java
tools. Using these features, users have greater flexibility in configuring their
applications, such as setting classpath and ORB properties. VisiBroker provides a
configuration file-based system that lets the user specify the configuration. In addition,
starting with VisiBroker version 6.5, all of these tools are invoked using launchers that
are natively built. Previously, UNIX-based launchers were script-based and provided
very limited functionality for configuration.

All VisiBroker for Java programmer's tools have both general and specific options. The
specific options for each tool are listed in the section for the tool. All the options in the
list are enabled by default and they are preceded by a hyphen (-). To turn-off the
default value, you can either prepend -no_ or remove the hyphen. For example, to
display a “warning” if a #pragma is not recognized, the default value is:

warn_unrecognized_pragmas
To turn-off the default, use the following option:
-no_warn_unrecognized_pragmas

The general options available to all programmer tools are provided in the following
section.

General options

The following options are common to all programmer tools:

Option Description

-VBJdebug Outputs VisiBroker for Java debugging information.
-J<java_option> Passes the java_option directly to the Java Virtual Machine.
-VBJversion Outputs the VisiBroker for Java version in use.

-VBJprop <property>=<value> Passes the specified property to VBJ executable.

3: Programmer tools for Java 21

idl2ir

Option Description

-VBJjavavm <vm-name> Specifies the path, flags to the Java VM. If not specified, the
default value java is used.

-VBJclasspath <classpath> Specifies the classpath. The value entered here precedes the
CLASSPATH ENV variable.

-VBJaddJar <jarfile> <jarfile> to the cLasspatH before executing the VM. If no

absolute path is specified, the jarfile is assumed to be relative
to <launcher-location>/../1ib.

-VBJconfig <config-file-name> | The path to the configuration file to be used by the launcher. If
not specified, the default location is <install-dir>/bin/
vbj.config (Or vbjc.config for launcher vbjc).

-help|-h|-?|-usage Prints usage information.

idI2ir

This tool allows you to populate an interface repository (IR) with objects defined in an
Interface Definition Language (IDL) source file. It is executed using the id12ir
command.

Syntax

id12ir [options] {filename}

Example

1d12ir -irep my_repository -replace java_examples/bank/Bank.idl

Description

The id12ir command takes an IDL file as input, binds itself to an interface repository
server and populates the repository with the IDL constructs contained in filename. If the
repository already contains an item with the same name as an item in the IDL file, the
old item will be modified.

Keywords
The keyword contains both the options listed below and the IDL input files to be
processed.
Options
The following options are available for idl2ir.
Option Description
-D, -define foo[=bar] Defines a preprocessor macro foo, optionally with a value
bar.
-1, -include <dir> Specifies an additional directory for #include searching.
-P, -no_line directives Suppresses the generation of line number information.
The default is off.
-H, -list_includes Prints the full paths of included files on the standard error
output. The default is off.
-U, -undefine <foo> Undefines a preprocessor macro foo.
-C, -retain_comments Retain comments in preprocessed output. The default is
off.
-[no_]idl_strict Specifies a strict OMG standard interpretation of IDL
source. The default is off.
-[no_Jbuiltin (TypeCode|Principal) |Create built-in Type ::TypeCode oOr ::Principal. The default
is on.
- [no_]warn_unrecognized_pragmas Displays a warning that appears if a #pragma is not
recognized. The default is on.

22 VisiBroker for Java Developer’s Guide

ir2idl

ir2idl

Option

Description

- [no_J]back_compat_mapping

Specifies the use of mapping that is compatible with
VisiBroker 3.x.

- [no_]preprocess

Preprocess the input file before parsing. The default is on.

-[no_]preprocess_only

Stop parsing the input file after preprocessing. The default
is of f.

-[no_Jwarn_all

Turn all warnings on/off simultaneously. The default is on.

-irep <irep name>

Specifies the name of the interface repository.

-deep

Applies a deep (versus shallow) merge. The default is off.

-replace

Replaces entire repository instead of merging. The default
is of f.

filel [file2]...

One or more files to process, or “~” for stdin.

-h, -help, -usage, -?

Prints help information.

idI2java

This tool allows you to create an Interface Definition Language (IDL) source file with
objects from an interface repository. It is executed with the ir2idl command.

Syntax

ir2idl [options] filename

Example

ir2idl -irep my_repository -o my_file

Description

The ir2idl command binds to the IR and prints the contents in IDL format.

Keywords

The keyword contains both the options listed below.

Options

The following options are available for ir2idl.

Option Description

-irep <irep name> Specifies the name of the interface repository.

-0 <file> Specifies the name of the output file, or “=” for stdout.

-strict Specifies strict adherence to OMG-standard code generation. The

default is on. The compiler will complain upon occurrences of Borland-
proprietary syntax extensions in input IDL.

-version Displays or prints out the version of Borland VisiBroker that you are
currently running.

-h, -help, -usage, -? |Prints help information.

This tool generates Java source code from an IDL source file. It is executed using the

id12java command.

Syntax

id12java [options] {filename}

3: Programmer tools for Java 23

idl2java

Example

idl2java -no_tie Bank.idl

Description

The id12java command, a Java-based preprocessor, compiles an IDL source file and
creates a directory structure containing the Java mappings for the IDL declarations.

Typically, one IDL file will be mapped to many Java files because Java allows only one
public interface or class per file. IDL file names must end with the .1d1 extension.

Keywords

The keyword contains both the options listed below and the IDL source file(s) to be

processed.

Options

The following options are available for idI2java:

Option

Description

-D, -define foo[=bar]

Defines a preprocessor macro foo, optionally with a value
bar.

-I, -include <dir>

Specifies the full or relative path to the directory for
#include files. Used in searching for include files.

-P, -no_line_directives

Suppresses the generation of line number information in
the generated code. The default is off.

-H, -list_includes

Prints the full paths of included files on the standard error
output.

-compilerflags

“

Specifies the Java compiler flags. FFirst
comma separated.

is escaped,

-compiler <full name>

Specify full name of Java Compiler class name.

-U, -undefine foo

Undefines a preprocessor macro foo.

-[no_Jbuiltin (TypeCode|Principal)

Create built-in Type : :TypeCode or ::Principal. The default
is on.

- [no_]preprocess

Preprocess the input file before parsing. The default is on.

-[no_]preprocess_only

Stop parsing the input file after preprocessing. The default
is of f.

-[no_Jwarn_all

Turn all warnings on/off simultaneously. The default is off.

filel [file2]...

One or more files to process, or “~” for stdin.

-[no_]copy_local_values

Copy values when making colocated calls on CORBA
methods. The default is off.

-sealed <pkg> <dest_pkg>

Mark this package as sealed. Code will be generated in
dest_pkg or default location.

-no_classloader_aware

Generate classloader aware Java code. The default is on.

-backcompat _compile

Use the deprecated compile option of jdk1.4.1. The
default is off.

-[no_]idl_strict

Specifies strict adherence to OMG standard interpretation
of idl source. The default is off.

-[no_J]warn_unrecognized_pragmas

Displays a warning that appears if a #pragma is not
recognized. The default is on.

- [no_]back_compat_mapping

Specifies the use of IDL mapping that is compatible with
VisiBroker 3.x caffeine compiles.

-[no_]boa

Specifies BOA-compatible code generation. The default is
off.

- [no_]comments

Suppresses the generation of comments in the code. The
default is on.

-[no_J]examples

Suppresses the generation of the _example classes. The
default is off.

-gen_included_files

24 VisiBroker for Java Developer’s Guide

Generates code for #included files. The default is off.

javazidi

javazidl

Option Description

-list_files Lists files written during code generation. The default is
off.

- [no_]obj_wrapper Generates support for object wrappers. The default is off.

-root_dir <path> Specifies the directory in which the generated files reside.

- [no_]servant Generates servant (server-side) code. The default is on.

-tie Generates _tie classes. The default is on.

-[no_Jwarn_missing_define Warns if any forward declared interfaces were not defined.
The default is on.

- [no_]bind Suppresses the generation ofbind () methods in the
generated Helper class. The default is off.

-[no_]compile When set to on, automatically compiles the Java files. The
default is off.

-dynamic_marshal Specifies that marshalling use DSI/DII model. The default
is of f.

-idl2package <IDL_name> <pkg> Overrides default package for a given IDL container type.

- [no_linvoke_handler Generates invocation handler class for EJB. Default is of f.

- [no_]narrow_compliance Generated code for narrow is compliant (versus 3.x
compatible). The default is on.

- [no_]Object_methods Generate all methods on Objects. The default is on.

-package <pkg> Specifies the root package for generated code.

-stream_marshal Specifies that marshaling use the stream model. The
default is on.

-strict Specifies strict adherence to OMG standard for code
generation. The default is off.

-version Displays the software version number of Borland
VisiBroker.

-map_keyword <kwd> <replacement> Specifies the keyword to avoid and designates its
replacement.

-h, -help, -usage, -? Prints help information.

This command generates an IDL from a Java class file (in Java byte code). You can
enter one or more Java classes (in byte codes). If you enter more than one class name,
make sure you include spaces in between the class names.

If you use a class that extends org.omg.CORBA. IDLEntity in some Java remote interface
definition, it must have the following:

- an IDL file that contains the IDL definition for that type because the
org.omg.CORBA.IDLEntity interface is a signature interface that marks all IDL data
types mapped to Java.

- all related (supporting) classes according to the CORBA 3.0 IDL2Java Specification
from the Object Management Group (OMG).

If you use a class that extends org.omg.CORBA. IDLEntity in some Java remote interface
definition, use the -import <IDL files> directive in the java2idl tool's command line.

For more information, refer to the CORBA 3.0 IDL2Java Specification located at
http://www.omg.org/.

Note

To use this command, you must have a virtual machine supporting JDK 1.3 or later.

Syntax

java2idl [options] {filename}

3: Programmer tools for Java 25

http://www.omg.org/

javaZ2iiop

javaziiop

Example

java2idl -o final.idl Account Client Server

Description

Use this command when you want to generate an IDL from your Java byte code. You
might want to use this when you have existing Java byte code and want to create an
IDL file from it so it can be used with some other programming language like C++,

COBOL, or Smalltalk.

Using the option “—0” as shown in the above example, the three Java byte code files
(Account, Client, Server) are output to a file, final.idl. By default, the output is

displayed on the screen.

Keywords

The keyword contains both the options listed below and the Java byte code file(s) to be

processed.

Options

The following options are available for java2idl.

Option

Description

-D, -define foo[=bar]

Defines a preprocessor macro foo, optionally with a value
bar.

-1, -include <dir>

Specifies the full or relative path to the directory for #include
files. Used in searching for include files.

-P, -no_line_directives

Suppresses the generation of line number information in the
generated code. The default is off.

-H, -list_includes

Prints the full paths of included files on the standard error
output.

-U, -undefine foo

Undefines a preprocessor macro foo.

-[no_]idl_strict

Specifies strict adherence to OMG standard interpretation of
idl source. The default is off.

-[no_]warn_unrecognized_pragmas

Displays a warning that appears if a #pragma is not
recognized. The default is on.

-[no_]back_compat_mapping

Specifies the use of mapping that is compatible with
VisiBroker 3.x caffeine compile.

-exported <pkg>

The type definitions in the specified package will be exported.

-[no_Jexport_all

Exports the type definitions in all packages. The default is
off.

-import <IDL file name>

Loads extra IDL definitions.

-imported <pkg> <IDL file name>

The type definitions in the specified package should be
considered imported from the specified IDL file and should
not be code generated

-0 <file>

Specifies the name of an output file, or “-” for stdout.

-strict

Specifies strict adherence to OMG standard for code
generation. The default is off.

classl [class2]...

One or more Java Classes to process.

-version

Displays the software version number of Borland VisiBroker.

-h, -help, -usage, -?

Prints help information.

This command allows you to use the Java language to define IDL interfaces instead of
using IDL. You can enter one or more Java class names (in Java byte code). If you
enter more than one class name, make sure you include spaces in between the class
names. Use fully scoped class names.

26 VisiBroker for Java Developer’s Guide

java2iiop

Note

To use this command, you must have a Java Virtual Machine supporting JDK 1.3 or
later.

If you use a class that extends org.omg.CORBA. IDLEntity in some Java remote interface
definition, it must have the following:
- an IDL file that contains the IDL definition for that type because the
org.omg.CORBA. IDLEntity interface is a signature interface that marks all IDL data
types mapped to Java.

- all related (supporting) classes according to the CORBA 3.0 IDL2Java Specification
from the Object Management Group (OMG).

If you use a class that extends org.omg.CORBA. IDLEntity in some Java remote interface
definition, use the -import <IDL files> directive in the java2iiop tool's command line.

For more information, refer to the CORBA 3.0 IDL2Java Specification located at
http://www.omg.org/.

Syntax

java2iiop [options] {class name}

Example

java2iiop -no_tie Account Client Server

Description

Use java2iiop if you have existing Java byte code that you wish to adapt to use
distributed objects or if you do not want to write IDL. By using java2iiop, you can
generate the necessary container classes, client stubs, and server skeletons from Java
byte code.

Note
The java2iiop compiler does not support overloaded methods on CORBA interfaces.

Keywords

The keyword contains both the options listed below and the Java byte code file(s) to be
processed.

Options
The following options are available for java2iiop.

Option Description

-D, define foo[=bar] Defines a preprocessor macro foo, optionally with a value
bar.

-I, -include <dir> Specifies the full or relative path to the directory for
#include files. Used in searching for include files.

-P, -no_line directives Suppresses the generation of line number information in
the generated code. The default is off.

-H, -list_includes Prints the full paths of included files on the standard error
output.

-U, -undefine foo Undefines a preprocessor macro foo.

-[no_]idl_strict Specifies strict adherence to OMG standard interpretation
of idl source. The default is off.

- [no_]warn_unrecognized_pragmas Displays a warning that appears if a #pragma is not
recognized. The default is on.

- [no_]back_compat_mapping Specifies the use of mapping that is compatible with
VisiBroker 3.x. The default is off.

-exported <pkg> Specifies the name of an exported package.

- [no_Jlexport_all Exports all packages. The default is off.

3: Programmer tools for Java 27

http://www.omg.org/

javaZ2iiop

Option

Description

-import <IDL file name>

Loads extra IDL definitions.

-imported <pkg> <idl_file_name>

Specifies the name of an imported package.

-[no_J]boa

Specifies BOA-compatible code generation. The default is
off.

-[no_]comments

Suppresses the generation of comments in the code. The
default is on.

-[no_J]examples

Suppresses the generation of the _example classes. The
default is off.

-gen_included_files

Generates code for #included files. The default is off.

-list_files

Lists files written during code generation. The default is
off.

-[no_]obj_wrapper

Generates support for object wrappers. The default is of f.

-root_dir <path>

Specifies the directory in which the generated files reside.

-[no_]servant

Generates servant (server-side) code. The default is on.

-tie

Generates _tie classes. The default is on.

-[no_Jwarn_missing_define

Warns if any forward declared file names were never
defined. The default is on.

-[no_]bind Suppresses the generation of bind() methods in the
generated Helper class. The default is on.

-[no_]compile Automatically generates Java files. When set to on, also
automatically compiles the Java files. The default is off.

-compiler Specifies the Java compiler to be used. This option is

ignored if the -compile option is not set.

-compilerflags "\-flag,arg[,.]

Specifies the Java compiler flags to be passed to the Java
compiler. First “-” is escaped, comma separated.

-C, -retain_comments

Retain comments in preprocessed output. The default is
off.

-[no_Jbuiltin (TypeCode|Principal)

Create built-in Type ::TypeCode or ::Principal. The default
is on.

- [no_]preprocess

Preprocess the input file before parsing. The default is on.

- [no_]preprocess_only

Stop parsing the input file after preprocessing. The default
is of f.

-[no_Jwarn_all

Turn all warnings on/off simultaneously. The default is off.

-[no_]copy_local_values

Copy values when making colocated calls on CORBA
methods. The default is off.

-no_classloader_aware

Generate classloader aware Java code. The default is on.

-backcompat_compile

Use the deprecated compile option of jdk1.4.1. The
default is off.

-[no_J]idlentity_array_mapping

Map array of IDLEntity to boxedIDL in boxedrMI. The default
is of f.

classl [class2]...

One or more Java classes to process.

-dynamic_marshal

Specifies that marshalling use DSI/DIl model. The default
is of f.

-idl2package <IDL name> <pkg>

Overrides default package for a given IDL container type.

-[no_]invoke_handler

Generates invocation handler class for EJB. Default is on.

-[no_]narrow_compliance

Generated code is compliant (versus 3.x compatible). the
default is on.

- [no_]Object_methods

Generates all methods defined in java.lang.Object
methods, such as string and equals. The default is on.

-package <pkg>

Specifies the root package for generated code.

-sealed <pkg> <destination_pkg>

Generates stubs and skeletons for remote interfaces in
the specified package to the org.omng.stub and the
destination package respectively.

-stream_marshal

28 VisiBroker for Java Developer’s Guide

Specifies that marshaling use the stream model. The
default is on.

vb

J

vbj

Option Description

-strict Specifies strict adherence to OMG standard for code
generation. The default is off.

-version Displays the software version number of Borland
VisiBroker.

-map_keyword <kwd> <replacement> Specifies the keyword to avoid and designates its
replacement.

-h, -help, -usage, -? Prints help information.

This command starts the local Java interpreter.

Syntax

vbj [options] [arguments normally sent to java VM] {class} [argl arg2 ...]
Where:

Argument Description
{class} Specifies the name of the class to be executed.
largl arg2 ...] | Specific arguments to be passed to the class.
Example
vbj Server
Description

Java applications have certain limitations not faced by applications written in other
languages. The vbj command provides options to work around some of these
limitations, and it is the preferred method to launch Borland VisiBroker applications.
The vbj command performs the following actions:

- Passes CLASSPATH and arguments to the Java VM according to command line
options and configuration file definition.

- Customized launching behavior for each application using customized configuration
files.

- Embedded JVM within the same process as the launcher.
- Runs application as daemon in Windows platforms only.
The following options are available for vbj.

Argument Description

-debug, -VBJdebug Turns on launcher debug output.

-h, -help, -usage, -? Prints launcher command help.

-version Displays or prints out the version of Borland VisiBroker for Java
that you are currently running.

-install <server-name> Installs a Windows NT/2000 service.

-remove <server-name> Removes a Windows NT/2000 service.

-javahome <jvm-directory> The installation directory of the Java VM.

-classicvm Selects the VM type to be run. Note that you can also use the -

-hotspotvm / -clientvm J flag to pass VM type. Fro example:

-servervm vbj -J-server Server

3: Programmer tools for Java 29

vbjc

vhjc

Argument Description

-classpath Modifies the classpath. The value of this argument is either
-classpath/a appended to (/a), prepended to (/p), or completely replaces (/r)
-classpath/p any existing classpath setting in the environment. Only the last
-classpath/r occurrence of the classpath family argument is honored. Note
-VBJclasspath that -vBJclasspath is equivalent to -classpath/p and -VBJaddJar ir
-VBJaddJar equivalent to -classpath/a.

-verbose Turns on verbose output from the Java VM.

-VBJconfig <config-file-name>

Uses an alternate configuration file and replaces the default
configuration file.

-jpdal: [{paused|running}]
[,address=[<host>:]<port#>]]

Turns on JPDA debug. For example:
-jpda:running, address=23456

Starts the JVM with JPDA turned on. A JPDA debugger
can then attach to this application on port 23456 to
debug the application. Also ensure that in the launcher's
configuration file (for example <install-dir>/bin/
vbj.config) the following line is present:

jpda running,address=23456

-javacmd

Prints an equivalent Java command. This is useful when vbj
launcher is not required and the application is executed
through java launcher.

This command is used to compile Java source code that can import VisiBroker classes.

When called, it:

- Sets CLASSPATH, arguments to be passed to Java VM according to command line
options and configuration file definition.

- Adds the VisiBroker-standard JAR files into the CLASSPATH.

- Launches javac main class: com.sun.tools.javac.Main.

Syntax

vbjc [arguments normally passed to javac]

Example

vbjc Server.java

The vbjc command supports the command line options described in the following table.

Argument Description

-VBJdebug Displays or prints out the VisiBroker for Java debugging
information.

-VBJversion Displays or prints out the version of Borland VisiBroker for Java

that you are currently running.

-VBJjavavm <vmname>

Specifies the path to the Java Virtual Machine to be used.
Default is java.

-VBJclasspath <classpath>

Specifies the classpath. Precedes CLASSPATH environment
variable.

-VBJaddJar <jarfile>

Appends <install-dir>/lib/<jarfile> to the cLAsSPATH before
executing the VM. If no absolute path is specified, the jarfile is
assumed to be relative to <launcher-location>/../lib.

-VBJconfig <config-file-name>

The path to the configuration file to be used by the launcher. If
not specified, the default location is <install-dir>/bin/
vbj.config|vbjc.config.

-help|-h|-?|-usage

Prints usage information.

-VBJcompiler <class-name>

Overwrites the default javac main class.

30 VisiBroker for Java Developer’s Guide

Specifying the classpath

Specifying the classpath

The following sources are merged together in the following order:

1 JAR and ZIP files in the patches directory ($VBROKERDIR/1ib/patches/) (Note that the
patches directory is not automatically created under the SVBROKERDIR/1ib/ directory.
It has to be created by the user explicitly.)

The classpath specified in -VBJclasspath, -classpath/p, or -classpath/r
The $CLASSPATH exported in the environment (if -classpath/r is not specified)
The classpath specified in -classpath/a

The default JAR files required by the launcher

oo g A W DN

JAR files added using VBJaddJar and assumed to be located in the
<launcher location>/../1ib directory if no absolute path is specified

7 Classpath added using addpath directive in the configuration file

8 JAR files added using addjars directive in the configuration file

9 The current directory

The merged classpath is passed to the Java Virtual Machine using -Djava.class.path.

Specifying the JVM

idI2wsj

By default the JVM is located as follows:
1 Searching the directories specified in the PATH.

2 Using the information specified through javahome directive in the configuration file
(the default configuration file for vbj is vbj.config).

The above procedure can be overridden using the -VBJjavavm or -javahome (only
supported in vbj) option. With -VBJjavavn either the name of the VM can be specified or
the full path to the VM can be specified. The option -javahome has same semantics as
the javahome configuration file directive. Note that if no VM is found using the -VBJjavavm
or -javahome options, no further search is carried out to locate the default JVM and
program terminates with an error.

Option Description

-encoding_wsi_only | Generate specific WS—I| encodings only. Defaults to OFF

-encoding_soap_only | Generate specific SOAP encodings only. Defaults to OFF

-wsdl_file_name Name of the generated WSDL file. Defaults to the name of IDL

-wsd1_namespace Namespace of the generated WSDL. Defaults to the name of the
IDL file

-gen_java_bridge Generate VisiBroker for Java bridge code. Defaults to OFF.

-root_dir Directory in which generated files should reside

3: Programmer tools for Java 31

32 VisiBroker for Java Developer’s Guide

Names

IDL to Java mapping

This section describes the basics of the VisiBroker for Java current IDL-to-Java
language mapping, as implemented by the id12java compiler. VisiBroker for Java
conforms with the OMG IDL/Java Language Mapping Specification.

See the latest version of the OMG IDL/Java Language Mapping Specification for
complete information about the following:

- Mapping pseudo-objects to Java
- Server-side mapping

- Java ORB portability interfaces

In general, IDL names and identifiers are mapped to Java names and identifiers with
no change.

If a name collision is generated in the mapped Java code, the name collision is
resolved by prepending an underscore (_) to the mapped name.

In addition, because of the nature of the Java language, a single IDL construct may be
mapped to several (differently named) Java constructs. The “additional” names are
constructed by appending a descriptive suffix. For example, the IDL interface
AccountManager is mapped to the Java interface AccountManager and additional Java
classes AccountManagerOperations, AccountManagerHelper, and AccountManagerHolder.

In the exceptional cases that the “additional” names may conflict with other mapped
IDL names, the resolution rule described above is applied to the other mapped IDL
names. In other words, the naming and use of required “additional” names takes
precedence.

For example, an interface whose name is fooHelper or fooHolder is mapped to
_fooHelper or _fooHolder respectively, regardless of whether an interface named foo
exists. The helper and holder classes for interface foolelper are named
_fooHelperHelper and _fooHelperHolder.

IDL names that would normally be mapped unchanged to Java identifiers that conflict
with Java reserved words will have the collision rule applied.

4: IDL to Java mapping 33

Reserved names

Reserved names

The mapping reserves the use of several names for its own purposes. The use of any
of these names for a user-defined IDL type or interface (assuming it is also a legal IDL
name) will result in the mapped name having an underscore (_) prepended. Reserved
names are as follows:

- The Java class <type>Helper, where <type> is the name of an IDL user-defined type.

- The Java class <type>Holder, where <type> is the name of an IDL user-defined type
(with certain exceptions such as typedef aliases).

- The Java classes <basicJavaType>Holder, where <basicJavalype> is one of the Java
primitive data types that is used by one of the IDL basic data types.

- The nested scope Java package name <interface>Package, where <interface> is the
name of an IDL interface.

- The Java classes <interface> Operations, <interfaces> POA, and <interface>POATie
when <interface> is the name of an IDL interface type.

Reserved words

Modules

The mapping reserves the use of several words for its own purposes. The use of any of
these words for a user-defined IDL type or interface (assuming it is also a legal IDL
name) will result in the mapped words having an underscore (_) prepended. The
reserved keywords in the Java language are as follows:

abstract abstractBase boolean break
byte case catch char
class const continue default
do double else extends
false final finally float

for goto if implements
import instanceof int interface
local long native new

null package private protected
public return short static
super switch synchronized this
throw throws transient true

try void volatile while

An IDL module is mapped to a Java package with the same name. All IDL type
declarations within the module are mapped to corresponding Java class or interface
declarations within the generated package.

IDL declarations not enclosed in any modules are mapped into the (unnamed) Java
global scope.

The following code sample shows the Java code generated for a type declared within
an IDL module.

/* From Example.idl: */
module Example { };
// Generated java
package Example;

34 VisiBroker for Java Developer’s Guide

Basic types

Basic types

The following table shows how the defined IDL types map to basic Java types.

IDL type Java type
boolean boolean

char char

wchar char

octet byte

string java.lang.String
wstring java.lang.String
short short

unsigned short short

long int

unsigned long int

longlong long

unsigned longlong | long

float float

double double

When there is a potential mismatch between an IDL type and its mapped Java type, a
standard CORBA exception can be raised. For the most part, exceptions are in two
categories,

- Range of the Java type is larger than the IDL type. For example, Java chars are a
superset of IDL chars.

- Because there is no support in Java for unsigned types, the developer is responsible
for ensuring that large unsigned IDL type values are handled correctly as negative
integers in Java.

Additional details are described in the following sections.

IDL type extensions

This section summarizes the VisiBroker for Java support for IDL type extensions. The
first table provides a summary for quick look-ups. This is followed by the IDL
extensions for new types table summarizing support for new types.

Type Supported in Borland VisiBroker
longlong yes

unsigned longlong yes

long double no’

wchar yeS2

wstring yeS2

fixed no’

LvisiBroker for Java will support any future release of OMG standard implementation.
2UNICODE is used “on the wire.”

New types Description

longlong 64-bit signed 2's complements integers

unsigned longlong | 64-bit unsigned 2's complements integers

long double IEEE Standard 754-1985 double extended floating point

wchar Wide characters

4: IDL to Java mapping 35

Basic types

New types Description

wstring Wide strings

fixed Fixed-point decimal arithmetic (31 significant digits)
Holder classes

Holder classes support 0UT and INOUT parameter passing modes and are available for
all the basic IDL data types in the org.omg.CORBA package. Holder classes are generated
for all named user-defined types except those defined by typedefs. For more

information, see the Java API Reference, VisiBroker APIs, org.omg.CORBA package

section.

For user-defined IDL types, the holder class name is constructed by appending Holder
to the mapped Java name of the type.

For the basic IDL data types, the holder class name is the Java type name (with its
initial letter capitalized) to which the data type is mapped with an appended Holder, for
example, IntHolder.

Each holder class has a constructor from an instance, a default constructor, and has a
public instance member, value, which is the typed value. The default constructor sets
the value field to the default value for the type as defined by the Java language:

null for values

null for strings

false for boolean

0 for numeric and char types

null for object references

To support portable stubs and skeletons, Holder classes for user-defined types also
implement the org.omg.CORBA.portable.Streamable interface.

The holder classes for the basic types are defined in the following code sample. They
are in the org.omg.CORBA package.

// Java

package org.omg.CORBA;

final public class ShortHolder implements Streamable {
public short value;
public ShortHolder() {}
public ShortHolder (short initial) {

value =

}

initial;

...//implementation of the streamable interface

}

final public class IntHolder implements Streamable {
public int value;
public IntHolder() {}
public IntHolder (int initial) {

value =

}

initial;

...//implementation of the streamable interface

}

final public class LongHolder implements Streamable {
public long value;
public LongHolder() {}
public LongHolder (long initial) {

value =

}

initial;

...//implementation of the streamable interface

}

final public class ByteHolder implements Streamable {

36 VisiBroker for Java Developer’s Guide

Basic types

public byte value;
public ByteHolder() {}
public ByteHolder (byte initial) {
value = initial;
}
...//implementation of the streamable interface
}
final public class FloatHolder implements Streamable {
public float value;
public FloatHolder() {}
public FloatHolder (float initial) {
value = initial;
1
...//implementation of the streamable interface
}
final public class DoubleHolder implements Streamable {
public double value;
public DoubleHolder() {}
public DoubleHolder (double initial) {
value = initial;
}
...//implementation of the streamable interface
}
final public class CharHolder implements Streamable {
public char value;
public CharHolder() {}
public CharHolder (char initial) {
value = initial;
}
...//implementation of the streamable interface
}
final public class BooleanHolder implements Streamable {
public boolean value;
public BooleanHolder() {}
public BooleanHolder (boolean initial) {
value = initial;
1
...//implementation of the streamable interface
}
final public class StringHolder implements Streamable {
public java.lang.String value;
public StringHolder() {}
public StringHolder(java.lang.String initial) {
value = initial;
1

...//implementation of the streamable interface

final public class ObjectHolder implements Streamable {
public org.omg.CORBA.Object value;
public ObjectHolder() {}
public ObjectHolder (org.omg.CORBA.Object initial) {
value = initial;
1
...//implementation of the streamable interface

}

final public class ValueBaseHolder implements Streamable {

4: IDL to Java mapping 37

Basic types

public java.io.Serializable value;
public ValueBaseHolder() {}
public ValueBaseHolder (java.io.Serializable initial) {
value = initial;
}
...//implementation of the streamable interface
}
final public class AnyHolder implements Streamable {
public Any value;
public AnyHolder() {}
public AnyHolder (Any initial) {
value = initial;
1
...//implementation of the streamable interface
}
final public class TypeCodeHolder implements Streamable {
public TypeCode value;
public typeCodeHolder () {}
public TypeCodeHolder (TypeCode initial) {
value = initial;
1
...//implementation of the streamable interface
}
final public class PrincipalHolder implements Streamable {
public Principal value;
public PrincipalHolder() {}
public PrincipalHolder (Principal initial) {
value = initial;
}
...//implementation of the streamable interface

}
The follwing code sample shows the Holder class for a user-defined type <foo>.

// Java
final public class <foo>Holder
implements org.omg.CORBA.portable.Streamable {
public <foo> value;
public <foo>Holder() {}
public <foo>Holder (<foo> initial) {}
public void _read(org.omg.CORBA.portable.InputStream 1)
{...}
public void _write(org.omg.CORBA.portable.OutputStream o)
{...}
public org.omg.CORBA.TypeCode _type() {...}
}

38 VisiBroker for Java Developer’s Guide

Basic types

Java null

The Java null may only be used to represent null CORBA object references and
valuetypes (including recursive valuetypes). For example, a zero length string, rather
than null must be used to represent the empty string. This is also true for arrays and
any constructed type, except for valuetypes. If you attempt to pass a null for a
structure, it will raise a NullPointerException.

Boolean

The IDL type boolean is mapped to the Java type boolean. The IDL constants TRUE and
FALSE are mapped to the Java constants true and false.

Char

IDL characters are 8-bit quantities representing elements of a character set while Java
characters are 16-bit unsigned quantities representing Unicode characters. To enforce
type-safety, the Java CORBA runtime asserts range validity of all Java chars mapped
from IDL chars when parameters are marshaled during method invocation. If the char
falls outside the range defined by the character set, a CORBA: : DATA_CONVERSION exception
is thrown.

The IDL wchar maps to the Java char type.

Octet

The IDL type octet, an 8-bit quantity, is mapped to the Java type byte.

String

The IDL type string, both bounded and unbounded variants, is mapped to the Java
typejava.lang.String. Range checking for characters in the string as well as bounds
checking of the string are done at marshal time.

WString

The IDL type wstring, used to represent Unicode strings, is mapped to the Java
typejava.lang.String. Bounds checking of the string is done at marshal time.

Integer types

IDL short and unsigned short map to Java type short. IDL long and unsigned long map
to Java type int.

Because there is no support in Java for unsigned types, the developer is responsible
for ensuring that negative integers in Java are handled correctly as large unsigned
values.

Floating point types

The IDL floating point types float and double map to a Java class containing the
corresponding data type.

4: IDL to Java mapping 39

Helper classes

Helper classes

All user-defined IDL types have an additional “helper” Java class with the suffix Helper
appended to the type name generated. Several static methods needed to manipulate
the type are supplied.

- Any insert and extract operations for the type

- Getting the repository id

- Getting the typecode

- Reading and writing the type from and to a stream

For any user-defined IDL type, <typenane>, the following code sample is the Java code
generated for the type. The helper class for a mapped IDL interface has a narrow
operation defined for them.

// generated Java helper
public class <typename>Helper {
public static void insert (org.omg.CORBA.Any a, <typename> t);
public static <typename> extract (org.omg.CORBA.Any a);
public static org.omg.CORBA.TypeCode type();
public static String id();
public static <typename> read(org.omg.CORBA.portable.InputStream istream);
{...}
public static void write(
org.omg.CORBA.portable.OutputStream ostream, <typename> value)
{...}
// only for interface helpers
public static <typename> narrow(org.omg.CORBA.Object obj);

The following code sample shows the mapping of a named type to Java helper class.

// IDL - named type
struct st {long fl, String f2};
// generated Java
public class stHelper {
public static void insert(org.omg.CORBA.Any any,
st s) {...}
public static st extract(org.omg.CORBA.Any a) {...}
public static org.omg.CORBA.TypeCode type() {...}
public static String id() {...}
public static st read(org.omg.CORBA.InputStream is) {...}
public static void write(org.omg.CORBA.OutputStream os,
st s) {...}
1

The following code sample shows mapping of a typedef sequence to Java helper class.

// IDL - typedef sequence
typedef sequence <long> IntSeq;
// generated Java helper
public class IntSegHelper {
public static void insert (org.omg.CORBA.Any any,
int[] seq);
public static int[] extract(org.omg.CORBA.Any a){...}
public static org.omg.CORBA.TypeCode type(){...}
public static String 1d(){...}
public static int[] read(
org.omg.CORBA.portable.InputStream is)
{...}
public static void write(
org.omg.CORBA.portable.OutputStream os,
int[] seq)

40 VisiBroker for Java Developer’s Guide

Constants

Constants

Constants are mapped depending upon the scope in which they appear.

Constants within an interface

Constants declared within an IDL interface are mapped to public static final fields in
the Java interface Operations class corresponding to the IDL interface.

The following code sample shows the mapping of an IDL constant within a module to a
Java class.

/* From Example.idl: */
module Example {
interface Foo {
const long alongerOne = -321;
}i
}i

// Foo.java

package Example;

public interface Foo extends com.borland.vbroker.CORBA.Object,
Example.FooOperations,
org.omg.CORBA.portable.IDLEntity {

1

// FooOperations.java

package Example;

public interface FooOperations {

public final static int aLongerOne = (int)-321;
}

Constants NOT within an interface

Constants declared within an IDL module are mapped to a public interface with the
same name as the constant and containing a public static final field named value.
This field holds the constant's value.

Note

The Java compiler normally inlines the value when the class is used in other Java
code.

THe following code sample shows the mapping of an IDL constant within a module to a
Java class.

/* From Example.idl: */
module Example {
const long aLongOne = -123;
}i
// Generated java
package Example;
public interface aLongOne {
public final static int value = (int) -123;

}

4: IDL to Java mapping 41

Constructed types

Constructed types

IDL constructed types include enum, struct, union, sequence, and array. The types
sequence and array are both mapped to the Java array type. The IDL constructed types
enum, struct, and union are mapped to a Java class that implements the semantics of
the IDL type. The Java class generated will have the same name as the original IDL

type.

Enum

An IDL enum is mapped to a Java final class with the same name as the enum type
which declares a value method, two static data members per label, an integer
conversion method, and a private constructor. The following code sample is an
example of an IDL enum mapped to a Java final class:

// Generated java
public final class <enum_name> {
//one pair for each label in the enum
public static final int _<label> = <value>;
public static final <enum_name> <label> =
new <enum_name>(_<label>);

public int value() {...}

//get enum with specified value

public static <enum_name> from_int (int value);
//constructor

protected <enum_name>(int) {...}

}

One of the members is a public static final , which has the same name as the IDL
enum label. The other has an underscore (_) prepended and is used in switch
statements.

The value method returns the integer value. Values are assigned sequentially starting
with 0. If the enun has a label named value, there is no conflict with the value () method
in Java.

There will be only one instance of an enun. Since there is only one instance, pointer
equality tests will work correctly; that is, the default java.lang.0bject implementation of
equals() and hash() will automatically work correctly for an enumeration's singleton
object.

The Java class for the enun has an additional method, from_int (), which returns the
enun with the specified value.

The holder class for the enum is also generated. Its name is the enumeration's mapped
Java classname with Holder appended to it as follows:

public class <enum_name>Holder implements

org.omg.CORBA.portable.Streamable {

public <enum_name> value;

public <enum_name>Holder() {}

public <enum_name>Holder (<enum_name> initial) {...}

public void _read(org.omg.CORBA.portable.InputStream 1)
{...}

public void _write(org.omg.CORBA.portable.OutputStream o)
{...}

public org.omg.CORBA.TypeCode _type() {...}

42 VisiBroker for Java Developer’s Guide

Constructed types

The following code sample shows the IDL mapped to Java for enum.

// IDL

module Example {
enum EnumType { first, second, third };

}i

// generated Java
public final class EnumType
implements org.omg.CORBA.portable.IDLEntity {

public static final int _first = 0;

public static final int _second = 1;

public static final int _third = 2;

public static final EnumType first = new EnumType(_first);
public static final EnumType second = new EnumType (_second);
public static final EnumType third = new EnumType(_third);
protected EnumType (final int _vis_value) { ... }

public int value () { ... }

public static EnumType from_int (final int _vis_value) { ... }
public java.lang.String toString() { ... }

}

public final class EnumTypeHolder
implements org.omg.CORBA.portable.Streamable {

public
public
public
public
public

public
public

Struct

OtherExample.EnumType value;

EnumTypeHolder () { ... }

EnumTypeHolder (final OtherExample.EnumType _vis_value) { ... }
void _read (final org.omg.CORBA.portable.InputStream input) { ... }
void _write (final org.omg.CORBA.portable.OutputStream output) { ...

org.omg.CORBA.TypeCode _type () { ... }
boolean equals (java.lang.Object o) {...}

An IDL struct is mapped to a final Java class with the same name that provides
instance variables for the fields in IDL member ordering and a constructor for all
values. A null constructor is also provided that allows the structure's fields to be
initialized later. The Holder class for the struct is also generated. Its name is the
struct's mapped Java classname with Holder appended to it as follows:

final public class <class>Holder implements

org.
public
public
public
public
{...
publi
{...
publi

omg.CORBA.portable.Streamable {

<class> value;

<class>Holder () {}

<class>Holder (<class> initial) {...}

void _read(org.omg.CORBA.portable.InputStream i)

}

void _write(org.omg.CORBA.portable.OutputStream o)
1

org.omg.CORBA.TypeCode _type() {...}

4: IDL to Java mapping 43

Constructed types

The following code sample shows the mapping of an IDL struct to Java.

/* From Example.idl: */
module Example {
struct StructType {
long fieldl;
string field2;
}i

}i
// generated Java
public final class StructType
implements org.omg.CORBA.portable.IDLEntity {
public int fieldl;
public java.lang.String field2;
public StructType () { ... }
public StructType (final int fieldl,
final java.lang.String field2) { ... }
public java.lang.String toString() { ... }
public boolean equals (java.lang.Object o) {...}
public final class StructTypeHolder implements
org.omg.CORBA.portable.Streamable {
public Example.StructType value;
public StructTypeHolder () { ... }
public StructTypeHolder (final Example.StructType _vis_value)
{ ...}
public void _read (final org.omg.CORBA.portable.InputStream input)
{ ...}
public void _write (final org.omg.CORBA.portable.OutputStream output)
{ ...}
public org.omg.CORBA.TypeCode _type () { ... }

Union

An IDL union is given the same name as the final Java class and mapped to it; it
provides the following:

Default constructor

Accessor method for the union's discriminator, named discriminator ()

Accessor method for each branch

Modifier method for each branch

Modifier method for each branch having more than one case label

Default modifier method, if needed

If there is a name clash with the mapped union type name or any of the field names,
the normal name conflict resolution rule is used: prepend an underscore for the
discriminator.

The branch accessor and modifier methods are overloaded and named after the
branch. Accessor methods shall raise the CORBA: : BAD_OPERATION system exception if the
expected branch has not been set.

If there is more than one case label corresponding to a branch, the simple modifier
method for that branch sets the discriminant to the value of the first case label. In
addition, an extra modifier method which takes an explicit discriminator parameter is
generated.

If the branch corresponds to the default case label, then the modifier method sets the
discriminant to a value that does not match any other case labels.

It is illegal to specify a union with a default case label if the set of case labels
completely covers the possible values for the discriminant. It is the responsibility of the

44 VisiBroker for Java Developer’s Guide

Constructed types

Java code generator (for example, the IDL compiler, or other tool) to detect this
situation and refuse to generate illegal code.

A default method _default () is created if there is no explicit default case label, and the
set of case labels does not completely cover the possible values of the discriminant. It
will set the value of the union to be an out-of-range value.

The holder class for the union is also generated. Its name is the union's mapped Java
classname with Holder appended to it as follows:

This code sample shows the Holder class for a union.

final public class <union_class>Holder
implements org.omg.CORBA.portable.Streamable {
public <union_class> value;
public <union_class>Holder() {}
public <union_class>Holder (<union_class> initial) {...}
public void _read(org.omg.CORBA.portable.InputStream 1)
{...}
public void _write(org.omg.CORBA.portable.OutputStream o)
{...}
public org.omg.CORBA.TypeCode _type() {...}
}

The following code sample shows the mapping of an IDL union to Java.

/* From Example.idl: */
module Example {
enum EnumType { first, second, third, fourth, fifth, sixth };
union UnionType switch (EnumType) {
case first: long win;
case second: short place;
case third:
case fourth: octet show;
default: boolean other;

}i

}i

// Generated java

final public class UnionType {
//constructor
public UnionType() {...}
//discriminator accessor

public int discriminator() { ... }

//win

public int win() { ... }

public void win(int value) { ... }
//place

public short place() { ...}

public void place(short value) { ... }

//show

public byte show() { ... }

public void show(byte value) { ... }

public void show(int discriminator, byte value) { ... }
//other

public boolean other() {...}

public void other (boolean value) { ... }

public java.lang.String to String () { ...}
public boolean equals (java.lang.Object o) { ...}
}

final public class UnionTypeHolder {
implements org.omg.CORBA.portable.Streamable {
public UnionType value;
public UnionTypeHolder() {}

4: IDL to Java mapping 45

Constructed types

public UnionTypeHolder (UnionType initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.QutputStream o)

{...}
public org.omg.CORBA.TypeCode_type() {...}

Sequence

An IDL sequence is mapped to a Java array with the same name. In the mapping,
anywhere the sequence type is needed, an array of the mapped type of the sequence
element is used.

The holder class for the sequence is also generated. Its name is the sequence's
mapped Java classname with Holder appended to it as follows:

final public class <sequence_class>Holder {
public <sequence_element_type>[] value;
public <sequence_class>Holder() {};
public <sequence_class>Holder (
<sequence_element_type>[] initial) {...};
public void _read(org.omg.CORBA.portable.InputStream 1)
{...}
public void _write(org.omg.CORBA.portable.OutputStream o)
{...}
public org.omg.CORBA.TypeCode _type() {...}
1

The following code sample shows the mapping of an IDL sequence to Java.

// IDL
typedef sequence<long>UnboundedData;
typedef sequence<long, 42>BoundedData;
// generated Java
final public class UnboundedDataHolder
implements org.omg.CORBA.portable.Streamable {
public int[] value;
public UnboundedDataHolder() {};
public UnboundedDataHolder (final int[] initial) { ... };
public void _read(org.omg.CORBA.portable.InputStream 1)
{ ...}
public void _write(org.omg.CORBA.portable.OutputStream o)
{ ...}
public org.omg.CORBA.TypeCode _type() { ... }
1
final public class BoundedDataHolder
implements org.omg.CORBA.portable.Streamable {
public int[] value;
public BoundedDataHolder() {};
public BoundedDataHolder (final int[] initial) { ... };
public void _read(org.omg.CORBA.portable.InputStream 1)
{ ...}
public void _write(org.omg.CORBA.portable.OutputStream o)
{ ...}
public org.omg.CORBA.TypeCode _type() { ... }

46 VisiBroker for Java Developer’s Guide

Interfaces

Interfaces

Array

An IDL array is mapped the same way as an IDL bounded sequence. In the mapping,
anywhere the array type is needed, an array of the mapped type of array element is
used. In Java, the natural Java subscripting operator is applied to the mapped array.
The length of the array can be made available in Java, by bounding the array with an
IDL constant, which will be mapped as per the rules for constants.

The holder class for the array is also generated. Its name is the array's mapped Java
classname with Holder appended to it as follows:

final public class <array_class>Holder
implements org.omg.CORBA.portable.Streamable {
public <array_element_type>[] value;
public <array_class>Holder() {}
public <array_class>Holder (
<array_element_type>[] initial) {...}
public void _read(org.omg.CORBA.portable.InputStream 1)
{...}
public void _write(org.omg.CORBA.portable.OutputStream o)
{...}
public org.omg.CORBA.TypeCode _type() {...}
}

The following code sample shows the mapping for an array.

// IDL
const long ArrayBound = 42;
typedef long larray[ArrayBound];
// generated Java
final public class larrayHolder
implements org.omg.CORBA.portable.Streamable {
public int[] value;
public larrayHolder() {}
public larrayHolder (int[] initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i)
{...}
public void _write(org.omg.CORBA.portable.QutputStream o)
{...}
public org.omg.CORBA.TypeCode_type() {...}

IDL interfaces are mapped to the two following public Java interfaces:

- Operations interface, which contains only the operations and constants declared in
the IDL interfaces.

- CORBA Object declaration that extends all base interface operations, this interface
operation, and org.omg.CORBA.object.

An additional “helper” Java class with the suffix Helper is appended to the interface
name. The Java interface extends the mapped, base org.omg.CORBA.Object interface.

The Java interface contains the mapped operation signatures. Methods can be invoked
on an object reference to this interface.

The helper class declares a static narrow method that allows an instance of
org.omg.CORBA.Object to be narrowed to the object reference of a more specific type.
The IDL exception CORBA: : BAD_PARAM is thrown if the narrow fails because the object
reference doesn't support the request type. A different system exception is raised to
indicate other kinds of errors. Trying to narrow a null will always succeed with a return
value of null.

4: IDL to Java mapping 47

Interfaces

There are no special “nil” object references. Java null can be passed freely wherever
an object reference is expected.

Attributes are mapped to a pair of Java accessor and modifier methods. These
methods have the same name as the IDL attribute and are overloaded. There is no
modifier method for IDL “readonly” attributes.

The holder class for the interface is also generated. Its name is the interface's mapped
Java classname with Holder appended to it as follows:

final public class <interface_class>Holder
implements org.omg.CORBA.portable.Streamable {
public <interface_class> value;
public <interface_class>Holder() {}
public <interface_class>Holder (
<Interface_class> initial) {
value = initial;

public void _read(org.omg.CORBA.portable.InputStream 1)
{...}
public void _write(org.omg.CORBA.portable.OutputStream o)
{...}
public org.omg.CORBA.TypeCode _type() {...}
1

The following code sample shows the mapping of an IDL interface to Java.

/* From Example.idl: */
module Example {
interface Foo {
long method(in long arg) raises(AnException);
attribute long assignable;
readonly attribute long nonassignable;
}i
}i
// Generated java
package Example;
public interface Foo extends com.borland.vbroker.CORBA.Object,
Example.FooOperations,
org.omg.CORBA.portable. IDLEntity {
}
public interface FooOperations {
public int method (int arg) throws Example.AnException;
public int assignable ();
public void assignable (int assignable);
public int nonassignable ();
1
public final class FooHelper {
// ... other standard helper methods
public static Foo narrow(org.omg.CORBA.Object obj)
{ ...}
public static Example.Foo bind (org.omg.CORBA.ORB orb,
java.lang.String name,
java.lang.String host,
com.borland.vbroker.CORBA.BindOptions _options) { ... }

public static Example.Foo bind (org.omg.CORBA.ORB orb,
java.lang.String fullPoaName, byte[] oid) { ... }
public static Example.Foo bind (org.omg.CORBA.ORB orb,
java.lang.String fullPoaName, bytel[] oid,
java.lang.String host,

com.borland.vbroker.CORBA.BindOptions _options) { ... }
public Foo read (org.omg.CORBA.portable.InputStream in) { ... }
public void write (org.omg.CORBA.portable.OutputStream out, Foo foo) { ... }

48 VisiBroker for Java Developer’s Guide

Interfaces

public Foo extract (org.omg.CORBA.Any any) { ... }
public void insert (org.omg.CORBA.Any any, Foo foo) { ... }
1
public final class FooHolder
implements org.omg.CORBA.portable.Streamable {
public Foo value;
public FooHolder() {}
public FooHolder(final Foo initial) { ... }
public void _read(org.omg.CORBA.portable.InputStream i)
{ ...}
public void _write(org.omg.CORBA.portable.OutputStream o)
{ ...}
public org.omg.CORBA.TypeCode_type() { ... }

Abstract interfaces

An IDL abstract interface is mapped into a single public Java interface with the same
name as the IDL interface. The mapping rules are similar to the rules for generating the
Java operations interface for a non-abstract IDL interface. However, this interface also
serves as the signature interface, and hence extends
org.omg.CORBA.protable.IDLEntity. The mapped Java interface has the same name as
the IDL interface and is also used as the signature type in method declarations when
interfaces of the specified types are used in other interfaces. It contains the methods
which are the mapped operations signatures.

A holder class is generated as for non-abstract interfaces. See “Holder classes” for
more information.

A helper class is also generated according to the normal rules. See “Helper classes” for
more information.

Local interfaces

An IDL local interface is mapped similarly to that of a non-local interface except that a
local interface is marked by org.omg.CORBA.LocalInterface. A local interface may not be
marshaled and its implementation must extend a special base
org.omg.CORBA.LocalObject and implement the generated signature interface. In Java
mapping, the LocalObject class is used as a base class of implementations of a local
interface. Creating an instance of local interface implementation is the same as
creating normal Java object; that is using the new Java operator.

A holder class is generated as for non-local interfaces. See “Holder classes” for more
information.

A helper class is also generated according to the normal rules. See “Helper classes” for
more information.

The VisiBroker ORB implementation will detect any attempt to marshal local objects
and throw a CORBA: :MARSHAL exception.

Passing parameters

IDL in parameters are mapped to normal Java actual parameters. The results of IDL
operations are returned as the result of the corresponding Java method.

IDL out and inout parameters cannot be mapped directly into the Java parameter
passing mechanism. This mapping defines additional holder classes for all the IDL
basic and user-defined types which are used to implement these parameter modes in
Java. The client supplies an instance of the appropriate holder Java class that is
passed (by value) for each IDL out or inout parameter. The contents of the holder
instance (but not the instance itself) are modified by the invocation, and the client uses
the (possibly) changed contents after the invocation returns.

This code sample show the IN parameter mapping to Java actual parameters.

4: IDL to Java mapping 49

Interfaces

/* From Example.idl: */
module Example {
interface Modes {
long operation(in long inArg, out long outArg, inout long inoutArg);
}i
}i
// Generated Java:
package Example;
public interface Modes extends com.borland.vbroker.CORBA.Object,
Example.ModesOperations,
org.omg.CORBA.portable. IDLEntity {
}
public interface ModesOperations {
public int operation (int inArg,
org.omg.CORBA.IntHolder outArg,
org.omg.CORBA.IntHolder inoutArg);
}

In the above, the result comes back as an ordinary result and the actual in parameters
only an ordinary value. But for the out and inout parameters, an appropriate holder
must be constructed. A typical use case might look as follows:

// user Java code

// select a target object
Example.Modes target = ...;
// get the in actual value
int inArg = 57;

// prepare to receive out
IntHolder outHolder = new IntHolder();
// set up the in side of the inout
IntHolder inoutHolder = new IntHolder(131);
// make the invocation
int result =target.operation(inArg, outHolder, inoutHolder);
// use the value of the outHolder
. outHolder.value ...
// use the value of the inoutHolder
. inoutHolder.value ...

Before the invocation, the input value of the inout parameter must be set in the holder
instance that will be the actual parameter. The inout holder can be filled in either by
constructing a new holder from a value, or by assigning to the value of an existing
holder of the appropriate type. After the invocation, the client uses the outHolder.value
to access the value of the out parameter, and the inoutHolder.value to access the
output value of the inout parameter. The return result of the IDL operation is available
as the result of the invocation.

Server implementation with inheritance

Using inheritance is the simplest way to implement a server because server objects
and object references look the same, behave the same, and can be used in exactly the
same contexts. If a server object happens to be in the same process as its client,
method invocations are an ordinary Java function call with no transport, indirection, or
delegation of any kind.

Each IDL interface is mapped to a Java POA abstract class that implements the Java
version of the IDL interface.

Note

The POA class does not “truly” extend the IDL interface, meaning that POA is not a
CORBA object. It is a CORBA servant and it can be used to create a “true” CORBA
object. For more information on the POA class, go to the Java API Reference,
VisiBroker APIs, org.omg.PortableServer package section. For more information about
POAs, see “Using POAs.”

50 VisiBroker for Java Developer’s Guide

Interfaces

User-defined server classes are then linked to the VisiBroker ORB by extending the
<interface>POA class, as shown in the following code sample.

Note

The PO class itself is abstract and cannot be instantiated. To instantiate it, your
implementation must implement its declared IDL interface operations.

The following code sample shows the Server implementation in Java using inheritance.

/* From Bank.idl: */
module Bank {
interface Account {
}i
}i
// Generated java
package Bank;
public abstract class AccountPOA extends org.omg.PortableServer.Servant
implements
org.omg.CORBA.portable.InvokeHandler,
Bank.AccountOperations { ... }
// Linking an implementation to the ORB :
public class AccountImpl extends Bank.AccountPOA { ... }

Server implementation with delegation

The use of inheritance to implement a server has one drawback: since the server class
extends the POA skeleton class, it cannot use implementation inheritance for other
purposes because Java only supports single inheritance. If the server class needs to
use the sole inheritance link available for another purpose, the delegation approach
must be used.

When server classes are implemented using delegation some extra code is generated.

- Each interface is mapped to a Tie class that extends the POA skeleton and provides
the delegation code.

- Each interface is also mapped to an Operations interface that is used to defined the
type of object the Tie class is delegating.

The delegated implementation must implement the Operation interface and has to be
stored in a Tie class instance. Storing the instance of the Operation interface in the Tie
object is done through a constructor provided by the Tie class. The code sample below
shows an example of how delegation is used.

/* From Bank.idl: */
module Bank {
interface AccountManager ({
Account open(in string name);
b
}i
// Generated java
package Bank;
public interface AccountManagerOperations {
public Example.Account open(java.lang.String name);
}
// Generated java
package Bank;
public class AccountManagerPOATie extends AccountManagerPOA {
public AccountManagerPOATie (final Bank.AccountManagerOperations _delegate)
{ ...}
public AccountManagerPOATie (final Bank.AccountManagerOperations _delegate,
final org.omg.PortableServer.POA _poa) { ... }
public Bank.AccountManagerOperations _delegate () { ... }
public void _delegate (final Bank.AccountManagerOperations delegate) { ... }

4: IDL to Java mapping 51

Mapping for exceptions

public org.omg.PortableServer.POA _default_POA () { ... }
public float open () { ... }

1
// Linking an implementation to the ORB :

classAccountImpl implements AccountManager Operations
public class Server {
public static main(String args) {
VA
AccountManagerPOAtie managerServant = new AccountManagerPOATie (new
AccountManagerImpl());
/...
}

Interface scope

OMG IDL to Java mapping specification does not allow declarations to be nested within
an interface scope, nor does it allow packages and interfaces to have the same name.
Accordingly, interface scope is mapped to a package with the same name with a
“Package” suffix.

Mapping for exceptions

IDL exceptions are mapped very similarly to structs. They are mapped to a Java class
that provides instance variables for the fields of the exception and constructors.

CORBA system exceptions are unchecked exceptions. They inherit (indirectly) from
java.lang.RuntimeException.

User defined exceptions are checked exceptions. They inherit (indirectly) from
java.lang.Exception.

User-defined exceptions

User-defined exceptions are mapped to final Java classes that extend
org.omg.CORBA.UserException and are otherwise mapped just like the IDL struct type,
including the generation of Helper and Holder classes.

If the exception is defined within a nested IDL scope (essentially within an interface)
then its Java class name is defined within a special scope. Otherwise its Java class
name is defined within the scope of the Java package that corresponds to the
exception's enclosing IDL module.

The following code sample shows the mapping of user-defined exceptions.

// IDL
module Example {
exception AnException {
string reason;
}i
}i
// Generated Java
package Example;
public final class AnException extends org.omg.CORBA.UserException {
public java.lang.String extra;
public AnException () { ... }
public AnException (java.lang.String extra) { ... }
public AnException (java.lang.String _reason, java.lang.String extra) { ...

public java.lang.String to String () { ... }
public boolean equals (java.lang.Object o) { ... }

52 VisiBroker for Java Developer’s Guide

System exceptions

}
public final class AnExceptionHolder implements
org.omg.CORBA.portable.Streamable {

public Example.AnException value;
public AnExceptionHolder () { }
public AnExceptionHolder (final Example.AnException _vis_value) { ... }
public void _read (final org.omg.CORBA.portable.InputStream input) { ... }
public void _write (final org.omg.CORBA.portable.OutputStream output) { ...

public org.omg.CORBA.TypeCode _type () { ...}

System exceptions

The standard IDL system exceptions are mapped to final Java classes that extend
org.omg.CORBA. SystemException and provide access to the IDL major and minor
exception code, as well as a string describing the reason for the exception. There are
no public constructors for org.omg.CORBA. SystemException; only classes that extend it
can be instantiated.

The Java class name for each standard IDL exception is the same as its IDL name and
is declared to be in the org.omg.CORBA package. The default constructor supplies 0 for
the minor code, COMPLETED_NO for the completion code, and the empty string (“) for the
reason string. There is also a constructor which takes the reason and uses defaults for
the other fields, as well as one which requires all three parameters to be specified.

Mapping for the Any type

The IDL type Any maps to the Java class org.omg.CORBA.2Any. This class has all the
necessary methods to insert and extract instances of predefined types. If the extraction
operations have a mismatched type, the CORBA: : BAD_OPERATION exception is thrown.

In addition, insert and extract methods which take a holder class are defined to provide
a high speed interface for use by portable stubs and skeletons. There is an insert and
extract method defined for each primitive IDL type as well as a pair for a generic
streamable to handle the case of non-primitive IDL types.

The insert operations set the specified value and reset the any's type if necessary.

Setting the typecode via the type () accessor wipes out the value. An attempt to extract
before the value is set will result in a CORBA: : BAD_OPERATION exception being raised. This
operation is provided primarily so that the type may be set properly for IDL out
parameters.

Mapping for certain nested types

IDL allows type declarations nested within interfaces. Java does not allow classes to
be nested within interfaces. Hence those IDL types that map to Java classes and that
are declared within the scope of an interface must appear in a special “scope” package
when mapped to Java.

IDL interfaces that contain these type declarations generate a scope package to
contain the mapped Java class declarations. The scope package name is constructed
by appending Package to the IDL type name.

This code sample shows the mapping for certain nested types.

// IDL
module Example {
interface Foo {
exception el {};

}i

4: IDL to Java mapping 53

Mapping for Typedef

// generated Java
package Example.FooPackage;
final public class el extends org.omg.CORBA.UserException {...}

Mapping for Typedef

Java does not have a typedef construct.

Simple IDL types

IDL types that are mapped to simple Java types may not be subclassed in Java.
Therefore, any typedefs that are type declarations for simple types are mapped to the
original (mapped type) any where the typedef type appears. For simple types, Helper
classes are generated for all typedefs.

Complex IDL types

Typedefs for non arrays and sequences are “unwound” to their original type until a
simple IDL type or user-defined IDL type (of the non typedef variety) is encountered.

Holder classes are generated for sequence and array typedefs.
The following code sample shows the mapping of a complex idl typedef.
// IDL
struct EmpName {
string firstName;
string lastName;
b
typedef EmpName EmpRec;
// generated Java
// regular struct mapping for EmpName
// regular helper class mapping for EmpRec
final public class EmpName {

1
public class EmpRecHelper {

}

54 VisiBroker for Java Developer’s Guide

Mapping for Typedef

4: IDL to Java mapping 55

56 VisiBroker for Java Developer’s Guide

VisiBroker properties

This section describes the Borland VisiBroker properties.

JAVA RMI over lIOP properties

Property

Default

Description

vbroker.rmi.supportRTSC

false

This property enables or disables the exchange of
SendingContextRuntime service contexts between clients
and servers when the two are using different (evolved)
versions of a class. If the client and server are on
different versions of a JDK, the application should
make sure that this property is set to true. This value
should also be used for cases where VBJ is talking to
a foreign ORB. This ensures that the codebase data is
exchanged and marshaling/demarshaling of evolved
classes can succeed without exceptions.

javax.rmi.CORBA.StubClass

com.inprise.vbroker.rmi.
CORBA. StubImpl

Specifies the name of the implementation of the stub
base class from which all RMI-IIOP stubs must inherit.

javax.rmi.CORBA.Ut1lClass

com.inprise.vbroker.rmi.
CORBA.Uti1Impl

Specifies the name of the implementation of the
Utility class that provides methods that can be used
by stubs and ties to perform common operations.

javax.rmi.CORBA.
PortableRemoteObjectClass

com.inprise.vbroker.rmi.C
ORBA.
PortableRemoteObjectImpl

Specifies that the RMI-IIOP server implementation
objects may inherit from javax.rmi.PortableRemoteObject
or simply implement an RMI-IIOP remote interface and
then use the exportobject method to register
themselves as a server object.

java.rmi.server.codebase <not set> Specifies where a server can locate unknown classes.
Acceptable value is semicolon (;)-separated URLs.
java.rmi.server.useCodebas |false Specifies if a server is allowed to locate unknown

eOnly

classes, If set to true, does not allow the server to
locate remote classes even if the client sends the
location of the remote classes to the server.

5: VisiBroker properties 57

Smart Agent properties

Smart Agent properties

Property

Default

Old property

Description

vbroker.agent.addr
File

null

ORBagentAddrF
ile

Specifies a file that stores the IP address
or host name of a host running a Smart
Agent.

vbroker.agent.loca
1File

null

N/A

Specifies which network interface to use
on multi-home machines. This used to be
the OSAGENT_LOCAL_FILE
environment variable.

vbroker.agent.clie
ntHandlerPort

null

N/A

Specifies the port that the Smart Agent
uses to verify the existence of a
client&mdash in this case, a VisiBroker
application. When you use the default
value, null, the Smart Agent connects
using a random port number

vbroker.agent.keep
AliveTimer

120
second
S

N/A

Smart agent will wake up after this
timeout and based on the
vbroker.agent.keepAliveThreshold value,
will compute whether to do client
verification. The logic is if the last
received heart beat value is less than
current time - (keepAliveTimer +
keepAliveThreshold), then do client
verification. The value of this property
should be greater than 1 second and less
than 120 seconds. The number of times
the client verification is tried can be
controlled by vbroker.agent.maxRetries
property.

vbroker.agent .keep
Alivethreshold

40
second

N/A

Refer to documentation on
vbroker.agent.keepAliveTimer. This value
should be greater than 0.

vbroker.agent.port

14000

ORBagentPort

Specifies the port number that defines a
domain within your network. VisiBroker
applications and the Smart Agent work
together when they have the same port
number. This is the same property as the
OSAGENT_PORT environment variable.

vbroker.agent .maxR
etries

times

N/A

The number of times the agent will do
client verification on not receiving a heart
beat from the client. Values can be 1 to
10.

58 VisiBroker for Java Developer’s Guide

Smart Agent properties

Smart Agent communication properties

The properties described in the table below are used by the ORB for Smart Agent

communication.

Property

Default

Old property

Description

vbroker.agent.
keepAliveTimer

120

N/A

The duration in seconds during which
the ORB will send keep-alive
messages to the Smart Agent
(applicable to both clients and
servers). Valid values are integers
between 1 and 120, inclusive.

vbroker.agent.
retryDelay

(zero)

N/A

The duration in seconds that the
process will pause before trying to
reconnect to the Smart Agent in the
event of disconnection from the Smart
Agent. If the value is -1, the process
will exit upon disconnection from the
Smart Agent. The default value of 0
(zero) means that reconnection will be
made without any pause.

vbroker.agent.addr

null

ORBagentAddr

Specifies the IP address or host name
of a host running a Smart Agent. The
default value, null, instructs VisiBroker
applications to use the value from the
OSAGENT_ADDR environment variable. If
this 0SAGENT_ADDR variable is not set,
then it is assumed that the Smart
Agent is running on a local host.

File

vbroker.agent.addr

null

ORBagentAddrFil
e

Specifies a file that stores the IP
address or host name of a host
running a Smart Agent.

g

vbroker.agent.debu

false

ORBdebug

When set to true, specifies that the
system will display debugging
information about communication of
VisiBroker applications with the Smart
Agent.

vbroker.agent.
enableCache

true

ORBagentCache

When set to true, allows VisiBroker
applications to cache IOR.

vbroker.agent.
enableLocator

true

ORBdisableLocat
or

When set to false, does not allow
VisiBroker applications to
communicate with the Smart Agent.

vbroker.agent.port

14000

ORBagentPort

Specifies the port number that defines
a domain within your network.
VisiBroker applications and the Smart
Agent work together when they have
the same port number. This is the
same property as the 0SAGENT_PORT
environment variable.

Over

vbroker.agent.fail

true

ORBagentNoFailO
ver

When set to true, allows a VisiBroker
application to fail over to another
Smart Agent.

ntPort

vbroker.agent.clie

0(zero

N/A

Lower bound of the range of ports for
the ORB to communicate with the
OSAgent. Valid values are between 0
to 65535. Default value of 0 (zero)
means that a random port will be
selected.

5: VisiBroker properties 59

VisiBroker ORB properties

Property

Default

Old property

Description

vbroker.agent.clie
ntPortRange

0(zero

)

N/A

Range of ports within interval

[clientPort, clientPort+clientPortRange]
for the ORB to communicate with the
OSAgent. This property is effective
only when clientPort is greater than 0
(zero). Valid values are between 0 and
65535.

vbroker.agent.
clientPort

(zero)

Lower bound of the range of ports for
the ORB to communicate with the
OSAgent. Valid values are between 0
to 65535. Default value of 0 (zero)
means that a random port will be
selected.

vbroker.agent.
clientPortRange

(zero)

Range of ports within interval
[clientPort, clientPort+clientPortRange]
for the ORB to communicate with the
OSAgent. This property is effective
only when clientPort is greater than 0
(zero). Valid values are between 0 and
65535.

VisiBroker ORB properties

The following table describes the VisiBroker ORB properties.

Property Default

Description

vbroker.orb.propOrdering

OPS

CMD_PROPS:SYS_PROPS:
FILE_PROPS:ORB_PROPS:DEF_PR

This property allows the user to override the
default precedence of properties set by the
ORB's Property Manager. The default
precedence from highest to lowest is:

1 cMp_proPS: command-line arguments (specified
through the first argument of orb.init () call.

2 sys_props: system or JVM properties, including
properties specified through -vBJprop, -J, and
so forth.

3 FILE_PROPS: properties in the file specified by
ORBpropStorage property.

4 orB_PROPS: properties set through the second
argument of the orb.init() call.

5 DEF_PROPS: default ORB properties.

vbroker.orb.rebindForward 0 (zero)

This value determines the number of times a
client will try to connect to a forwarded target.
You can use this property when the client cannot
communicate with the forwarded target (because
of network failure, for example). The default value
of 0 (zero) means that the client will keep trying to
connect.

vbroker.orb.activationIOR null

Allows the launched server to easily establish
contact with the OAD that launched it.

vbroker.orb.admDir null

Specifies the administration directory at which
various system files are located. This property
can be set using the VBROKER_ADM environment
variable.

vbroker.orb.enableKeyId false

When set to true, this property enables the use of
key IDs in client requests.

vbroker.orb. FALSE
enableServerManager

When set to TRUE, this property enables Server
Manager when the server is started, so that
clients can access it.

vbroker.orb.keyIdCacheMax 16384

60 VisiBroker for Java Developer’s Guide

Specifies maximum size of the object key ID
cache in a server.

VisiBroker ORB properties

Property

Default

Description

vbroker.orb.keyIdCacheMin

64

Specifies minimum size of the object key ID
cache in a server.

vbroker.orb.initRef

null

Specifies the initial reference.

vbroker.orb.defaultInitRef

null

Specifies the default initial reference.

vbroker.orb.alwaysProxy

false

When set to true, specifies that clients must
always connect to the server using the
GateKeeper.

vbroker.orb.gatekeeper.ior

null

Forces the client application to connect to the
server through the GateKeeper whose IOR is
provided.

vbroker.locator.ior

null

Specifies the IOR of the GateKeeper that will be
used as proxy to the Smart Agent. If this property
is not set, the GateKeeper specified by the
vbroker.orb.gatekeeper.ior property is used for
this purpose. For more information, see
“Introduction to GateKeeper.”

vbroker.orb.exportFirewallPa
th

false

Forces the server application to include firewall
information as part of any servant's IOR which
this server exposes (use Firewall::FirewallPolicy
in your code to force it selectively per POA).

vbroker.orb.proxyPassthru

false

If set to true, forces PASSTHROUGH firewall mode
globally in the application scope (use

QoSExt : : ProxyModePolicy in your code to force it
selectively per object or per ORB).

vbroker.orb.bids.critical

inprocess

The critical bid has highest precedence no matter
where it is specified in the bid order. If there are
multiple values for critical bids, then their relative
importance is decided by the bidorder property.

vbroker.orb.alwaysSecure

false

When set to true, specifies that clients must
always make secure connections to the server.

vbroker.orb.alwaysTunnel

false

When set to true, specifies that clients always
make http tunnel (IIOP wrapper) connections to
the server.

vbroker.orb.autoLocateStubs

false

Turns on the ability to locate stubs when reading
object references. This is done using read_0Object,
based on the object's repository id instead of
either the generic object or the stubs for passed
formal class argument.

vbroker.orb.bidOrder

inprocess:liop:ssl:iiop:

proxy:hiop:locator

You can specify the relative order of importance
for the various transports. Transports are given
precedence as follows:

1 inprocess
liop

ssl

iiop
proxy
hiop

N o o s WD

locator

The transports that appear first have higher
precedence. For example, if an IOR contains
both LIOP and IIOP profiles, the first chance
goes to LI0P. Only if the L10P fails is 110P used.
(The critical bid, specified by the
vbroker.orb.bids.critical property, has highest
precedence no matter where it is specified in the
bid order.)

5: VisiBroker properties 61

VisiBroker ORB properties

Property Default

Description

vbroker.orb.bids.bar n/a

This property is used to prevent specified bidders
from placing bids. For example, setting it to
inprocess will disable inprocess bidding. This can
be useful in cases when optimized colocated
invocations are not required. Currently only
inprocess bidders can be barred.

vbroker.orb.defAddrMode 0 (Key)

The default addressing mode that client
VisiBroker ORB uses. If it is set to 0, the
addressing mode is Key, if set to 1, the addressing
mode is Profile, if set to 2, the addressing mode
is IOR.

vbroker.orb.bufferCacheTimeo |[6000
ut

Specifies the time in which a message chunk has
been cached before it is discarded.

vbroker.orb.bufferDebug false

When set to true, this property allows the internal
buffer manager to display debugging information.

vbroker.orb.corbaloc. false
resolveHosts

When this property is set to true the ORB will try
to resolve the hostnames specified in the
corbaloc URL. When false no address resolution
will take place.

vbroker.orb.debug false

When set to true, allows the ORB to display
debugging information.

Note: This property is deprecated. Refer to
Debug logger properties.

vbroker.orb.dynamicLibs null

Specifies a list of available services used by the
VisiBroker ORB. Each service is separated by a
comma.

vbroker.orb.embedCodeset true

When an IOR is created, the VisiBroker ORB
embeds the codeset components into the IOR.
This may produce problems with some non-
compliant ORBs. By turning off the embedCodeset
property, you instruct the Visibroker ORB not to
embed codesets in IORs. When set to false,
specifies that character and wide character
conversions between the client and the server
are not to be negotiated.

vbroker.orb. false
enableVB4backcompat

This property enables work-arounds to deal with
behavior that is not GIOP 1.2-compliant in
VisiBroker 4.0 and 4.1. Any VisiBroker client
running on VisiBroker 4.1.1 or a release previous
to 4.1.1 is affected, especially if GateKeeper is
involved. To work with a Visibroker 4.0 or 4.1
client, this flag needs to be set to true. Thisis a
server-side only flag. There is no corresponding
flag on the client-side.

vbroker.orb.enableBiDir none

You can selectively make bidirectional
connections. If the client defines
vbroker.orb.enableBiDir=client and the server
defines vbroker.orb.enableBiDir=server the value
of vbroker.orb.enableBiDir at the GateKeeper
determines the state of the connection. Values of
this property are: server, client, both Or none. For
more information, see “Callback with
GateKeeper's bidirectional suppor” in the
GateKeeper Guide.

vbroker.orb.enableNullString |false

If set to TRUE, enables marshaling of null strings.

vbroker.orb.fragmentSize 0 (zero)

Specifies the GIOP message fragment size. It
must be a multiple of GIOP message chunk size.
Assigning a 0 (zero) to this property will
eventually turn off fragmentation.

vbroker.orb.streamChunkSize 4096

62 VisiBroker for Java Developer’s Guide

Specifies the GIOP message chunk size. Its
default value is 4096. It value must not be less
than 16.

VisiBroker ORB properties

Property

Default

Description

vbroker.orb.gcTimeout

30

Specifies the time in seconds that must pass
before important resources that are not used are
cleared.

vbroker.orb.logger.appName

VBJ-Application

Specifies the application name that appears in
the log.

Note: This property is deprecated. Refer to
Debug logger properties.

vbroker.orb.logger.catalog

com. inprise.vbroker.

Logging.ORBMsgs

Specifies the message catalog of messages
used by the ORB when logging is enabled.

Note: This property is deprecated. Refer to
Debug logger properties.

vbroker.orb.logger.output

stdout

Specifies the output of the logger. It can be the
standard output or a file name.

Note: This property is deprecated. Refer to
Debug logger properties.

vbroker.orb.logLevel

emerg

Specifies the logging level of message that will
be logged. The default value, energ, means that
the system logs messages when the system is
unusable, or in a panic condition. Acceptable
values are:

m emerg (0): indicates some panic condition.

m alert (1): a condition that requires user
attention—for example, if security has been
disabled.

m crit (2): critical conditions, such as a device
error.

err (3): error conditions.

m warning (4): warning conditions—these may
accompany some troubleshooting advice.

m notice (5): conditions that are not errors but
may require some attention, such as upon the
opening of a connection.

m info (6): informational, such as binding in
progress.

m debug (7): debug conditions understood by
developers.

Note: This property is deprecated. Refer to
Debug logger properties.

vbroker.orb.sendLocate

false

This property takes one of the following values:
true, false, onbind, Oor always. When set to true, it
forces the system to send a locate request before
making invocations on an IOP 1.2 target. When
set to onbind, causes a locate request message to
be sent when a connection is opened for the
purpose of gauging if the peer is GIOP aware.
The value always instructs the ORB to perform
both tasks-sending the locate request before
invocations and upon opening the connection.

vbroker.orb. shutdownTimeout

0 (zero)

Allows an application to set a timeout for the

ORB. shudown operation in seconds. This property is
useful in cases when 0rB. shutdown does not finish
for a long time. The process will get terminated if
the shutdown does not finish and the timeout
expires. The default value of 0 (zero) means that
process will never get terminated.

5: VisiBroker properties 63

VisiBroker ORB properties

Property

Default

Description

vbroker.orb.
systemLibs.applet

com.inprise.vbroker
it,
com.inprise.vbroker
it,
com. inprise.vbroker
t,

.II0P.In
.LIOP.In

.gos.Ini

com.inprise.vbroker.

URLNaming.Init,
com.inprise.vbroker
it,

JHIOP.In

com. inprise.vbroker.

firewall.Init,

com. inprise.vbroker.

dynamic.Init,

com.inprise.vbroker.

naming.Init,
com. inprise.vbroker
tl

.I0P.Ini

com.inprise.vbroker.

CONV_FRAME. Init,

com.inprise.vbroker.

CORBA.Init,

rmi.

com. inprise.vbroker.
PortableInterceptor.Init

com.borland.vbroker
Init,
com.borland.vbroker
JInit

64 VisiBroker for Java Developer’s Guide

.notify.

.CosTime

Provides a list of system libraries loaded in
applet.

POA properties

Property

Default

Description

vbroker.orb.systemLibs.appli
cation

com.inprise.vbroker.IIOP.In
it,
com.inprise.vbroker.LIOP.In
it,
com.inprise.vbroker.qos.Ini
t,
com.inprise.vbroker.ds.Init
com.inprise.vbroker.
URLNaming.Init,
com. inprise.vbroker.
dynamic.Init,
com.inprise.vbroker.ir.Init
com.inprise.vbroker.
naming.Init,
com. inprise.vbroker.
ServerManager.Init,
com.inprise.vbroker.IOP.Ini
t,
com.inprise.vbroker.
CONV_FRAME. Init,
com.inprise.vbroker.rmi.
CORBA.Init,
com.inprise.vbroker.
PortableInterceptor.Init
com.borland.vbroker.
notify.Init,
com.borlvbroker.CosTime.Ini
t

Provides a list of system libraries loaded in
application.

vbroker.orb.tcIndirection

true

Specifies that indirection be turned off when
writing the typecodes. May be necessary when
inter operating with ORBs from other vendors.
When set to false, it is not possible to marshal
recursive typecodes.

vbroker.orb.warn

Specifies a value of 0, 1, or 2 which indicates the
level of warning messages to be printed.

Note: This property is deprecated. Refer to
Debug logger properties.

vbroker.orb.procId

Specifies the process ID of the server.

vbroker.orb.usingPoll

true

On UNIX platforms, the ORB uses the system
calls select() or poll() for I/O multiplexing based
on the value of this property. If the value is true,
poll() is used. Otherwise, select() is used. True is
the default value.

POA properties

Property

Default

Description

vbroker.poa.manag |0
er.threadMin

Controls the minimum number of threads in the auxiliary
thread pool used in POA (e.g. for etherealization of objects)

vbroker.poa.manag |0
er.threadMax

Controls the maximum number of threads in the auxiliary
thread pool used in POA

5: VisiBroker properties 65

ServerManager properties

Property Default | Description

vbroker.poa.manag |300 Controls the idle timeout for threads in the auxiliary thread
er.threadMaxIdle pool used in POA

vbroker.poa.loglLe |emerg | Specifies the logging level of messages to be logged. The
vel default value, energ, means that messages are logged when

the system is unusable or during a panic condition.
Acceptable values are:
m emerg (0): indicates some panic condition.

m alert (1): a condition that requires user attention—for
example, if security has been disabled.

m crit (2): critical conditions, such as a device error.
err (3): error conditions.

m warning (4): warning conditions—these may accompany
some troubleshooting advice.

m notice (5): conditions that are not errors but may require
some attention, such as upon the opening of a connection.

m info (6): informational, such as binding in progress.
m debug (7): debug conditions understood by developers.

Note: This property is deprecated. Refer to Debug
logger properties.

ServerManager properties

This table lists the Server Manager properties.

Property Default | Description

vbroker.serverManager.name null Specifies the name of the Server Manager.

vbroker.serverManager.enableOpera |true When set to true, enables operations,

tions exposed by the Server Manager, to be
invoked.

vbroker.serverManager.enableSetPr |true When set to true, enables properties,

operty exposed by the Server Manager, to be
changed.

Additional Properties

The following section describes the new properties supported by the Server Manager.
These properties can be queried through their containers.

Properties related to Server-side resource usage

Property Description
vbroker.se.<SE_name>.scm.<SCM_na | This is applicable to the Windows platforms only. It
me>.listener.preferIPv4Stack is a boolean value indicating whether the listener has

to use IPv4 or IPv6. The default value is false, which
will enforce usage of IPv6.

If the property "vbroker.se.<SE_name>.host" is given
an IPv4 or IPv6 address value, then you can ignore
the property setting.

vbroker.se.<SE_name>.scm.<SCM_na | The number of incoming connections for which there
me>. are requests executing in the ORB.

manager.inUseConnections

vbroker.se.<SE_name>.scm.<SCM_na | The number of incoming connections for which there
nes. are not any requests currently being executed in the

manager.idleConnections ORB.

66 VisiBroker for Java Developer’s Guide

Location Service properties

Property Description

vbroker.se.<SE_name>.scm.<SCM_na | The number of idle connections which have also

nes. idled past their idle timeout setting but have yet to be

manager. idledTimeoutConnections closed (due to garbage collection restrictions, for
example).

vbroker.se.<SE_name>.scm.<SCM_na | The number of threads currently executing requests

me>. within the dispatcher.

dispatcher.inUseThreads

vbroker.se.<SE_name>.scm.<SCM_na | The number of threads which are currently idle
me>. waiting for work to be assigned.

dispatcher.idleThreads

Properties related to Client-side resource usage

Property Description

vbroker.ce.<CE_name>.ccm.activeConnections | The number of connections in the active
pool; that is, object references are using
these connections.

vbroker.ce.<CE_name>.ccm.cachedConnections | The number of connections in the cache
pool; no object references are using
these connections.

vbroker.ce.<CE_name>.ccm. inUseConnections The number of outgoing connections
with pending requests.
vbroker.ce.<CE_name>.ccm. idleConnections The number of outgoing connections
with no pending requests.

vbroker.ce.<CE_name>.ccm.idledTimeoutConne | The number of idle connections which
ctions have idled past their timeout setting, but
have not been closed.

Properties related to the Smart Agent (Smart Agent)

Property Description

vbroker.agent.currentAgentIP The IP address of the current ORB's Smart Agent
(Smart Agent).

vbroker.agent.currentAgentClie |The port of the Smart Agent to which the ORB is

ntPort sending requests.

Location Service properties

The following table lists the Location Service properties.

Property Default | Description
vbroker.locationservice.de |false |When setto true, allows the Location Service to
bug display debugging information.

vbroker.locationservice.ve |false |When setto true, allows the Location Service to
rify check for the existence of an object referred by an
object reference sent from the Smart Agent. Only
objects registered BY_INSTANCE are verified for
existence. Objects that are either registered with
OAD, or those registered BY_po2 policy are not
verified for existence.

vbroker.locationservice.ti |1 Specifies the connect/receive/send timeout, in
meout seconds, when trying to interact with the Location
Service.

5: VisiBroker properties 67

Event Service properties

Event Service properties

The following table lists the Event Service properties.

Property Default | Description

vbroker.events.maxQueuelL |100 Specifies the number of messages to be queued for

ength slow consumers.

vbroker.events.factory false |When set to true, allows the event channel factory to
be instantiated, instead of an event channel.

vbroker.events.debug false |When set to true, allows output of debugging
information.
Note: This property is deprecated. Refer to Debug
logger properties.

vbroker.events.interacti |false |When setto true, allows the event channel to be

ve executed in a console-driven, interactive mode.

Naming Service (VisiNaming) properties

The following tables list the VisiNaming Service properties.

Property

Default

Description

vbroker.naming.adminPwd

inprise

Password required by administrative VisiBroker
naming service operations.

vbroker.naming.enableSlav
e

0

If 1, enables master/slave naming services
configuration. See the “VisiNaming Service
Clusters for Failover and Load Balancing”
section for information about configuring master/
slave naming services.

vbroker.naming. factoryIor
File

N/A

When this property is specified with a value
specifying a file name, the Naming Service will
store the IOR of context factory in that file. The
IOR file can then be used by nsutil utility to
shutdown the Naming Service remotely.

vbroker.naming.iorFile

ns.ior

This property specifies the full path name for
storing the naming service IOR. If you do not set
this property, the naming service will try to
output its IOR into a file named ns.ior in the
current directory. The naming service silently
ignores file access permission exceptions when
it tries to output its IOR.

68 VisiBroker for Java Developer’s Guide

Naming Service (VisiNaming) properties

Property

Default

Description

vbroker.naming.logLevel

emerg

This property specifies the level of log
messages to be output from the naming service.
Acceptable values are:

m emerg (0): indicates some panic condition.

m alert (1): a condition that requires user
attention—for example, if security has been
disabled.

m crit (2): critical conditions, such as a device
error.

m err (3): error conditions.

warning (4): warning conditions—these may
include some troubleshooting advice.

m notice (5): conditions that are not errors but
may require some attention, such as the
opening of a connection.

m info (6): informational, such as binding in
progress.

m debug (7): debug messages for developers.

Note: This property is deprecated. Refer to
Debug logger properties.

vbroker.naming.logUpdate

false

This property allows special logging for all of the
update operations on the

CosNaming: :NamingContext, CosNamingExt: :Cluster,
and CosNamingExt : :ClusterManager interfaces.

The CosNaming: :NamingContext interface
operations for which this property is effective
are:

bind, bind_context, bind_new_context,
destroy, rebind, rebind_context, unbind

The CosNamingExt: :Cluster interface operations
for which this property is effective are:

bind, rebind, unbind, destroy

The CosNamingExt: :ClusterManager interface
operation for which this property is effective is:

create_cluster

When this property value is set to true and any
of the above methods is invoked, the following
log message is printed (the output shows a bind
operation being executed):

00000007,5/26/04 10:11 AM,127.0.0.1,00000000,
VBJ-Application,VBJ ThreadPool Worker, INFO,

OPERATION NAME : bind

CLIENT END POINT : Connection[socket=Socket
[addr=/127.0.0.1, port=2026, localport=1993]]
PARAMETER 0 : [(Tom.LoanAccount)]

PARAMETER 1 : Stub[repository_id=IDL:Bank/
LoanAccount:1.0, key=TransientId[poaName=/,

id={4 bytes:

(0) (0)(0)(0)},sec=505,usec=990917734,
key_string=%00vB%01%00%00%00%02/
%00%20%20%00%00%00%
04%00%00%00%00%00%00%01%£9;%104f], codebase=nu
11]

5: VisiBroker properties 69

Naming Service (VisiNaming) properties

For more information see the Object Clusters section.

Property Default

Description

vbroker.naming.enableClusterFa |true

ilover

When set to true, it specifies that an
interceptor be installed to handle fail-over for
objects that were retrieved from the
VisiNaming Service. In case of an object
failure, an attempt is made to transparently
reconnect to another object from the same
cluster as the original.

vbroker.naming.propBindOn 0

If 1, the implicit clustering feature is turned on.

vbroker.naming.smrr.pruneStale |1
Ref

This property is relevant when the name
service cluster uses the Smart Round Robin
criterion. When this property is set to 1, a stale
object reference that was previously bound to
a cluster with the Smart Round Robin criterion
will be removed from the bindings when the
name service discovers it. If this property is
set to 0, stale object reference bindings under
the cluster are not eliminated. However, a
cluster with Smart Round Robin criterion will
always return an active object reference upon
aresolve() or select () call if such an object
binding exists, regardless of the value of the
vbroker.naming. smrr.pruneStaleRef property. By
default, the implicit clustering in the name
service uses the Smart Round Robin criterion
with the property value set to 1. If set to 2, this
property disables the clearing of stale
references completely, and the responsibility
of cleaning up the bindings belongs to the
application, rather than to VisiNaming.

For more information see “VisiNaming Service Clusters for Failover and

Load Balancing”.

Property Default

Description

vbroker.naming.enableSlave 0

See “VisiNaming Service properties”.

vbroker.naming.slaveMode
Can be set
to

cluster

or slave.

No default.

This property is used to configure
VisiNaming Service instances in the cluster
mode or in the master/slave mode. The
vbroker.naming.enableSlave property must be
set to 1 for this property to take effect.

Set this property to cluster to configure
VisiNaming Service instances in the cluster
mode. VisiNaming Service clients will then
be load balanced among the VisiNaming
Service instances that comprise the cluster.
Client failover across these instances are
enabled.

Set this property to slave to configure
VisiNaming Service instances in the
master/slave mode. VisiNaming Service
clients will always be bound to the master
server if the master is running but failover
to the slave server when the master server
is down.

vbroker.naming.serverCluste |null

rName

This property specifies the name of a
VisiNaming Service cluster. Multiple
VisiNaming Service instances belong to a
particular cluster (for example, clusterxvz)
when they are configured with the cluster
name using this property.

70 VisiBroker for Java Developer’s Guide

Naming Service (VisiNaming) properties

Property

Default

Description

vbroker.naming.serverNames

null

This property specifies the factory names of
the VisiNaming Service instances that
belong to a cluster. Each VisiNaming
Service instance within the cluster should
be configured using this property to be
aware of all the instances that constitute
the cluster. Each name in the list must be
unique. This property supports the format:

vbroker.naming. serverNames=
Serverl:Server?2:Server3

See the related property,

vbroker.naming.serverAddresses.

vbroker.naming.serverAddres
ses

null

This property specifies the host and
listening port for the VisiNaming Service
instances that comprise a VisiNaming
Service cluster. The order of VisiNaming
Service instances in this list must be
identical to that of the related property
vbroker.naming. serverNames, which specifies
the names of the VisiNaming Service
instances that comprise a VisiNaming
Service Cluster. This property supports the
format:

vbroker.naming.serverAddresses=host1:
portl;host2:port2;host3:port3

vbroker.naming.anyServiceOr
der

(To be set on VisiNaming
Service clients)

false

This property must be set to true on the
VisiNaming Service client to utilize the load
balancing and failover features available
when VisiNaming Service instances are
configured in the VisiNaming Service
cluster mode. The following is an example
of how to use this property:

client -DVbroker.naming.
anyServiceOrder=true

Pluggable Backing Store Properties

The following tables show property information for the VisiNaming service pluggable

backing store types.

Default properties common to all adapters

Property

Default

Description

vbroker.naming.backingStoreT
ype

InMemory

Specifies the naming service adapter type to
use. This property specifies which type of
backing store you want the VisiNaming
Service to use. The valid options are:
InMemory, JDBC, Dx, JNDI. The default is
InMemory.

vbroker.naming.cacheOn

Specifies whether to use the Naming Service
cache. A value of 1 (one) enables caching.

5: VisiBroker properties 71

Naming Service (VisiNaming) properties

Property

Default

Description

vbroker.naming.cache.connect
String

N/A

This property is required when the Naming
Service cache is enabled
(vbroker.naming.cacheOn=1) and the Naming
Service instances are configured in Cluster
or Master/Slave mode. It helps locate an
Event Service instance in the format
<hostnane>:<port>. For example:

vbroker.naming.cache.connectString=
127.0.0.1:14500

See “Caching facility” for details about
enabling the caching facility and setting
the appropriate properties.

vbroker.naming.cache.size

2000

This property specifies the size of the
Naming Service cache. Higher values will
mean caching of more data at the cost of
increased memory consumption.

vbroker.naming.cache.timeout

0 (no
limit)

This property specifies the time, in seconds,
since the last time a piece of data was
accessed, after which the data in the cache
will be purged in order to free memory. The
cached entries are deleted in LRU (Least
Recently Used) order.

JDBC Adapter properties

Property

Default

Description

vbroker.naming. jdbcDriver

com.borland.datast

ore.

jdbc.DataStoreDriv

er

This property specifies the JDBC
driver that is needed to access the
database used as your backing
store. The VisiNaming Service loads
the appropriate JDBC driver
specified. Valid values are:

m com.borland.datastore.jdbc.DataStor
edriver—dJDataStore driver

m com.sybase.jdbc.SybDriver—
Sybase driver

m oracle.jdbc.driver.OracleDriver—
Oracle driver

m interbase.interclient.Driver—
Interbase driver

m weblogic.jdbc.mssqlserverd.Driver—

WebLogic MS SQLServer Driver

m COM.ibm.db2.jdbc.app.DB2Driver—
IBM DB2 Driver

vbroker.naming.resolveAuto
Commit

True

Sets Auto Commit on the JDBC
connection when doing a "resolve"
operation.

vbroker.naming.loginName

VisiNaming

The login name associated with the
database.

vbroker.naming.loginPwd

VisiNaming

The login password associated with
the database.

vbroker.naming.poolSize

5

This property specifies the number
of database connections in your
connection pool when using the
JDBC Adapter as your backing
store.

72 VisiBroker for Java Developer’s Guide

Naming Service (VisiNaming) properties

Property

Default

Description

vbroker.naming.url

jdbc:borland:dsloc
al:
r00tDB. jds

This property specifies the location
of the database which you want the
Naming Service to access. The
setting is dependent upon the
database in use. Acceptable values
are:

m jdbc:borland:dslocal:<db-name>—

JDataStore UTL

m jdbc:sybase:Tds:<host-
name>:<port-number>/<db-name>—

Sybase URL

m jdbc:oracle:thin@<host-
name>:<port-number>:<sid>—

Oracle URL

m jdbc:interbase://<server-name>/
<full-db-path>—Interbase URL

m jdbc:weblogic:mssglserverd:<db-
name>@<host-name>:<port-number>—
WebLogic MS SQLSever URL

m jdbc:db2:<db-name>—IBM DB2
URL

m <full-path-JDataStore-db>—

DataExpress URL for the native
driver

vbroker.naming.minReconInt
erval

This property sets the Naming
Service's database reconnection
interval time, in seconds. The
default value is 30. The Naming
Service will ignore the reconnection
request and throw a CannotProceed
exception if the time interval
between this request and the last
reconnection time is less than the
vset value. Valid values for this
property are non-negative integers.
If set to 0, the Naming Service will try
to reconnect to the database for
every request.

DataExpress Adapter properties
The following table describes the DataExpress Adapter properties:

Property

Description

vbroker.naming.backingStor
eType

This property should be set to Dx.

vbroker.naming.loginName

This property is the login name associated with the database.
The default is VisiNaming.

vbroker.naming.loginPwd

This property is the login password associated with the
database. The default value is VisiNaming.

vbroker.naming.url

This property specifies the location of the database.

5: VisiBroker properties 73

Naming Service (VisiNaming) properties

JNDI adapter properties

The following is an example of settings that can appear in the configuration file for a
JNDI adapter:

Setting Description

vbroker.naming.backingStoreType=JN | This setting specifies the backing store type which
DI is JnpI for the JNDI adapter.

vbroker.naming.loginName=<user_nam | The user login name on the JNDI backing server.
e>

vbroker.naming.loginPwd=<password> | The password for the JNDI backing server user.

vbroker.naming.jndiInitialFactory= | This setting specifies the JNDI initial factory.
com.
sun.jndi.ldap.LdapCtxFactory

vbroker.naming.jndiProviderURL=1da [This setting specifies the JNDI provider URL

p:
//<hostname>:389/<initial root

context>

vbroker.naming.jndiAuthentication= | This setting specifies the JNDI authentication type
simple supported by the JNDI backing server.

VisiNaming Service Security-related properties

Property Value Default | Description
vbroker.naming.security.disa |boolean |true This property indicates whether the
ble security service is disabled.
vbroker.naming.security.auth |[string |"" This property indicates the

Domain authorization domain name to be

used for the naming service method
access authorization.

vbroker.naming.security.tran |int 3 This property indicates what transport
sport the Naming Service will use. The
available values are:

ServerQoPPolicy.SECURE_ONLY=1
ServerQoPPolicy.CLEAR_ONLY=0
ServerQoPPolicy.ALL=3

vbroker.naming.security. boolean |false |This property indicates whether
requireAuthentication naming client authentication is
required. However, when the
vbroker.naming.security.disable
property is set to true, no client
authentication will be performed
regardless of the value of this
requireAuthentication property.

vbroker.naming.security. boolean |false |This property indicates whether
enableAuthorization method access authorization is
enabled.
vbroker.naming.security. string |null This property points to the file
requiredRolesFile containing the required roles that are

necessary for invocation of each
method in the protected object types.
For more information see “Method
Level Authorization”.

74 VisiBroker for Java Developer’s Guide

OAD properties

OAD properties

This following table lists the configurable OAD properties.

Property Default | Description

vbroker.oad.spawnTimeOut 20 After the OAD spawns an executable, specifies how
long, in seconds, the system will wait to receive a
callback from the desired object before throwing a
NO_RESPONSE exception.

vbroker.oad.verbose false Allows the OAD to print detailed information about
its operations.

vbroker.oad.readOnly false When set to true, does not allow you to register,
unregister, or change the OAD implementation.

vbroker.oad.iorFile 0adj.i | Specifies the filename for the OAD's stringified IOR.

or

vbroker.oad.quoteSpaces false Specifies whether to quote a command.

vbroker.oad.killOnUnregis |false Specifies whether to kill spawned server processes,

ter once they are unregistered.

vbroker.oad.verifyRegistr |false Specifies whether to verify the object registration.

ation

This table list the OAD properties that cannot be overridden in a property file. They can
however be overridden with environment variables or from the command line.

Property Default Description

vbroker.oad. implName impl_rep | Specifies the filename for the implementation
repository.

vbroker.oad.implPath null Specifies the directory where the implementation
repository is stored.

vbroker.oad.path null Specifies the directory for the OAD.

vbroker.oad. systemRoot null Specifies the root directory.

vbroker.oad.windir null Specifies the Windows directory.

vbroker.oad.vbj vbj Specifies the VisiBroker for Java directory.

Interface Repository properties

The following table lists the Interface Repository (IR) properties.

Property Default | Description

vbroker.ir.deb |false |When set to true, allows the IR resolver to display debugging

ug information.
Note: This property is deprecated. Refer to the new Debug logger
properties.

vbroker.ir.ior |null When the vbroker.ir.name property is set to the default value, null,
the VisiBroker ORB will try to use this property to locate the IR.

vbroker.ir.nam |null Specifies the name that is used by the VisiBroker ORB to locate

e the IR.

5: VisiBroker properties 75

Client-side IIOP connection properties

Client-side IIOP connection properties

The table below lists the VisiBroker for Java Client-side IIOP Connection properties.

Property

Default

Description

vbroker.ce.iiop.ccm.
connectionCacheMax

5

Specifies the maximum number of cached
connections for a client. The connection is
cached when a client releases it.
Therefore, the next time a client needs a
new connection, it first tries to retrieve one
from the cache, instead of just creating a
new one.

vbroker.ce.iiop.ccm.
connectionMax

Specifies the maximum number of total
connections for a client. This is equal to the
number of active connections plus cached
connections. The default value of zero
specifies that the client will not try to close
any of the old active or cached
connections.

vbroker.ce.iiop.ccm.
connectionMaxIdle

Specifies the time, in seconds, that the
client uses to determine if a cached
connection should be closed. If a cached
connection has been idle longer than this
time, then the client closes the connection.

vbroker.ce.iiop.ccm.type

Pool

Specifies the type of client connection
management used by a client. The value
Pool means connection pool. This is
currently the only valid value for this

property.

vbroker.ce.iiop.ccm.
waitForCompletion

false

This property can be set to true to specify
that the application wants to wait for all
replies to be received and only after then
should the ORB should close the
connection. The default value of false
indicates that ORB will not wait for any
replies.

vbroker.ce.iiop.
connection.tcpNoDelay

FALSE

When set to TRUE, the server's sockets are
configured to send any data written to them
immediately instead of batching the data
as the buffer fills.

vbroker.ce.iiop.clientPort

0 (random
port)

Specifies the client port to be used when a
connection is opened by the ORB. Allowed
values range from 0 to 65535. A range
should be specified using the
vbroker.ce.iiop.clientPortRange property
when this property is used.

vbroker.ce.iiop.clientPort
Range

Specifies the range of client ports to be
used when a connection is opened by the
ORB, starting with the port specified by the
vbroker.ce.iiop.clientPort property.
Allowed values range from 0 to 65535.

vbroker.ce.iiop.host

none

This property declares the client address
that is to be used when opening
connections from a multihomed machine. If
not specified, the default address is used.

76 VisiBroker for Java Developer’s Guide

URL Naming properties

URL Naming properties

This table lists the URL Naming properties.

Property Default |Description

vbroker.URLNaming.allowUserInter |true When set to true, allows the URL Naming

action Service to initiate the graphical user
interface (GUI) for user interaction.

vbroker.URLNaming.debug false |When set to true, specifies that the
URLNaming Service display debugging
information.

QoS-related Properties

Property Default Description

vbroker.orb.qgos.relativeRTT |0 This property can be used to set the
RelativeRoundtripTimeoutPolicy in milliseconds.
It takes effect at the ORB level and can be
overridden programatically at other levels.
The default value of 0 means no timeout.

vbroker.qgos.cache True Specifies if QoS policies should be cached
per delegate, instead of being checked prior
to every request made by the client.

vbroker.orb.qos.connectionTi |0 (no This property allows the convenience of
meout limit) setting the RelativeConnectionTimeoutPolicy
Qos policy at the ORB level, without requiring
explicit code to be written. The connection
timeout value should be specified in
milliseconds.

vbroker.qgos.backcompat False The default value of false will exhibit the
VBJ70 VB_NOTIFY_REBIND behavior. A
value of true will revert back to the VBJ65
VB_NOTIFY_REBIND behavior.

Server-side server engine properties

This table lists the server-side server engine properties.

Property Default Description
vbroker.se.default iiop_tp Specifies the default server engine.

Server-side thread session IOP_TS/IIOP_TS connection properties

The following table lists the server-side thread session IIOP_TS/IIOP_TS connection

properties.
Property Default Description
vbroker.se.iiop_ts.host null Specifies the host name used by

this server engine. The default
value, null, means use the host
name from the system.

vbroker.se.iiop_ts.proxyHost null Specifies the proxy host name used
by this server engine. The default
value, null, means use the host
name from the system.

5: VisiBroker properties 77

Server-side thread session IIOP_TS/IIOP_TS connection properties

Property Default Description
vbroker.se.iiop_ts.scms iiop_ts Specifies the list of Server
Connection Manager name(s).
vbroker.se.iiop_ts.scm.iiop_ts. Socket Specifies the type of Server
manager.type Connection Manager.
vbroker.se.iiop_ts.scm.iiop_ts. 0 Specifies the maximum number of
manager . connectionMax connections the server will accept.
The default value, 0 (zero), implies
no restriction.
vbroker.se.iiop_ts.scm.iiop_ts.ma |0 Specifies the time in seconds the
nager. server uses to determine if an
connectionMaxIdle inactive connection should be
closed.
vbroker.se.iiop_ts.scm.iiop_ts. II0P Specifies the type of protocol the
listener.type listener is using.
vbroker.se.iiop_ts.scm.iiop_ts. 0 Specifies the port number that is
listener.port used with the host name property.
The default value, 0 (zero),
specifies that the system will pick a
random port number.
vbroker.se.iiop_ts.scm.iiop_ts. 0 Specifies the proxy port number
listener.proxyPort used with the proxy host name
property. The default value, 0
(zero), specifies that the system will
pick a random port number.
vbroker.se.iiop_ts.scm.iiop_ts. 1.2 This property can be used to
listener.giopVersion resolve interoperability problems
with older VisiBroker ORBs that
cannot handle unknown minor
GIOP versions correctly. Legal
values for this property are 1.0, 1.1
and 1.2. For example, to make the
nameservice produce a GIOP 1.1
ior, start it like this:
nameserv -VBJprop
vbroker.se.iiop_tp.scm.
iiop_tp.listener.giopVersion=1.1
vbroker.se.iiop_ts.scm.iiop_ts. "ThreadSessi | Specifies the type of thread
dispatcher.type on" dispatcher used in the Server

Connection Manager.

78 VisiBroker for Java Developer’s Guide

Server-side thread session BOA_TS/BOA_TS connection properties

This protocol has the same set of properties as the “Server-side thread session
IIOP_TS/IIOP_TS connection properties”, by replacing alliiop_ts with boa_ts in all the
properties. For example, the vbroker.se.iiop_ts.scm.iiop_ts.manager.connectionMax
will become vbroker.se.boa_ts.scm.boa_ts.manager.connectionMax. Also, the default
value for vbroker.se.boa_ts.scms is boa_ts.

Server-side thread pool IOP_TP/IIOP_TP connection properties

The following table lists the server-side thread pool IOP_TP/IIOP_TP connection

properties.
Property Default Description
vbroker.se.iiop_tp.host null Specifies the host name that can be
used by this server engine. The default
value, null, means use the host name
from the system. Host names or IP
addresses are acceptable values.
vbroker.se.iiop_tp.proxyHost null Specifies the proxy host name that can
be used by this server engine. The
default value, null, means use the host
name from the system. Host names or
IP addresses are acceptable values.
vbroker.se.iiop_tp.scms iiop_tp Specifies the list of Server Connection
Manager name(s).
vbroker.se.iiop_tp.scm.iiop_tp. Socket Specifies the type of Server Connection
manager. type Manager.
vbroker.se.iiop_tp.scm.iiop_tp. 0 Specifies the maximum number of
manager. connectionMax cache connections on the server. The
default value, 0 (zero), implies no
restriction.
vbroker.se.iiop_tp.scm.iiop_tp.ma |0 Specifies the time, in seconds, that the
nager. server uses to determine if an inactive
connectionMaxIdle connection should be closed.
vbroker.se.iiop_tp.scm.iiop_tp. 1I0P Specifies the type of protocol the listener
listener.type is using.
vbroker.se.iiop_tp.scm.iiop_tp. 0 Specifies the port number used with the
listener.port host name property. The default value, 0
(zero), means that the system will pick a
random port number.
vbroker.se.iiop_tp.scm.iiop_tp. 0 (zero) |This property is effective only when
listener.portRange listener.port is greater than O (zero). If
the listener cannot bind to that port
because the port may be in use then the
listener will try to bind to the ports in the
range [port, port+portRange]. If no ports
in the range are available then a
COMM_FATILURE exception will be thrown.
vbroker.se.iiop_tp.scm.iiop_tp. 0 Specifies the proxy port number used

listener.proxyPort

with the proxy host name property. The
default value, 0 (zero), means that the
system will pick a random port number.

5: VisiBroker properties 79

Property Default Description

vbroker.se.iiop_tp.scm.iiop_tp. ThreadPo | Specifies the type of thread dispatcher
dispatcher.type ol used in the Server Connection Manager.
vbroker.se.iiop_tp.scm.iiop_tp. 0 Specifies the minimum number of
dispatcher.threadiin threads that the Server Connection
Manager can create.
vbroker.se.iiop_tp.scm.iiop_tp. 0 Specifies the maximum number of
dispatcher.threadMax threads that the Server Connection

Manager can create. The default value,
of 0 (zero) implies an unlimited number
of threads"

Setting the property
vbroker.se.iiop_tp.scm.iiop_tp.dispatche
r.unlimitedConcurrency=true will imply
that setting this property to O will enable
unlimited number of threads in the
thread pool to be created.

vbroker.se.ilop_tp.scm.iiop_tp.di |false Setting this property to true will allow the
spatcher.unlimitedConcurrency thread pool to create unlimited number
of threads when the property
vbroker.se.iiop_tp.scm.iiop_tp.dispatche
r.threadMax is set to 0.

vbroker.se.iiop_tp.scm.iiop_tp. 300 Specifies the time in seconds before an
dispatcher.threaddMaxIdle idle thread will be destroyed.
vbroker.se.iiop_tp.scm.iiop_tp. true When this property is set to false, this
connection.tcpNoDelay turns on buffering for the socket. The

default value, true, turns off buffering, so
that all packets are sent as soon as they
are ready.

Server-side thread pool BOA_TP/BOA_TP connection properties

This protocol has the same set of properties as the “Server-side thread pool IOP_TP/
IIOP_TP connection properties”, by replacing all iiop_tp with boa_tp in all the
properties. For example, the vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax
will become vbroker.se.boa_tp.scm.boa_tp.manager.connectionMax. Also, the default
value for vbroker.se.boa_tp.scms is boa_tp.

Properties that support bi-directional communication

The following table lists the properties that support bi-directional communication.
These properties are evaluated only once—when the SCMs are created. In all cases,
the exportBiDir and importBiDir properties on the SCMs are given priority over the
enableBiDir property. In other words, if both properties are set to conflicting values, the
SCM-specific properties will take effect. This allows you to set the enableBiDir property
globally and specifically turn off bi-directionality in individual SCMs.

80 VisiBroker for Java Developer’s Guide

Property

Default

Description

vbroker.orb.enableBiDir

none

You can selectively make bi-directional
connections. If the client defines
vbroker.orb.enableBiDir=client and the
server defines
vbroker.orb.enableBiDir=server the value
of vbroker.orb.enableBiDir at the
GateKeeper determines the state of the
connection. Values of this property are:
server, client, both or none.

vbroker.se.<se>.scm.<scm>.

manager.exportBiDir

By default, this property is not set by the
ORB. This is a client-side property.
Setting it to true enables creation of a bi-
directional callback POA on the specified
server engine. Setting it to false disables
creation of a bidirectional POA on the
specified server engine.

vbroker.se.<se>.scm.<scm>.

manager.importBiDir

By default, not set by the ORB. This is a
server-side property. Setting it to true
allows the server-side to reuse the
connection already established by the
client for sending requests to the client.
Setting it to false prevents reuse of
connections in this fashion.

Debug Logging properties

This section details the properties that can be used to control and configure the output

of debug log statements.

VisiBroker for Java internally uses Log4J infrastructure for logging.

The debug log statements are categorized according to the areas of the ORB from
where they are logged. These categories are called source names. Currently the
following source names are logged:

- connection: logs from the connection-related source areas such as client side
connection, server side connection, connection pool etc.

- client: logs from the client side invocation path

- agent: logs for Osagent communication

- cdr: logs for GIOP areas

- se: logs from the server engine, such as dispatcher, listener etc.

- server: logs from the server side invocation path.

- orb: logs from the ORB.

- naming: logs from Naming Service

- gatekeeper: logs from Gatekeeper

- time: logs from Time Service

Enabling and Filtering

The following table describes the properties used to enable logging and filtering.

5: VisiBroker properties 81

Property

Default

Description

vbroker.log.enable

false

When set to true, all logging statements will
be produced unless the log is being filtered.

Values are true or false.

vbroker.log.logLevel

debug

Specifies the logging level of the log
message. When set at a level, the logs with
log levels equal to the specified level or
above are forwarded. This property is
applied at the global level.

Values are emerg, alert, crit, err, warning,
notice, info and debug ranking from the
highest to the lowest.

The meaning of the log levels are:
emerg - indicates a panic condition.
alert - a condition that requires user

attention--for example, if security has been
disabled.

crit - critical conditions, such as a device
error.

err - error conditions.

warning - warning conditions--these may
accompany some troubleshooting advice,
such as on the opening of a connection.

info - informational, such as binding in
progress.

debug - debug conditions used by
developers.

register

vbroker.log.default.filter.

null

Register source name for controlling
(filtering) the logs from that source.

Values are client, server, connection, cdr,
se, agent and orb. Multiple values can be
provided as a comma-separated string.

Note: The source names must be registered
using this property before they can be
explicitly controlled using

vbroker.log.default.filter.<source-
name>.enableand

vbroker.log.default.filter.<source-
name>.logLevel properties.

<source-name>.enable

vbroker.log.default.filter.

true

Once a source name is registered, log
output from the source can be explicitly
controlled using this property.

Values are true or false.

<source-name>.logLevel

vbroker.log.default.filter.

debug

This property provides finer-grained control
over the global log level property. The log
level specified using this property explicitly
applies to the given source name.

The possible values are similar to the global
logLevel values.

all.enable

vbroker.log.default.filter.

true

This is a special case of the previous
property where an inbuilt source name "all"
is being used. "all* here denotes all the
source names that have not been registered.

82 VisiBroker for Java Developer’s Guide

Appending and Logging

The output of the logs can be appended to specific destinations and formatted using
specific layouts. VisiBroker for Java uses the appenders and layouts provided by
Log4J for these purposes. Two inbuilt appenders stdout and rolling implement console
and rolling file implementation. Apart from the various layouts available with Log4J, two
inbuilt layouts simple and xml provide good layout capabilities.

stdout — Name of the Console appender type.

rolling — Name of the rolling file appender type.

simple — Name of a simple predefined output layout type.
xml — Name of Log4J XML event layout type.

The following table describes the properties used to configure the destination of the log
output and its format.

Property Default Description

vbroker.log.default.appenders |stdout List of comma-separated appenders for
specifying log output destination.Values are
stdout, rolling and/or any user specified
appender name. User can further specify
the appenders using:
logdj.appender.<name>=<full class
name in logdj>

vbroker.log.default.appender. |PatternL |Type of layout (format) to be associated

<appender-inst- ayout with the registered appender destination.
name>. layoutType Values are simple or xml or a custom layout
type.

Values are PatternLayout, simple, xml and/
or the full class name of all the Log4J
supported layout.

For the built-in rolling appender type, you can create the following configurations.

Property Default Description
vbroker.log.default.appender. |<current_director Dirgcto_ry for the rolling log file to
rolling.logDir V> reside in.
vbroker.log.default.appender. |vbrolling.log</ Name of rolling log file.
rolling.fileName td>
vbroker.log.default.appender. |10 Size in MB for each backup
rolling.maxFileSize before rolling over. Values >= 1.
vbroker.log.default.appender. |1 Number of backups needed. .
rolling.maxBackupIndex When set to 0 (zero), no backup is
created and logging will keep on
appending to the file. Values >= 0.

Deprecated Properties

Deprecated Property Recommended Property

vbroker.orb.debug vbroker.log.enable

vbroker.orb.logLevel vbroker.log.logLevel

vbroker.agent .debug vbroker.log.default.filter.agent.enable
vbroker.locationservice.debug vbroker.log.default.filter.agent.enable
vbroker.poa.logLevel vbroker.log.default.filter.server.logLevel

5: VisiBroker properties 83

Deprecated Property Recommended Property

vbroker.gatekeeper.passthru.log |vbroker.log.default.filter.gatekeeper.logLevel

Level
vbroker.naming.logLevel broker.log.default.filter.naming.logLevel
vvbroker.orb.logger.output vbroker.log.default.appenders

Setting Properties in an Applet

Setting properties for applets can only be done in the applet parameters.

For example:

<APPLET archive="vbjorb.jar, vbsec.jar" CODE="ClientApplet.class">
<PARAM NAME="org.omg.CORBA.ORBClass" VALUE="com.inprise.vbroker.orb.ORB">
<PARAM NAME="vbroker.orb.alwaysTunnel" VALUE="true">
</APPLET>
Note:

VisiBroker 3.x-style command-line options cannot be used as applet parameters.

Web Services Runtime Properties

Using these properties listed, you can enable the runtime.

Table 5.1 Web Services Runtime Properties

Property Default Description

vbroker.ws.enable false Takes in a Boolean true or false parameter. Setting
this value to true will enable the VisiBroker Web
Services Runtime.

Web Services HTTP Listener properties

To configure the HTTP Listener, use the properties listed in the following table.

Table5.2 Web Services HTTP Listener properties

Property Default Description

vbroker.se.ws.Host null Specifies the host name to be used by the
listener.

vbroker.se.ws.proxyHos |[null Specifies the proxy host name used by the

t web services engine. Default value null means
use the host name from the system.

vbroker.se.ws.scm.ws_t 80 Specifies the port number to be used by the

s.listener.port listener socket.

vbroker.se.ws.scm.ws_t | WS Specifies the protocol the listener is using. A

s.listener.type value of WS-HIOPS will start a secure (https-
based) listener.

Web Services Connection Manager properties

Using these properties listed below, you can configure the Web services Connection
Manager.

84 VisiBroker for Java Developer’s Guide

SOAP Request Dispatcher properties

Table53 Web Services Connection Manager properties

Property Default Description

vbroker.se.ws.scm.ws_t 0 If keepAliveConnection is true, this
s.manager.connectionMa property specifies the maximum number of
% connections the server will accept. Default

0 indicates no restriction.

vbroker.se.ws.scm.ws_t 0 This property determines the maximum
s.manager.connectionMa time an unused connection will remain
xIdle alive.

vbroker.se.ws.scm.ws_t Socket Specifies the type of Server Connection
s.manager.type Manager

This table lists the SOAP Request Dispatcher properties.

Table54 SOAP Request Dispatcher properties
Property Default Description
vbroker.se.ws.scm.ws_ts. 0 Maximum number of threads to
dispatcher.threadMax be present in the thread pool
dispatcher. Default value 0
indicates unlimited number of
threads.
vbroker.se.ws.scm.ws_ts. 0 Minimum number of threads to
dispatcher.threadMin be present in the thread pool
dispatcher.
vbroker.se.ws.scm.ws_ts. 300 Time in seconds before an idled
dispatcher.threadMaxIdle thread in the thread pool is
destroyed.
vbroker.se.ws.scm.ws_ts. ThreadSession Specifies the type of thread
dispatcher.type dispatcher used in the Server
Connection Manager

Getting the ORB version programmatically

When using VisiBroker for Java, you can obtain the ORB version string by calling the

getVersion method on com.inprise.vbroker.orb.ORB class, as shown in the following

example:

String orbVersion = com.inprise.vbroker.orb.ORB.getVersion();

Note:

This method is static, so calling it does not require initializing the ORB
The version string appears in the format shown the following example:

Borland VisiBroker: VisiBroker for Java [07.01.00.B1

5: VisiBroker properties

85

86 VisiBroker for Java Developer’s Guide

Handling exceptions

Exceptions in the CORBA model

The exceptions in the CORBA model include both system and user exceptions. The
CORBA specification defines a set of system exceptions that can be raised when
errors occur in the processing of a client request. Also, system exceptions are raised in
the case of communication failures. System exceptions can be raised at any time and
they do not need to be declared in the interface.

You can define user exceptions in IDL for objects you create and specify the
circumstances under which those exceptions are to be raised. They are included in the
method signature. If an object raises an exception while handling a client request, the

VisiBroker ORB is responsible for reflecting this information back to the client.

System exceptions

System exceptions are usually raised by the VisiBroker ORB, though it is possible for
object implementations to raise them through interceptors discussed in “Using

VisiBroker Interceptors.” When the VisiBroker ORB raises a SystemException, one of

the CORBA-defined error conditions is displayed as shown below.

For a listing of explanations and possible causes of these exceptions, see “CORBA

exceptions.”

Exception name

Description

BAD_CONTEXT

Error processing context object.

BAD_INV_ORDER

Routine invocations out of order.

BAD_OPERATION

Invalid operation.

BAD_PARAM

An invalid parameter was passed.

BAD_QOS

Quality of service cannot be supported.

BAD_TYPECODE

Invalid typecode.

COMM_FAILURE

Communication failure.

DATA_CONVERSION

Data conversion error.

FREE_MEM Unable to free memory.
IMP_LIMIT Implementation limit violated.
INITIALIZE VisiBroker ORB initialization failure.

6: Handling exceptions

81

System exceptions

Exception name Description

INTERNAL VisiBroker ORB internal error.

INTF_REPOS Error accessing interface repository.

INV_FLAG Invalid flag was specified.

INV_INDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference specified.

INVALID_TRANSACTION Specified transaction was invalid (used in conjunction with
VisiTransact).

MARSHAL Error marshalling parameter or result.

NO_IMPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted operation.

NO_RESOURCES Insufficient resources to process request.

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTOR Failure detected by object adaptor.

OBJECT_NOT_EXIST Object is not available.

PERSIST_STORE Persistent storage failure.

TRANSIENT Transient failure.

TRANSACTION_MODE Mismatch detected between the TransactionPolicy in the IOR and the
current transaction mode (used in conjunction with VisiTransact).

TRANSACTION_REQUIRED Transaction is required (used in conjunction with VisiTransact).

TRANSACTION_ROLLEDBACK | Transaction was rolled back (used in conjunction with VisiTransact).

TRANSACTION_UNAVAILABLE | Connection to the VisiTransact Transaction Service has been
abnormally terminated.

TIMEQUT Request timeout.

UNKNOWN Unknown exception.

For a listing of explanations and possible causes of the above exceptions, see
“CORBA exceptions.”

SystemException class

public abstract class org.omg.CORBA.SystemException extends
java.lang.RuntimeException {
protected SystemException(java.lang.String reason,
int minor, CompletionStatus completed) { ... }
public String toString() { ... }
public CompletionStatus completed;
public int minor;

Obtaining completion status

System exceptions have a completion status that tells you whether or not the operation
that raised the exception was completed. The sample below illustrates the
CompletionStatus enumerated values for the CompletionStatus. COMPLETED_MAYRE is
returned when the status of the operation cannot be determined.

enum CompletionStatus {
COMPLETED_YES = 0;
COMPLETED_NO = 1;
COMPLETED_MAYBE = 2;
b

82 VisiBroker for Java Developer’s Guide

System exceptions

Catching system exceptions

Your applications should enclose the VisiBroker ORB and remote calls in a try catch
block. The code samples below illustrate how the account client program, discussed in
“Developing an example application with VisiBroker” prints an exception.

public class Client {
public static void main(String[] args) f{
try {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args,null);
byte[] managerId = "BankManager".getBytes();
Bank.AccountManager manager =
Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa",
managerId);
String name = args.length > 0 ? args[0] : "Jack B. Quick";
Bank.Account account = manager.open(name);
float balance = account.balance();
System.out.println("The balance in " + name + "'s account is $" +
balance) ;
} catch (Exception e) {
System.err.println(e);

}

}

If you were to execute the client program with these modifications and without a server
present, the following output would indicate that the operation did not complete and the
reason for the exception.

prompt>vbj Client
org.omg.CORBA.OBJECT_NOT_EXIST:
Could not locate the following POA:
poa name : /bank_agent_poa

minor code: 0 completed: No

Downcasting exceptions to a system exception

You can modify the account client program to attempt to downcast any exception that
is caught to a SystemException. The following code sample shows you how to modify
the client program.

public class Client {
public static void main(String[] args) f{
try {
// Initialize the ORB
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.1init (args, null);
// Bind to an account
Account account = AccountHelper.bind(orb, "/bank_poa",
"BankAccount".getBytes());
// Get the balance of the account
float balance = account.balance();
// Print the account balance
System.out.println("The account balance is $" + balance);
catch(Exception e) {
if (e instanceof org.omg.CORBA.SystemException) {
System.err.println("System Exception occurred:");
} else {
System.err.println("Not a system exception");
}

System.err.println(e);

6: Handling exceptions 83

User exceptions

}
The following code sample displays the resulting output if a system exception occurs.

System Exception occurred:
in thread "main" org.omg.CORBA.OBJECT_NOT_EXIST minor code: 0 completed: No

Catching specific types of system exceptions

Rather than catching all types of exceptions, you may choose to specifically catch each
type of exception that you expect. The following code sample show this technique.

public class Client {
public static void main(String[] args) {
try {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.1init (args,null);
byte[] managerId = "BankManager".getBytes();
Bank.AccountManager manager =
Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa",
managerId);
String name = args.length > 0 ? args([0] : "Jack B. Quick";
Bank.Account account = manager.open (name);
float balance = account.balance();
System.out.printIn("The balance in " + name + "'s account 1is
$" + balance);
} catch(org.omg.CORBA.SystemException e) {
System.err.println("System Exception occurred:");
System.err.println(e);

User exceptions

When you define your object's interface in IDL, you can specify the user exceptions
that the object may raise. The following code sample shows the UserException code
from which the id12java compiler will derive the user exceptions you specify for your
object.

public abstract class UserException extends java.lang.Exception {
protected UserException();
protected UserException(String reason);

Defining user exceptions

Suppose that you want to enhance the account application, introduced in “Developing
an example application with VisiBroker” so that the account object will raise an
exception. If the account object has insufficient funds, you want a user exception
named AccountFrozen to be raised. The additions required to add the user exception to
the IDL specification for the Account interface are shown in bold.

// Bank.idl
module Bank {
interface Account {
exception AccountFrozen {
}i
float balance() raises(AccountFrozen);
}i
}i

84 VisiBroker for Java Developer’s Guide

User exceptions

The id12java compiler will generate the following code for a AccountFrozen exception
class.

package Bank;
public interface Account extends com.inprise.vbroker.CORBA.Object,
Bank.AccountOperations, org.omg.CORBA.portable.IDLEntity {
1
package Bank;
public interface AccountOperations {
public float balance () throws Bank.AccountPackage.AccountFrozen;
}
package Bank.AccountPackage;
public final class AccountFrozen extends org.omg.CORBA.UserException {

public AccountFrozen () { ... }
public AccountFrozen (java.lang.String _reason) { ... }
public synchronized java.lang.String toString() { ... }

Modifying the object to raise the exception

The AccountTmpl object must be modified to use the exception by raising the exception
under the appropriate error conditions.

public class AccountImpl extends Bank.AccountPOA {
public AccountImpl (float balance) {
_balance = balance;
}
public float balance() throws AccountFrozen {
if (_balance < 50) {
throws AccountFrozen();
} else {
return _balance;
}
private float _balance;

}

Catching user exceptions

When an object implementation raises an exception, the VisiBroker ORB is responsible
for reflecting the exception to your client program. Checking for a UserException is
similar to checking for a SystemException. To modify the account client program to catch
the AccountFrozen exception, make modifications to the code as shown below.

public class Client {
public static void main(String[] args) {
try {
// Initialize the ORB
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args, null);
// Bind to an account
Account account = AccountHelper.bind(orb, "/bank_poa",
"BankAccount".getBytes());
// Get the balance of the account
float balance = account.balance();
// Print the account balance
System.out.println("The account balance is $" + balance);
1
// Check for AccountFrozen exception
catch(Account.AccountFrozen e) {
System.err.println("AccountFrozen returned:");
System.err.println(e);
1

// Check for system errors

6: Handling exceptions 85

User exceptions

catch(org.omg.CORBA. SystemException sys_excep) {
1
}

Adding fields to user exceptions

You can associate values with user exceptions. The code sample below shows how to
modify the IDL interface specification to add a reason code to the AccountFrozen user
exception. The object implementation that raises the exception is responsible for
setting the reason code. The reason code is printed automatically when the exception
is put on the output stream.

// Bank.idl
module Bank {
interface Account {
exception AccountFrozen {
int reason;
}i
float balance() raises(AccountFrozen);
}i
}i

86 VisiBroker for Java Developer’s Guide

User exceptions

6: Handling exceptions 87

88 VisiBroker for Java Developer’s Guide

Overview

Server basics

This section outlines the tasks that are necessary to set up a server to receive client
requests.

The basic steps that you'll perform in setting up your server are:
Initialize the VisiBroker ORB

Create and setup the POA
Activate the POA Manager

Activate objects

Wait for client requests

This section describes each task in a global manner to give you an idea of what you
must consider. The specifics of each step are dependent on your individual
requirements.

Initializing the VisiBroker ORB

As stated in the previous section, the VisiBroker ORB provides a communication link
between client requests and object implementations. Each application must initialize
the VisiBroker ORB before communicating with it as follows:

// Initialize the VisiBroker ORB.
org.ogm.CORBA.ORB orb=org.omg.CORBA.ORB.init (args,null);

7: Server basics

89

Creating the POA

Creating the POA

Early versions of the CORBA object adapter (the Basic Object Adapter, or BOA) did not
permit portable object server code. A new specification was developed by the OMG to
address these issues and the Portable Object Adapter (POA) was created.

Note

A discussion of the POA can be quite extensive. This section introduces you to some of
the basic features of the POA. For detailed information, see “Using POAs” and the
OMG specification.

In basic terms, the POA (and its components) determine which servant should be
invoked when a client request is received, and then invokes that servant. A servantis a
programming object that provides the implementation of an abstract object. A servant
is not a CORBA object.

One POA (called the rootPOA) is supplied by each VisiBroker ORB. You can create
additional POAs and configure them with different behaviors. You can also define the
characteristics of the objects the POA controls.

The steps to setting up a POA with a servant include:

Obtaining a reference to the root POA

Defining the POA policies
Creating a POA as a child of the root POA

Creating a servant and activating it

Activating the POA through its manager
Some of these steps may be different for your application.

Obtaining a reference to the root POA

All server applications must obtain a reference to the root POA to manage objects or to
create new POAs.

//2. Get a reference to the root POA

org.omg.CORBA.Object obj = orb.resolve_initial_reference("RootPOA");
// Narrow the object reference to a POA reference

POA rootPoa = org.omg.PortableServer.POAHelper.narrow(obj);

You can obtain a reference to the root POA by using resolve_initial_references which
returns a value of type CORBA: :0bject. You are responsible for narrowing the returned
object reference to the desired type, which is PortableServer: :POA in the above
example.

You can then use this reference to create other POAs, if needed.

Creating the child POA

The root POA has a predefined set of policies that cannot be changed. A policy is an
object that controls the behavior of a POA and the objects the POA manages. If you

need a different behavior, such as different lifespan policy, you will need to create a

new POA.

POAs are created as children of existing POAs using create_POA. You can create as
many POAs as you think are required.

Note
Child POAs do not inherit the policies of their parent POAs.

90 VisiBroker for Java Developer’s Guide

Creating the POA

In the following example, a child POA is created from the root POA and has a
persistent lifespan policy. The POA Manager for the root POA is used to control the
state of this child POA.

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy (LifespanPolicyValue.PERSISTENT)
1
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa", rootPOA.the_POAManager (),
policies);

Implementing servant methods

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data
structures, and more. When you compile IDL that contains an interface, a class is
generated which serves as the base class for your servant. For example, in the
Bank.IDL file, an >AccountManager

module Bank{
interface Account {
float balance();
}i
interface AccountManager {
Account open (in string name);
}i
}i

The following shows the AccountManager implementation on the server side.

AccountManagerPOA. java is created and serves as the skeleton code (implementation
base code) for the AccountManager object implementation on the server side, as follows:

import org.omg.PortableServer.*;
import java.util.*;
public class AccountManagerImpl extends Bank.AccountManagerPOA {
public synchronized Bank.Account open(String name) {
// Lookup the account in the account dictionary.
Bank.Account account = (Bank.Account) _accounts.get (name);
// If there was no account in the dictionary, create one.
if (account == null) {
// Make up the account's balance, between 0 and 1000 dollars.
float balance = Math.abs(_random.nextInt()) % 100000 / 100f;
// Create the account implementation, given the balance.
AccountImpl accountServant = new AccountImpl (balance);
try {
// Activate it on the default POA which is root POA for this
servant
account = Bank.AccountHelper.narrow(_default_POA().
servant_to_reference(accountServant));
} catch (Exception e) {
e.printStackTrace();
}
// Print out the new account.
System.out.println("Created " + name + "'s account: " + account);
// Save the account in the account dictionary.
_accounts.put (name, account);
1
// Return the account.
return account;
1
private Dictionary _accounts = new Hashtable();
private Random _random = new Random();

}

7: Server basics 91

Creating and Activating the Servant

Creating and Activating the Servant

The AccountManager implementation must be created and activated in the server
code. In this example, AccountManager is activated with activate_object_with_id,
which passes the object ID to the Active Object Map where it is recorded. The Active
Object Map is simply a table that maps IDs to servants. This approach ensures that this
object is always available when the POA is active and is called explicit object
activation.

// Create the servant

AccountManagerImpl managerServant = new AccountManagerImpl();
// Decide on the ID for the servant

byte[] managerId = "BankManager".getBytes();

// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, managerServant);

Activating the POA

The last step is to activate the POA Manager associated with your POA. By default,
POA Managers are created in a holding state. In this state, all requests are routed to a
holding queue and are not processed. To allow requests to be dispatched, the POA
Manager associated with the POA must be changed from the holding state to an active
state. A POA Manager is simply an object that controls the state of the POA (whether
requests are queued, processed, or discarded.) A POA Manager is associated with a
POA during POA creation. You can specify a POA Manager to use, or let the system
create a new one for you by passing a null value as the POA Manager name in
create_POA()).

// Activate the POA Manager
PortableServer: :POAManager_var mgr=rootPoa ->the_POAManager();
mgr->activate();

Activating objects

In the preceding section, there was a brief mention of explicit object activation. There
are several ways in which objects can be activated:

- Explicit: All objects are activated upon server start-up via calls to the POA

- On-demand: The servant manager activates an object when it receives a request for
a servant not yet associated with an object ID

- Implicit: Objects are implicitly activated by the server in response to an operation by
the POA, not by any client request

- Default servant: The POA uses the default servant to process the client request

A complete discussion of object activation is in “Using POAs.” For now, just be aware
that there are several means for activating objects.

Waiting for client requests

Once your POA is set up, you can wait for client requests by using orb.run(). This
process will run until the server is terminated.

// Wait for incoming requests.
orb->run();

92 VisiBroker for Java Developer’s Guide

Complete example

Complete example

The samples below shows the complete example code.

// Server.java
import org.omg.PortableServer.*;
public class Server {
public static void main(String[] args) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args,null);
// get a reference to the root POA
POA rootPOA =
POAHelper.narrow (orb.resolve_initial_references("RootPOA"));
// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy (LifespanPolicyValue.PERSISTENT)
}i
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa",
rootPOA. the_POAManager (),
policies);
// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, managerServant);
// Activate the POA manager
rootPOA.the_POAManager () .activate();
System.out.println(myPOA.servant_to_reference(managerServant) + " is
ready.");
// Wait for incoming requests
orb.run();
} catch (Exception e) {
e.printStackTrace();

}

7: Server basics 93

94 VisiBroker for Java Developer’s Guide

Using POAs

What is a Portable Object Adapter?

Portable Object Adapters replace Basic Object Adapters; they provide portability on the
server side.

A POA is the intermediary between the implementation of an object and the VisiBroker
ORB. In its role as an intermediary, a POA routes requests to servants and, as a result
may cause servants to run and create child POAs if necessary.

Servers can support multiple POAs. At least one POA must be present, which is called
the rootPOA. The rootPOA is created automatically for you. The set of POAs is
hierarchical; all POAs have the rootPOA as their ancestor.

Servant managers locate and assign servants to objects for the POA. When an
abstract object is assigned to a servant, it is called an active object and the servant is
said to incarnate the active object. Every POA has one Active Object Map which keeps
track of the object IDs of active objects and their associated active servants.

Note

Users familiar with versions of VisiBroker prior to 6.0 should note the change in
inheritance hierarchy to support CORBA Specification 3.0, which requires local
interfaces. For example, a ServantLocator implementation would now extend from
org.omg.PortableServer._ServantLocatorLocalBase instead of
org.omg.PortableServer.ServantLocatorPOA.

8: Using POAs 95

What is a Portable Object Adapter?

Figure 8.1 Overview of the POA
Serier PO
FOA P Servant Manager
roctPOA ,_,,/‘
P
Servant Manager - /
Clent request —— 1 1
Active Objeet map/f -
CbiectiD]
ObjectD |)j
ChectlD
¥ [Zervant

POA terminology

Following are definitions of some terms with which you will become more familiar as
you read through this section.

Term

Description

Active Object Map

Table that maps active VisiBroker CORBA objects (through their object
IDs) to servants. There is one Active Object Map per POA.

adapter activator

Object that can create a POA on demand when a request is received for a
child POA that does not exist.

etherealize Remove the association between a servant and an abstract CORBA
object.

incarnate Associate a servant with an abstract CORBA object.

ObjectID Way to identify a CORBA object within the object adapter. An ObjectID

can be assigned by the object adapter or the application and is unique
only within the object adapter in which it was created. Servants are
associated with abstract objects through ObjectIDs.

persistent object

CORBA objects that live beyond the server process that created them.

POA manager

Object that controls the state of the POA; for example, whether the POA
is receiving or discarding incoming requests.

Policy Object that controls the behavior of the associated POA and the objects
the POA manages.

rootPOA Each VisiBroker ORB is created with one POA called the rootPOA. You
can create additional POAs (if necessary) from the rootPOA.

servant Any code that implements the methods of a CORBA object, but is not the

CORBA object itself.

servant manager

An object responsible for managing the association of objects with
servants, and for determining whether an object exists. More than one
servant manager can exist.

transient object

A CORBA object that lives only within the process that created it.

96 VisiBroker for Java Developer’s Guide

POA policies

POA policies

Steps for creating and using POAs

Although the exact process can vary, following are the basic steps that occur during the
POA lifecycle are:

1 Define the POA's policies.

Create the POA.

Activate the POA through its POA manager.
Create and activate servants.

o B W N

Create and use servant managers.
6 Use adapter activators.

Depending on your needs, some of these steps may be optional. For example, you
only have to activate the POA if you want it to process requests.

Each POA has a set of policies that define its characteristics. When creating a new
POA, you can use the default set of policies or use different values to suit your
requirements. You can only set the policies when creating a POA; you can not change
the policies of an existing POA. POAs do not inherit the policies from their parent POA.

The following lists the POA policies, their values, and the default value (used by the
rootPOA).

Thread policy The thread policy specifies the threading model to be used by the POA.
The thread policy can have the following values:

ORB_CTRL_MODEL: (Default) The POA is responsible for assigning requests to
threads. In a multi-threaded environment, concurrent requests may be delivered using
multiple threads. Note that VisiBroker uses multi-threading model.

SINGLE_THREAD_MODEL: The POA processes requests sequentially. In a multi-
threaded environment, all calls made by the POA to servants and servant managers
are thread-safe.

MAIN_THREAD_MODEL.: Calls are processed on a distinguished “main” thread.
Requests for all main-thread POAs are processed sequentially. In a multi-threaded
environment, all calls processed by all POAs with this policy are thread-safe. The
application programmer designates the main thread by calling ORB::run() or
ORB::perform_work(). For more information about these methods, see “Activating
objects”.

Lifespan policy The lifespan policy specifies the lifespan of the objects implemented
in the POA.

The lifespan policy can have the following values:

TRANSIENT: (Default) A transient object activated by a POA cannot outlive the POA
that created it. Once the POA is deactivated, an OBJECT_NOT_EXIST exception
occurs if an attempt is made to use any object references generated by the POA.

PERSISTENT: A persistent object activated by a POA can outlive the process in which
it was first created. Requests invoked on a persistent object may result in the implicit
activation of a process, a POA and the servant that implements the object.

Object ID Uniqueness policy The Object ID Uniqueness policy allows a single
servant to be shared by many abstract objects.

The Object ID Uniqueness policy can have the following values:
UNIQUE_ID: (Default) Activated servants support only one Object ID.

MULTIPLE_ID: Activated servants can have one or more Object IDs. The Object ID
must be determined within the method being invoked at run time.

ID Assignment policy The ID assignment policy specifies whether object IDs are
generated by server applications or by the POA.

The ID Assignment policy can have the following values:

8: Using POAs 97

POA policies

USER_ID: Objects are assigned object IDs by the application.

SYSTEM_ID: (Default) Objects are assigned object IDs by the POA. If the
PERSISTENT policy is also set, object IDs must be unique across all instantiations of
the same POA.

Typically, USER_ID is for persistent objects, and SYSTEM_ID is for transient objects. If
you want to use SYSTEM_ID for persistent objects, you can extract them from the
servant or object reference.

Servant Retention policy The Servant Retention policy specifies whether the POA
retains active servants in the Active Object Map.

The Servant Retention policy can have the following values:

RETAIN: (Default) The POA tracks object activations in the Active Object Map.
RETAIN is usually used with ServantActivators or explicit activation methods on POA.

NON_RETAIN: The POA does not retain active servants in the Active Object Map.
NON_RETAIN must be used with ServantLocators.

ServantActivators and ServantLocators are types of servant managers. For more
information on servant managers, see “Using servants and servant managers”.

Request Processing policy The Request Processing policy specifies how requests
are processed by the POA.

USE_ACTIVE_OBJECT_MAP_ONLY: (Default) If the Object ID is not listed in the
Active Object Map, an OBJECT_NOT _EXIST exception is returned. The POA must
also use the RETAIN policy with this value.

USE_DEFAULT_SERVANT: If the Object ID is not listed in the Active Object Map or
the NON_RETAIN policy is set, the request is dispatched to the default servant. If no
default servant has been registered, an OBJ_ADAPTER exception is returned. The
POA must also use the MULTIPLE_ID policy with this value.

USE_SERVANT_MANAGER: If the Object ID is not listed in the Active Object Map or
the NON_RETAIN policy is set, the servant manager is used to obtain a servant.

Implicit Activation policy The Implicit Activation policy specifies whether the POA
supports implicit activation of servants.

The Implicit Activation policy can have the following values:

IMPLICIT_ACTIVATION: The POA supports implicit activation of servants. There are
two ways to activate the servants as follows:

- Converting them to an object reference with
org.omg.PortableServer.POA.servant_to_reference() .

- Invoking _this() on the servant.

The POA must also use the SYSTEM_ID and RETAIN policies with this value.

NO_IMPLICIT_ACTIVATION: (Default) The POA does not support implicit activation
of servants.

Bind Support policy The Bind Support policy (a VisiBroker-specific policy) controls
the registration of POAs and active objects with the VisiBroker osagent. If you have
several thousands of objects, it is not feasible to register all of them with the osagent.
Instead, you can register the POA with the osagent. When a client request is made, the
POA name and the object ID is included in the bind request so that the osagent can
correctly forward the request.

The BindSupport policy can have the following values:

BY_INSTANCE: All active objects are registered with the osagent. The POA must also
use the PERSISTENT and RETAIN policy with this value.

BY_POA: (Default) Only POAs are registered with the osagent. The POA must also
use the PERSISTENT policy with this value.

NONE: Neither POAs nor active objects are registered with the smart agent.

Note
The rootPOA is created with NONE activation policy.

98 VisiBroker for Java Developer’s Guide

Creating POAs

Creating POAs

To implement objects using the POA, at least one POA object must exist on the server.
To ensure that a POA exists, a rootPOA is provided during the VisiBroker ORB
initialization. This POA uses the default POA policies described earlier in this section.

Once the rootPOA is obtained, you can create child POAs that implement a specific
server-side policy set.

POA naming convention

Each POA keeps track of its name and its full POA name (the full hierarchical path
name.) The hierarchy is indicated by a slash (/). For example, /2/B/C means that POA
C is a child of POA B, which in turn is a child of POA A. The first slash (see the
previous example) indicates the rootPOA. If the BindSupport:BY_POA policy is set on
POA C, then /A/B/C is registered with the osagent and the client binds with /4/B/C.

If your POA name contains escape characters or other delimiters, VisiBroker precedes
these characters with a double back slash (\\) when recording the names internally. For
example, if you have coded two POAs in the following hierarchy,

org.omg.PortableServer.POA myPOAl = rootPOA.create_POA("A/B",
poaManager,
policies);

org.omg.PortableServer.POA myPOA2 = myPOAl.create POA("\t",
poaManager,
policies);

then the client would bind using:

org.omg.CORBA.Object manager = ((com.inprise.vbroker.orb.ORB) orb).
bind("/A\\/B/\t",
managerId,
null,
null);

Obtaining the rootPOA

The following code sample illustrates how a server application can obtain its rootPOA.

// Initialize the ORB.

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args, null);

// get a reference to the rootPOA

org.omg.PortableServer.POA rootPOA =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

Note

The resolve_initial_references method returns a value of type org.omg.CORBA.Object .
You are responsible for narrowing the returned object reference to the desired type,
which is org.omg. PortableServer.POA in the previous example.

Setting the POA policies

Policies are not inherited from the parent POA. If you want a POA to have a specific
characteristic, you must identify all the policies that are different from the default value.
For more information about POA policies, see “POA policies”.

org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
}i

8: Using POAs 99

Activating objects

Creating and activating the POA

A POA is created using create_POA on its parent POA. You can name the POA anything
you like; however, the name must be unique with respect to all other POAs with the
same parent. If you attempt to give two POAs the same name, a CORBA exception
(AdapterAlreadyExists) is raised.

To create a new POA, use create_POA as follows:
POA create_POA(POA_Name, POAManager, PolicyList);

The POA manager controls the state of the POA (for example, whether it is processing
requests). If null is passed to create_rOA as the POA manager name, a new POA
manager object is created and associated with the POA. Typically, you will want to
have the same POA manager for all POAs. For more information about the POA
manager, see “Managing POAs with the POA manager”.

POA managers (and POAs) are not automatically activated once created. Use
activate() to activate the POA manager associated with your POA. The following code
sample is an example of creating a POA.

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy (LifespanPolicyValue.PERSISTENT) };
// Create myPOA with the right policies
org.omg.PortableServer.POA myPOA =
00t POA.create_POA("bank_agent_poa", rootPOA.the_POAManager (), policies

)i

Activating objects

When CORBA objects are associated with an active servant, if the POA's Servant
Retention Policy is RETAIN, the associated object ID is recorded in the Active Object
Map and the object is activated. Activation can occur in one of several ways:

Explicit activation

The server application itself explicitly activates objects by
calling activate_object or activate_object_with_id.

On-demand activation

The server application instructs the POA to activate objects
through a user-supplied servant manager. The servant
manager must first be registered with the POA through
set_servant_manager.

Implicit activation

IThe server activates objects solely by in response to certain
operations. If a servant is not active, there is nothing a client
can do to make it active (for example, requesting for an
inactive object does not make it active.)

Default servant

IThe POA uses a single servant to implement all of its objects.

Activating objects explicitly

By setting IdAssignmentPolicy::SYSTEM_ID on a POA, objects can be explicitly activated
without having to specify an object ID. The server invokes activate_object on the POA
which activates, assigns and returns an object ID for the object. This type of activation
is most common for transient objects. No servant manager is required since neither the
object nor the servant is needed for very long.

Objects can also be explicitly activated using object IDs. A common scenario is during
server initialization where the user invokes activate_object_with_id to activate all the
objects managed by the server. No servant manager is required since all the objects
are already activated. If a request for a non-existent object is received, an
OBJECT_NOT_EXIST exception is raised. This has obvious negative effects if your server
manages large numbers of objects.

This code sample is an example of explicit activation using activate_object_with_id.

// Create the account manager servant.
Servant managerServant = new AccountManagerImpl (rootPoa);

100 VisiBroker for Java Developer’s Guide

Activating objects

// Activate the newly created servant.
testPoa.activate_object_with_id("BankManager".getBytes(), managerServant);
// Activate the POAs

testPoa.the_POAManager () .activate();

Activating objects on demand

On-demand activation occurs when a client requests an object that does not have an
associated servant. After receiving the request, the POA searches the Active Object
Map for an active servant associated with the object ID. If none is found, the POA
invokes incarnate on the servant manager which passes the object ID value to the
servant manager. The servant manager can do one of three things:

- Find an appropriate servant which then performs the appropriate operation for the
request.

- Raise an 0BJECT_NOT_EXIST exception that is returned to the client.
- Forward the request to another object.

The POA policies determine any additional steps that may occur. For example, if
RequestProcessingPolicy.USE_SERVANT _MANAGER and ServantRetentionPolicy.RETAIN are
enabled, the Active Object Map is updated with the servant and object ID association.

An example of on-demand activation is shown below.

Activating objects implicitly

A servant can be implicitly activated by certain operations if the POA has been created
with ImplicitActivationPolicy.IMPLICIT_ACTIVATION, IdAssignmentPolicy.SYSTEM_ID, and
ServantRetentionPolicy.RETAIN. Implicit activation can occur with:

- POA.servant_to_reference method
- POA.servant_to_id method
- _this() servant method

If the POA has IdUniquenessPolicy.UNIQUE_ID set, implicit activation can occur when
any of the above operations are performed on an inactive servant.

If the POA has IdUniquenessPolicy.MULTIPLE_ID set, servant_to_reference and
servant_to_id operations always perform implicit activation, even if the servant is
already active.

Activating with the default servant

Use the RequestProcessing.USE_DEFAULT_SERVANT policy to have the POA invoke the
same servant no matter what the object ID is. This is useful when little data is
associated with each object.

This is an example of activating all objects with the same servants

import org.omg.PortableServer.*;
public class Server {
public static void main(String[] args) f{
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.1init (args,null);
// get a reference to the rootPOA
POA roOtPOA =
POAHelper.narrow (orb.resolve_initial_references("RootPOA"));
// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
100t POA.create_lifespan_policy (LifespanPolicyValue.PERSISTENT),
oot POA.create_request_processing_policy(
RequestProcessingPolicyValue.USE_DEFAULT_SERVANT

8: Using POAs 101

Activating objects

)
rootPOA.create_id_uniqueness_policy (IdUniquenessPolicyValue.MULTIPLE_ID)

}i

// Create myPOA with the right policies

POA myPOA = rootPOA.create_POA("bank_default_servant_poa",

rootPOA. the_POAManager (),
policies);

// Create the servant

AccountManagerImpl managerServant = new AccountManagerImpl();

// Set the default servant on our POA

myPOA.set_servant (managerServant) ;

org.omg.CORBA.Object ref;

// Activate the POA manager

oot POA.the_POAManager () .activate();

// Generate the reference and write it out. One for each Checking and

Savings

// account types. Note that we are not creating any

// servants here and just manufacturing a reference which is not

// yet backed by a servant.

try {
ref =

myPOA.create_reference_with_id("CheckingAccountManager".getBytes(),
"IDL:Bank/AccountManager:1.0");
// Write out checking object ID
java.io.PrintWriter pw = new java.io.PrintWriter(
new java.io.FileWriter("cref.dat"));
pw.println(orb.object_to_string(ref));
pw.close();
ref =
myPOA.create_reference_with_id("SavingsAccountManager".getBytes(),
"IDL:Bank/AccountManager:1.0");
// Write out savings object ID
pw = new java.io.PrintWriter(new java.io.FileWriter("sref.dat"));
pw.println(orb.object_to_string(ref));
pw.close();

} catch (java.ilo.IOException e) {
System.out.println("Error writing the IOR to file ");
return;

}

System.out.println("Bank Manager is ready.");

// Wait for incoming requests

orb.run();

} catch (Exception e) {
e.printStackTrace();

}

Deactivating objects

A POA can remove a servant from its Active Object Map. This may occur, for example,
as a form of garbage-collection scheme. When the servant is removed from the map, it
is deactivated. You can deactivate an object using deactivate_object (). When an
object is deactivated, it doesn't mean this object is lost forever. It can always be
reactivated at a later time.

This is an example of deactivating an object:

import org.omg.PortableServer.*;
public class AccountManagerActivator extends _ServantActivatorLocalBase {
public Servant incarnate (byte[] oid, POA adapter) throws ForwardRequest {

102 VisiBroker for Java Developer’s Guide

Using servants and servant managers

Servant servant;
String accountType = new String(oid);
System.out.printIn("\nAccountManagerActivator.incarnate called
with ID = "
+ accountType + "\n");
// Create Savings or Checking Servant based on AccountType
if (accountType.equalsIgnoreCase ("SavingsAccountManager"))
servant = (Servant)new SavingsAccountManagerImpl();
else
servant =(Servant)new CheckingAccountManagerImpl();
new DeactivateThread(oid, adapter).start();
return servant;
}
public void etherealize (byte[] oid,
POA adapter,
Servant serv,
boolean cleanup_in_progress,
boolean remaining_activations) {

System.out.println("\nAccountManagerActivator.etherealize called

with ID ="
+ new String(oid) + "\n");
}
1
class DeactivateThread extends Thread {
bytel] _oid;
POA _adapter;
public DeactivateThread(byte[] oid, POA adapter) {
_oid = oid;
_adapter = adapter;
1

public void run() {

try {
Thread.currentThread().sleep(15000);
System.out.printIn("\nDeactivating the object with ID = " +

new String(_oid) + "\n");

_adapter.deactivate_object (_oid);
} catch (Exception e) {

e.printStackTrace();

Using servants and servant managers

Servant managers perform two types of operations: find and return a servant, and
deactivate a servant. They allow the POA to activate objects when a request for an
inactive object is received. Servant managers are optional. For example, servant
managers are not needed when your server loads all objects at startup. Servant
managers may also inform clients to forward requests to another object using the
ForwardRequest exception.

A servant is an active instance of an implementation. The POA maintains a map of the
active servants and the object IDs of the servants. When a client request is received,
the POA first checks this map to see if the object ID (embedded in the client request)
has been recorded. If it exists, then the POA forwards the request to the servant. If the
object ID is not found in the map, the servant manager is asked to locate and activate
the appropriate servant. This is only an example scenario; the exact scenario depends
on what POA policies you have in place.

8: Using POAs 103

Using servants and servant managers

Figure 8.2 Example servant manager function

Server
2, POM ashks the servant manager to
1. Clent males a find an appropriate objgct
request, but the o ™,
required] object i not Servant
presant. » PoA Manager
Aotie Obgct Map

CibjectlD

Crbject|D

CibtiD

3. Servant Manager constructs the
appropriste sorvant and retums it to the
PO, wehich comphetes he request.

There are two types of servant managers: ServantActivator and ServantLocator. The
type of policy already in place determines which type of servant manager is used. For
more information on POA policy, see “POA policies”. Typically, a Servant Activator
activates persistent objects and a Servant Locator activates transient objects.

To use servant managers, RequestProcessingPolicy.USE_SERVANT_MANAGER must be set
as well as the policy which defines the type of servant manager
(ServantRetentionPolicy.RETAIN for Servant Activator
orServantRetentionPolicy.NON_RETAIN for Servant Locator.)

ServantActivators

ServantActivators are used when ServantRetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT_MANAGER are set.

Servants activated by this type of servant manager are tracked in the Active Object
Map.

The following events occur while processing requests using ServantActivators:

1 Aclient request is received (client request contains POA name, the object ID, and a
few others.)

2 The POA first checks the active object map. If the object ID is found there, the
operation is passed to the servant, and the response is returned to the client.

3 Ifthe object ID is not found in the active object map, the POA invokes incarnate on a
servant manager. incarnate passes the object ID and the POA in which the object is
being activated.

4 The servant manager locates the appropriate servant.

5 The servant ID is entered into the active object map, and the response is returned to
the client.

Note

The etherealize and incarnate method implementations are user-supplied code.

At a later date, the servant can be deactivated. This may occur from several sources,
including the deactivate_object operation, deactivation of the POA manager
associated with that POA, and so forth. More information on deactivating objects is
described in “Deactivating objects”.

This code sample is an example of servant activator-type servant manager:

import org.omg.PortableServer.*;
public class Server {

104 VisiBroker for Java Developer’s Guide

Using servants and servant managers

public static void main(String[] args) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.FORB.1init (args,null);
// get a reference to the rootPOA
POA rootPOA =
POAHelper.narrow (orb.resolve_initial_references("RootPOA"));
// Create policies for our POA. We need persistence life span and
// use servant manager request processing policies
org.omg.CORBA.Policy[] policies = {
100t POA.create_lifespan_policy (LifespanPolicyValue.PERSISTENT),

rootPOA.create_request_processing_policy (RequestProcessingPolicyValue.
USE_SERVANT _MANAGER)
}i
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_servant_activator_poa",
rootPOA. the_POAManager (),
policies);
// Create the servant activator servant and get its reference
ServantActivator sa = new AccountManagerActivator();
// Set the servant activator on our POA
myPOA.set_servant_manager (sa) ;
org.omg.CORBA.Object ref;
// Activate the POA manager
00t POA.the_POAManager () .activate();
// Generate the reference and write it out. One for each Checking
and Savings
// account types .Note that we are not creating any
// servants here and just manufacturing a reference which is not
// yet backed by a servant.
try {
ref =
myPOA.create_reference_with_id("CheckingAccountManager".getBytes(),
"IDL:Bank/AccountManager:1.0");
// Write out checking object ID
java.io.PrintWriter pw =
new java.io.PrintWriter(new java.io.FileWriter
("cref.dat"));
pw.println(orb.object_to_string(ref));
pw.close();
ref =
myPOA.create_reference_with_id("SavingsAccountManager".getBytes(),
"IDL:Bank/AccountManager:1.0");
// Write out savings object ID
pw = new java.io.PrintWriter(new java.io.FileWriter("sref.dat"));
pw.println(orb.object_to_string(ref));
pw.close();
} catch (java.io.IOException e) {
System.out.println("Error writing the IOR to file ");
return;
}
System.out.println("Bank Manager is ready.");
// Wait for incoming requests
orb.run();
} catch (Exception e) {
e.printStackTrace();

}

8: Using POAs 105

Using servants and servant managers

The servant manager for the servant activator example follows:

import org.omg.PortableServer.*;
public class AccountManagerActivator extends _ ServantActivatorLocalBase {
public Servant incarnate (byte[] oid, POA adapter) throws ForwardRequest {
Servant servant;
String accountType = new String(oid);
System.out.println("\nAccountManagerActivator.incarnate called with ID =
" + accountType + "\n");
// Create Savings or Checking Servant based on AccountType
if (accountType.equalsIgnoreCase ("SavingsAccountManager"))
servant = (Servant)new SavingsAccountManagerImpl();
else
servant =(Servant)new CheckingAccountManagerImpl();
new DeactivateThread(oid, adapter).start();
return servant;

public void etherealize (byte[] oid,
POA adapter,
Servant serv,
boolean cleanup_in_progress,
boolean remaining_activations) {
System.out.println("\nAccountManagerActivator.etherealize called
with ID =
" + new String(oid) + "\n");
}
}
class DeactivateThread extends Thread {
bytel] _oid;
POA _adapter;
public DeactivateThread(byte[] oid, POA adapter) {
_oid = oid;
_adapter = adapter;

}

public void run() {

try {
Thread.currentThread () .sleep(15000);
System.out.println("\nDeactivating the object with ID =
" + new String(_oid) + "\n");
_adapter.deactivate_object (_oid);
} catch (Exception e) {

e.printStackTrace();

}

ServantLocators

In many situations, the POA's Active Object Map could become quite large and
consume memory. To reduce memory consumption, a POA can be created with
RequestProcessingPolicy.USE_SERVANT MANAGER and ServantRetentionPolicy.NON_RETAIN,
meaning that the servant-to-object association is not stored in the active object map.
Since no association is stored, ServantLocator servant managers are invoked for each
request.

The following events occur while processing requests using ServantLocators:
1 A client request, which contains the POA name and the object id, is received.

106 VisiBroker for Java Developer’s Guide

Using servants and servant managers

2 Since ServantRetentionPolicy.NON_RETAIN is used, the POA does not search the
active object map for the object ID.

3 The POA invokes preinvoke on a servant manager. preinvoke passes the object ID,
the POA in which the object is being activated, and a few other parameters.

4 The servant locator locates the appropriate servant.
5 The operation is performed on the servant and the response is returned to the client.

6 The POA invokes postinvoke on the servant manager.

Note

The preinvoke and postinvoke methods are user-supplied code.
This is some example server code illustrating servant locator-type servant managers:

import org.omg.PortableServer.*;
public class Server {
public static void main(String[] args) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.1init (args,null);
// get a reference to the rootPOA
POA rootPOA =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create policies for our POA. We need persistence life span,
// use servant manager request processing policies and non retain
// retention policy. This non retain policy will let us use the
// servant locator instead of servant activator
org.omg.CORBA.Policy[] policies = {
100t POA.create_lifespan_policy (LifespanPolicyValue.PERSISTENT),
rootPOA.create_servant_retention_policy (ServantRetentionPolicyValue.
NON_RETAIN) ,
rootPOA.create_request_processing_policy (RequestProcessingPolicyValue.
USE_SERVANT _MANAGER)
}i
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_servant_locator_poa",
rootPOA.the_POAManager (),
policies);
// Create the servant locator servant and get its reference
ServantLocator sl = new AccountManagerLocator();
// Set the servant locator on our POA
myPOA. set _servant_manager (sl);
org.omg.CORBA.Object ref ;
// Activate the POA manager
oot POA.the_POAManager () .activate();
// Generate the reference and write it out. One for each Checking
and Savings
// account types .Note that we are not creating any
// servants here and just manufacturing a reference which is not
// yet backed by a servant.
try {
ref =
myPOA.create_reference_with_id("CheckingAccountManager".getBytes(),
"IDL:Bank/AccountManager:1.0");
// Write out checking object ID
java.io.PrintWriter pw =
new java.io.PrintWriter(new java.io.FileWriter("cref.dat"));
pw.println(orb.object_to_string(ref));
pw.close();
ref =
myPOA.create_reference_with_id("SavingsAccountManager".getBytes(),
"IDL:Bank/AccountManager:1.0");
// Write out savings object ID
pw = new java.io.PrintWriter(new java.io.FileWriter("sref.dat"));

8: Using POAs 107

Managing POAs with the POA manager

pw.println(orb.object_to_string(ref));
pw.close();

} catch (java.ilo.IOException e) {
System.out.println("Error writing the IOR to file ");
return;

}

System.out.println("BankManager is ready.");

// Wait for incoming requests

orb.run();

} catch (Exception e) {
e.printStackTrace();

}

}
The servant manager for this example follows:

import org.omg.PortableServer.*;
import org.omg.PortableServer.ServantLocatorPackage.CookieHolder;
public class AccountManagerLocator extends _ServantLocatorLocalBase {
public Servant preinvoke (byte[] oid,POA adapter,
java.lang.String operation,
CookieHolder the_cookie) throws ForwardRequest {
String accountType = new String(oid);
System.out.println("\nAccountManagerLocator.preinvoke called
with ID = " +
accountType + "\n");
if (accountType.equalsIgnoreCase ("SavingsAccountManager"))
return new SavingsAccountManagerImpl();
return new CheckingAccountManagerImpl();
1
public void postinvoke (byte[] oid,
POA adapter,
java.lang.String operation,
java.lang.Object the_cookie,
Servant the_servant) {
System.out.println("\nAccountManagerLocator.postinvoke called with ID = "

new String(oid) + "\n");

Managing POAs with the POA manager

A POA manager controls the state of the POA (whether requests are queued or
discarded), and deactivates the POA. Each POA is associated with a POA manager
object. A POA manager can control one or several POAs.

A POA manager is associated with a POA when the POA is created. POA Managers
can be created implicitly, by passing a nil POAManager reference to the create_ POA
operation

POA myPOA = rootPOA.create_POA("bank_agent_poa", rootPOA.the_POAManager (),

policies);

POA myPOA = rootPOA.create_POA("bank_agent_poa", null, policies);

They can also be created explicitly using a POA Manager Factory.

POAManagerFactory poaMgrFactory = rootPOA.the_POAManagerFactory();

POAManager poaMgr = poaMgrFactory.create_POAManager ("MyPOAManager", null);

POA myPOA = rootPOA.create_POA("bank_agent_poa", poaMgr, policies);
Explicit creation of a POA Manager permits application control of the POA Manager's
identity, whereas implicit creation results in creation of a unique identity by the ORB

run-time. There is a single instance of POA Manager Factory in an ORB and is created
with root POA. It can also be used to get the list of all POA Managers in an ORB.

108 VisiBroker for Java Developer’s Guide

Managing POAs with the POA manager

Getting the current state

To get the current state of the POA manager, use

enum State{HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

Holding state

By default, when a POA manager is created, it is in the holding state. When the POA
manager is in the holding state, the POA queues all incoming requests.

Requests that require an adapter activator are also queued when the POA manager is
in the holding state.

To change the state of a POA manager to holding, use

void hold_requests (in boolean wait_for_completion)
raises (AdapterInactive);

wait_for_completion is Boolean. If FALSE, this operation returns immediately after
changing the state to holding. If TRUE, this operation returns only when all requests
started prior to the state change have completed or when the POA manager is
changed to a state other than holding. AdapterInactive is the exception raised if the
POA manager was in the inactive state prior to calling this operation.

Note

POA managers in the inactive state cannot change to the holding state.

Any requests that have been queued but not yet started will continue to be queued
during the holding state.

Active state

When the POA manager is in the active state, its associated POAs process requests.
To change the POA manager to the active state, use

void activate()
raises (AdapterInactive);

AdapterInactive is the exception raised if the POA manager was in the inactive state
prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the active state.

Discarding state

When the POA manager is in the discarding state, its associated POAs discard all

requests that have not yet started. In addition, the adapter activators registered with

the associated POAs are not called. This state is useful when the POA is receiving too

many requests. You need to notify the client that their request has been discarded and

to resend their request. There is no inherent behavior for determining if and when the

cF;OA i% receiving too many requests. It is up to you to set-up thread monitoring if so
esired.

To change the POA manager to the discarding state, use

void discard_requests(in boolean wait_for_completion)
raises (AdapterInactive);

8: Using POAs 109

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

The wait_for_completion option is Boolean. If FALSE, this operation returns immediately
after changing the state to holding. If TRUE, this operation returns only when all requests
started prior to the state change have completed or when the POA manager is
changed to a state other than discarding. AdapterInactive is the exception raised if the
POA manager was in the inactive state prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the discarding state.

Inactive state

When the POA manager is in the inactive state, its associated POAs reject incoming
requests. This state is used when the associated POAs are to be shut down.

Note

POA managers in the inactive state cannot change to any other state.
To change the POA manager to the inactive state, use

void deactivate (in boolean etherealize_objects, in boolean
walt_for_completion)
raises (AdapterInactive);

After the state changes, if etherealize_objects is TRUE, then all associated POAs that
have Servant RetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT MANAGER set call etherealize on the servant
manager for all active objects. If etherealize_objects is FALSE, then etherealize is not
called. The wait_for_completion option is Boolean. If FALSE, this operation returns
immediately after changing the state to inactive. If TRUE, this operation returns only
when all requests started prior to the state change have completed or etherealize has
been called on all associated POAs (that have ServantRetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT _MANAGER). AdapterInactive is the exception raised
if the POA manager was in the inactive state prior to calling this operation.

Listening and Dispatching: Server Engines, Server Connection
Managers, and their properties

Note

Policies that cover listener and dispatcher features previously supported by the BOA
are not supported by POAs. In order to provide these features, a VisiBroker-specific
policy (ServerEnginePolicy) can be used.

Visibroker provides a very flexible mechanism to define and tune endpoints for
Visibroker servers. An endpoint in this context is a destination for a communication
channel for clients to communicate with servers. A Server Engine is a virtual
abstraction for connection endpoint provided as a configurable set of properties.

A ServerEngine abstraction can provide control in terms of:
- types of connection resources

- connection management

- threading model and request dispatching

Server Engine and POAs

A POA on Visibroker can have many-to-many relationship with a ServerEngine. A POA
can be associated with many ServerEngines and vice-versa. The manifestation of this
fact is that a POA, and hence the CORBA objects on the POA, can support multiple
communication channels.

110 VisiBroker for Java Developer’s Guide

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Figure 8.3 Server engine overview

The simplest case is where POAs have their own unique single server engine. Here,
requests for different POAs arrive on different ports. A POA can also have multiple
server engines. In this scenario, a single POA supports requests coming from multiple
input ports.

Notice that POAs can share server engines. When server engines are shared, the
POA:s listen to the same port. Even though the requests for (multiple) POAs arrive at
the same port, they are dispatched correctly because of the POA name embedded in
the request. This scenario occurs, for example, when you use a default server engine
and cree)lte multiple POAs (without specifying a new server engine during the POA
creation).

Server Engines are identified by a name and is defined the first time its name is
introduced. By default Visibroker defines three Server Engine names. They are:

- iiop_tp: TCP transport with thread pool dispatcher

- iiop_ts: TCP transport with thread per session dispatcher

- iiop_tm: TCP transport with main thread dispatcher

Two more Server Engines, boa_tp and boa_ts, are available for BOA backward
compatibility.

Associating a POA with a Server Engine

The default Server Engine associated with POA can be changed by using the property
vbroker.se.default. For example, setting

vbroker.se.default=MySE

defines a new server engine with the name 11ySE. Root POA and all child POAs created
will be associated with this Server Engine by default.

8: Using POAs 111

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

A POA can also be associated with a particular ServerEngine explicitly by using the
SERVER_ENGINE_POLICY_TYPE POA policy. For example:

// create ServerEngine policy value

org.omg.CORBA.Any seAny = orb.create_any();

org.omg.CORBA.StringSequenceHelper.insert (seAny, new String[]{"MySE"});

org.omg.CORBA.Policy sePolicy =

orb.create_policy (com.inprise.vbroker.PortableServerExt.
SERVER_ENGINE_POLICY_TYPE.value, seAny) ;

// create POA policies

org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifeSpanPolicyValue.PERSISTENT),
sePolicy

}i

// create POA with policies
POA myPOA = rootPOA.create_POA("bank_se_policy_poa", rootPOA.the_POAManager(),
policies);

The POA has an IOR template, profiles for which, are obtained from the Server
Engines associated with it.

If you don't specify a server engine policy, the POA assumes a server engine name of
iiop_tp and uses the following default values:

vbroker.se.iiop_tp.host=null
vbroker.se.iiop_tp.proxyHost=null
vbroker.se.iiop_tp.scms=iiop_tp

To change the default server engine policy, enter its name using the
vbroker.se.default property and define the values for all the components of the new
server engine. For example:

vbroker.se.default=abc, def
vbroker.se.abc.host=cob
vbroker.se.abc.proxyHost=null
vbroker.se.abc.scms=cobscml, cobscm?
vbroker.se.def.host=gob
vbroker.se.def.proxyHost=null
vbroker.se.def.scms=gobscml

Defining Hosts for Endpoints for the Server Engine
Since Server Engines help define a connection's endpoints, the following properties
are provided to specify their hosts:

- vbroker.se.<se-name>.host=<host-URL>: vbroker.se.mySE.host=host.borland.con, for
example.

- vbroker.se.<se-name>.proxyHost=<proxy-host-URL-or-IP-address>
vbroker.se.mySE.proxyHost=proxy.borland.com, for example.

The proxyHost property can also take an IP address as its value. Doing so replaces the
default hostname in the IOR with this IP address.

The endpoint abstraction of ServerEngine is further fine-grained in terms of
configurable set of entities referred to as Server Connection Managers (SCM). A
ServerEngine can have multiple SCMs. SCMs are not shareable between
ServerEngines. SCMs are also identified using a name and are defined for a
ServerEngine using:

vbroker.se.<se-name>.scms=<SCM-name> [, <SCM-name>, . ..

Note

the iiop_tp and liop_tp Server Engines have SCMs named iiop_tp and liop_tp created
for them, respectively.

112 VisiBroker for Java Developer’s Guide

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Server Connection Managers

The Server Connection Manager defines the configurable components of an endpoint.
Its responsibilities are connection resource management, listening for requests, and
dispatching requests to its associated POA. Three logical entities, defined through
property groups, are provided by the SCM to fulfill these responsibilities:

- Manager
- Listener
- Dispatcher

Each SCM has one Manager, Listener, and Dispatcher. All three, when defined, form a
single endpoint definition allowing clients to contact servers.

Manager

Manager is a set of properties defining the configurable portions of a connection
resource. VisiBroker provides a manager of type Socket.

VisiBroker for Java only supports the Socket type, and a variation of the Socket type,
Socket_nio, that uses the Java NIO package. See section “High scalability
configuration for VisiBroker for Java (using Java NIO)” for further details.

You can specify the maximum number of concurrent connections acceptable to the
server endpoint using the connectionMax property:

vbroker.se.<se-name>.scm.<scm-name>.manager . connectionMax=<integer>

Setting connectionlax to 0 (zero) indicates that there is no restriction on the number of
connections, which is the default setting.

You specify the maximum number of idle seconds using the connectionMaxIdle
property:

vbroker.se.<se-name>.scm.<scm-name>.manager.connectionMaxIdle=<seconds>

Setting connectionMaxIdle to 0 (zero) indicates that there is no timeout, which is the
default setting.

Garbage collection time is specified through the following property:
vbroker.orb.gcTimeout=<seconds>

A value of 0 (zero) means that the connection will never be garbage collected.

Listener

The Listener is the SCM component that determines how and where the SCM listens
for messages. Like the Manager, the Listener is also a set of properties. VisiBroker
defines a IIOP listener for the TCP connections.

Since listeners are close to the actual underlying transport mechanism, their properties
are not portable across listener types. Each listener type has its own set of properties,
defined below.

IIOP listener properties

IIOP listners need to define a port and (if desired) a proxy port in conjunction with their
hosts. These are set using the port and proxyPort properties, as follows:

vbroker.se.<se-name>.scm.<scm-name>. listener.port=<port>
vbroker.se.<se-name>.scm.<scm-name>. listener.proxyPort=<proxy-port>

Note

If you do not set the port property (or set it to 0 [zero]), a random port will be selected. A
0 value for the proxyPort property means that the IOR will contain the actual port
(defined by the listener.port property or selected by the system randomly). If it is not
required to advertise the actual port, set the proxy port to a non-zero (positive) value.

VisiBroker additionally supports a property allowing you to specify your GIOP version:

vbroker.se.<se-name>.scm.<scm-name>. listener.giopVersion=<version>

8: Using POAs 113

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Dispatcher

The Dispatcher defines a set of properties that determine how the SCM dispatches
requests to threads. Three types of dispatchers are provided: ThreadPool,
ThreadSession, and MainThread. You set the dispatcher type with the type property:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher. type=ThreadPool | ThreadSession]|
MainThread

Further control is provided through the SCM for the ThreadPool dispatcher type. The
ThreadPool defines the minimum and maximum number of threads that can be created
in the thread pool, as well as the maximum time in seconds after which an idled thread
is destroyed. These values are controlled with the following properties:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher. threadMin=<integer>
vbroker.se.<se-name>.scm.<scm-name>.dispatcher. threaddax=<integer>
vbroker.se.<se-name>.scm.<scm-name>.dispatcher.threadMaxIdle=<seconds>

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is said to be “hot”
when the GIOP connection being served is potentially readable, either upon creation of
the connection or upon the arrival of a request. After the cooling time (in seconds), the
thread can be returned to the thread pool.

VisiBroker for Java supports the cooling time property when configured to use the Java
NIO package. See the section “High scalability configuration for VisiBroker
for Java (using Java NIO)” for more information.

The following property is used to set the cooling time:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher.coolingTime=<seconds>

When to use these properties

There are many times where you need to change some of the server engine properties.
The method for changing these properties depends on what you need. For example,
suppose you want to change the port number. You could accomplish this by:

- Changing the default 1istener.port property
- Creating a new server engine

Changing the default 1istener.port property is the simplest method, but this affects all
POAs that use the default server engine. This may or may not be what you want.

If you want to change the port number on a specific POA, then you'll have to create a
new server engine, define the properties for this new server engine, and then reference
the new server engine when creating the POA. The previous sections show how to
update the server engine properties. The following code snippet shows how to define
properties of a server engine and create a POA with a user-defined server engine
policy:

// Server.java

import org.omg.PortableServer.*;

public class Server {

public static void main(String[] args) {
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args,null);

// Get property manager

com.inprise.vbroker.properties.PropertyManager pm =

((com.inprise.vbroker.orb.0RB)orb) .getPropertyManager () ;
pm.addProperty ("vbroker.se.mySe.host", "");

pm.addProperty ("vbroker.se.mySe.proxyHost", "");

pm.addProperty ("vbroker.se.mySe.scms", "scmlist");

pm.addProperty ("vbroker.se.mySe.scm.scmlist.manager.type", "Socket");
pm.addProperty ("vbroker.se.mySe.scm.scmlist.manager.connectionMax", 100);
pm.addProperty ("vbroker.se.mySe.scm.scmlist.manager.connectionMaxIdle",

300);
pm.addProperty ("vbroker.se.mySe.scm.scmlist.listener.type", "IIOP");

114 VisiBroker for Java Developer’s Guide

Adapter activators

pm.addProperty ("vbroker.se.mySe.scm.scmlist.listener.port", 55000);
pm.addProperty ("vbroker.se.mySe.scm.scmlist.listener.proxyPort", 0);
pm.addProperty ("vbroker.se.mySe.scm.scmlist.dispatcher.type",
"ThreadPool");
pm.addProperty ("vbroker.se.mySe.scm.scmlist.dispatcher.threadMax", 100);
pm.addProperty ("vbroker.se.mySe.scm.scmlist.dispatcher.threadMin®, 5);
pm.addProperty ("vbroker.se.mySe.scm.scmlist.dispatcher.threadMaxIdle",
300);
// get a reference to the root POA
POA rootPOA =
POAHelper.narrow (orb.resolve_initial_references("RootPOA"));
// Create our server engine policy
org.omg.CORBA.Any seAny = orb.create_any();
org.omg.CORBA. StringSequenceHelper.insert (seAny, new String[]{"mySe"});
org.omg.CORBA.Policy sePolicy =
orb.create_policy(
com.inprise.vbroker.PortableServerExt.SERVER_ENGINE_POLICY_TYPE.value,
seAny) ;
// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),sePolicy
b
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_se_policy_poa",
rootPOA. the_POAManager (),
policies);
// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();
// Activate the servant
myPOA.activate_object_with_id("BankManager".getBytes(), managerServant);
// Obtaining the reference
org.omg.CORBA.Object ref = myPOA.servant_to_reference (managerServant);

// Now write out the IOR
try {
java.io.PrintWriter pw =
new java.io.PrintWriter(new java.io.FileWriter("ior.dat"));
pw.println(orb.object_to_string(ref));
pw.close();
} catch (java.io.IOException e) {
System.out.println(<Default Para Font>"Error writing the IOR to file
ior.dat");
return;
}
// Activate the POA manager
100t POA. the_POAManager () .activate();
System.out.println(ref + " is ready.");
// Wait for incoming requests
orb.run();
} catch (Exception e) {
e.printStackTrace();

}

Adapter activators

Adapter activators are associated with POAs and provide the ability to create child
POAs on-demand. This can be done during the find_POA operation, or when a request
is received that names a specific child POA.

8: Using POAs 115

Processing requests

An adapter activator supplies a POA with the ability to create child POAs on demand,
as a side-effect of receiving a request that names the child POA (or one of its children),
or when find_POa is called with an activate parameter value of TRUE. An application
server that creates all its needed POAs at the beginning of execution does not need to
use or provide an adapter activator; it is necessary only for the case in which POAs
need to be created during request processing.

While a request from the POA to an adapter activator is in progress, all requests to
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new POA
before requests are delivered to that POA.

For an example on using adapter activators, see the POA adaptor_activator example
included with the product.

Processing requests

Requests contain the Object ID of the target object and the POA that created the target
object reference. When a client sends a request, the VisiBroker ORB first locates the
appropriate server, or starts the server if needed. It then locates the appropriate POA
within that server.

Once the VisiBroker ORB has located the appropriate POA, it delivers the request to

that POA. How the request is processed at that point depends on the policies of the

POA and the object's activation state. For information about object activation states,

see “Activating objects”.

- If the POA has ServantRetentionPolicy.RETAIN , the POA looks at the Active Object
Map to locate a servant associated with the Object ID from the request. If a servant
exists, the POA invokes the appropriate method on the servant.

- If the POA has ServantRetentionPolicy.NON_RETAIN or has
ServantRetentionPolicy.RETAIN but did not find the appropriate servant, the following
may take place:

- If the POA has RequestProcessingPolicy.USE_DEFAULT_SERVANT , the POA invokes
the appropriate method on the default servant.

- If the POA has RequestProcessingPolicy.USE_SERVANT_MANAGER , the POA invokes
incarnate or preinvoke on the servant manager.

- If the POA has RequestProcessingPolicy.USE_OBJECT_MAP_ONLY , an exception is
raised.

If a servant manager has been invoked but can not incarnate the object, the servant
manager can raise a ForwardRequest exception.

116 VisiBroker for Java Developer’s Guide

Processing requests

8: Using POAs 117

118 VisiBroker for Java Developer’s Guide

Managing threads and connections

This section discusses the use of multiple threads in client programs and object
implementations, and will help you understand the VisiBroker thread and connection
model.

Using threads

A thread, or a single sequential flow of control within a process, is also called a
lightweight process that reduces overhead by sharing fundamental parts with other
threads. Threads are lightweight so that there can be many of them present within a
process.

Using multiple threads provides concurrency within an application and improves
performance. Applications can be structured efficiently with threads servicing several
independent computations simultaneously. For example, a database system may have
many user interactions in progress while at the same time performing several file and
network operations.

Although it is possible to write the software as one thread of control moving
asynchronously from request to request, the code may be simplified by writing each
request as a separate sequence, and letting the underlying system handle the
synchronous interleaving of the different operations.

Multiple threads are useful when:

- There are groups of lengthy operations that do not necessarily depend on other
processing (like painting a window, printing a document, responding to a mouse-
click, calculating a spreadsheet column, signal handling).

- There will be few locks on data (the amount of shared data is identifiable and small).

- The task can be broken into various responsibilities. For example, one thread can
handle the signals and another thread can handle the user interface.

Thread and connection management occurs within the scope of an entity known as a
server engine. Several default server engines are created automatically by VisiBroker,
which include thread pool engines for IIOP, for LIOP, and so forth. Additional server
engines can be used and created in a VisiBroker server by applications. See the
example in:

<install_dir>/examples/vbroker/poa/server_engine_policy/Server.java

Server engines are created, configured, and used independently. The creation and
configuration of one server engine does not affect other server engines in the same

9: Managing threads and connections 119

Listener thread, dispatcher thread, and worker threads

server. Usually, each server engine has one transport end point, called the listen point/
socket.

The relationship between server engines and POAs is many-to-many. Each server
engine can be used by multiple POAs, and each POA may also use multiple server
engines.

Server engines can consist of multiple Server Connection Managers (SCMs). An SCM
is composed of managers, listeners, and dispatchers. The properties of managers,
listeners and dispatchers can be configured to determine how the SCM functions.
These properties are discussed in “Setting connection management properties”.

Listener thread, dispatcher thread, and worker threads

Each server engine has a listener and a dispatcher thread. The listener thread is
responsible for:

- Accepting new connections. Therefore, it listens on the listen end-point.
- Monitoring readability on idle GIOP connections.

- Updating the monitoring list.

- ldle connection garbage collection based on property settings.

The dispatcher determines which threads to send requests.

Each server engine uses a certain number of worker threads to receive and process
requests. Different requests may handled by different worker threads. For a given
request, the request reading, processing (include server side interceptor intercepting),
and replying are all handled by the same thread. The number of worker threads used
by a server engine depends on:

- The thread model.
- The number of concurrent requests or connections.

- The property settings.

Thread policies

The two major thread models supported by VisiBroker are the thread pool (also known
as thread-per-request, or TPool) and thread-per-session (also known as thread-per-
connection, or TSession). Single-thread and main-thread models are not discussed in
this document. The thread pool and thread-per-session models differ in these
fundamental ways:

- Situation in which they are created
- How simultaneous requests from the same client are handled
- When and how threads are released

The default thread policy is the thread pool. For information about setting thread-per-
session or changing properties for the thread pool model, see “Setting dispatch policies
and properties”.

Thread pool policy

When your server uses the thread pool policy, it defines the maximum number of
threads that can be allocated to handle client requests. A worker thread is assigned for
each client request, but only for the duration of that particular request. When a request
is completed, the worker thread that was assigned to that request is placed into a pool
of available threads so that it may be reassigned to process future requests from any of
the clients.

Using this model, threads are allocated based on the amount of request traffic to the
server object. This means that a highly active client that makes many requests to the

120 VisiBroker for Java Developer’s Guide

Thread pool policy

server at the same time will be serviced by multiple threads, ensuring that the requests
are quickly executed, while less active clients can share a single thread, and still have
their requests immediately serviced. Additionally, the overhead associated with the
creation and destruction of worker threads is reduced, because threads are reused
rather than destroyed, and can be assigned to multiple new connections.

VisiBroker conserves system resources by dynamically allocating the number of
threads in the thread pool based on the number of concurrent client requests by
default. If the client becomes very active, new threads are allocated to meet its needs.
If threads remain inactive, VisiBroker releases them, only keeping enough threads to
meet current client demand. This enables the optimal number of threads to be active in
the server at all times.

The size of the thread pool grows based upon server activity and is fully configurable,
either before or during execution, to meet the needs of specific distributed systems.
With the thread pool model, you can configure the following:

- Maximum and minimum number of threads
- Maximum idle time

Each time a client request is received, an attempt is made to assign a thread from the
thread pool to process the request. If this is the first client request and the pool is
empty, a thread will be created. Likewise, if all threads are busy, a new thread will be
created to service the request.

A server can define a maximum number of threads that can be allocated to handle
client requests. If there are no threads available in the pool and the maximum number
of threads have already been created, the request will block until a thread currently in
use has been released back into the pool.

Thread pool is the default thread policy. You do not have to set up anything to define
this environment. If you want to set properties for the thread pool, see “Setting dispatch
policies and properties”.

Figure 9.1 Pool of threads is available

/l— {::b‘..B:{
Irmplermenta tions:

application #15

The figure above shows the object implementation using the thread pool policy. As the
name implies, there is an available pool of worker threads in this policy.

9: Managing threads and connections 121

Thread pool policy

Figure9.2 Client application #1 sends a request

-

....................) WoTor
LClient 1 W o
gappl|ca1|on#1§ - § 0 IR - :

Worker

thread 3§ -

In the above figure, Client application #1 establishes a connection to the Object
Implementation and a thread is created to handle requests. In the thread pool, there is
one connection per client and one thread per connection. When a request comes in, a
worker thread receives the request; that worker thread is no longer in the pool.

A worker thread is removed from the thread pool and is always listening for requests.
When a request comes in, that worker thread reads in the request and dispatches the
request to the appropriate object implementation. Prior to dispatching the request, the

122 VisiBroker for Java Developer’s Guide

Thread pool policy

worker thread wakes up one other worker thread which then listens for the next

request.

Figure 9.3 Client application #2 sends a request

 ligt

application #1%

it
application #25

et

Equesty

Chect
Irnplernertations
Worker tesd 2
liztening for e
izt meuest
from
Application 1%
= \Worker
Hiesad 14
,—'—''_'_'_'_'_'_‘_'_'_'_F-F
Worker
thinead 2%
Wokertiesd 4
liztening for the
nezt mgusst
frmon
Application 24

As the above figure shows, when Client application #2 establishes its own connection
and sends a request, a second worker thread is created. Worker thread #3 is now
listening for incoming requests.

Figure 9.4 Client application #1 sends a second request

9: Managing threads and connections 123

Thread-per-session policy

Cliert mequest 14
application #1% | — -

Warker
thmesad 5%
I tenings I B
. .- ‘Woarker
it
L : thnesad 3%
licat
application #24% S,
Thiresad pool

The above figure shows that when a second request comes in from Client application
#1, it uses worker thread #4. Worker thread #5 is spawned to listen for new requests. If
more requests came in from Client application #1, more threads would be assigned to
handle them, each spawned after the listening thread receives a request. As worker
threads complete their tasks, they are returned to the pool and become available to

handle requests from any client.

Thread-per-session policy

With the thread-per-session (TSession) policy, threading is driven by connections
between the client and server processes. When your server selects the thread-per-
session policy, a new thread is allocated each time a new client connects to a server. A
thread is assigned to handle all the requests received from a particular client. Because
of this, thread-per-session is also referred to as thread-per-connection. When the client
disconnects from the server, the thread is destroyed. You may limit the maximum
number of threads that can be allocated for client connections by setting the

vbroker.se.iiop_ts.scm.iiop_ts.manager.connectionMax property.

124 VisiBroker for Java Developer’s Guide

Connection management

Figure 9.5 Object implementation using the thread-per-session policy

Chject
Implermeartations

Cliext
application #1%

Clieit
application #2¢

The above figure shows the use of the thread-per-session policy. The Client application
#1 establishes a connection with the object implementation. A separate connection
exists between Client application #2 and the object implementation. When a request
comes in to the object implementation from Client application #1, a worker thread
handles the request. When a request from Client application #2 comes in, a different
worker thread is assigned to handle this request.

Figure 9.6 Second request comes in from the same client

In the above figure, a second request has come in to the object implementation from

Ob ject
Irnplernartation

connection -
-

—_

request]

Cliert !
application *1 [

request?

connection
_—— =

request

Cliert
application* 2 E

G thread

Client application #1. The same thread that handles request 1 will handle request 2.
The thread blocks request 2 until it completes request 1. (With thread-per-session,
requests from the same Client are not handled in parallel.) When request 1 has
completed, the thread can handle request 2 from Client application #1. Multiple
requests may come in from Client application #1. They are handled in the order that
they come in; no additional threads are assigned to Client application #1.

Connection management

Overall, VisiBroker's connection management minimizes the number of client
connections to the server. In other words there is only one connection per server

9: Managing threads and connections 125

PeerConnectionCurrent Interface

process which is shared. All requests from a single client application are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same
server, eliminating the need for clients to incur the overhead of new connections to the
server.

In the following scenario, a client application is bound to two objects in the server
process. Each bind() shares a common connection to the server process, even though
the bind() is for a different object in the server process.

Figure 9.7 Binding to two objects in the same server process

Bindf) to Object & /"\
Bind() to Object B [] object a
Client Application

3 [] obiect B

Both Requests are serviced
through a siingle connection Server Process

The following figure shows the connections for a client using multiple threads that has
several threads bound to an object on the server.

Figure 9.8 Binding to an object in a server process

V- bind() to object A m il:l object I,|
V- bind() to object A ——

- 5 p
V- bind(} to object & ——1— eruerrrocess

Client Application Requests from three threads
serviced through a single connection

As the above figure shows, all invocations from all threads are serviced by the same
connection. For that scenario, the most efficient multi threading model to use is the
thread pool model. If the thread-per-session model is used in this scenario, only one
thread on the server will be allocated to service all requests from all threads in the
client application, which could easily result in poor performance.

The maximum number of connections to a server, or from a client, can be configured.
Inactive connections will be recycled when the maximum is reached, ensuring resource
conservation.

PeerConnectionCurrent Interface

On the server-side, a client's host and the port details are obtainable by the use of a
PeerConnectionCurrent interface. The PeerConnectionCurrent interface is defined as
follows:

public interface PeerConnectionCurrent {

public abstract java.lang.String getPeerHost ();

public abstract int getPeerPort();

}i

The reference to PeerConnectionCurrent interface is obtained by a call to
org.omg.CORBA.ORB.resolve_initial_references ("PeerConnectionCurrent"). If the client
and server are colocated, call to getPeerHost will return localhost address and
getPeerPort will return a "0" (zero).

The host address is returned as a dotted IP address string. The precondition for the
use of PeerConnectionCurrent is that it can only be used from inside a request's
invocation context. Outside the invocation context, a call to getPeerHost and
getPeerPort raises a BAD_INV_ORDER exception.

126 VisiBroker for Java Developer’s Guide

ServerEngines

PeerConnectionCurrent can be called from inside using the following ways:
1. Method implementations
2. All ServerRequestInterceptor intercept points except for postinvoke_postmarshal

However, if the ServantLocator is being used, then the PeerConnectionCurrent cannot be
called from within the ServerRequestInterceptor preinvoke or the
ServerRequestInterceptor receive_request_service_contexts and the ServantLocator
preinvoke methods. Otherwise, this will result with a BAD_INV_ORDER exception.

The following code illustrates the use of the PeerConnectionCurrent:

import com.inprise.vbroker.orb.PeerConnectionCurrent;
public class SomeServantImpl extends SomeServantPOA {
public int method(String name) {
// assuming "orb" is already initialized
try {
PeerConnectionCurrent conninfo=
(PeerConnectionCurrent)
orb.resolve_initial_references("PeerConnectionCurrent");
System.out.println("Client's host="+conninfo.getPeerHost());
System.out.println("Client's port="+conninfo.getPeerPort());
1
catch (Exception e) {
e.printStackTrace();

ServerEngines

Thread and connection management on the server side is performed by
ServerEngines, which can consist of one or more Server Connection Managers
(SCMs). An SCM is a collection of properties of the manager, listener, and dispatcher.

Defining a ServerEngine consists of specifying a set of properties in a properties file.
For example, if on UNIX the property file called myprops.properties is in home directory,
the command line is

prompt> vbj -DORBpropStorage=~/myprops.properties myServer

ServerEngine properties

vbroker.se.<srvr_eng_name>.sSCms=<Srvr_connection_mngr_namel>,<srvr_connection_m
ngr_name2>

The set of Server Connection Managers associated with a ServerEngine is defined by
this property. The name specified in the above property as the <svr_eng_name> is the
name of the ServerEngine. The SCMs listed here will be the list of SCMs for the
associated server engine. SCMs cannot be shared between ServerEngines. However,
ServerEngines can be shared by multiple POAs.

The other properties are
vbroker.se.<se>.host

The host property is the IP address for the server engine to listen for messages.
vbroker.se.<se>.proxyHost

The proxyHost property specifies the proxy IP address to send to the client in the case
where the server does not want to publish its real hostname.

9: Managing threads and connections 127

Setting dispatch policies and properties

Setting dispatch policies and properties

Each POA in a multi-threaded object server can choose between two dispatch models:
thread-per-session or thread pool. You choose a dispatch policy by setting the
dispatcher.type property of the ServerEngine.

vbroker.se.<srvr_eng_name>.sCm.<sSrvr_connection_mngr_name>.dispatcher.type=
ThreadPool

vbroker.se.<srvr_eng_name>.SCl.<Srvr_connection_mngr_name>.dispatcher.type=
ThreadSession

For more information about these properties see “Using POAs” and the VisiBroker
Programmer's Reference.

Thread pool dispatch policy

ThreadPool (thread pooling) is the default dispatch policy when you create a POA
without specifying the ServerEnginePolicy.

For ThreadPool, you can set the following properties:
- vbroker.se.default.dispatcher.tp.threaddax

This property sets a TPool server engine's maximum number of worker threads in
the thread pool. The property can be set statically on server startup or dynamically
reconfigured using the property API. For instance, the start up property

vbroker.se.default.dispatcher.tp.threadMax=32
or
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMax=32

sets the initial maximum worker thread limitation to 32 for the default Tpool server
engine. The default value of this property is unlimited (0). If there are no threads
available in the pool and the maximum number of threads have already been
created, the request is blocked until a thread currently in use has been released
back into the pool.

- vbroker.se.default.dispatcher.tp.threadMin

This property sets a TPool server engine's minimum number of worker threads in the
thread pool. The property can be set statically on server startup or dynamically
reconfigured using the property API. For instance, the start up property

vbroker.se.default.dispatcher.tp.threadMin=8
or
vbroker.se.iiop_tp.scm.1liop_tp.dispatcher.threadMin=8

sets the initial worker thread minimum number to 8 for the default TPool server
engine. The default value of this property is 0 (no worker threads).

- vbroker.se.default.dispatcher.tp.threadMaxIdle

This property sets a TPool server engine's idle thread check interval. The property
can be set statically on server startup or dynamically reconfigured using the property
API. For instance, the start up property

vbroker.se.default.dispatcher.tp.threadMaxIdle=120
or
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle=120

sets the initial idle worker thread check interval to 120 seconds for the default TPool
server engine. The default value of this property is 300 seconds. With this setting,
the server engine will check the idle state of each worker thread every 120 seconds.
If a worker thread has been idle across two consecutive checks, it will be recycled

128 VisiBroker for Java Developer’s Guide

Setting connection management properties

(terminated) at the second check. Therefore, the actual idle thread garbage
collection time is between 120 to 240 seconds under the above setting, instead of
exactly 120 seconds.

- vbroker.se.default.dispatcher.tp.coolingTime

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is said to be
“hot” when the GIOP connection being served is potentially readable, either upon
creation of the connection or upon the arrival of a request. After the cooling time (in
seconds), the thread can be returned to the thread pool. The property can be set
statically on server startup or dynamically reconfigured using the property API. For
instance, the startup property

vbroker.se.default.dispatcher.tp.coolingTime=6
or
vbroker.se.iiop_tp.scm.iliop_tp.dispatcher.coolingTime=6

sets the initial cooling time to 6 seconds for the default engine (or the IIOP TPool
server engine).

This property is applicable to VisiBroker for Java under certain conditions. See “High
scalability configuration for VisiBroker for Java (using Java NIO)” for details. The
default value of this property in VisiBroker for Java is 0 (zero), which implies that a
GIOP connection being serviced ceases to be “hot” unless a new request is
immediately available for servicing. It is important that the value of coolingTime is
not altered unless tests have indicated that a non-default value is beneficial to the
performance of the application.

Note

The vbroker.se.default.xxx.tp.xxx property is recommended when
vbroker.se.default=iiop_tp. When using with ThreadSession, it is recommended that
you use the vbroker.se.iiop_ts.scm.iiop_ts.xxx property.

Thread-per-session dispatch policy

When using the ThreadSession as the dispatcher type, you must set the se.default
property to iiop_ts.

vbroker.se.default=1iop_ts

Note

In thread-per-session, there are no threadMin, threadMax, threadMaxIdle, and
coolingTime dispatcher properties. Only the Connection and Manager properties are
valid properties for ThreadSession.

Coding considerations

All code within a server that implements the VisiBroker ORB object must be thread-
safe. You must take special care when accessing a system-wide resource within an
object implementation. For example, many database access methods are not thread-
safe. Before your object implementation attempts to access such a resource, it must
first lock access to the resource using a synchronized block.

If serialized access to an object is required, you need to create the POA on which this
object is activated with the SINGLE_THREAD_MODEL value for the ThreadPolicy.

Setting connection management properties

The following properties are used to configure connection management. Properties
whose names start with vbroker.se are server-side properties. The client side
properties have their names starting with vbroker.ce.

9: Managing threads and connections 129

Setting connection management properties

Note

The command line options for VisiBroker 3.x backward-compatibility are less obvious
in terms of whether they are client-side or server-side. However, the connection and
thread management options that start with the -0RB prefix set the client-side options
whereas the options with the -02 prefix are used for the server-side options. There are
no common properties which are used for both client-side and server-side thread and
connection management.

The distinction between client and server vanishes if callback or bidirectional GIOP is
used.

- vbroker.se.default.socket.manager.connectionMax

This property sets the maximum allowable client connections to a server engine.
The property can be set statically on server startup or dynamically reconfigured
using the property API. For instance, the start up property

-Dvbroker.se.default.socket .manager.connectionMax=128
or
-Dvbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax=128

sets the initial maximum connection limitation on this server engine to 128. The
default value of this property is unlimited (0 [zero]). When the server engine reaches
this limitation, before accepting a new client connection, the server engine needs to
reuse an idle connection. This is called connection swapping. When a new
connection arrives at the server, it will try to detach the oldest unused connection. If
all the connections are busy, the new connection will be dropped. The client may
retry again until some timeout expires.

- vbroker.se.default.socket.manager.connectionMaxIdle

This property sets the maximum length of time an idle connection will remain open
on a server engine. The property can be set statically on server startup or
dynamically reconfigured using property API. For instance, the start up property

-Dvbroker.se.default.socket .manager.connectionMaxIdle=300
or
-Dvbroker.se.iliop_tp.scm.iiop_tp.manager.connectionMaxIdle=300

sets the initial idle connection maximum lifetime to 300 seconds. The default value
of this property is O (unlimited). When a client connection has been idle longer than
this value, it becomes a candidate for garbage collection.

- vbroker.ce.iiop.ccm.connectionMax

Specifies the maximum number of the total connections within a client. The default
value of zero means that the client does not try to close any of the old active or
cached connections. If a new client connection will result in exceeding the limit set
by this property, the VisiBroker for C++ will try to release one of the cached
connections. If there are no cached connections, it will try to close the oldest idle
connection. If both of them fail, the CORBA: :NO_RESOURCE exception will result.

Valid values for applicable properties

The following properties have a fixed set or range of valid values:
- vbroker.ce.iiop.ccm. type=Pool
Currently, Pool is the only supported type.

In the following properties, xxx is the server engine name and yyy is the server
connection manager name:

- vbroker.se.xxx.scm.yyy.manager.type=Socket

Socket_nio is the only other permissable value for this property.

130 VisiBroker for Java Developer’s Guide

Setting connection management properties

- vbroker.se.xxx.scm.yyy.listener.type=II0P

You can also use the value SSL for security.
- vbroker.se.xxx.scm.yyy.disptacher.type=ThreadPool

The other possible values are ThreadSession and MainThread.
- vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.coolingTime

The default value is 0 (zero) , and the maximum value is 10, so a value greater than
10 will be clamped to 10. In VisiBroker for Java, this property is applicable only if the
Server Connection Manager has a manager type of Socket_nio. See “High
scalability configuration for VisiBroker for Java (using Java NIO)” for details.

Effects of property changes

The effect of a change in a property value depends on the actions associated with the
properties. Most of the actions are directly or indirectly related to the utilization of
system resources. The availability and restrictions of the system resources to the
CORBA application vary depending on the system and the nature of the application.

For instance, increasing the garbage collector timer may increase the system activities,
as the garbage collector will run more frequently. On the other hand, increasing its
value means the idle threads will remain in system unclaimed for longer periods of
time.

Dynamically alterable properties

The following properties can be changed dynamically and the effect will be immediate
unless stated otherwise:

vbroker.ce.iiop.ccm.connectionCacheMax=>5
vbroker.ce.iiop.ccm.connectionMax=0
vbroker.ce.iiop.ccm.connectionMaxIdle=360
vbroker.ce.iliop.connection.rcvBufSize=0
vbroker.ce.iliop.connection.sendBufSize=0
vbroker.ce.iiop.connection.tcpNoDelay=false
vbroker.ce.iiop.connection.socketLinger=0
vbroker.ce.iiop.connection.keepAlive=true
vbroker.ce.liop.ccm.connectionMax=0
vbroker.ce.liop.ccm.connectionMaxIdle=360
vbroker.ce.liop.connection.rcvBufSize=0
vbroker.ce.liop.connection.sendBufSize=0
vbroker.se.iiop_tp.scm.1liop_tp.manager.connectionMax=0
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxIdle=0
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMin=0
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMax=100

The new dispatcher threadMax properties will be reflected after the next garbage
collector run.

vbroker.se.iiop_tp.scm.1liop_tp.dispatcher.threadMaxIdle=300
vbroker.se.iiop_tp.scm.1liop_tp.dispatcher.coolingTime=3
vbroker.se.iiop_tp.scm.iiop_tp.manager.garbageCollectTimer=30
vbroker.se.liop_tp.scm.liop_tp.listener.userConstrained=false

Determining whether property value changes take effect

For this purpose, the server manager needs to be enabled, using the property
vbroker.orb.enableServerManager=true, and the properties can be obtained through the
server manager query either through the Console or through a command-line utility.

9: Managing threads and connections 131

High scalability configuration for VisiBroker for Java (using Java NIO)

Impact of changing property values

It is very difficult to determine the impact of changing the value of a property to
something other than the default. For thread and connection limits, the available
system resources vary depending on the machine configuration and the number of
other processes running. The setting of properties allows performance tuning for a
given system.

High scalability configuration for VisiBroker for Java (using Java NIO)

The Java NIO package, available in J2SE 1.4, allows servers to handle multiple
connections efficiently, without having to dedicate a thread per connection. This allows
servers to service a large number of client connections with fewer threads, translating
to higher scalability. VisiBroker for Java servers can be configured to harness Java
NIO technology. Servers using the ThreadPool policy can use Java NIO by setting the
manager type to Socket_nio instead of Socket. For example,

vbroker.se.iiop_tp.scm.iiop_tp.manager.type=Socket_nio

This feature should be used in combination with the threadMax property, which is used
to limit the number of threads in the thread pool that are available for dispatching
requests (i.e., processing invocations). When the manager type is Socket_nio, the
number of threads in the thread pool will not increase (beyond the number specified as
threadMax) proportionate to the number of connections being serviced. This is possible
because here the necessity to have a thread per connection does not exist.

Please note that the thread per connection model (which is the default for the
VisiBroker for Java thread pool) is expected to outperform the NIO based model for
servers where the number of connections is relatively small (i.e., not of the order of
hundreds of connections). It is advisable to run tests to decide on the appropriate
model given the typical load conditions for an application.

Servers using J2SE 1.4 or above will be able to use this feature. Currently, clients
based on VisiBroker for Java do not benefit from the ORB's usage of Java NIO.

The coolingTime property is effective in VisiBroker for Java when NIO based dispatch
is enabled. See “Thread pool dispatch policy” for details.

Garbage collection

The VisiBroker for Java ORB performs automatic garbage collection of various
resources other than the memory. The garbage collection of the memory is performed
by the Java Virtual machine. Various properties are provided to control the garbage
collection period. In addition, resources like threads and connections define timeout
properties that control the collection of these resources.

How ORB garbage collection works

The ORB garbage collector thread is a normal priority thread. After the expiration of
timeout period (specified by the property vbroker.orb.gcTimeout), it wakes up and
collects all the resources that are idle and no longer in use. Classes interested in
getting collected register themselves with the garbage collector. Such classes are
called collectables. Prominent examples of collectables are threads and connections.
Other examples include timeout on various caches like GateKeeper's cache, for
example. Most of the collectables null out or properly release the resources (such as
closing the connection or terminating a thread's run method) held by them when they
are collected. These resources are later reclaimed by the Java garbage collector.

Note

The ORB garbage collector is an internal service and is not exposed to the user.

132 VisiBroker for Java Developer’s Guide

Garbage collection

Properties related to ORB garbage collection

The main property that controls the garbage collection period is vbroker.orb.gcTimeout.
The timeout value is in seconds and the default value is 30 seconds.

Threads and connections define properties for idle timeout. For example, the thread
pool dispatcher defines the following property:

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle

The value is in seconds and default value is 300 seconds after which the thread is
removed from the thread pool. Similarly, the default Server Connection Manager
(iiop_tp) defines the following idle timeout property for connections.

vbroker.se.iiop_tp.scm.liop_tp.manager.connectionMaxIdle

The value is in seconds and default value is 0(zero) which means a connection never
gets closed no matter how long it remains idle. However, if the connection gets
dropped, the ORB removes all the references to it and its resources are later collected
by Java garbage collector. The ORB garbage collector will only collect connections
whose connectionMaxIdle property is set to a non-zero value.

The various timeout properties and the vbroker.orb.gcTimeout property have a subtle
relationship. For example, suppose following properties are specified:

vbroker.orb.gcTimeout=10
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle=5
vbroker.se.iiop_tp.scm.1liop_tp.manager.connectionMaxIdle=5
Here the garbage collection timeout period is set to 10 seconds whereas thread and
connection timeouts are 5 seconds. The figure below illustrates how these properties

interact. Here we have shown a thread, T1, and a connection, C1, that have gone idle
and are then collected.

Note

Although the ORB garbage collector is shown here as running exactly after ten
seconds, in practice this may not be true depending on when the JVM schedules the
garbage collector (GC) thread.

Figure 9.9 Collection of resources by ORB GC

Last garhaze T1/Z1 idle time T1AC1 tirmedoat Gathage collector
collection 5 tarts and elizible for mns. THC 1 collected
collecton

Nl | /

|
I
a 1 2 3 4 5 & T g a 10sems

Even though T1 and C1 are eligible for collection, they are collected only when the
ORB garbage collector runs. Until then they remain in the timed-out state.

9: Managing threads and connections 133

134 VisiBroker for Java Developer’s Guide

Using the tie mechanism

This section describes how the tie mechanism may be used to integrate existing Java
code into a distributed object system. This section will enable you to create a
delegation implementation or to provide implementation inheritance.

How does the tie mechanism work?

Object implementation classes normally inherit from a servant class generated by the
id12java compiler. The servant class, in turn, inherits from
org.omg.PortableServer.Servant . When it is not convenient or possible to alter existing
classes to inherit from the VisiBroker servant class, the tie mechanism offers an
attractive alternative.

The tie mechanism provides object servers with a delegator implementation class that
inherits from org.omg. PortableServer.Servant . The delegator implementation does not
provide any semantics of its own. The delegator implementation simply delegates
every request it receives to the real implementation class, which can be implemented
separately. The real implementation class is not required to inherit from
org.omg.PortableServer::.Servant .

With using the tie mechanism, two additional files are generated from the IDL compiler:

- <interface_name>POATie defers implementation of all IDL defined methods to a
delegate. The delegate implements the interface <interface_name>Operations. Legacy
implementations can be trivially extended to implement the operations interface and
in turn delegate to the real implementation.

- <interface_name>Operations defines all of the methods that must be implemented by
the object implementation. This interface acts as the delegate object for the
associated <interface_name>POATie class when the tie mechanism is used.

Example program

Location of an example program using the tie mechanism

A version of the Bank example using the tie mechanism can be found in:

<install_dir>\Vbroker\examples\basic\bank_tie

10: Using the tie mechanism 135

Example program

Changes to the server class

The following code sample shows the modifications to the Server class. Note the extra
step of creating an instance of AccountManagerManagerPOATie.

import org.omg.PortableServer.*;

public class Server {
public static void main(String[] args) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.1nit (args,null);
// get a reference to the root POA
POA rootPOA = POAHelper.narrow (
orb.resolve_initial_references("RootPOA"));
// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
100t POA.create_lifespan_policy (LifespanPolicyValue.PERSISTENT)
}i
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa",
oot POA. the_POAManager (), policies);
// Create the tie which delegates to an instance of AccountManagerImpl
Bank.AccountManagerPOATie tie =
new Bank.AccountManagerPOATie (new AccountManagerImpl (rootPOA));
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, tie);
// Activate the POA manager
rootPOA. the_POAManager () .activate();
System.out.println("Server is ready.");
// Wait for incoming requests
orb.run();
} catch (Exception e) {
e.printStackTrace();

Changes to the AccountManager

The changes made to the AccountManager class (in comparison to the Bank_agent
example) include:

- AccountManagerImpl no longer extends Bank.AccountManagerPOA.
- When a new Account is to be created, an AccountPOATie is also created and initialized.

import org.omg.PortableServer.*;
import java.util.*;

public class AccountManagerImpl implements

Bank.AccountManagerOperations {

public AccountManagerImpl (POA poa) {
_accountPOA = poa;

}

public synchronized Bank.Account open(String name) {
// Lookup the account in the account dictionary.
Bank.Account account = (Bank.Account) _accounts.get (name);
// If there was no account in the dictionary, create one.

136 VisiBroker for Java Developer’s Guide

Example program

if (account == null) {
// Make up the account's balance, between 0 and 1000 dollars.
float balance = Math.abs(_random.nextInt()) % 100000 / 100f;
// Create an account tie which delegate to an instance of AccountImpl
Bank.AccountPOATie tie =
new Bank.AccountPOATie (new AccountImpl (balance));
try {
// Activate it on the default POA which is root POA for
// this servant
account =
Bank.AccountHelper.narrow(_accountPOA.servant_to_reference(tie));
}
catch (Exception e) {
e.printStackTrace();
1
// Print out the new account.
System.out.println("Created " + name +
"'s account: " + account);
// Save the account in the account dictionary.
_accounts.put (name, account);
1
// Return the account.
return account;
}
private Dictionary _accounts = new Hashtable();
private Random _random = new Random();
private POA _accountPOA = null;

Changes to the Account class

The changes made to the Account class (in comparison to the Bank example) are that it
no longer extends Bank.AccountPOA.

// Server.java
public class AccountImpl implements Bank.AccountOperations {
public AccountImpl (float balance) {
_balance = balance;
}
public float balance() {
return _balance;
}

private float _balance;

Building the tie example

The instructions described in “Developing an example application with VisiBroker” are
also valid for building the tie example.

10: Using the tie mechanism 137

Example program

138 VisiBroker for Java Developer’s Guide

Client basics

This section describes how client programs access and use distributed objects.

Initializing the VisiBroker ORB

The Object Request Broker (ORB) provides a communication link between the client
and the server. When a client makes a request, the VisiBroker ORB locates the object
implementation, activates the object if necessary, delivers the request to the object,
and returns the response to the client. The client is unaware whether the object is on
the same machine or across a network.

You are advised to create only one single instance of the VisiBroker ORB per process
as the ORB can use a significant amount of system resources.

Though much of the work done by the VisiBroker ORB is transparent to you, your client
program must explicitly initialize the VisiBroker ORB. VisiBroker ORB options,
described Chapter 4, “Programmer tools for Java,” can be specified as command-line
arguments. To ensure these options take effect you will need to pass the supplied args
argument to ORB. init. The code samples below illustrate the VisiBroker ORB
initialization.

public class Client {
public static void main (String[] args) {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

11: Client basics 139

Binding to objects

Binding to objects

A client program uses a remote object by obtaining a reference to the object. Object
references are usually obtained using the <interface>Helper's bind () method. The
VisiBroker ORB hides most of the details involved with obtaining the object reference,
such as locating the server that implements the object and establishing a connection to
that server.

Action performed during the bind process

When the server process starts, it performs ORB. init () and announces itself to Smart
Agents on the network.

When your client program invokes the bind () method, the VisiBroker ORB performs
several functions on behalf of your program.

- The VisiBroker ORB contacts the Smart Agent to locate an object implementation
that offers the requested interface. If an object name is specified when bind () is
invoked, that name is used to further qualify the directory service search. The Object
Activation Daemon (OAD), described in Chapter 20, “Using the Object Activation
Daemon (OAD),” may be involved in this process if the server object has been
registered with the OAD.

- When an object implementation is located, the VisiBroker ORB attempts to establish
a connection between the object implementation that was located and your client
program.

- Once the connection is successfully established, the VisiBroker ORB will create a
proxy object and return a reference to that object. The client will invoke methods on
the proxy object which will, in turn, interact with the server object.

Figure 11.1 Client interaction with the Smart Agent

Client i i Server
2. Once the object reference is

received, the client can issue

requests to the appropriate

server object

1. Client locates =mart Agent.
When found, the client obtains
an object reference by calling
bind()

Note

Your client program will never invoke a constructor for the server class. Instead, an
object reference is obtained by invoking the static bind () method.

Bank.AccountManager manager =
Bank.AccountManagerHelper.bind (orb,
" /bank_agent_poa",
"BankManager".getBytes());

140 VisiBroker for Java Developer’s Guide

Invoking operations on an object

Invoking operations on an object

Your client program uses an object reference to invoke an operation on an object or to
reference data contained by the object. “Manipulating object references” on page 153
describes the variety of ways that object references can be manipulated.

The following example shows how to invoke an operation using an object reference:

// Invoke the balance operation.
System.out.println("The balance in Accountl: $" + accountl.balance());

Manipulating object references

The bind () method returns a reference to a CORBA object to your client program. Your
client program can use the object reference to invoke operations on the object that
have been defined in the object's IDL interface specification. In addition, there are
methods that all VisiBroker ORB objects inherit from the class org.omg.CORBA.Object
that you can use to manipulate the object.

Converting a reference to a string

VisiBroker provides a VisiBroker ORB class with methods that allow you to convert an
object reference to a string or convert a string back into an object reference. The
CORBA specification refers to this process as stringification.

Method Description

object_to_string |Converts an object reference to a string.
string_to_object |Converts a string to an object reference.

A client program can use the object_to_string method to convert an object reference
to a string and pass it to another client program. The second client may then
de-stringify the object reference, using the string_to_object method, and use the
object reference without having to explicitly bind to the object.

Note

Locally-scoped object references like the VisiBroker ORB or the POA cannot be
stringified. If an attempt is made to do so, a MARSHAL exception is raised with the minor
code 4.

Obtaining object and interface names

The table below shows the methods provided by the Object class that you can use to
obtain the interface and object names as well as the repository id associated with an
object reference. The interface repository is discussed in Chapter 21, “Using Interface
Repositories.”

Note

When you invoke bind () without specifying an object name, invoking the
_object_name () method with the resulting object reference will return null .

Method Description
_object_name Returns this object's name.
_repository_id | Returns the repository's type identifier.

Determining the type of an object reference

You can check whether an object reference is of a particular type by using the _is_a()
method. You must first obtain the repository id of the type you wish to check using the

11: Client basics 141

Manipulating object references

_repository_id() method. This method returns true if the object is either an instance of
the type represented by _repository_id() orif it is a sub-type. The member function
returns false if the object is not of the type specified. Note that this may require remote
invocation to determine the type.

You cannot use the instanceof keyword to determine the runtime type.

You can use _is_equivalent () to check if two object references refer to the same object
implementation. This method returns true if the object references are equivalent. It
returns false if the object references are distinct, but it does not necessarily indicate
that the object references are two distinct objects. This is a lightweight method and
does not involve actual communication with the server object.

Method Description

_is_a Determines if an object implements a specified interface.

_is_equivalent |Returns true if two objects refer to the same interface implementation.

Determining the location and state of bound objects

Given a valid object reference, your client program can use _is_bound() to determine if
the object bound. The method returns true if the object is bound and returns false if the
object is not bound.

The _is_local () method returns true if the client program and the object
implementation reside within the same process or address space where the method is
invoked.

The _is_remote() method returns true if the client program and the object
implementation reside in different processes, which may or may not be located on the
same host.

Method Description

_is_bound | Determines if a connection is currently active for this object.

_is_local |Determines if this object is implemented in the local address space.

_is_remote | Determines if this object's implementation does not reside in the local address
space.

Narrowing object references

The process of converting an object reference's type from a general super-type to a
more specific sub-type is called narrowing.

You cannot use the Java casting facilities for narrowing.

VisiBroker maintains a type graph for each object interface so that narrowing can be
accomplished by using the object's narrow() method.

The IDL exception CORBA::BAD_PARAM is thrown if the narrow fails, because the
object reference does not support the requested type.public abstract class
AccountManagerHelper {

public static Bank.AccountManager narrow (org.omg.CORBA.Object object) {

Widening object references

Converting an object reference's type to a super-type is called widening. The code
sample below shows an example of widening an Account pointer to an Object pointer.
The pointer acct can be cast as an Object pointer because the Account class inherits
from the Object class.

Account account;

142 VisiBroker for Java Developer’s Guide

Using Quality of Service (QoS)

org.omg.CORBA.Object obj;
account = AccountHelper.bind();
obj = (org.omg.CORBA.Object) account;

Using Quality of Service (QoS)

Quality of Service (QoS) utilizes policies to define and manage the connection between
your client applications and the servers to which they connect.

Understanding Quality of Service (QoS)

QoS policy management is performed through operations accessible in the following
contexts:

- The VisiBroker ORB level policies are handled by a locality constrained
PolicyManager, through which you can set Policies and view the current Policy
overrides. Policies set at the VisiBroker ORB level override system defaults.

- Thread level policies are set through PolicyCurrent, which contains operations for
viewing and setting Policy overrides at the thread level. Policies set at the thread
level override system defaults and values set at the VisiBroker ORB level.

- Object level policies can be applied by accessing the base Object interface's quality
of service operations. Policies applied at the Object level override system defaults
and values set in at the VisiBroker ORB or thread level.

Note

The QoS policies installed at the ORB level will only affect those objects on which no
method is called before installing the policies, for example a non_existent call internally
makes a call on a server object. If ORB level QoS policies are installed after the
non_existent call, then the policies do not apply.

Policy overrides and effective policies

The effective policy is the policy that would be applied to a request after all applicable
policy overrides have been applied. The effective policy is determined by comparing
the Policy as specified by the IOR with the effective override. The effective Policy is the
intersection of the values allowed by the effective override and the IOR-specified
Policy. If the intersection is empty a org.omg.CORBA. INV_POLICY exception is raised.

QoS interfaces

The following interfaces are used to get and set QoS policies.

org.omg.CORBA.Object

Contains the following methods used to get the effective policy and get or set the policy
override.

- _get_policy returns the effective policy for an object reference.

- _set_policy_override returns a new object reference with the requested list of Policy
overrides at the object level.

com.borland.vbroker.CORBA.Object (Borland)

In order to use this interface, you must cast org.omg.CORBA.Object to
com.borland.vbroker.CORBA.Object. Because this interface is derived from
org.omg.CORBA.Object, the following methods are available in addition to the ones
defined in org.omg.CORBA.Object.

11: Client basics 143

Using Quality of Service (QoS)

- _get_client_policy returns the effective policy for the object reference without doing
the intersection with the server-side policies. The effective override is obtained by
checking the specified overrides in first the object level, then at the thread level, and
finally at the VisiBroker ORB level. If no overrides are specified for the requested
PolicyType the system default value for PolicyType is used.

- _get_policy_overrides returns a list of Policy overrides of the specified policy types
set at the object level. If the specified sequence is empty, all overrides at the object
level will be returned. If no PolicyTypes are overridden at the object level, an empty
sequence is returned.

- _validate_connection returns a boolean value based on whether the current effective
policies for the object will allow an invocation to be made. If the object reference is
not bound, a binding will occur. If the object reference is already bound, but current
policy overrides have changed, or the binding is no longer valid, a rebind will be
attempted, regardless of the setting of the RebindPolicy overrides. A false return
value occurs if the current effective policies would raise an INV_POLICY exception. If
the current effective policies are incompatible, a sequence of type PolicyList is
returned listing the incompatible policies.

org.omg.CORBA.PolicyManager

The PolicyManager is an interface that provides methods for getting and setting Policy
overrides for the VisiBroker ORB level.

- get_policy_overrides returns a PolicyList sequence of all the overridden policies for
the requested PolicyTypes. If the specified sequence is empty, all Policy overrides at
the current context level will be returned. If none of the requested PolicyTypes are
overridden at the target PolicyManager, an empty sequence is returned.

- set_policy_overrides modifies the current set of overrides with the requested list of
Policy overrides. The first input parameter, policies, is a sequence of references to
Policy objects. The second parameter, set_add, of type
org.omg.CORBA.SetOverrideType indicates whether these policies should be added
onto any other overrides that already exist in the PolicyManager using ADD_OVERRIDE, or
they should be added to a PolicyManager that doesn't contain any overrides using
SET_OVERRIDES. Calling set_policy_overrides with an empty sequence of policies and
a SET_OVERRIDES mode removes all overrides from a PolicyManager. Should you
attempt to override policies that do not apply to your client,
org.omg.CORBA.NO_PERMISSION will be raised. If the request would cause the specified
PolicyManager to be in an inconsistent state, no policies are changed or added, and
an InvalidPolicies exception is raised.

org.omg.CORBA.PolicyCurrent

The PolicyCurrent interface derives from PolicyManager without adding new methods. It
provides access to the policies overridden at the thread level. A reference to a thread's
PolicyCurrent is obtained by invoking org.omg.CORBA.ORB.resolve_initial_references
and specifying an identifier of PolicyCurrent.

com.borland.vbroker.QoSExt.DeferBindPolicy

The DeferBindPolicy determines if the VisiBroker ORB will attempt to contact the
remote object when it is first created, or to delay this contact until the first invocation is
made. The values of DeferBindPolicy are true and false. If DeferBindPolicy is set to
true all binds will be deferred until the first invocation of a binding instance. The default
value is false.

If you create a client object, and DeferBindpPolicy is set to true, you may delay the
server startup until the first invocation. This option existed before as an option to the
Bind method on the generated helper classes.

The code sample below illustrates an example for creating a DeferBindPolicy and
setting the policy on the VisiBroker ORB.

144 VisiBroker for Java Developer’s Guide

Using Quality of Service (QoS)

// Initialize the flag and the references
boolean deferMode = true;

Any policyValue= orb.create_any();
policyValue.insert_boolean (deferMode) ;

Policy policies =
orb.create_policy (DEFER_BIND_POLICY_TYPE.value, policyValue);

// Get a reference to the thread manager
PolicyManager orbManager =
PolicyManagerHelper.narrow (
orb.resolve_initial_references("ORBPolicyManager"));

// Set the policy on the ORB level
orbManager.set_policy_overrides(new Policy[] {policies},
SetOverrideType.SET_OVERRIDE) ;

// Get the binding method

byte[] managerId = "BankManager".getBytes();

Bank.AccountManager manager =
Bank.AccountManagerHelper.bind(orb, "/qgos_poa", managerId);

com.borland.vbroker.QoSExt.ExclusiveConnectionPolicy

The ExclusiveConnectionbPolicy is a VisiBroker-specific policy that gives you the ability
to establish an exclusive (non-shared) connection to the specified server object. You
assign this policy a boolean value of true or false. If the policy is true, connections to
the server object are exclusive. If the policy is false, existing connections are reused if
possible and a new connection is opened only if reuse is not possible. The default
value is false.

This policy provides the same capabilities as were provided by Object._clone() in
VisiBroker 3.x.

An example of how to establish exclusive and non-exclusive connections is provided in
the CloneClient.java example which can be found in:

<install_dir>\examples\Vbroker\QoS_policies\gos\

com.borland.vbroker.QoSExt::RelativeConnectionTimeoutPolicy

The RelativeConnectionTimeoutPolicy indicates a timeout after which attempts to
connect to an object using one of the available endpoints is aborted. The timeout
situation is likely to happen with objects protected by firewalls, where HTTP tunneling
is the only way to connect to the object.

The following code examples illustrates how to create
RelativeConnectionTimeoutPolicy:

Any connTimeoutPolicyValue = orb.create_any();
// Input is in 100s of Nanoseconds.
// To specify a value of 20 seconds, use 20 * 10”7 nanoseconds as input

int connTimeout = 20;

connTimeoutPolicyValue.insert_ulonglong (connTimeout * 10000000);

org.omg.CORBA.Policy ctoPolicy =
orb.create_policyRELATIVE_CONN_TIMEOUT_POLICY_TYPE.value,
connTimeoutPolicyValue) ;

PolicyManager orbManager = PolicyManagerHelper.narrow (
orb.resolve_initial_references("ORBPolicyManager"));

orbManager.set_policy_overrides(new Policy[] \{ctoPolicy\},
SetOverrideType.SET_OVERRIDE) ;

11: Client basics 145

Using Quality of Service (QoS)

org.omg.Messaging.RebindPolicy

RebindPolicy is used to indicate whether the ORB may transparently rebind once
successfully bound to a target. An object reference is considered bound once it is in a
state where a LocateRequest message would result in a LocateReply message with
status OBJECT_HERE. RebindPolicy accepts values of type org.omg.Messaging.RebindMode
and are set only on the client side. It can have one of six values that determine the
behavior in the case of a disconnection, an object forwarding request, or an object
failure after an object reference is bound. The supported values are:

- org.omg.Messaging.TRANSPARENT allows the VisiBroker ORB to silently handle object-
forwarding and necessary reconnections during the course of making a remote
request. The code sample below illustrates an example to create a RebindpPolicy of
type TRANSPARENT and sets the policy on the VisiBroker ORB, thread, and object
levels.

- org.omg.Messaging.NO_REBIND allows the VisiBroker ORB to silently handle reopening
of closed connections while making a remote request, but prevents any transparent
object-forwarding that would cause a change in client-visible effective QoS policies.
When RebindMode is set to NO_REBIND, only explicit rebind is allowed.

- org.omg.Messaging.NO_RECONNECT prevents the VisiBroker ORB from silently handling
object-forwards or the reopening of closed connections. You must explicitly rebind
and reconnect when RebindMode is set to NO_RECONNECT.

- com.borland.vbroker.QoSExt .VB_TRANSPARENT is the default policy. It extends the
functionality of TRANSPARENT by allowing transparent rebinding with both implicit and
explicit binding. VB_TRANSPARENT is designed to be compatible with the object failover
implementation in VisiBroker 3.x.

- com.borland.vbroker.QoSExt .VB_NOTIFY_REBIND throws an exception if a rebind is
necessary. The client catches this exception, and binds on the second invocation. If
a client has received a CloseConnection message before, it will also reestablish the
closed connection.

- com.borland.vbroker.QoSExt.VB_NO_REBIND does not enable failover. It only allows the
client VisiBroker ORB to reopen a closed connection to the same server; it does not
allow object forwarding of any kind.

Note

Be aware that if the effective policy for your client is VB_TRANSPARENT and your client is
working with servers that hold state data, VB_TRANSPARENT could connect the client to a
new server without the client being aware of the change of server, any state data held
by the original server will be lost.

Note

If the Client has set RebindPolicy and the RebindMode is anything other that the
default(VB_TRANSPARENT), then the RebindpPolicy is propagated in a special
ServiceContext as per the CORBA specification. The propagation of the ServiceContext
occurs only when the client invokes the server through a GateKeeper or a RequestAgent.
This propagation does not occur in a normal Client/Server scenario.

The following table describes the behavior of the different RebindMode types.

Reestablish closed
connection to the Allow object

RebindMode type |same object? forwarding? Object failover?
NO_RECONNECT No, throws REBIND | No, throws REBIND | No

exception. exception.
NO_REBIND Yes Yes, if policies No

match. No, throws
REBIND exception.

TRANSPARENT Yes Yes No

146 VisiBroker for Java Developer’s Guide

Using Quality of Service (QoS)

RebindMode type

Reestablish closed
connection to the
same object?

Allow object
forwarding?

Obiject failover?

VB_NO_REBIND Yes No, throws REBIND | No
exception.
VB_NOTIFY_REBIND No, throws Yes Yes.
exception. VB_NOTIFY_REBIND

throws an exception after
failure detection, and then
tries a failover on
subsequent requests.

VB_TRANSPARENT Yes Yes Yes, transparently.

The appropriate CORBA exception will be thrown in the case of a communication
problem or an object failure.

The following example creates a RebindPolicy of type TRANSPARENT and sets the policy
on the VisiBroker ORB, thread, and object levels.

Any policyValue= orb.create_any();

RebindModeHelper.insert (policyValue,
org.omg.Messaging.TRANSPARENT.value) ;
Policy myRebindPolicy = orb.create_policy (REBIND_POLICY_TYPE.value,

policyValue);

//get a reference to the ORB policy manager
org.omg.CORBA.PolicyManager manager;

try {
manager =

PolicyManagerHelper.narrow(orb.resolve_initial references("ORBPolicyManager"));

}

catch(org.omg.CORBA.ORBPackage.InvalidName e) {}
//get a reference to the per-thread manager
org.omg.CORBA.PolicyManager current;

try {
current =

PolicyManagerHelper.narrow(orb.resolve_initial_references
("PolicyCurrent"));

}

catch(org.omg.CORBA.ORBPackage.InvalidName e) {}

//set the policy on the orb level

try{

manager.set_policy_overrides (myRebindPolicy,

SetOverrideType.SET_OVERRIDE) ;

}

catch (InvalidPolicies e){}
// set the policy on the Thread level

try {

current.set_policy_overrides (myRebindPolicy,

SetOverrideType.SET_OVERRIDE) ;

}

catch (InvalidPolicies e){}

//set the policy on the object level:

org.omg.CORBA.Object oldObjectReference=bind(...);

org.omg.CORBA.Object newObjectReference=oldObjectReference._set_policy_override
(myRebindPolicy, SetOverrideType.SET_OVERRIDE);

For more information on QoS policies and types, see the Messaging section of the
CORBA specification.

11: Client basics 147

Using Quality of Service (QoS)

org.omg.CORBA.Messaging.RelativeRequestTimeoutPolicy

The RelativeRequestTimeoutPolicy indicates the relative amount of time which a
Request or its responding Reply may be delivered. After this amount of time, the
Request is canceled. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout, the Reply
will never be discarded due to timeout. The timeout value is specified in 100s of
nanoseconds. This policy is only effective on established connections, and is not
applicable to establishing a connection.

The following code illustrates how to create RelativeRequestTimeoutPolicy:

// Specify the request timeout in 100s of Nanosecs.

// To set a timeout of 20 secs, set 20 * 1077

int regTimeout = 20;

Any policyValue = orb.create_any();

policyValue.insert_ulonglong(regTimeout * 10000000);

// Create Policy

org.omg.CORBA.Policy regPolicy = orb.create_policy (
RELATIVE_REQ_TIMEOUT_POLICY_TYPE.value, policyValue);

PolicyManager orbManager = PolicyManagerHelper.narrow|(
orb.resolve_initial_references("ORBPolicyManager"));

orbManager.set_policy_overrides(new Policy[] {regPolicy},

SetOverrideType.SET_OVERRIDE) ;

org.omg.CORBA.Messaging.RelativeRoundTripTimeoutPolicy

The RelativeRoundTripTimeoutPolicy specifies the relative amount of time for which a
Request or its corresponding Reply may be delivered. If a response has not yet been
delivered after this amount of time, the Request is canceled. Also, if a Request had
already been delivered and a Reply is returned from the target, the Reply is discarded
after this amount of time. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout, the Reply
will never be discarded due to timeout. The timeout value is specified in 100s of
nanoseconds. This policy is only effective on established connections, and is not
applicable to establishing a connection.

The following code illustrates how to create RelativeRoundTripTimeoutPolicy:

// Specify the round-trip timeout in 100s of Nanoseconds

// To set a timeout of 50 secs, set 50 * 1077

int rttTimeout = 50;

Any policyValue = orb.create_any();

policyValue.insert_ulonglong(rttTimeout * 10000000);

//Create the RelativeRoundTripTimeoutPolicy and set it at ORB level

org.omg.CORBA.Policy rttPolicy = orb.create_policy(

RELATIVE_RT_TIMEOUT_POLICY_TYPE.value, policyValue);
PolicyManager orbManager = PolicyManagerHelper.narrow (
orb.resolve_initial_references("ORBPolicyManager"));
orbManager.set_policy_overrides(new Policy[] {rttPolicy},
SetOverrideType.SET_OVERRIDE) ;

org.omg.CORBA.Messaging.SyncScopePolicy

The syncScopePolicy defines the level of synchronization for a request with respect to
the target. Values of type SyncScope are used in conjunction with a SyncScopePolicy to
control the behavior of one-way operations.

The default SyncScopePolicy is SYNC_WITH_TRANSPORT. To perform one-way operations via

the OAD, you must use SyncScopePolicy=SYNC_WITH_SERVER. Valid values for
SyncScopePolicy are defined by the OMG.

148 VisiBroker for Java Developer’s Guide

Code Set support

Note

Applications must explicitly set an VisiBroker ORB-level SyncScopePolicy to ensure
portability across VisiBroker ORB implementations. When instances of SyncScopePolicy
are created, a value of type Messaging: : SyncScope is passed to

CORBA: :0RB: :create_policy. This policy is only applicable as a client-side override.

Exceptions

Exception Description

org.omg.CORBA.INV_POLICY | Raised when there is an incompatibility between policy
overrides.

org.omg.CORBA.REBIND Raised when the RebindPolicy has a value of NO_REBIND,

NO_RECONNECT, or VB_NO_REBIND and an invocation on a bound
object references results in an object-forward or location-
forward message.

org.omg.CORBA.PolicyError Raised when the requested Policy is not supported.

org.omg.CORBA.InvalidPolicies | Raised when an operation is passed a PolicyList sequence.
The exception body contains the policies from the sequence
that are not valid, either because the policies are already
overridden within the current scope, or are not valid in
conjunction with other requested policies.

Code Set support

VisiBroker supports Code Set Negotiation that allows applications to agree on a
common Code Set when marshaling char or wchar IDL data types. A Code Set is a
collection of unambiguous rules that establishes a character set and the one-to-one
relationship between each character of the set and its bit representation or numeric
value.

Types of Code Sets

Code sets can differ in their classification. Some language environments distinguish
between byte-oriented and “wide characters”. The byte-oriented characters are
encoded in one or more 8-bit bytes. ASCII (as used for western European languages
like English) is an example of a typical single-byte encoding. A typical multi-byte
encoding which uses from one to three 8-bit bytes for each character is eucJP
(Extended UNIX Code—Japan, packed format), used for Japanese workstations.
Although byte-oriented Code Sets such as UTF-8 uses one to six 8-bit bytes for a
character representation, the CORBA specification mandates that for char data the size
limit li)s still one byte and that char[] should be used if a representation uses more than
one byte.

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chinese
and Japanese, where the number of combinations offered by 8 bits is insufficient and a
fixed-width encoding is needed. A typical example is Unicode (a “universal”’ character

set defined by The Unicode Consortium). An extended encoding scheme for Unicode

characters is UTF-16 (UCS Transformation Format, 16-bit representations).

Native Code Set

A native code set is the code set which a client or a server uses to communicate with
its ORB. There might be separate native code sets for char and wchar data.

Conversion Code Set (CCS)

This is the set of target code sets for which an ORB can convert all encodings between
the native code set and that target code set. For each code set in this CCS, the ORB
maintains appropriate translation or conversion procedures and advertises the ability to
use that code set for transmitted data in addition to the native code set.

11: Client basics 149

Deploying client-only applications using Client Runtime

Transmission Code Set (TCS)

A transmission code set is the commonly agreed upon encoding used for character
data transfer between a client's ORB and a server's ORB. There are two transmission
code sets established per session between a client and its server, one for char data
(TCS-C) and the other for wchar data (TCS-W).

Code Set Negotiation

The client-side ORB determines a server's native and conversion code sets from an
IOR multi-component profile structure, simultaneously determining a client's native and
conversion code sets. From this information, the client-side ORB chooses char and
wchar transmission code sets (TCS-C and TCS-W). For both requests and replies, the
char TCS-C determines the encoding of char and string data, and the wchar TCS-W
determines the encoding of wchar and wstring data.

Supported Code Sets

VisiBroker supports the following code sets:

- For IDL char data types the native Code Set is ISO 8859-1 (Latin-1) and the
conversion Code supported is UTF-8.

- For IDL wchar data types the native Code Set is UTF-16 and there is no Conversion
Code Set.

Deploying client-only applications using Client Runtime

In many application deployment scenarios it is sometimes required to just have a client
runtime rather than a full-sized ORB implementation. If the application is a pure client
and has no server side functionality, such as POA creation and object activation,
VisiBroker provides a client runtime library for such scenarios. The VisiBroker Client
Runtime has a smaller memory footprint compared to the full VisiBroker
implementation. The client runtime is provided as a Java archive (vbjclientorb.jar) file
which is installed under the /lib directory in the VisiBroker installation.

Note

The Client Runtime does not support full ORB functionality.
The following features are supported by the VisiBroker client runtime library:

- Client-side functionality such as invoking operations on remote servers and services
is provided. Applications using the client runtime can still make use of services like
Interface Repository, Naming Service, RequestAgent (only Polling mode), etc. They
can also make use of GateKeeper for firewall traversal, and they can invoke
operations on servers that are registered with Object Activation Daemon (OAD).
They are also able to use OSAgent for locating servers.

- Client-side interceptors such as Bind Interceptor, and Request Interceptors (both
VisiBroker 4x and Portable Interceptors) can be used.

- VisiSecure client-side functionality is also available.
The following features are not supported by the VisiBroker client runtime library:

Any server-side functionality, such as POA creation or object activation, is not
available. Using resolve_initial_references("RootPOA") is not allowed.

Notification, Event Service, and callback mode of Request Agent are not available.

Location Service is not supported.

Any type of server-side interceptors, such as POALifeCyclelnterceptor, Request
Interceptor (both VisiBroker 4x and Portable Interceptor), and IOR interceptors, are

150 VisiBroker for Java Developer’s Guide

Deploying client-only applications using Client Runtime

not available. However, additional security JAR files are required to be included in
the classpath (see instruction in Usage below).

Usage

To make use of vbjclientorb.jar, modify <install_dir>/bin/vbj.config to configure an
addpath entry for vbjclientorb.jar. To make this change, replace the following line in the
vbj.config file:

addpath $var(defaultJarPath)/vbjorb.jar
with:
addpath Svar (defaultJarPath)/vbjclientorb.jar

When using VisiSecure in client applications, vbsec.jar, sunjce_provider.jar,
local_policy.jar, US_export_policy.jar should also be present in the classpath. If JDK
1.3.1 is used, the JAR files jsse.jar, jcert.jar, jnet.jar, jaas.jar, and jce1_2_1.jar should
also be present in the classpath, in addition to the JARs mentioned previously.

Note

If a particular feature is not supported by the client runtime (vbjclientorb.jar), at runtime
the following standard error message is printed out along with the ClassNotFound or
NoClassDefFound exception.

"kkk*%%C]ient runtime does not support full ORB functionality *****#v

11: Client basics 151

Deploying client-only applications using Client Runtime

152 VisiBroker for Java Developer’s Guide

Using IDL

This section describes how to use the CORBA interface description language (IDL).

Introduction to IDL

The Interface Definition Language (IDL) is a descriptive language (not a programming
language) to describe the interfaces being implemented by the remote objects. Within
IDL, you define the name of the interface, the names of each of the attributes and
methods, and so forth. Once you’ve created the IDL file, you can use an IDL compiler
}o generate the client stub file and the server skeleton file in the Java programming
anguage.

For more information see “Programmer tools for Java.”

The OMG has defined specifications for such language mapping. Information about the
language mapping is not covered in this manual since VisiBroker adheres to the
specification set forth by OMG. If you need more information about language mapping,
see the OMG web site at http://www.omg.org.

Note

The CORBA 3.0 formal specification can be found at
http://www.omg.org/technology/documents/vault.htm#CORBA_ITIOP.

Discussions on the IDL can be quite extensive. Because VisiBroker adheres to the
specification defined by OMG, you can visit the OMG site for more information
about IDL.

12: Using IDL 153

How the IDL compiler generates code

How the IDL compiler generates code

You use the Interface Definition Language (IDL) to define the object interfaces that
client programs may use. The id12java compiler uses your interface definition to
generate code.

Example IDL specification

Your interface definition defines the name of the object as well as all of the methods the
object offers. Each method specifies the parameters that will be passed to the method,
their type, and whether they are for input or output or both. The IDL sample below
shows an IDL specification for an object named example. The example object has only
one method, opl.

// IDL specification for the example object
interface example {
long opl(in char x, out short y);

} !

Looking at the generated code

The IDL compiler generates several files from the above Example IDL specification.
- _exampleStub.java is the stub code for the example object on the client side.
- example.java is the example interface declaration.

- exampleHelper.java declares the exampleHelper class, which defines helpful utility
functions and support functions for the example interface.

- exampleHolder.java declares the exampleHolder class, which provides a holder for
passing out and inout parameters.

- exampleOperations.java defines the methods in the example interface and is used
both on the client and the server side. It also works together with the tie classes to
provide the tie mechanism.

- examplePOA.java contains the skeleton code (implementation base code) for the
example object on the server side.

- examplePOATie.java contains the class used to implement the example object on the
server side using the tie mechanism.

_<interface_name>Stub.java

For each user-defined type, a stub class is created by the id12java compiler. This is the
class which is instantiated on the client side which implements the <interface_name>
interface.
public class exampleStub extends com.inprise.vbroker.CORBA.portable.ObjectImpl
implements example {
final public static java.lang.Class _opsClass = exampleOperations.class;
public java.lang.String[] ids () {

}
public int opl (char x, org.omg.CORBA.ShortHolder y) {

154 VisiBroker for Java Developer’s Guide

Looking at the generated code

<interface_name>.java

The <interface_name>.java file is the Java interface generated for each IDL interface.
This is the direct mapping of the IDL interface definition to the appropriate Java
interface. This interface is then implemented by both the client and server skeleton.

public interface example extends com.inprise.vbroker.CORBA.Object,
exampleOperations,
org.omg.CORBA.portable.IDLEntity {

1

<interface_name>Helper.java

For each user-defined type, a helper class is created by id12java. The Helper class is
an abstract class with various static methods for the generated Java interface.

public final class exampleHelper {
public static example narrow (final org.omg.CORBA.Object obj) {

}
public static example unchecked_narrow (org.omg.CORBA.Object obj) {

}
public static example bind (org.omg.CORBA.ORB orb) {

}
public static example bind (org.omg.CORBA.ORB orb,
java.lang.String name) {

}

public static example bind (org.omg.CORBA.ORB orb, java.lang.String name,
java.lang.String host,
com.inprise.vbroker.CORBA.BindOptions _options) {

}

public static example bind (org.omg.CORBA.ORB orb, java.lang.String
fullPoaName,
byte[] oid) {

}

public static example bind (org.omg.CORBA.ORB orb,
java.lang.String fullPoaName, byte[] oid,

java.lang.String host,
com. inprise.vbroker.CORBA.BindOptions _options) {

}
public java.lang.Object read_Object (final org.omg.CORBA.portable.
InputStream istream) {

}

public void write_Object (
final org.omg.CORBA.portable.OutputStream ostream,
final java.lang.Object obj) {

}
public java.lang.String get_id () {

}
public org.omg.CORBA.TypeCode get_type () {

}

public static example read (
final org.omg.CORBA.portable.InputStream _input) {

12: Using IDL 155

Looking at the generated code

}

public static void write (
final org.omg.CORBA.portable.OutputStream _output,
final example value) {

}
public static void insert (
final org.omg.CORBA.Any any, final example value) {

}
public static example extract (final org.omg.CORBA.Any any) {

: e
public static org.omg.CORBA.TypeCode type () {

}
public static java.lang.String id () {

: .

<interface_name>Holder.java

For each user-defined type, a holder class is created by the id12java compiler. It
provides a class for an object which wraps objects which support the <interface_name>
interface when passed as out and inout parameters.

public final class exampleHolder
implements org.omg.CORBA.portable.Streamable {
public foo.example value;
public exampleHolder () {
}

public exampleHolder (final foo.example _vis_value) {

1
public void _read (final org.omg.CORBA.portable.InputStream input) f{

}
public void _write (final org.omg.CORBA.portable.OutputStream output) {

}
public org.omg.CORBA.TypeCode _type () {

}

<interface_name>Operations.java

For each user-defined type, an operations class is created by the id12java compiler
which contains all the methods defined in the IDL declaration.

public interface exampleOperations {
public int opl(char x, org.omg.CORBA.ShortHolder v);
}

156 VisiBroker for Java Developer’s Guide

Looking at the generated code

<interface_name>POA.java

The <interface_name>POA.java file is the server-side skeleton for the interface. It
unmarshals in parameters and passes them in an upcall to the object implementation
and marshals back the return value and any out parameters.

public abstract class examplePOA
extends org.omg.PortableServer.Servant
implements org.omg.CORBA.portable.InvokeHandler, exampleOperations {
public example _this () {

}
public example _this (org.omg.CORBA.ORB orb) {

}
public java.lang.String[] _all_interfaces (
final org.omg.PortableServer.POA poa,

}

public org.omg.CORBA.portable.OutputStream _invoke (java.lang.String opName,
org.omg.CORBA.portable.InputStream _input,
org.omg.CORBA.portable.ResponseHandler handler) {

}
public static org.omg.CORBA.portable.OutputStream _invoke (exampleOperations
_self,
int _method_id, org.omg.CORBA.portable.InputStream _input,
org.omg.CORBA.portable.ResponseHandler _handler) {

<interface_name>POATie.java

The <interface_name>POATie.java file is a delegator implementation for the
<interface_name> interface. Each instance of the tie class must be initialized with an
instance of an implementation class that implements the <interface_name>Operations
class to which it delegates every operation.

public class examplePOATie extends examplePOA {
public examplePOATie (final exampleOperations _delegate) {

}
public examplePOATie (final exampleOperations _delegate,
final org.omg.PortableServer.POA _poa) {

}

public exampleOperations _delegate () {

}

public void _delegate (final exampleOperations delegate) {

}
public org.omg.PortableServer.POA _default_POA () {

}
public int opl (char x, org.omg.CORBA.ShortHolder y) {

}

12: Using IDL 157

Defining interface attributes in IDL

Defining interface attributes in IDL

In addition to operations, an interface specification can also define attributes as part of
the interface. By default, all attributes are read-write and the IDL compiler will generate
two methods, one to set the attribute's value, and one to get the attribute's value. You
can also specify read-only attributes, for which only the reader method is generated.

The IDL sample below shows an IDL specification that defines two attributes, one read-
write and one read-only.

interface Test {
attribute long count;
readonly attribute string name;
¥
The following code sample shows the operations class generated for the interface
declared in the IDL.

public interface TestOperations {
public int count ();
public void count (int count);
public java.lang.String name ();

}

Specifying one-way methods with no return value

IDL allows you to specify operations that have no return value, called one-way
methods. These operations may only have input parameters. When a oneway method is
invoked, a request is sent to the server, but there is no confirmation from the object
implementation that the request was actually received.

VisiBroker uses TCP/IP for connecting clients to servers. This provides reliable delivery
of all packets so the client can be sure the request will be delivered to the server, as
long as the server remains available. Still, the client has no way of knowing if the
request was actually processed by the object implementation itself.

Note

One-way operations cannot raise exceptions or return values.

interface oneway_example {
oneway void set_value(in long val);

¥

Specifying an interface in IDL that inherits from another interface

IDL allows you to specify an interface that inherits from another interface. The classes
generated by the IDL compiler will reflect the inheritance relationship. All methods, data
type definitions, constants and enumerations declared by the parent interface will be
visible to the derived interface.

interface parent {
void operationl();
}i
interface child : parent {

long operation2(in short s);
}i

The code sample below shows the code that is generated from the interface
specification shown above.

public interface parentOperations {
public void operationl ();

}

158 VisiBroker for Java Developer’s Guide

Specifying an interface in IDL that inherits from another interface

public interface childOperations extends parentOperations {
public int operation2 (short s);

}

public interface parent
extends com.inprise.vbroker.CORBA.Object, parentOperations,

org.omg.CORBA.portable.IDLEntity {

}

public interface child extends childOperations, Baz.parent,
org.omg.CORBA.portable.IDLEntity {

1

12: Using IDL 159

160 VisiBroker for Java Developer’s Guide

Using the Smart Agent

This section describes the Smart Agent (osagent), which client programs register with in
order to find object implementations. It explains how to configure your own VisiBroker
ORB domain, connect Smart Agents on different local networks, and migrate objects
from one host to another.

What is the Smart Agent?

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory service that
provides facilities used by both client programs and object implementations. A Smart
Agent must be started on at least one host within your local network. When your client
program invokes bind () on an object, the Smart Agent is automatically consulted. The
Smart Agent locates the specified implementation so that a connection can be
established between the client and the implementation. The communication with the
Smart Agent is completely transparent to the client program.

If the PERSISTENT policy is set on the POA, and activate_object_with_id is used, the
Smart Agent registers the object or implementation so that it can be used by client
programs. When an object or implementation is deactivated, the Smart Agent removes
it from the list of available objects. Like client programs, the communication with the
Smart Agent is completely transparent to the object implementation. For more
information about POAs, see “Using POAs.”

Best practices for Smart Agent configuration and synchronization

While the Smart Agent imposes no hard limits on the numbers and types of objects that
it can support, there are reasonable best practices that can be followed when
incorporating the it into a larger architecture.

The Smart Agent is designed to be a lightweight directory service with a flat, simple
namespace, which can support a small number of well known objects within a local
network.

Since all objects' registered services are stored in memory, scalability cannot be
optimized and be fault tolerant at the same time. Applications should use well known
objects to bootstrap to other distributed services so as not to rely on the Smart Agent
for all directory needs. If a heavy services lookup load is necessary, it is advisable to
use the VisiBroker Naming Service (VisiNaming). VisiNaming provides persistent
storage capability and cluster load balancing whereas the Smart Agent only provides a
simple round robin on a per osagent basis. Due to the in-memory design of the Smart
Agent, if it is terminated by a proper shutdown or an abnormal termination, it does not

13: Using the Smart Agent 161

What is the Smart Agent?

failover to another Smart Agent in the same ORB domain, that is to the same
OSAGENT_PORT number, whereas the VisiNaming Service provides such failover
functionality. For more information on the VisiBroker naming service, see “Using the
VisiNaming Service.”

General guidelines
The following are some general guidelines for best practice Smart Agent usage.

- Server registrations should be limited to less than 100 object instances or POAs per
ORB domain.

- The Smart Agent keeps track of all clients (not just CORBA servers), so every client
creates a small load on the Smart Agent. Within any 10 minute period, the client
population should generally not exceed 100 clients.

Note

The GateKeeper counts as one client even though it is acting on behalf of many real
clients.

- Applications should use the Smart Agent sparsely by binding to small sets of well
known objects at startup and then using those objects for further discovery. The
Smart Agent communications are based on UDP. Although the message protocol
built on top of UDP is reliable, UDP is often not reliable or allowed in wide area
networks. Since the Smart Agent is designed for intranet use, it is not recommended
over wide area networks that involve firewall configurations.

- The real default IP of the Smart Agent must be accessible to clients on a subnet that
is not directly connected to the Smart Agent host. The Smart Agent cannot be
configured for client access behind a Network Address Translation (NAT) firewall.

- The Smart Agent configures itself at startup using the network information available
at that time. It is not able to detect new network interfaces that are added later, such
as interfaces associated with a dial up connection. Therefore, the Smart Agent is
meant for use in static network configurations.

Load balancing/ fault tolerance guidelines

- The Smart Agent implements load balancing using a simple round-robin algorithm on
a per agent basis, not on an ORB domain basis. For load balancing between server
replicas, when you have more than one Smart Agent in the ORB domain, make sure
all servers are registered with the same Smart Agent.

- The ORB runtime caches access to the Smart Agent, so multiple binds to the same
server object from the same ORB process do not result in round-robin behavior
because all subsequent attempts to bind to the object us the cache rather than
sending a new request to the Smart Agent. This behavior can be changed using ORB
properties. For more information see “VisiBroker properties.” .

- When a Smart Agent is terminated, all servers that were registered with that agent
attempt to locate another agent with which to register. This process is automatic, but
may take up to two minutes for the server to perform this function. During that two
minute window, the server is not registered in the ORB domain and therefore is not
available to new clients. However, this does not affect ongoing IIOP communications
between the server and clients that were previously bound.

Location service guidelines
The location service is built upon the Smart Agent technology. Therefore, the location
service is subject to the same guidelines described above.

- The location service triggers generate UDP traffic between the Smart Agent and the
trigger handlers registered by applications. Use of this feature should be limited to
less than 10 objects, monitored by less than 10 processes.

162 VisiBroker for Java Developer’s Guide

What is the Smart Agent?

- The location service triggers fire when the Smart Agent determines that an object is
available or down. There may be a delay of up to four minutes for a “down” trigger to
fire. For this reason, you may not want to use this feature for time critical
applications.

For more information about the Location Service, see “Using the Location Service.”

When not to use a Smart Agent

- When the ORB domain spans a large number (greater than 5) of subnets.
Maintaining the agentaddr files for a large ORB domain spread over a large number
of subnets is difficult to manage.

- When the name space requires a large number (greater than 100) of well known
objects.

- When the number of applications (clients) that require the Smart Agent consistently
exceeds 100 in a 10 minute period.
Note

In the above situations an alternative directory, such as the Naming Service, may be
more appropriate. See “Using the VisiNaming Service” for more information.

Locating Smart Agents

VisiBroker locates a Smart Agent for use by a client program or object implementation
using a broadcast message. The first Smart Agent to respond is used. After a Smart
Agent has been located, a point-to-point UDP connection is used for sending
registration and look-up requests to the Smart Agent.

The UDP protocol is used because it consumes fewer network resources than a TCP
connection. All registration and locate requests are dynamic, so there are no required
configuration files or mappings to maintain.

Note

Broadcast messages are used only to locate a Smart Agent. All other communication
with the Smart Agent makes use of point-to-point communication. For information on
how to override the use of broadcast messages, see “Using point-to-point
communications”.

Locating objects through Smart Agent cooperation

When a Smart Agent is started on more than one host in the local network, each Smart
Agent will recognize a subset of the objects available and communicate with other
Smart Agents to locate objects it cannot find. If one of the Smart Agent processes
should terminate unexpectedly, all implementations registered with that Smart Agent
discover this event and they will automatically re register with another available Smart
Agent.

Cooperating with the OAD to connect with objects

Object implementations may be registered with the Object Activation Daemon (OAD)
so they can be started on demand. Such objects are registered with the Smart Agent
as if they are actually active and located within the OAD. When a client requests one of
these objects, it is directed to the OAD. The OAD then forwards the client request to
the actual server. The Smart Agent does not know that the object implementation is not
truly active within the OAD. For more information about the OAD, see “Using the Object
Activation Daemon (OAD).”

13: Using the Smart Agent 163

What is the Smart Agent?

Starting a Smart Agent (osagent)

At least one instance of the Smart Agent should be running on a host in your local
network. Local network refers to a subnetwork in which broadcast messages can be
sent.

Windows

To start the Smart Agent:
- Double-click the osagent executible osagent .exe located in:

<install_dir\bin\
or
- At the Command Prompt, enter: osagent [options]. For example:

prompt> osagent [options]

UNIX

To start the Smart Agent, enter: osagent &. For example:

prompt> osagent &

Note

Due to signal handling changes, bourne and korn shell users need to use the
ignoreSignal hup parameter when starting osagent in order to prevent the hangup (hup)
signal from terminating the process when the user logs out. For example:

nohup SVBROKERDIR/bin/osagent ignoreSignal hup &

The osagent command accepts the following command line arguments:

Option Description

-p <UDP_port> | Overrides the setting of 0saGENT_PORT and the registry setting.

-v Turns verbose mode on, which provides information and diagnostic
messages during execution.

-help or -? Prints the help message.

-1 Turns off logging if 0SAGENT_LOGGING_ON is set.

-1s <size> Specifies trimming log size of 1024KB block. Max value is 300, therefore
largest log size is 300MB

+1 <options> Show/enable logging level. Options supported are:
m Turnlogging on and enable level "ief" (== +1 oief), equivalent to

OSAGENT_LOGGING_ON set. Logs are auto-trim and written to 0SAGENT LOG_DIR
or VBROKER_ADM directory if set. Otherwise default is to /tmp on UNIX and
$TEMP% on Windows.

i - Informational
e - Error

w - Warning

f - Fatal

d - Debugging
a-All

-n, -N Disables system tray icon on Windows.

Example:
The following example of the osagent command specifies a particular UDP port:
osagent -p 17000

164 VisiBroker for Java Developer’s Guide

What is the Smart Agent?

Verbose output

UNIX

On UNIX, the verbose output is sent to stdout.

Windows

On Windows, the verbose output is written to a log file stored in either of the following
locations:

- C:\TEMP\vbroker\log\osagent.log.

- the directory specified by the VBROKER_ADM environment variable.

Note

To specify a different directory in which to write the log file, use 0SAGENT_LOG_DIR. To
configure logging options you can right-click the Smart Agent icon and select Log
Options.

Disabling the agent

Communication with the Smart Agent can be disabled by passing the VisiBroker ORB
the property at runtime:

prompt> vbj -Dvbroker.agent.enableLocator=false

If using string-to-object references, a naming service, or passing in a URL reference,
the Smart Agent is not required and can be disabled. If you pass an object name to the
bind() method, you must use the Smart Agent.

Ensuring Smart Agent availability

Starting a Smart Agent on more than one host within the local network allows clients to
continually bind to objects, even if one Smart Agent terminates unexpectedly. If a
Smart Agent becomes unavailable, all object implementations registered with that
Smart Agent will be automatically re-registered with another Smart Agent. If no Smart
Agents are running on the local network, object implementations will continue retrying
until a new Smart Agent is contacted.

If a Smart Agent terminates, any connections between a client and an object
implementation established before the Smart Agent terminated will continue without
interruption. However, any new bind () requests issued by a client causes a new Smart
Agent to be contacted.

No special coding techniques are required to take advantage of these fault-tolerant
features. You only need to be sure a Smart Agent is started on one or more host on the
local network.

Checking client existence

A Smart Agent sends an “are you alive” message (often called a heartbeat message) to
its clients every two minutes to verify the client is still connected. If the client does not
respond, the Smart Agent assumes the client has terminated the connection.

You can not change the interval for polling the client.

Note

The use of the term “client” does not necessarily describe the function of the object or
process. Any program that connects to the Smart Agent for object references is a
client.

13: Using the Smart Agent 165

Working within VisiBroker ORB domains

Working within VisiBroker ORB domains

It is often useful to have two or more VisiBroker ORB domains running at the same
time. One domain might consist of production versions of client programs and object
implementations, while another domain might consist of test versions of the same
clients and objects that have not yet been released for general use. If several
developers are working on the same local network, each may want to establish their
own VisiBroker ORB domain so that their tests do not conflict with one another.

Figure 13.1 Running separate VisiBroker ORB domains simultaneously
I

Fizioroker ORB %

izibroker ORB §
Smart agent i

Smart agent

| Client &pplication Client Application E

Test Domain

Production Damain

Ohject Impl.

Ohject Impl.

Ohbject Impl.

Ohbject Impl.

VisiBroker allows you to distinguish between multiple VisiBroker ORB domains on the
same network by using unique UDP port numbers for the Smart Agents of each
domain. By default, the 0SAGENT_PORT variable is set to 14000. If you wish to use a
different port number, check with your system administrator to determine what port
numbers are available.

To override the default setting, the 0SAGENT_PORT variable must be set accordingly
before running a Smart Agent, an OAD, object implementations, or client programs
assigned to that VisiBroker ORB domain. For example,

prompt> setenv OSAGENT_PORT 5678
prompt> osagent &
prompt> oad &

The Smart Agent uses an additional internal port number for both TCP and UDP
protocols, the port number is the same for both. This port number is set by using the
OSAGENT_CLIENT_HANDLER_PORT environment variable.

Connecting Smart Agents on different local networks

If you start multiple Smart Agents on your local network, they will discover each other
by using UDP broadcast messages. Your network administrator configures a local
network by specifying the scope of broadcast messages using the IP subnet mask. The
following figure shows two local networks connected by a network link.

166 VisiBroker for Java Developer’s Guide

Working with multihomed hosts

Figure 13.2 Two Smart Agents on separate local networks

“isibrojer ORE
=mart agent
1014025

wizibraojer ORE}
=mart agent
199.109.5

Local Metwork * Local Metwark * 2

Object Impl.

To allow the Smart Agent on one network to contact a Smart Agent on another local
network, use the 0SAGENT_ADDR_FILE environment variable, as shown in the following
example:

setenv OSAGENT_ADDR_FILE=<path to agent addr file>

Alternatively, use the vbroker.agent.addrFile property, as shown in the following
example:

vbj -Dvbroker.agent.addrFile=<path to agent addr file>

The following example shows what the agentaddr file would contain to allow a Smart
Agent on Local Network #1 to connect to a Smart Agent on another local network.

101.10.2.6

With the appropriate agentaddr file, a client program on Network #1 locates and uses
object implementations on Network #2. For more information on environment variables,
see the Installation Guide.

Note

If a remote network has multiple Smart Agents running, you should list all the IP
addresses of the Smart Agents on the remote network.

How Smart Agents detect each other

Suppose two agents, Agent 1 and Agent 2, are listening on the same UDP port from
two different machines on the same subnet. Agent 1 starts before Agent 2. The
following events occur:

- When Agent 2 starts, it UDP broadcasts its existence and sends a request message
to locate any other Smart Agents.

- Agent 1 makes note that Agent 2 is available on the network and responds to the
request message.

- Agent 2 makes note that another agent, Agent 1, is available on the network.

If Agent 2 is terminated gracefully (such as killing with Ctri+C), Agent 1 is notified that
Agent 2 is no longer available.

Working with multihomed hosts

When you start the Smart Agent on a host that has more than one IP address (known
as a multihomed host), it can provide a powerful mechanism for bridging objects
located on separate local networks. All local networks to which the host is connected
will be Eble to communicate with a single Smart Agent, therefore bridging the local
networks.

13: Using the Smart Agent 167

Working with multihomed hosts

Figure 13.3 Smart Agent on a multihomed host

Multimedia Host

F—_ = = = =
1

99.109.5

Local
netweorki2

Local
netweork #1

I_Cluarlt program

UNIX

On a multihomed UNIX host, the Smart Agent dynamically configures itself to listen
and broadcast on all of the host's interfaces which support point-to-point connections
or broadcast connections. You can explicitly specify interface settings using the
localaddr file as described in “Specifying interface usage for Smart Agents”.

Windows

On a multihomed Windows host, the Smart Agent is not able to dynamically determine
the correct subnet mask and broadcast address values. To overcome this limitation,
you must explicitly specify the interface settings you want the Smart Agent to use with
the localaddr file.

When you start the Smart Agent with the -v (verbose) option, each interface that the
Smart Agent uses will be listed at the beginning of the messages produced. The
example below shows the sample output from a Smart Agent started with the verbose
option on a multihomed host.

Bound to the following interfaces:
Address: 199.10.9.5 Subnet: 255.255.255.0 Broadcast:199.10.9.255
Address: 101.10.2.6 Subnet: 255.255.255.0 Broadcast:101.10.2.255

The above output shows the address, subnet mask, and broadcast address for each
interface in the machine.

UNIX

The above output should match the results from the UNIX command ifconfig -a.

If want to override these settings, configure the interface information in the localaddr
file. See “Specifying interface usage for Smart Agents” for details.

Specifying interface usage for Smart Agents

Note

It is not necessary to specify interface information on a single-homed host.

You can specify interface information for each interface you wish the Smart Agent to
use on your multihomed host in the localaddr file. The localaddr file should have a
separate line for each interface that contains the host's IP address, subnet mask, and
broadcast address. By default, VisiBroker searches for the localaddr file in the
VBROKER_ADM directory. You can override this location by setting the 0SAGENT_LOCAL_FILE
environment variable to point to this file. Lines in this file that begin with a “#” character,
and are treated as comments and ignored. The code sample below shows the contents
of the localaddr file for the multihomed host listed above.

168 VisiBroker for Java Developer’s Guide

Using point-to-point communications

tentries of format <address> <subnet _mask> <broadcast address>
199.10.9.5 255.255.255.0 199.10.9.255
101.10.2.6 255.255.255.0 101.10.2.255

UNIX

Though the Smart Agent can automatically configure itself on a multihomed host on
UNIX, you can use the localaddr file to explicitly specify the interfaces that your host
contains. You can display all available interface values for the UNIX host by using the
following command:

prompt> ifconfig -a
Output from this command appears similar to the following:

1o0: flags=849<UP, LOOPBACK, RUNNING, MULTICAST> mtu 8232
inet 127.0.0.1 netmask ££000000

le0: flags=863<UP, BROADCAST, NOTRAILERS, RUNNING, MULTICAST> mtu 1500
inet 199.10.9.5 netmask ffffff00 broadcast 199.10.9.255

lel: flags=863<UP,BROADCAST,NOTRAILERS, RUNNING, MULTICAST> mtu 1500
inet 101.10.2.6 netmask ffffff00 broadcast 101.10.2.255

Windows

The use of the localaddr file with multihomed hosts is required for hosts running
Windows because the Smart Agent is not able to automatically configure itself. You
can obtain the appropriate values for this file by accessing the TCP/IP protocol
properties from the Network Control Panel. If your host is running Windows, the
ipconfig command will provide the needed values. This command is as follows:

prompt> ipconfig
Output from this command appears similar to the following:
Ethernet adapter E190x1:

IP Address. : 172.20.30.56

Subnet Mask : 255.255.255.0

Default Gateway : 172.20.0.2
Ethernet adapter Elnk32:

IP Address. : 101.10.2.6

Subnet Mask : 255.255.255.0

Default Gateway. : 101.10.2.1

Using point-to-point communications

VisiBroker provides three different mechanisms for circumventing the use of UDP
broadcast messages for locating Smart Agent processes. When a Smart Agent is
located with any of these alternate approaches, that Smart Agent will be used for all
subsequent interactions. If a Smart Agent cannot be located using any of these
alternate approaches, VisiBroker will revert to using the broadcast message scheme to
locate a Smart Agent.

Specifying a host as a runtime parameter

The code sample below shows how to specify the IP address where a Smart Agent is
running as a runtime parameter for your client program or object implementation. Since
specifying an IP address will cause a point-to-point connection to be established, you
can even specify an IP address of a host located outside your local network. This
mechanism takes precedence over any other host specification.

prompt> vbj -Dvbroker.agent.addr=<ip_address> Server

You can also specify the IP address through the properties file. Look for the
vbroker.agent.addr entry.

vbroker.agent.addr=<ip_address>

13: Using the Smart Agent 169

Ensuring object availability

By default, vbroker.agent.addr in the properties file is set to NULL.

You can also list the host names where the agent might reside and then point to that
file with the vbroker.agent.addrFile option in the properties file.

Specifying an IP address with an environment variable

You can specify the IP address of a Smart Agent by setting the 0SAGENT_ADDR
environment variable prior to starting your client program or object implementation.
This environment variable takes precedence if a host is not specified as a runtime
parameter.

UNIX
prompt> setenv OSAGENT_ADDR 199.10.9.5
prompt> client

Windows

To set the 0SAGENT_ADDR environment variable on a Windows system, you can use the
System control panel and edit the environment variables:

1 Under System Variables, select any current variable.
2 Type OSAGENT_ADDR in the Variable edit box.
3 Type the IP address in the Value edit box. For example, 199.10.9.5.

Specifying hosts with the agentaddr file

Your client program or object implementation can use the agentaddr file to circumvent
the use of a UDP broadcast message to locate a Smart Agent. Simply create a file
containing the IP addresses or fully qualified hostnames of each host where a Smart
Agent is running and then set the 0SAGENT_ADDR_FILE environment variable to point to
the path of the file. When a client program or object implementation has this
environment variable set, VisiBroker will try each address in the file until a Smart Agent
is located. This mechanism has the lowest precedence of all the mechanisms for
specifying a host. If this file is not specified, the VBROKER_ADM/agentaddr file is used.

Ensuring object availability

You can provide fault tolerance for objects by starting instances of those objects on
multiple hosts. If an implementation becomes unavailable, the VisiBroker ORB will
detect the loss of the connection between the client program and the object
implementation and will automatically contact the Smart Agent to establish a
connection with another instance of the object implementation, depending on the
effective rebind policy established by the client. For more information on establishing
client policies, go to the Client basics, “Using Quality of Service (QoS)”.

Note

The Smart Agent implements load balancing using a simple round-robin algorithm on a
per agent basis, not on an ORB domain basis. For load balancing between server
replicas, when you have more than one Smart Agent in the ORB domain, make sure all
servers are registered with the same Smart Agent.

Important

The rebind option must be enabled if VisiBroker is to attempt reconnecting the client
with an instance object implementation. This is the default behavior.

170 VisiBroker for Java Developer’s Guide

Migrating objects between hosts

Invoking methods on stateless objects

Your client program can invoke a method on an object implementation which does not
maintain state without being concerned if a new instance of the object is being used.

Achieving fault-tolerance for objects that maintain state

Fault tolerance can also be achieved with object implementations that maintain state,
but it will not be transparent to the client program. In these cases, your client program
must either use the Quality of Service (QoS) policy VB_NOTIFY_REBIND or register an
interceptor for the VisiBroker ORB object. For information on using QoS, see “Using
Quality of Service (QoS)”.

When the connection to an object implementation fails and VisiBroker reconnects the
client to a replica object implementation, the bind method of the bind interceptor will be
invoked by VisiBroker. The client must provide an implementation of this bind method
to bring the state of the replica up to date. Client interceptors are described in “Client
Interceptors”.

Replicating objects registered with the OAD

The OAD ensures greater object availability because if the object goes down, the OAD
will restart it. If you want fault tolerance for hosts that may become unavailable, the
OAD must be started on multiple hosts and the objects must be registered with each
OAD instance.

Note

The type of object replication provided by VisiBroker does not provide a multicast or
mirroring facility. At any given time there is always a one-to-one correspondence
between a client program and a particular object implementation.

Migrating objects between hosts

Object migration is the process of terminating an object implementation on one host,
and then starting it on another host. Object migration can be used to provide load
balancing by moving objects from overloaded hosts to hosts that have more resources
or processing power (there is no load balancing between servers registered with
different Samrt Agents.) Object migration can also be used to keep objects available
when a host is shutdown for hardware or software maintenance.

Note

The migration of objects that do not maintain state is transparent to the client program.
If a client is connected to an object implementation that has migrated, the Smart Agent
will detect the loss of the connection and transparently reconnect the client to the new
object on the new host.

Migrating objects that maintain state

The migration of objects that maintain state is also possible, but it will not be
transparent to a client program that has connected before the migration process
begins. In these cases, the client program must register an interceptor for the object.

When the connection to the original object is lost and VisiBroker reconnects the client
to the object, the interceptor's rebind_succeeded () member function will be invoked by
VisiBroker. The client can implement this function to bring the state of the object up to
date.

Refer to “Using Portable Interceptors” for more information about how to use the
interceptors.

13: Using the Smart Agent 171

Reporting all objects and services

Migrating instantiated objects

If the objects that you wish to migrate were created by a server process instantiating
the implementation's class, you need only start it on a new host and terminate the
server process. When the original instance is terminated, it will be unregistered with the
Smart Agent. When the new instance is started on the new host, it will register with the
Smart Agent. From that point on, client invocations are routed to the object
implementation on the new host.

Migrating objects registered with the OAD

If VisiBroker objects that you wish to migrate are registered with the OAD, you must
first unregister them with the OAD on the old host. Then, reregister them with the OAD
on the new host.

Use the following procedure to migrate objects already registered with the OAD:
1 Unregister the object implementation from the OAD on the old host.

2 Register the object implementation with the OAD on the new host.
3 Terminate the object implementation on the old host.

See “Using the Object Activation Daemon (OAD)” for detailed information on
registering and unregistering object implementations.

Reporting all objects and services

The Smart Finder (0osfind) command reports on all VisiBroker related objects and
services which are currently available on a given network.

You can use osfind to determine the number of Smart Agent processes running on the
network and the exact host on which they are executing. The osfind command also
reports on all VisiBroker objects that are active on the network if these objects are
registered with the Smart Agent. You can use osfind to monitor the status of the
network and locate stray objects during the debugging phase.

The osfind command has the following syntax:
osfind [options]

The following options are valid with osfind. If no options are specified, osfind lists all of
the agents, OAD's, and implementations in your domain.

Option Description

-a Lists all Smart Agents in your domain.

-b Uses the VisiBroker 2.0 backward compatible osfind
mechanism.

-d Prints hostnames as quad addresses.

-f Queries Smart Agents running on the hosts specified in the file.

<agent_address_file_name> | This file contains one IP address or fully qualified host name
per line. Note that this file is not used when reporting all Smart
Agents; it is only used when reporting objects implementations
and services.

-g Verifies object existence. This can cause considerable delay on
loaded systems. Only objects registered BY_INSTANCE are verified
for existence. Objects that are either registered with the OAD,
or those registered BY_Poa policy are not verified for existence.

-h, -help, -usage, -? Prints help information for this option.
-0 Lists all OADs in your domain.
-p Lists all POA instances activated on the same host. Without

this option only unique POA names are listed.

172 VisiBroker for Java Developer’s Guide

Binding to Objects

Windows

osfind is a console application. If you start osfind from the Start menu, it runs until
completion and exits before you can view the results.

Binding to Objects

Before your client application invokes a method on an interface it must first obtain an
object reference using the bind () method.

When your client application invokes the bind () method, VisiBroker performs several
functions on behalf of your application. These are shown below.

- VisiBroker contacts the osagent to locate an object server that is offering the
requested interface. If an object name and a host name (or IP address) are specified,
they will be used to further qualify the directory service search.

- When an object implementation is located, VisiBroker attempts to establish a
connection between the object implementation that was located and your client
application.

- If the connection is successfully established, VisiBroker will create a proxy object if
necessary, and return a reference to that object.
Note

VisiBroker is not a separate process. It is a collection of classes and other resources
that allow communication between clients and servers.

13: Using the Smart Agent 173

174 VisiBroker for Java Developer’s Guide

Using the Location Service

The VisiBroker Location Service provides enhanced object discovery that enables you
to find object instances based on particular attributes. Working with VisiBroker Smart
Agents, the Location Service notifies you of what objects are presently accessible on
the network, and where they reside. The Location Service is a VisiBroker extension to
the CORBA specification and is only useful for finding objects implemented with
VisiBroker. For more information on the Smart Agent (osagent), see “Using the Smart
Agent.”

What is the Location Service?

The Location Service is an extension to the CORBA specification that provides
general-purpose facilities for locating object instances. The Location Service
communicates directly with one Smart Agent which maintains a catalog, which
contains the list of the instances it knows about. When queried by the Location Service,
a Smart Agent forwards the query to the other Smart Agents, and aggregates their
replies in the result it returns to the Location Service.

The Location Service knows about all object instances that are registered on a POA
with the BY_INSTANCE Policy and objects that are registered as persistent on a BOA. The
server containing these objects may be started manually or automatically by the OAD.
For more information, see “Using POAs,” “Using the BOA with VisiBroker,” and “Using
the Object Activation Daemon (OAD).”

The following diagram illustrates this concept.
Figure 14.1 Using the Smart Agent to find instances of objects

. B Query for all
| object retums
- Smart agent Hal |
Smart agent
ee— .
Lacation W = Registration of an active object
Smart agent Service [] = Registration of an activable object

Note

A server specifies an instance's scope when it creates the instance. Only globally-
scoped instances are registered with Smart Agents.

14: Using the Location Service 175

Location Service components

The Location Service can make use of the information the Smart Agent keeps about
each object instance. For each object instance, the Location Service maintains
information encapsulated in the structure ObjLocation: :Desc shown below.

struct Desc {
Object ref;
::II0P::ProfileBodyValue iiop_locator;
string repository_id;
string instance_name;
boolean activable;
string agent_hostname;
}i
typedef sequence<Desc> DescSeq;

The IDL for the Desc structure contains the following information:
- The object reference, ref, is a handle for invoking the object.

- The iiop_locator interface provides access to the host name and the port of the
instance's server. This information is only meaningful if the object is connected with
IIOP, which is the only supported protocol. Host names are returned as strings in the
instance description.

- The repository_ id, which is the interface designation for the object instance that can
be looked up in the Interface and Implementation Repositories. If an instance
satisfies multiple interfaces, the catalog contains an entry for each interface, as if
there were an instance for each interface.

- The instance_name, which is the name given to the object by its server.

- The activable flag, which differentiates between instances that can be activated by
an OAD and instances that are started manually.

- The agent_hostname, the name of the Smart Agent with which the instance is
registered.

The Location Service is useful for purposes such as load balancing and monitoring.
Suppose that replicas of an object are located on several hosts. You could deploy a
bind interceptor that maintains a cache of the host names that offer a replica and each
host's recent load average. The interceptor updates its cache by asking the Location
Service for the hosts currently offering instances of the object, and then queries the
hosts to obtain their load averages. The interceptor then returns an object reference for
the replica on the host with the lightest load. For more information about writing
interceptors, see “Using Portable Interceptors” and “Using VisiBroker Interceptors.”

Location Service components

The Location Service is accessible through the Agent interface. Methods for the Agent
interface can be divided into two groups: those that query a Smart Agent for data
describing instances and those that register and unregister triggers. Triggers provide a
mechanism by which clients of the Location Service can be notified of changes to the
availability of instances.

What is the Location Service agent?

The Location Service agent is a collection of methods that enable you to discover
objects on a network of Smart Agents. You can query based on the interface’s
repository ID, or based on a combination of the interface's repository ID and the
instance name. Results of a query can be returned as either object references or more
complete instance descriptions. An object reference is simply a handle to a specific
instance of the object located by a Smart Agent. Instance descriptions contain the
object reference, as well as the instance's interface name, instance name, host name
and port number, and information about its state (for example, whether it is running or
can be activated).

176 VisiBroker for Java Developer’s Guide

Location Service components

Note

The locserv executable no longer exists since the service is now part of the core
VisiBroker ORB.

The figure below illustrates the use of interface repository IDs and instance names
given the following example IDL:

module Automobile {
interface Car{...};
interface Sedan:Car {...};
}

Figure 14.2 Use of interface repository IDs and instance names

IDL: fotoriobiledCard.0 |- - - - Keri's car 1 interface Repository

10L: &torobilefSedan:10 |- . -, .

Given the previous example, the following diagram visually depicts Smart Agents on a
network with references to instances of Car. In this example, there are three instances:
one instance of Keri's Car and two replicas of Tom's Car.

Figure 14.3 Smart Agents on a network with instances of an interface

Tom'] Location = 0Object instancy
Sanrice
R 0=Smart.agent
Athena Server -!H_Ce:n:g:l::a; . <>
.Tom's car .
Zeus Senrer

The following sections explain how the methods provided by the Agent class can be
used to query VisiBroker Smart Agents for information. Each of the query methods can
raise the Fail exception, which provides a reason for the failure.

Obtaining addresses of all hosts running Smart Agents

Using the String[] inthe all_agent_locations () method, you can find out which servers
are hosting VisiBroker Smart Agents. In the example shown in the figure below, this
method would return the addresses (such as, IP address string) of two servers: Athena
and Zeus.

Finding all accessible interfaces

You can query the VisiBroker Smart Agents on a network to find out about all
accessible interfaces. To do so, you can use the String[] in the all_repository_ids()
method. In the example shown in the following figure, this method would return the
repository IDs of two interfaces: Car and Sedan.

Note

Earlier versions of the VisiBroker ORB used IDL interface names to identify interfaces,
but the Location Service uses the repository id instead. To illustrate the difference, if an
interface name is:

::modulel::module2::interface

the equivalent repository id is:
IDL:modulel/module2/interface:1.0

For the example shown in the figure above, the repository ID for Car would be:
IDL:Automobile/Car:1.0

and the repository ID for Sedan would be:

14: Using the Location Service 177

Location Service components

IDL:Automobile/Sedan: 1.0

Obtaining references to instances of an interface

You can query VisiBroker Smart Agents on a network to find all available instances of a
particular interface. When performing the query, you can use either of these methods:

Method Description
org.omg.CORBA.Object [] Use this method to return object references to
all_instances(String repository_id) instances of the interface.

Desc[] all_instance_descs(Stringrepository_id) | Use this method to return an instance
description for instances of the interface.

In the example shown in the figure above, a call to either method with the request
IDL:Automobile/Car:1.0 would return three instances of the Car interface: Tom's Car on
Athena, Tom's Car on Zeus, and Keri's Car. The Tom's Car instance is returned twice
because there are occurrences of it with two different Smart Agents.

Obtaining references to like-named instances of an interface

Using one of the following methods, you can query VisiBroker Smart Agents on a
network to return all occurrences of a particular instance name.

Method Description

org.omg.CORBA.Object[] all_replica String |Use this method to return object references to like-
repository_id, String instance_name named instances of the interface.

Desc[] all_replica_descs(String Use this method to return an instance description
repository_id, String instance_name) for like-named instances of the interface.

In the example shown in the previous figure, a call to either method specifying the
repository ID IDL:Automobile/Sedan: 1.0 and instance name Tom's Car would return two
instances because there are occurrences of it with two different Smart Agents.

What is a trigger?

A trigger is essentially a callback mechanism that lets you determine changes to the
availability of a specified instance. It is an asynchronous alternative to polling an Agent,
and is typically used to recover after the connection to an object has been lost.
Whereas queries can be employed in many ways, triggers are special-purpose.

Looking at trigger methods
The trigger methods in the Agent class are described in the following tables:

Methods Description

void reg_trigger(Use this method to register a
com. inprise.vbroker.ObjLocation.TriggerDescdesc, com. inprise. trigger handler.
vbroker.0ObjLocation.TriggerHandler handler)

void unreg_trigger(Use this method to unregister
com. inprise.vbroker.ObjLocation.TriggerDesc desc,com.inprise. a trigger handler.
vbroker.ObjLocation.TriggerHandler handler)

Both of the Agent trigger methods can raise the Fail exception, which provides a
reason for the failure.

The TriggerHandler interface consists of the methods described in the following tables:

Method Description

void impl_is_ready (com.inprise. This method is called by the Location Service when an
vbroker.ObjLocation.TriggerDescdesc) |instance matching the desc becomes accessible.

void impl_is_down(com.inprise. This method is called by the Location Service when an
vbroker.ObjLocation.TriggerDescdesc) |instance becomes unavailable.

178 VisiBroker for Java Developer’s Guide

Querying an agent

Creating triggers

A TriggerHandler is a callback object. You implement a TriggerHandler by deriving from
theTriggerHandlerPOA class (or the TriggerHandlerImpl class with BOA), and
implementing its impl_is_ready () and impl_is_down() methods. To register a trigger
with the Location Service, you use the reg_trigger () method in the Agent interface.
This method requires that you provide a description of the instance you want to
monitor, and the TriggerHandler object you want invoked when the availability of the
instance changes. The instance description (TriggerDesc) can contain combinations of
the following instance information: repository ID, instance name, and host name. The
more instance information you provide, the more particular your specification of the
instance.

struct TriggerDesc {
string repository_id;
string instance_name;
string host_name;

¥

Note

If a field in the TriggerDesc is set to the empty string (“), it is ignored. The default for
each field value is the empty string.

For example, a TriggerDesc containing only a repository ID matches any instance of the
interface. Looking back to our example in the figure above, a trigger for any instance of
IDL:Automobile/Car:1.0 would occur when one of the following instances becomes
available or unavailable: Tom's Car on Athena, Tom's Car on Zeus, or Keri's Car.
Adding an instance name of “Tom's Car” to the TriggerDesc tightens the specification
so that the trigger only occurs when the availability of one of the two “Tom's Car’
instances changes. Finally, adding a host name of Athena refines the trigger further so
that it only occurs when the instance Tom's Car on the Athena server becomes
available or unavailable.

Looking at only the first instance found by a trigger

Triggers are “sticky.” A TriggerHandler is invoked every time an object satisfying the
trigger description becomes accessible. You may only be interested in learning when
the first instance becomes accessible. If this is the case, invoke the Agent's
unreg_trigger () method to unregister the trigger after the first occurrence is found.

Querying an agent

This section contains two examples of using the Location Service to find instances of
an interface. The first example uses the Account interface shown in the following IDL
excerpt:

// Bank.idl
module Bank {
interface Account {
float balance();
}i
interface AccountManager {
Account open (in string name);
}i
}i

Finding all instances of an interface

The following code sample uses the all_instances () method to locate all instances of
the Account interface. Notice that the Smart Agents are queried by passing
“LocationService” to the ORB.resolve_initial_references () method, then narrowing the

14: Using the Location Service 179

Querying an agent

object returned by that method to an ObjLocation.2Agent . Notice, as well, the format of
the Account repository id: IDL:Bank/Account:1.0.

Finding all instances satisfying the AccountManager interface:

// AccountFinder.java
public class AccountFinder {
public static void main(String[] args) {
try {

// Initialize the ORB.

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args,null);

com.inprise.vbroker.ObjLocation.Agent the_agent = null;

try {
the_agent = com.inprise.vbroker.ObjLocation.AgentHelper.narrow(

orb.resolve_initial_references("LocationService"));

}

catch (org.omg.CORBA.ORBPackage.InvalidName e) {
System.out.println("Not able to resolve references " +

"for LocationService");

System.exit (1);

}

catch (Exception e) {
System.out.println("Unable to locate LocationService!");
System.out.println("Caught exception: " + e);
System.exit (1);

}

org.omg.CORBA.Object[] accountRefs =
the_agent.all_instances("IDL:Bank/AccountManager:1.0");

System.out.println("Agent returned " + accountRefs.length +
" object references");

for (int 1=0; 1 < accountRefs.length; i++) {
System.out.println("Stringified IOR for account #" + (i+l) + ":");
System.out.println(orb.object_to_string(accountRefs([i]));
System.out.println();

} catch (Exception e) {

System.out.println("Caught exception: " + e);
System.exit (1);

Finding interfaces and instances known to Smart Agents

The following code sample shows how to find everything known to Smart Agents. It
does this by invoking the all_repository_ids() method to obtain all known interfaces.
Then it invokes the all_instances_descs () method for each interface to obtain the
instance descriptions.

Finding everything known to a Smart Agent:

// Find.java

public class Find {

public static void main(String[] args) {

try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.1init (args,null);
com.inprise.vbroker.ObjLocation.Agent agent = null;
try {
agent = com.inprise.vbroker.ObjLocation.AgentHelper.narrow

orb.resolve_initial_references("LocationService"));
} catch (org.omg.CORBA.ORBPackage.InvalidName e) {

180 VisiBroker for Java Developer’s Guide

Querying an agent

System.out.println("Not able to resolve references " + "for
LocationService");
System.exit (1);
} catch (Exception e) {
System.out.println("Not able to resolve references " + "for
LocationService");
System.out.println("Caught exception: " + e);
System.exit (1);
}
boolean done=false;
java.io.BufferedReader in =
new java.lio.BufferedReader (new java.io.InputStreamReader (System.in));

while (! done) {

System.out.print ("-> ");

System.out.flush();

String line = in.readLine();

if (line.startsWith("agents")) {
java.lang.String[] agentList = agent.all_agent_locations();
System.out.println("Located " + agentList.length + " agents");
for (int i1=0; i < agentList.length; i++) {

System.out.printIn("\t" + "Agent #" + (i+1) + ": " +
agentList[i]);

}

} else if(line.startsWith("rep")) {
java.lang.String[] repIds = agent.all_repository_ids();
System.out.println("Located " + repIds.length + " repository Ids");
for (int 1=0; 1 < repIds.length; i++) {

System.out.printIn("\t" + "Repository Id #" + (i+1) + ": " +
repIds[i]);
}
} else if(line.startsWith("objects ")) {

String names = line.substring("objects ".length(), line.length());
PrintObjects (names, agent, orb) ;
} else if (line.startsWith("quit")) {
done = true;
} else {
System.out.println("Commands: agents\n" +
" repository_ids\n" +

" objects <rep Id>\n" +
" objects <rep Id> <obj name>\n" +
" quit\n");

}
1
} catch (com.inprise.vbroker.ObjLocation.Fail err) {
System.out.println("Location call failed with reason " + err.reason);
} catch (java.lang.Exception err) {
System.out.println("Caught error " + err);
err.printStackTrace();
1
}
public static void PrintObjects(String names,
com.inprise.vbroker.ObjLocation.Agent agent,
org.omg.CORBA.ORB orb)
throws com.inprise.vbroker.ObjLocation.Fail {
int space_pos = names.indexOf (' ');
String repository_id;
String object_name;
if (space_pos == -1) {
repository_id = names;

14: Using the Location Service 181

Writing and registering a trigger handler

object_name = null;

} else {

repository_id = names.substring(0,names.indexOf (' "));
object_name = names.substring(names.indexOf (' ')+1);

}

org.omg.CORBA.Object[] objects;
com.inprise.vbroker.ObjLocation.Desc[] descriptors;
if (object_name == null) {

objects

agent.all_instances (repository_id);

descriptors = agent.all_instances_descs(repository_id);

} else {

objects

agent.all_replica(repository_id,object_name);

descriptors = agent.all_replica_descs(repository_id,object_name);

}

System.out.println("Returned " + objects.length + " objects");

for (int 1=0; i<objects.length; i++) {
System.out.printIn("\n\nObject #" + (i+1) + ":");
System.out.println("==================") ;
System.out.printIn("\tRep ID: " +

((com.inprise.vbroker.CORBA.Object)objects[i])._repository_id());

System.out.printIn("\tInstance:" +

System.
System.
System.
System.
System.
System.
System.
System.
System.
System.

out

out.

out

out.

out

out.

out

out.

((com.1inprise.vbroker.CORBA.Object)objects[i])._object_name());
out.
out.

println("\tIOR: " + orb.object_to_string(objects[i]));
println();

.println("Descriptor #" + (i+l1));
println("===============scsooosssooooooozomoo ')
.println("Host: " + descriptors[i].iiop_locator.host);
println("Port: " + descriptors[i].iiop_locator.port);
.println("Agent Host: " + descriptors[i].agent_hostname);
println("Repository Id: " + descriptors[i].repository_id);
.println("Instance: " + descriptors[i].instance_name);
println("Activable: " + descriptors[i].activable);

Writing and registering a trigger handler

The following code sample implements and registers a TriggerHandler. The
TriggerHandlerImpl's impl_is_ready () and impl_is_down () methods display the
description of the instance that caused the trigger to be invoked, and optionally

unregister itself.

If it is unregistered, the method calls System.exit () to terminate the program.

Notice that the TriggerHandlerImpl class keeps a copy of the desc and Agent parameters
with which it was created. The unreg_trigger () method requires the desc parameter.
The Agent parameter is duplicated in case the reference from the main program is

released.

Implementing a trigger handler:

// AccountTrigger.java
import java.io.*;
import org.omg.PortableServer.*;
class TriggerHandlerImpl extends
com. inprise.vbroker.ObjLocation.TriggerHandlerPOA {
public TriggerHandlerImpl (com.inprise.vbroker.ObjLocation.Agent agent,
com.inprise.vbroker.ObjLocation.TriggerDesc initial_desc) {
agent =
initial_desc = initial_desc;

agent;

182 VisiBroker for Java Developer’s Guide

Writing and registering a trigger handler

}

public void impl_is_ready (com.inprise.vbroker.ObjLocation.Desc desc) {
notification(desc, true);

1

public void impl_is_down(com.inprise.vbroker.ObjLocation.Desc desc) {
notification(desc, false);

}

private void notification(com.inprise.vbroker.ObjLocation.Desc desc,
boolean isReady) {
if (isReady) {
System.out.println("Implementation is ready:");
} else {
System.out.println("Implementation 1s down:");

}

System.out.printIn("\tRepository Id = " + desc.repository_id + "\n" +
"\tInstance Name = " + desc.instance_name + "\n" +
"\tHost Name = " 4+ desc.iiop_locator.host + "\n" +
"\tBOA Port = " + desc.iiop_locator.port + "\n" +
"\tActivable = " + desc.activable + "\n" + "\n");
System.out.println("Unregister this handler and exit (yes/no)?");
try {

BufferedReader in = new BufferedReader (
new InputStreamReader (System.in));
String line = in.readLine();
if (line.startswith("y") || line.startswWith("vy")) {
try {
agent.unreg_trigger(_initial_desc, _this());
} catch (com.inprise.vbroker.ObjLocation.Fail e) {
System.out.printIn("Failed to unregister trigger with
reason=[" + e.reason + "]");
}
System.out.println("exiting...");
System.exit (0);
}
} catch (java.io.IOException e) {
System.out.println("Unexpected exception caught: " + e);
System.exit(1);
}
1
private com.inprise.vbroker.ObjLocation.Agent _agent;
private com.inprise.vbroker.ObjLocation.TriggerDesc _initial_desc;
}
public class AccountTrigger f{
public static void main(String args[]) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args,null);
POA rootPoa =
POAHelper.narrow (orb.resolve_initial_references("RootPOA"));
rootPoa.the_POAManager () .activate();
com.inprise.vbroker.ObjLocation.Agent the_agent =
com.inprise.vbroker.ObjLocation.AgentHelper.narrow
orb.resolve_initial_references("LocationService"));
// Create a trigger description and an appropriate TriggerHandler.
// The TriggerHandler will be invoked when the osagent becomes
// aware of any new implementations of the interface
"Bank: :AccountManager"
com. inprise.vbroker.ObjLocation.TriggerDesc desc =
new com.inprise.vbroker.ObjLocation.TriggerDesc (
"IDL:Bank/AccountManager:1.0", "", "");
TriggerHandlerImpl trig = new TriggerHandlerImpl (the_agent, desc);
rootPoa.activate_object (trig);

14: Using the Location Service 183

Writing and registering a trigger handler

the_agent.reg_trigger(desc, trig._this());
orb.run();
} catch (Exception e) {
e.printStackTrace();
System.exit (1);

184 VisiBroker for Java Developer’s Guide

Overview

Using the VisiNaming Service

This section describes the usage of the VisiBroker VisiNaming Service which is a
complete implementation of the CORBA Naming Service Specification Version 1.2
(formal/02—-09-02).

The VisiNaming Service allows you to associate one or more logical names with an
object reference and store those names in a namespace. With the VisiNaming Service,
your client applications can obtain an object reference by using the logical name
assigned to that object.

The figure below contains a simplified view of the VisiNaming Service that shows how
1 an object implementation can bind a name to one of its objects within a namespace.

2 client applications can then use the same namespace to resolve a name which
returns an object reference to a naming context or an object.

15: Using the VisiNaming Service 185

Understanding the namespace

Figure 15.1 Binding, resolving, and using an object name from a naming context within a namespace

4, Invoke methods

Object implementation on objects

Hamespace
“name_1, objref_1-
~name_ 2, objref_2~
bind{name, object_ref)

3. resolve () returns

<name_x-1, objref x-13 an object reference

2. resolve(name)

Client Application

There are some important differences to consider between locating an object
implementation with the VisiNaming Service as opposed to the Smart Agent.

- Smart Agent uses a flat namespace, while the VisiNaming Service uses a
hierarchical one.

- If you use the Smart Agent, an object's interface name is defined at the time you
compile your client and server applications. This means that if you change an
interface name, you must recompile your applications. In contrast, the VisiNaming
service allows object implementations to bind logical names to its objects at runtime.

- If you use the Smart Agent, an object may implement only one interface name. The
VisiNaming service allows you to bind more than one logical name to a single object.

For more information about the Smart Agent (osagent),see “Using the Smart Agent.”

Understanding the namespace

The figure below shows how the VisiNaming Service might be used to name objects
that make up an order entry system. This hypothetical order entry system organizes its
namespace by geographic region, then by department, and so on. The VisiNaming
Service allows you to organize the namespace in a hierarchical structure of
NamingContext objects that can be traversed to locate a particular name. For example,
the logical name NorthAmerica/ShippingDepartment /Orders could be used to locate an
Order object.

186 VisiBroker for Java Developer’s Guide

Understanding the namespace

Figure 15.2 Naming scheme for an order entry system

Azia

Europe

Morth America

Shipping Department | -

Zales Departmert [¥ Invertary | @ B

\ Orders -l
/-,_// TR
il

Qreler
Customers ® Inplementation
— Dhject
illiry
g GE-—__ -~ Acme Lumber ‘E\L

Irternational Supplies :E -
g =MamingContext e

(:} =Chjectimplementation

Naming contexts

To implement the namespace shown above with the VisiNaming Service, each of the
shadowed boxes in the diagram above, would be implemented by a NamingContext
object. A NaningContext object contains a list of Nane structures that have been bound to
object implementations or to other NamingContext objects. Though a logical name may
be bound to a NamingContext, it is important to realize that a NamingContext does not, by
default, have a logical name associated with it nor is such a name required.

Object implementations use a NamingContext object to bind a name to an object that
they offer. Client applications use a NamingContext to resolve a bound name to an object
reference.

A NamingContextExt interface is also available which provides methods necessary for
using stringified names.

Naming context factories

A naming context factory provides the interface for bootstrapping the VisiNaming
Service. It has operations for shutting down the VisiNaming Service and creating new
contexts when there are none. Factories also have an additional API that returns the
root context. The root context provides a very critical role as a reference point. This is
the common starting point to store all data that are supposed to be publicly available.

Two classes are provided with the VisiNaming Service that allow you to create a
namespace; the default naming context factory and the extended naming context
factory. The default naming context factory creates an empty namespace that has no
root NamingContext. You may find it more convenient to use the extended naming
context factory because it creates a namespace with a root NamingContext.

You must obtain at least one of these NamingContext objects before your object
implementations can bind names to their objects and before client applications can
resolve a name to an object reference.

Each of the NaningContext objects shown in the figure above could be implemented
within a single name service process, or they could be implemented within as many as
five distinct name server processes.

15: Using the VisiNaming Service 187

Understanding the namespace

Names and NameComponent

A CosNaming: :Name represents an identifier that can be bound to an object
implementation or a CosNaming: :NamingContext. A Name is not simply a string of
alphanumeric characters; it is a sequence of one or more NameComponent structures.

Each NameComponent contains two attribute strings, id and kind. The Naming service
does not interpret or manage these strings, except to ensure that each id and kind is
unique within a given NamingContext.

The id and kind attributes are strings which uniquely identify the object to which the
name is bound. The kind member adds a descriptive quality to the name. For example,
the name “Inventory.RDBMS” has an id member of “Inventory” and a kind member of
“RDBMS.”

module CosNaming
typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;
}i
typedef sequence<NameComponent> Name;
}i
The id and kind attributes of NameComponent in the code example above, must be a
character from the 1ISO 8859-1 (Latin-1) character set, excluding the null character
(0x00) and other non-printable characters. Neither of the strings in NameComponent can

exceed 255 characters. Furthermore, the VisiNaming Service does not support
NameComponent which uses wide strings.

Note

The id attribute of a Name cannot be an empty string, but the kind attribute can be an
empty string.

Name resolution

Your client applications use the NamingContext method resolve to obtain an object
reference, given a logical Name. Because a Name consists of one or more NameComponent
objects, the resolution process requires that all of the NaneComponent structures that
make up the Name be traversed.

Stringified names

Because the representation of CosNaming: :Name is not in a form that is readable or
convenient for exchange, a stringified name has been defined to resolve this problem.
A stringified name is a one-to-one mapping between a string and a CosNaming: :Name. If
two CosNaming: :Name objects are equal, then their stringified representations are equal
and vice versa. In a stringified name, a forward slash (/) serves as a name component
separator; a period (.) serves as the id and kind attributes separator; and a backslash
(\) serves as an escape character. By convention a NameComponent with an empty kind
attribute does not use a period (for example, Order).

"Borland.Company/Engineering.Department /Printer.Resource"

Note

In the following examples, NameComponent structures are given in their stringified
representations.

Simple and complex names

A simple name, such as Billing, has only a single NameComponent and is always resolved
relative to the target naming context. A simple name may be bound to an object
implementation or to a NamingContext.

188 VisiBroker for Java Developer’s Guide

Running the VisiNaming Service

A complex name, such as NorthAmerica/ShippingDepartment/Inventory, consists of a
sequence of three NameComponent structures. If a complex name consisting of n
NameComponent objects has been bound to an object implementation, then the first (n—1)
NameComponent objects in the sequence must each resolve to a NamingContext, and the
last NameComponent object must resolve to an object implementation.

If a Name is bound to a NamingContext, each NameComponent structure in the sequence
must refer to a NamingContext.

The code sample below shows a complex name, consisting of three components and
bound to a CORBA object. This name corresponds to the stringified name,
NorthAmerica/SalesDepartment/Order. When resolved within the topmost naming
context, the first two components of this complex name resolve to NamingContext
objects, while the last component resolves to an object implementation with the logical
name “Order.”

// Neme stringifies to "NorthAmerica/SalesDepartment/Order"
NameComponent [] continentName = { new NameComponent ("NorthAmerica", "") };
NamingContext continentContext =

rootNamingContext.bind_new_context (continentName) ;
NameComponent [] departmentName = { new NameComponent ("SalesDepartment", "") };
NamingContext departmentContext =

continentContext.bind_new_context (departmentName) ;

NameComponent [] objectName = { new NameComponent ("Order", "") };
departmentContext.rebind(objectName, myPOA.servant _to_reference (managerServant))

1

Running the VisiNaming Service

The VisiNaming Service can be started with the following commands. Once you have
started the Naming service, you may browse its contents by using the VisiBroker
Console.

Installing the VisiNaming Service

The VisiNaming Service is installed automatically when you install VisiBroker. It
consists of a file nameserv, which for Windows is a binary executable and for UNIX is a
script, and Java class files which are stored in the vbjorb. jar file.

Configuring the VisiNaming Service

In previous versions of VisiBroker, the VisiNaming Service maintained persistence by
logging any modifying operations to a flat-file. From version 4.0 onward, the
VisiNaming Service works in conjunction with backing store adapters. It is important to
note that not all backing store adapters support persistence. The default InMenory
adapter is non-persistent while all the other adapters are. For more details about
adapters, see “Pluggable backing store”.

Note

A Naming Server is designed to register itself with the Smart Agent. In most cases you
should to run the Smart Agent to bootstrap the VisiNaming Service. This allows clients
to retrieve the initial root context by calling the resolve_initial_references method. The
resolving function works through the Smart Agent for the retrieval of the required
references. Similarly, Naming Servers that participate in a federation also uses the
same mechanism for setting up a federation.

For more information about the Smart Agent, see “Using the Smart Agent.”

15: Using the VisiNaming Service 189

Invoking the VisiNaming Service from the command line

Starting the VisiNaming Service

You can start the VisiNaming Service by using the nameserv launcher program in the /
bin directory. The nameserv launcher uses the com. inprise.vbroker.naming.ExtFactory
factory class by default.

UNIX

nameserv [driver_options] [nameserv_options] <ns_name> &

Windows
start nameserv [driver_options] [nameserv_options] <ns_name>

See “General options” for descriptions of the driver options available to all of the
VisiBroker programmer tools.

nameserv_option Description

-2, -h, -help, -usage Print out the usage information.

-config <properties_file> |Use <properties_file> as the configuration file when starting up the
VisiNaming Service.

<ns_name> The name to use for this VisiNaming Service. This is optional; the
default name is NameService.

In order to force the VisiNaming Service to start on a particular port, the VisiNaming
Service must be started with the following command line option:

prompt> nameserv -J-Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port number>

The default name for VisiNaming is “NameService”, if you want to specify a name other
than this, you can start VisiNaming in the following way:

prompt> nameserv -J-Dvbroker.se.iliop_tp.scm.iilop_tp.listener.port=<port number>
<ns_name>

Starting the VisiNaming Service with the vbj command
The VisiNaming Service can be started using vbj.

prompt>vbj com.inprise.vbroker.naming.ExtFactory <ns_name>

Invoking the VisiNaming Service from the command line

The VisiNaming Service Utility (nsutil) provides the ability to store and retrieve
bindings from the command line.

Configuring nsutil

To use nsutil, first configure the Naming service instance using the following
commands:

prompt>nameserv <ns_name>

prompt>nsutil -VBJprop <option> <cmd> [args]

Option Description
ns_name Configure the Naming service to contact
SVCnameroot=<ns_name> Note: Before using svCnameroot, you must first run OSAgent.

ORBInitRef=NameService=<url> | File name or URL, prefixed by its type, which may be (corbaloc:,
corbaname:, file:, ftp:, http:, or ior:). For example, to assign a
file in a local directory, the ns_config string would be:-vBJprop
ORBInitRef=NameService=<file:ns.ior>

cnd Any CosNaming operation, and, in addition, ping and shutdown.

190 VisiBroker for Java Developer’s Guide

Bootstrapping the VisiNaming Service

Running nsutil

The VisiNaming Service Utility supports all the CosNaming operations as well as three
additional commands. The CosNaming operations supported are:

cmd Parameter(s)
bind name objRef
bind_context name ctxRef

bind_new_context |name

destroy name

list [name1 name2 name3...]
new_context No parameter

rebind name objRef
rebind_context name ctxRef

resolve name

unbind name

Note

For the operations destroy and list, the name parameter must refer to existing naming
contexts. For the operation 1ist only, there can be zero or more naming contexts,
whose contents will be listed. In the case where no naming context is specified, the
content of the root naming context will be listed.

The additional nsutil commands are:

cmd Parameter Description

ping name Resolves the stringified name and contacts the
object to see if it is still alive.

shutdown <naming context factory | Shuts the VisiNaming Service down gracefully

name or stringified ior> | from the command line. The mandatory
parameter of this operation specifies either the
naming context factory's name as registered
with the osagent or the stringified IOR of the
factory.

unbind_from_cluster |name objRef Unbinds a specific object in an implicit cluster.
The nane is the object's logical name and the
objRef is the stringified object reference that is
to be unbound.

To run an operation from the nsutil command, place the operation name and its
parameters as the <cnd> parameter. For example:

prompt>nsutil -VBJprop ORBInitRef=NameService=file://ns.ior resolve myName

Shutting down the VisiNaming Service using nsutil

To shut down the VisiNaming Service using nsutil, use the shutdown command:

prompt>nsutil -VBJprop ORBInitRef=NameService=file://ns.ior shutdown <ns_name>

Bootstrapping the VisiNaming Service

There are three ways to start a client application to obtain an initial object reference to
a specified VisiNaming Service. You can use the following command-line options when
starting the VisiNaming Service:

- ORBInitRef
- ORBDefaultInitRef

15: Using the VisiNaming Service 191

Bootstrapping the VisiNaming Service

— SVCnameroot
The following example illustrates how to use these options.

Suppose there are three VisiNaming Services running on the host TestHost: nsl, ns2,
and ns3, running on the ports 20001, 20002 and 20003 respectively. And there are
three server applications: sr1, sr2, sr3. Server srl binds itself in ns1, Server sr2 binds
itself in ns2, and server sr3 in ns3.

Calling resolve_initial_references

The VisiNaming Service provides a simple mechanism by which the
resolve_initial_references method can be configured to return a common naming
context. You use the resolve_initial_references method which returns the root context
of the Naming Server to which the client program connects.

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.1init (args, null);
org.omg.CORBA.Object rootObj =
orb.resolve_initial_references("NameService");

Using -DSVCnameroot

You use the -DsVCnameroot option to specify into which VisiNaming Service instance
(especially important if several unrelated Naming service instances are running) you
want to bootstrap.

For instance, if you want to bootstrap into ns1, you would start your client program as:
vbj -DSVCnameroot=nsl <client_application>

You can then obtain the root context of ns1 by calling the resolve_initial_references
method on an ORB reference inside your client application as illustrated below. The
Smart Agent must be running in order to use this option.

Using -DORBInitRef

You can use either the corbaloc or corbaname URL naming schemes to specify which
VisiNaming Service you want to bootstrap. This method does not rely on the Smart
Agent.

Using a corbaloc URL

If you want to bootstrap using VisiNaming Service ns2, then start your client application
as follows:

vbj -DORBInitRef=NameService=corbaloc::TestHost:20002/NameService
<client_application>

You can then obtain the root context of ns2 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated in
the example above.

Note

The deprecated iioploc and iiopname URL schemes are implemented by corbaloc and
corbanane, respectively. For backwards compatibility, the old schemes are still
supported.

Using a corbaname URL

If you want to bootstrap into ns3 by using corbanane, then you should start your client
program as:

vbj -DORBInitRef NameService=corbaname::TestHost:20003/ <client_application>

192 VisiBroker for Java Developer’s Guide

NamingContext

You can then obtain the root context of ns3 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated
above.

-DORBDefaultInitRef

You can use either a corbaloc or corbanane URL to specify which VisiNaming Service
you want to bootstrap. This method does not rely on the Smart Agent.

Using -DORBDefaultInitRef with a corbaloc URL

If you want to bootstrap into ns2, then you should start your client program as:

vbj -DORBDefaultInitRef corbaloc::TestHost:20002 <client_application>

You can then obtain the root context of ns2 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated in
the sample above.

The following is an example of how to set up multiple VisiNaming Services using
corbaloc:

client -DORBDefaultInitRef
NameService=corbaloc: :bart:20000, :Bart:20001, :Bart:20002/NameService
-ORBpropStorage clt.props

Using -DORBDefaultInitRef with corbaname

The combination of -ORBDefaultInitRef or -DORBDefaultInitRef and corbaname works
differently from what is expected. If -ORBDefaultInitRef or -DORBDefaultInitRef is
specified, a slash and the stringified object key is always appended to the corbaname.
If the URL is corbaname: : TestHost: 20002, then by specifying -DORBDefaultInitRef

resolve_initial_references in Java will result in a new URL.:
corbaname: : TestHost : 20003 /NameService.

NamingContext

This object is used to contain and manipulate a list of names that are bound to
VisiBroker ORB objects or to other NamingContext objects. Client applications use this
interface to resolve or 1ist all of the names within that context. Object implementations
use this object to bind names to object implementations or to bind a name to a
NamingContext object. The sample below shows the IDL specification for the
NamingContext.

Module CosNaming {
interface NamingContext {
void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind(in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName);
void bind_context (in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind_context (in Name n, in NamingContext NC)
raises (NotFound, CannotProceed, InvalidName);
Object resolve(in Name n)
raises (NotFound, CannotProceed, InvalidName);
void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);
NamingContext new_context();
NamingContext bind_new_context (in Name n)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void destroy ()
raises (NotEmpty);
void list(in unsigned long how_many,
out BindingList bl,
out BindingIterator bi);

15: Using the VisiNaming Service 193

NamingContextExt

}i
}i

NamingContextExt

The NamingContextExt interface, which extends NamingContext, provides the operations

required to use stringified names and URLs.

Module CosNaming f{
interface NamingContextExt : NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;
StringName to_string(in Name n)
raises(InvalidName);
Name to_name(in StringName sn)
raises(InvalidName) ;
exception InvalidAddress {};
URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);
Object resolve_str(in StringName n)
raises (NotFound, CannotProceed, InvalidName);
}i
}i

Default naming contexts

A client application can specify a default naming context, which is the naming context
that the application will consider to be its root context. Note that the default naming
context is the root only in relation to this client application and, in fact, it can be
contained by another context.

Obtaining the default naming context

Java client applications can connect to the VisiNaming Service by using the
resolve_initial_references method in the ORB interface. To use this feature, the
SVCnameroot or ORBInitRef parameters must be specified when the client is started.

For example, to start a Java application named ClientApplication that intends to use
the naming context Inventory as its default naming context, you could enter the
following command:

prompt> vbj -DSVCnameroot=NorthAmerica/ShippingDepartment/Inventory \
ClientApplication

In the example, NorthAmerica is the server name and ShippingDepartment/Inventory is
the stringified name from the root context.

Note

When using the vbj command, all -D properties must appear before the Java class
name.

Obtaining naming context factories

A naming service client can get a reference to the naming context factory by resolving
the initial reference of the factory as follows:

ExtendedNamingContextFactory myFactory =
ExtendedNamingContextFactoryHelper.narrow (
orb.resolve_initial_reference("VisiNamingContextFactory"));

194 VisiBroker for Java Developer’s Guide

VisiNaming Service properties

If osagent is running on the network, then such a client must be started as follows:

vbj -DSVCnameroot=<ns_name> Client

If there is no osagent running on the network, then the client must be started as shown

in the following example:

vbj -DORBInitRef=VisiNamingContextFactory=
corbaloc: :<host>:<port>/VisiNamingContextFactory Client

VisiNaming Service properties

The following tables list the VisiNaming Service properties:

Property Default | Description

vbroker.naming.adminPwd inprise | Password required by administrative VisiBroker Naming
service operations.

vbroker.naming.enableSlave |0 If 1, enables master/slave naming services
configuration. See “VisiNaming Service Clusters for
Failover and Load Balancing” for information about
configuring master/slave naming services.

vbroker.naming.iorFile ns.ior | This property specifies the full path name for storing the

Naming service IOR. If you do not set this property, the
Naming service will try to output its IOR into a file
named ns.ior in the current directory. The Naming
service silently ignores file access permission
exceptions when it tries to output its IOR.

15: Using the VisiNaming Service 195

VisiNaming Service properties

Property

Default

Description

vbroker.naming. logLevel

emerg

This property specifies the level of log messages to be
output from Naming service. Acceptable values are:

vbroker.log.enable=true
vbroker.log.filter.default.enable=false
vbroker.log.filter.default.register=naming
vbroker.log.filter.default.naming.enable=true
vbroker.log.filter.default.naming.logLevel=debug

vbroker .naming. logUpdate

false

This property allows special logging for all of the update
operations on the CosNaming: :NamingContext,
CosNamingExt: :Cluster, and CosNamingExt: :ClusterManager
interfaces.

The CosNaming: :NamingContext interface operations for
which this property is effective are:
bind, bind_context, bind_new_context, destroy,
rebind, rebind_context, unbind
The CosNamingExt : :Cluster interface operations for which
this property is effective are:
bind, rebind, unbind, destroy.
The CosNamingExt : :ClusterManager interface operation for
which this property is effective is:
create_cluster

When this property value is set to true and any of the
above methods is invoked, the following log message is
printed (the output shows a bind operation being
executed):

00000007,5/26/04 10:11 AM,127.0.0.1,00000000,
VBJ-Application,VBJ ThreadPool Worker,INFO,

OPERATION NAME : bind

CLIENT END POINT : Connection[socket=Socket
[addr=/127.0.0.1, port=2026, localport=1993]]
PARAMETER 0 : [(Tom.LoanAccount)]

PARAMETER 1 : Stub[repository_id=IDL:Bank/
LoanAccount:1.0, key=TransientId[poaName=/,

id={4 bytes: (0)(0)(0)(0)},sec=505,usec=990917734,
key_string=%00VB%01%00%00%00%02/%00%20%20%00%00%00%
04%00%00%00%00%00%00%01%£9;%104f], codebase=null]

For more information see “Object Clusters”.

Property

Default

Description

enableClusterFailover

196 VisiBroker for Java Developer’s Guide

vbroker.naming. true

When set to true, it specifies that an interceptor be installed
to handle fail-over for objects that were retrieved from the
VisiNaming Service. In case of an object failure, an attempt is
made to transparently reconnect to another object from the
same cluster as the original.

VisiNaming Service properties

Property Default |Description

vbroker.naming. 0 If 1, the implicit clustering feature is turned on.

propBindOn

vbroker.naming.smrr. |1 This property is relevant when the name service cluster uses
pruneStaleRef the Smart Round Robin criterion. When this property is set to

1, a stale object reference that was previously bound to a
cluster with the Smart Round Robin criterion will be removed
from the bindings when the name service discovers it. If this
property is set to 0, stale object reference bindings under the
cluster are not eliminated. However, a cluster with Smart
Round Robin criterion will always return an active object
reference upon a resolve () or select () call if such an object
binding exists, regardless of the value of the
vbroker.naming.smrr.pruneStaleRef property. By default, the
implicit clustering in the name service uses the Smart Round
Robin criterion with the property value set to 1. If set to 2, this
property disables the clearing of stale references completely,
and the responsibility of cleaning up the bindings belongs to
the application, rather than to VisiNaming.

For more information see “VisiNaming Service Clusters fo